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Abstract

Devices participating in federated learning (FL) typically have heterogeneous communica-
tion, computation, and memory resources. However, in synchronous FL, all devices need to
finish training by the same deadline dictated by the server. Our results show that training
a smaller subset of the neural network (NN) at constrained devices, i.e., dropping neu-
rons/filters as proposed by state of the art, is inefficient, preventing these devices to make
an effective contribution to the model. This causes unfairness w.r.t the achievable accuracies
of constrained devices, especially in cases with a skewed distribution of class labels across de-
vices. We present a novel FL technique, CoCoFL, which maintains the full NN structure on
all devices. To adapt to the devices’ heterogeneous resources, CoCoFL freezes and quantizes
selected layers, reducing communication, computation, and memory requirements, whereas
other layers are still trained in full precision, enabling to reach a high accuracy. Thereby,
CoCoFL efficiently utilizes the available resources on devices and allows constrained devices
to make a significant contribution to the FL system, preserving fairness among participants
(accuracy parity) and significantly improving final accuracy.

1 Introduction

Deep learning has achieved impressive results in many domains (He et al., 2016; Huang et al., 2017; Young
et al., 2018), and is also being applied in embedded systems such as mobile phones or internet of things
(IoT) devices (Dhar et al., 2021). With recent hardware improvements, these devices are not only capable
of performing inference of a pre-trained model, but also of on-device training. Hence, federated learning
(FL) (McMahan et al., 2017) has emerged as an alternative to central training. An FL system comprises
many devices that each train a deep neural network (NN) on their private data, and share knowledge by
exchanging NN parameters via a server. Distributing learning through FL brings many benefits, most
importantly preserving the privacy of the end users.

Devices in real-world systems have limited computation, communication, and memory resources for train-
ing, varying across devices. For instance, smartphones that participate in an FL system have different
performance and memory (e.g., different hardware generations), and the conditions of their wireless com-
munication channels vary (e.g., due to fading (Goldsmith, 2005)). Similar observations can be made in IoT
systems (Bhardwaj et al., 2020). As stated by prior art (Rapp et al., 2022; Xu et al., 2021; Diao et al.,
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Figure 1: Overview of CoCoFL. At design time, different configurations of frozen/trained layers are profiled
w.r.t. communication, computation, and memory in training. At run time, a heuristic selects a suitable
configuration on each device w.r.t. the device’s constraints.

2020; Horvath et al., 2021), to enable efficient learning in such systems, FL needs to adapt to the per-device
constraints, i.e., hardware-aware FL. Although different techniques are proposed, the common idea in these
state-of-the-art solutions is to reduce the complexity by training subsets of the NN model on less capable de-
vices, to match the required resources for training to the actual resource availability. While these techniques
enable constrained devices to participate in the training, they do not effectively learn from their data, i.e.,
they do not preserve fairness (accuracy parity (Shi et al., 2021)). This is especially critical with non inde-
pendent and identically distributed (non-iid) data, where the data differs statistically between devices (Hsu
et al., 2019). Our evaluation results show that existing solutions perform poorly in non-iid cases, such that
in some settings, simply excluding constrained devices from training reaches higher accuracies. We attribute
this in part to the fact that updates at constrained devices are less relevant to the overall learning objective,
as they train much smaller subsets of the model, and also to the inability of these solutions to efficiently use
the available resources in constrained devices.

In this paper, we propose a new technique CoCoFL (Fig. 1), that allows all devices to calculate gradients
based on the full model, irrespective of their capabilities, through partial freezing and quantization of the
model at constrained devices. We show that quantizing frozen layers but keeping trained layers at full
precision results in a large reduction in resource requirements, while still enabling efficient learning at devices.
This combination has not been exploited so far. Freezing layers reduces the required gradient computations,
the storage of intermediate activations, and the size of the parameter update, while quantization further
speeds up the computations of frozen layers. Thereby, our solution adjusts the complexity of training to the
resources available at each device. Partial freezing and quantization opens up a large design space, where each
layer can be frozen or trained on each participating device. The selection of trained layers has a significant
impact on the required resources and on the accuracy. We introduce a heuristic that allows for server-
independent selection of layers w.r.t. local resource availability at run time, based on design-time profiling
of the performance of devices. We demonstrate that our solution reaches significantly higher accuracy in iid
and non-iid data, when compared with the state of the art, significantly improving FL systems.

In summary, we make the following novel contributions:

• We empirically show that in many scenarios, state-of-the-art subset-based techniques do not reach
better accuracies than simply excluding less capable devices (a straightforward baseline). We ob-
serve this throughout various datasets (e.g., CIFAR10, XChest, and Leaf benchmark data), data
distributions, and NN topologies (e.g., ResNet, DenseNet, and Transformers).

• Compared to the state of the art, in these scenarios, we enable increased fairness of contribution and
higher final accuracies in FL with heterogeneous resources by allowing less capable devices to do
training based on the full NN structure. This is achieved by the following technical contributions.

• We introduce a novel partial freezing and quantization technique to adjust to computation, commu-
nication, and memory constraints of devices that allows to train full layers of NNs.

• We introduce CoCoFL1, based on partial freezing and quantization, with a simple, yet effective,
heuristic to select locally on each device which layers to freeze or train based on the available
communication, computation, and memory resources.

1The code is available at https://github.com/k1l1/CoCoFL.
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2 System Model and Problem Definition

System Model: We target a distributed system comprising a server that is responsible for coordination
and devices C that act as clients. Each device c ∈ C has exclusive access to its local data Dc. Training is done
iteratively using FL in synchronous rounds r. In each round, a subset of the devices C(r) ⊂ C is selected.
Each selected device downloads the latest model parameters w(r) from the server, performs training on its
local data for a pre-defined round time T , and then uploads the updated model parameters to the server.
The server averages all received updates (FedAvg (McMahan et al., 2017)) to build w(r+1) for the next round:

w(r+1) = 1∑
c∈C(r) |Dc|

·
∑

c∈C(r) |Dc| · w
(r)
c (1)

The server discards updates that arrive late (straggler), i.e., devices must upload their updates in time.

Device Model: Devices are heterogeneous w.r.t. their computation (performance), memory, and commu-
nication constraints. The performance of a device (how long the training of an NN takes) depends on its
hardware (number of cores, microarchitecture, memory bandwidth, etc.), software (employed deep learning
libraries, etc.), and training configuration (topology, amount of data, etc.). Similarly, the available mem-
ory Mc of device c depends on its hardware, while the required memory during training depends on the
software and training configuration. Some of these configurations are fixed by the FL system (NN topology,
etc.), while others are fixed by the device (hardware, software, amount of data), but some configuration A

(r)
c

can be adjusted per device per round. In our case, A
(r)
c ∈ A describes the subset of all NN layers that

are trained in round r by device c, with A being the set of all configurations (see Section 5). The training
time of device c for any A ∈ A is represented by the function tc : A→R. The required memory during
training is represented by mc : A→R. We obtain tc and mc through profiling our technique on real hardware
(measuring the training time and peak memory usage for different A).

The communication channel between devices and servers is commonly asymmetric: The download link from
the server to the devices can be neglected due to the commonly high transmit power of base stations (Yang
et al., 2020). The upload link from devices to the server is subject to heterogeneous channel quality, as
discussed in Section 1. Therefore, we model the communication constraint S

(r)
c of a device c in round r as

a limit in the number of bits that can be uploaded to the server at the end of the round. In our case, all
layers not contained in A

(r)
c are frozen (and quantized). Their parameters do not change, hence, do not need

to be uploaded to the server. We represent the size of the parameter update for any A ∈ A by a function
s : A→N that is independent of device characteristics. Function s can be derived analytically or by counting
parameters per layer.

Problem Definition: Our main objective is to maximize the final accuracy acc of the server model w(R)

after R rounds under communication, computation, and memory constraints, by selecting per-device per-
round the set of trained layers A

(r)
c :

maximize acc(w(R)) ∀c ∈ C ∀1 ≤ r ≤ R s.t. tc(A(r)
c )≤T ∧ mc(A(r)

c )≤Mc ∧ s(A(r)
c )≤S(r)

c (2)

We also evaluate fairness (accuracy parity (Shi et al., 2021)) as a secondary metric, by measuring the device-
or group specific accuracy using data that reflects each device’s or group’s distribution of local data Dc.

3 Related Work

We divide the related work into works that employ a similar mechanism (quantization/freezing) and works
that target a similar problem (computation/communication/memory constraints in FL).

Quantization and Freezing in Centralized Training: Most works on quantization target the inference,
with full-precision training. Naive training on quantized parameters leads to training stagnation as small
gradients are rounded to zero (Li et al., 2017). To solve this, one branch of works performs stochastic
rounding (Gupta et al., 2015). However, stochastic rounding prevents convergence to the local minimum
in the final phase of training with a low learning rate (Li et al., 2017), reducing the accuracy. Another
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branch of work uses a full-precision copy of the parameters as an accumulator (Micikevicius et al., 2018).
Calculating the parameter gradient based on quantized activations and parameters induces instability to the
learning processes, which requires a lower learning rate to maintain convergence, slowing down the training,
but also still resulting in a lower accuracy (Guo, 2018). In summary, achieving fast convergence and high
accuracy requires keeping the trained layers in full precision (activation and parameters in the forward and
backward pass). Goutam et al. (2020) stochastically freeze layers of an NN to speed up training, keeping
the frozen layers at full precision which limits the achievable speedup. Also, due to its stochastic nature, it
is not applicable to a hard computation constraint. All these works either apply quantization or freezing.
None of the existing works has exploited the symbiosis between freezing and quantization, where only frozen
layers are quantized to maintain good convergence properties.

Communication, Computation, and Memory Constraints in FL: Most works on resource-constrained
FL have targeted communication, extensively studying compression, quantization, and sketching of param-
eter updates (Shi et al., 2020; Thakker et al., 2019). All perform regular training of the full NN in full
precision, requiring full computation and memory resources, and only reduce the size of the parameter up-
date. They are orthogonal to ours, i.e., applicable on top of CoCoFL. The work in Chen et al. (2021) detects
NN parameters that have stabilized, freezes them, and excludes them from synchronization to reduce the
required communication. However, this technique can not cope with a given communication constraint. Re-
cently, a preliminary work (Yang et al., 2022) proposed freezing layers to save communication and memory in
FL. It exploits that frozen layers do not require storing activations for computing gradients, and do not need
to be uploaded to the server. This technique has later been combined with quantization during download
and upload (Ro et al., 2022), but unlike in our CoCoFL, quantization is not used during training, missing
out on significant optimization opportunities (e.g., up to 4× lower computation time as we will show in our
experiments). All these works do not reduce the computation cost of training.

Computation constraints in FL devices have only recently attracted attention. Some employ asynchronous
FL (Xie et al., 2020). However, this does not reduce memory requirements and may reduce the convergence
stability (McMahan et al., 2017). FedProx (Li et al., 2020) dynamically drops training data on straggling de-
vices, which reduces computations but does not affect communication and memory requirements, and reduces
the contribution of less capable devices. DISTREAL (Rapp et al., 2022) employs dropout to dynamically re-
duce the size of the trained NN, reducing computations. They still transmit the full NN updates, and, hence,
do not reduce communication costs. Several others train subsets of the NN on each device by (temporarily)
scaling the width (number of filters/neurons) of layers. This may save communication, computation, and
memory. In particular, Helios (Xu et al., 2021), HeteroFL (Diao et al., 2020), and FjORD (Horvath et al.,
2021) proposed to create a separate subset per each device according to its available resources. However,
training very small subsets on weak devices does not enable them to effectively learn from their data, as we
show in our evaluation, reducing fairness, hence, the final accuracy. Additionally, the reductions in commu-
nication and computation achieved by width scaling are tightly coupled. Consequently, one of them forms
the bottleneck, resulting in unexploited resources in the other metric. Finally, Yang et al. (2020) study the
trade-off between communication and computation to minimize the overall energy consumption. This work
is not applicable to a per-device computation or communication constraint.

In summary, none of the existing works on resource-constrained FL can adapt to per-device communication,
computation, and memory constraints, while still effectively learning from all data on all devices. We achieve
this through our novel combination of freezing and quantization.

4 Partial Freezing and Quantization

This section introduces our freezing, layer fusion, and quantization technique to reduce the training com-
plexity, which will be used in the CoCoFL algorithm (Section 5).

4.1 Background: NN Structure and Training

Structure: Common state-of-the-art deep NNs like ResNet (He et al., 2016), DenseNet (Huang et al., 2017),
or MobileNet (Howard et al., 2017) follow a similar structure, where a convolutional layer (CL) is followed
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Figure 2: The left part shows an NN where only block b4 is trained, while all others are frozen, and the
forward passes of b1, b2, and b3 are quantized (f̄1, f̄2, and f̄3), not requiring a backward pass. The right part
shows two blocks b2, b3 being trained, therefore requiring intermediate gradients of the quantized block b4.
Blocks are labeled (a), (b), and (c) depending on their types.

by a batch normalization (BN) layer, followed by ReLU activation. These layers account for the majority of
training time. We label repeating structures like this a block, where in a general case, an NN comprises N
blocks. We treat blocks as the smallest entity that is either frozen or trained. Note that our technique is also
applicable to variants of NNs, (e.g., multiple skip connections or Transformers as we show in our evaluation)
but for the sake of simplicity, the block description follows the ResNet structure.

Training: An update step in NNs comprises a forward and a backward pass. We describe the forward pass
as a chain of consecutive operations, where each block i has an associated forward function xi+1 = fi(xi)
with parameters wi. The full forward pass of the NN is calculated as ŷ = fN (fN−1(. . . (f1(x1))), where ŷ is
the NN’s output and x1 is the input. The backward pass consists of several gradient calculations to compute
the parameter gradients ∂E

∂wi
for each block i, where E = L(ŷ, y) is the optimization criterion with some

loss function L. Using the chain rule, the calculations can be split into several gradient calculations. In the
general case, the gradients w.r.t. a block’s parameters can be expressed as

∂E

∂wi
= ∂E

∂ŷ

( ∏N

k=i+1

∂fk(xk)
∂xk

)∂fi(xi)
∂wi

. (3)

Using the calculated gradients ∂E
∂wi

, local training with stochastic gradient descent (SGD) obtains updated
parameters w̃i = wi−η ∂E

∂wi
, where η is the learning rate. When calculating gradients of several blocks,

intermediate gradient computations can be reused.

4.2 Freezing, Fusion, and Quantization of Blocks

Freezing: Freezing a parameter removes the need to calculate its gradients. As by Eq. (3), the number
of required intermediate gradients depends on the block’s index (e.g., the calculation of ∂E

∂wN
requires no

intermediate gradients, while ∂E
∂w1

requires intermediate gradients from all other blocks). Based on the
required per-block operations, we distinguish between three block types (illustrated in Fig. 2):

(a) Frozen block: With no preceding trained block, a frozen block only requires a forward pass fi(x).
(b) Trained block: Trained blocks require a forward pass fi(xi), calculation of gradients w.r.t. their param-

eters fi(xi)
∂wi

, and gradients w.r.t the input ∂fi(xi)
∂xi

for preceding trained blocks.
(c) Frozen block with backward pass: With preceding trained blocks, a frozen block requires the forward

pass fi(xi) and intermediate gradients w.r.t. the input ∂fi(xi)
∂xi

.

Consequently, freezing blocks reduces the number of per-block operations of frozen blocks (from 3 to 2 or 1),
and therefore saves multiply-accumulate operations (MACs), reducing computation time. Similarly, if a
layer is not trained, the activation values xi can be released in memory during the forward pass, reducing
the memory footprint. Additionally, parameters of frozen layers do not change throughout an FL round,
therefore, do not have to be uploaded.

Fusion: If BN is used for normalization, we fuse the convolution operation with the following BN opera-
tion (Ioffe & Szegedy, 2015; Jacob et al., 2018) in frozen layers (we study the application of other normaliza-
tion techniques in Section 6). A BN layer normalizes each channel to zero mean and unit variance followed
by a trainable scale γi and bias βi. The statistics of frozen blocks that do not require intermediate gradients
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(type (a)) stay constant over time. Hence, we can express the BN operation as a linear operator with yiBN

being the channel-wise output of the BN operation, yiCL the CL’s output, and ϵ a small number for stability

yiBN = γi√
σ2

i
+ϵ

· yiCL + ( −µiγi√
σ2

i
+ϵ

+ βi), (4)

where the coefficient of yiCL is a new combined scale, referred to as γ̂i, and the second summation term is a
new combined bias, referred to as β̂i. To fuse the BN operation with the preceding CL, we express the CL
as yiCL = Wi·x, and plug the output yiCL into the BN operator: yiBN = (γ̂iWi)·x + β̂i. This gives a scaled
version of the original kernel Ŵi = γ̂iWi with a new bias β̂i. The same can be applied for type (c) layers,
with the only difference being that µ and σ2 values are only valid for a limited number of mini-batches. In
summary, the forward pass of type (a) and type (c) blocks is simplified by fusing three operators, reducing
the number of operations.

Quantization: Quantization of operators in NNs is usually used for inference. In contrast, we apply the idea
for training; however, we quantize only parts of the NN that are frozen. Note that this is different from
quantization aware training, since all trained parameters remain in full precision. Therefore, type (a) and (c)
blocks are quantized, i.e., the fused convolution is performed in int8 instead of float32. Additionally, in
type (c) blocks, we also quantize the calculation of the intermediate gradients in the backward pass, i.e., the
fused transposed convolution. Consequently, the remaining operations in the forward and backward pass of
frozen blocks require less time for execution and have a lower memory footprint.

Quantization of operations introduces quantization noise in the forward pass and the backward pass of
frozen layers, thereby affecting the training. Additionally, updating the fused layers’ statistics only at the
beginning of the round introduces an error. We demonstrate in our experiments that the benefits of increased
efficiency w.r.t. training time and memory footprint outweigh the added noise. We quantify the benefits
and the effects of quantization noise in detail in an ablation study in Section 6.3. In summary, freezing,
fusion, and quantization of selected blocks lower the computational complexity, while still allowing less capable
devices to calculate parameter gradients of other blocks in full precision based on the full NN. This novel
combination has not yet been exploited for training.

4.3 Implementation in PyTorch

We implement the presented training scheme in PyTorch 1.10 (Paszke et al., 2019), which supports int8
quantization. While the following description could also be applied to other quantization schemes (e.g., int4,
float16), as of now, PyTorch only provides the necessary operators in the backends FBGEMM and QNNPACK
for int8. Quantization levels, such as int4, could further lower the training time but at the same time could
also have an impact on the accuracy. Contrary to quantization for inference, the layers’ input scales, as well
as the BN layers’ statistics change throughout the training. Our implementation enables real-world training
time and memory reduction through a combination of on-the-fly scale calculation and statistics from the
server.

Quantization in the Forward Pass: To preserve a high accuracy, the quantization of a PyTorch tensor x
requires a scale sx to optimally utilize the int8 range. We calculate the scale by using

sx = s(x) = 2 · max(|max(x)|, |min(x)|)/127.0. (5)

Quantized operators (e.g., linear, conv2d, and add) take a quantized tensor x̄ (and quantized weights) as
input. In the used backends calculations are done in int8 arithmetic, but the accumulation of the result
is done in int16/32. Therefore, each quantized operator requires an output scale so to map the int16/32
output to int8. This output scale so is calculated using Eq. (5). For blocks of type (a), for every mini-batch,
we calculate the scale of the input tensor sx on the fly at the beginning of the first type (a) block. The
input gets quantized and stays in the quantized representation throughout its forward propagation through
type (a) blocks. For input scales sx, the scale calculation results in negligible overhead, as x is already
available in its float32 representation. However, the output scales so depend on the output of an operation
(linear, conv2d, add), therefore, can not be calculated a priori without performing the full operation in
float. Because of this PyTorch limitation, the output scale so and the BN layer’s statistics (σ2 and µ from
Eq. (4)) are obtained from the server and are only set once per FL round.
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Quantization in the Backward Pass: Out of the box, PyTorch’s Autograd system does not support a
quantized backward pass but expects float32 values for each calculated gradient. We implement a custom
PyTorch Module for blocks of type (c) based on a custom Autograd Function that encapsulates all quantized
operations in one backward call. Due to this limitation, a quantization/dequantization is required, for each
block each mini-batch. The intermediate gradients’ scale sg is calculated on the fly. These limitations
are inherently considered in our experimental results (profiling), i.e., fixing these limitations of PyTorch
would further increase the efficacy of CoCoFL. These overheads are minor compared to the speedups gained
through quantization, since large convolution operations dominate the training time (e.g., we measure a 6%
overhead of scale/quantization/dequantization of type (c) blocks in MobileNet (Howard et al., 2017) but gain
a reduced computation time by a factor of 1.3). Similar to type (a) blocks, the output scales of operators
(e.g., transposed convolution) in the backward pass are obtained from the server.

Type (b) blocks (trained blocks) require only minor modifications. In order to acquire the scale of the
operations, PyTorch forward and backward hooks are used to calculate so. For trained blocks, so can be
efficiently acquired since trained blocks’ operators calculate regular float32 outputs. Together with the
trained parameters, these scales are uploaded to the server and averaged alongside the NN parameters. The
scales only have to be calculated in the last mini-batch of a training round and result in negligible overhead.
To perform fusion, as presented in Section 4, devices that train a respective block upload their BN statistics.
The statistics are averaged alongside the parameters and distributed to the devices that require the respective
statistics for fusion.

Transformer-Specific Implementation Details: We treat encoder layers as blocks, and quantize linear,
layernorm, and ReLU operations for type (a) blocks. Due to PyTorch limitations, the attention mechanism
has to remain in float32. In type (c) blocks, linear layers and their intermediate gradient calculations get
quantized. Further details are provided in Appendix B.

5 Overall CoCoFL Algorithm

Partial freezing and quantization enables to adjust the required communication, computation, and memory
resources by selecting which blocks to train or freeze. We present CoCoFL, which enables each device to
select the trained/frozen blocks based on its available resources, and the required changes in aggregation at
the server, in order to maximize the accuracy under constrained resources.

Heuristic Configuration Selection: A selection of trained blocks is a training configuration A ∈ A. The
set of all configurations of an NN with N blocks comprises |A| = 2N configurations (each block is either
trained or frozen). In each round, each device can select a separate configuration. Therefore, the total search
space in each round is 2N ·|C|, which is infeasible to explore in its entirety, and impractical as it depends on
the parameters like the NN structure. Simplifying the search space by assigning a separate quality measure
to each configuration also does not work, since the accuracy after training with a certain configuration
depends also on the configurations used by other devices. Therefore, heuristic optimization is required.
Simple deterministic heuristics like selecting configurations that train the maximum number of blocks at
once show bad performance, as some blocks would never get trained. As another example, a round-robin
selection would lead to all devices selecting the same configuration, where our observations have shown that
this leads to lower accuracy (we provide experimental results in Appendix C). Therefore, CoCoFL selects a
random configuration on each device based on its available resources. Thereby, the probability that many
devices select the same configuration is negligible, while eventually all blocks within a device’s capability get
trained. An additional benefit of this scheme is that no signaling between the server and devices to transmit
the available resources and selected configurations is required, which otherwise could slow down the overall
FL process and prevent scalability.

To be able to select configurations w.r.t. the available resources, we need to quantify the resource requirements
per configuration. We obtain this information through design-time profiling of a real implementation of our
presented freezing and quantization scheme on real devices, but an analytical model of the resources could
also be employed. Profiling takes several seconds per configuration. For instance, profiling MobileNet takes
4.7 s on average on the x64 target platform. It is, therefore, infeasible to profile all 2N configurations per
device, which would take several months. We solve this by only considering configurations Â ⊆ A that
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Algorithm 1 Each Selected Device c (Client) in Each Round
Require: s, tc, mc,Dc, T, Sc, Mc ▷ profiling information of the device, data, available resources

receive w(r) from the server ▷ initial parameters at the beginning of the round
Af ← {A ∈ Â : tc(A) ≤ T ∧ mc(A) ≤Mc ∧ s(A) ≤ Sc} ▷ feasible configurations (Eq. 2)
Amax ← {Aj ∈ Af : ∀Ak ∈ Af : Aj ̸⊂ Ak} ▷ discard non-maximal configurations
A

(r)
c ← random choice(Amax) ▷ select random configuration

(wtrain, wquant)← apply(A(r)
c , w(r)) ▷ apply the configuration (freeze/quantize blocks)

w̃train ← train model (wtrain, wquant) with local data Dc ▷ local training
send w̃train to the server ▷ parameter update

Algorithm 2 FL Server (Synchronization and Aggregation)
w(1) ← random initialization
for each round r = 1, 2, . . . , R do
C(r) ←select devices
broadcast w(r) to selected devices C(r)

for each c ∈ C(r) do receive w̃train,c from device c
for each block i do ▷ aggregation
Ci ← {c : w̃train,c contains block i} ▷ devices that have trained block i

w
(r+1)
i ←

(
1− |Ci|

|C(r)|

)
· w(r)

i + 1
|C(r)|

∑
c∈Ci

w̃train,c(i)

train a single contiguous range of blocks. This reduces the search space to |Â| = N(N+1)
2 , i.e., 17 min

for MobileNet on x64. If resources can be estimated much faster, relaxing this restriction could further
improve our technique. The run-time algorithm for devices is outlined in Algorithm 1. At the beginning
of each round, each device determines the set of feasible configurations Af ⊆Â, given its currently available
resources. We then discard all configurations that train a subset of blocks trained by another feasible
configuration, i.e., we only keep maximal configurations Amax⊆Af , thereby maximizing the accuracy by
fully exploiting the available resources. Each device selects a random remaining configuration, which results
in different configurations being trained on different devices without requiring any synchronization between
devices. Finally, the selected fusion and quantization configuration is applied, and the NN is trained.

Aggregation of Partial Updates: Each device c only uploads updates of the blocks that were trained in
full precision (w̃train,c), hence, not frozen or quantized. The server (Algorithm 2) weighs the updates based
on the number of devices that have trained each block to account for partial training on the devices. Fig. 1
shows CoCoFL in a nutshell.

6 Experimental Evaluation

Partial quantization of NN models results in hardware-specific gains in execution time and memory. Hence,
our evaluation follows a hybrid approach, where we profile on-device training loops on real hardware and
take the profiling information to perform simulations of distributed systems. This allows for the evaluation
of large systems with hundreds or thousands of devices.

6.1 Evaluation Setup

Profiling Setup and Results: We employ two different hardware platforms to factor out potential micro-
architecture-dependent peculiarities w.r.t. quantization or freezing: x64 AMD Ryzen 7 and a Raspberry
Pi with an ARMv8 CPU. For each configuration in Â, we measure the execution time, maximum memory
usage, and upload volume. The measurements are stored in a lookup table for the FL simulations. NN-
specific details about N , |Â|, and the used platform are given in Table 1, further details in Appendix A. For
simplicity in the implementation, we select one skip connection block in ResNet, MobileNet, and DenseNet as
the smallest entity that is either trained or frozen. This choice allows for limited implementation overhead,
as the structure is repeatedly used in the NNs. The block granularity could be further increased by selective
training and freezing of CL layers within a skip connection block, but it would require more individual cases
to be implemented. Exemplary profiling results of MobileNet on x64 are shown in Fig. 3, where all quantities
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Figure 3: Profiling of MobileNet regarding upload volume, training time, and memory footprint, normalized
to training the full NN with FedAvg. Each marker represents a training configuration. The figure shows that
CoCoFL supports the same range w.r.t. to the constraints as HeteroFL and FjORD but enables independent
adjustability of computation/memory and communication.

Table 1: Hyperparameters of FL experiments.

Hyperparameters DenseNet
CIFAR10/
(CINIC10)

MobileNet
CIFAR10

MobileNet
CIFAR10
GroupNorm

ResNet50
CIFAR100

ResNet18
FEMNIST

MobileNet
XChest

Transformer
IMDB/
(Shakespeare)

Rounds R 800 1000 1000 800 600 1000 1000
Amt. data |D| 50K (90K) 50K 50K 50K 640.5K 12.7K 40K (200K)
|C(r)|/|C| 10/100 10/100 10/100 10/100 35/3500 10/100 10/100
η-decay (×0.1) [750] [600, 800] [800] [750] [400] [600] [800]
Weight Decay 0.001 0.01 0.001 0.01 0.01 0.01 -
Nb. configs |Â| 253 210 210 171 55 210 35
Nb. blocks N 23 21 21 19 11 21 8
Platform ARM x64 x64 x64 ARM x64 x64

are normalized to FedAvg (full training of the NN). Using the same setup, we profile training with subsets
of the NN’s filters, as employed by HeteroFL and FjORD. In CoCoFL, a configuration refers to a specific
selection of blocks that are frozen, quantized, and fused. In HeteroFL/FjORD, a configuration refers to a
specific ratio of filters that are trained and filters that are dropped. As a consequence, the trade-offs vary. Our
results show that the combination of freezing, fusion, and quantization allows training with configurations
that reduce the execution time by up to 90% and the memory footprint by 89% compared to full training
of the NN, a similar range as HeteroFL and FjORD. Further, CoCoFL enables independent adjustability
of computation/memory and communication, giving us a higher degree of freedom to select a configuration
that utilizes the resources at the device, therefore, more efficiently utilizing available resources. Contrary to
that, training subsets results in a tightly coupled reduction of resources. However, in some cases, CoCoFL
is required to pick a non-optimal configuration w.r.t. computation, to satisfy a memory constraint.

FL Setup and Hyperparameters: We evaluate our technique in an FL system, using the profiling results.
For each experiment, we distribute the data from the datasets CIFAR10/100 (Krizhevsky & Hinton, 2009),
FEMNIST (Cohen et al., 2017), CINIC10 (Darlow et al., 2018), XChest (Wang et al., 2017), IMDB (Maas
et al., 2011), and Shakespeare (Caldas et al., 2019) to devices in C. We evaluate ResNet (Gao et al., 2020),
DenseNet (Huang et al., 2017), MobileNet (Howard et al., 2017), and Transformer (Vaswani et al., 2017) NN
models. In each round, a subset C(r) is selected for participation. Devices are randomly grouped in three
equally sized sets. The set of strong devices is capable of training the full NN and uploading all parameters,
with no memory constraints. The round time T is set to the time a strong device requires to finish one
training round. The set of medium devices has 2/3 of the computational and memory resources of the strong
devices. Hence, to match the round time T , the set of medium devices has to select configurations that
reduce required computations to 2/3 of strong devices. The set of weak devices has 1/3 of the computation
and memory capabilities of the strong devices. We model the communication budgets of medium and weak
devices randomly over rounds to simulate an environment with varying communication channel quality,
s.t. S

(r)
cmedium, weak ∼ U( Sstrong

2 , Sstrong). We compare CoCoFL to several baselines: state-of-the-art HeteroFL
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Table 2: Accuracy (Top 1) in % for DenseNet, MobileNet, ResNet18, ResNet50, and Transformer. For
XChest the F1 macro score is given (unbalanced data). In almost all scenarios CoCoFL outperforms the
baselines, reaching higher final accuracies.

Topology DenseNet MobileNet ResNet18

Setting CIFAR10 CIFAR10 CIFAR10 (w. GroupNorm) FEMNIST

Dirichlet α − (iid) n.-iid@0.1 rc@0.1 − (iid) rc@0.1 - (iid) n.-iid@0.1 rc@0.1 − (iid) rc@0.1

Centralized 87.8±0.2 87.0±0.7 82.5±1.1 88.1±0.0
FedAvg (f. res.) 84.3±0.1 75.6±1.5 74.9±3.3 84.9±0.2 77.4±2.7 76.1 ± 0.1 69.4 ± 0.5 72.9 ± 1.4 86.2±0.1 82.9±1.2

CoCoFL (ours) 82.0±0.2 71.9±1.8 68.8±4.6 83.2±0.3 72.4±2.9 71.3 ± 0.1 61.2 ± 1.4 63.6 ± 3.5 85.0±0.1 81.5±0.6
FjORD 73.7±0.1 60.4±2.1 48.8±6.8 79.1±0.3 51.9±7.3 64.4 ± 0.6 42.9 ± 1.7 47.0 ± 5.0 85.5±0.0 69.3±8.3
HeteroFL 76.4±0.3 64.0±2.4 51.2±7.4 79.5±0.2 53.0±7.6 64.8 ± 0.1 55.2 ± 0.3 47.5 ± 5.0 85.9±0.0 70.9±5.8
FedAvg 76.5±0.1 60.4±4.2 50.9±7.5 78.1±0.4 49.9±8.7 56.2 ± 0.8 52.8 ± 1.1 45.9 ± 4.7 86.1±0.1 64.9±7.8

Topology ResNet50 DenseNet MobileNet(large) TF TF-S2S

Setting CIFAR100 CINIC10 XChest IMDB Shakespeare

Dirichlet α − (iid) rc@0.1 − (iid) n.-iid@0.1 rc@0.1 − (iid) n.-iid@0.5 rc@0.5 − (iid) − (iid) −rc (Leaf)

Centralized 61.6±0.4 80.5±0.2 94.2±0.2 84.7±0.7 52.9±0.7
FedAvg (f. res.) 57.0±0.3 53.0±0.6 77.2±0.1 53.9±2.3 65.1±1.1 94.1±0.3 85.9±1.8 93.2±0.2 82.6±0.4 49.1±0.1 49.4±0.1

CoCoFL (ours) 52.5±0.2 41.8±2.5 73.6±0.1 53.5±4.3 52.4±7.3 91.3±0.3 73.0±6.4 87.3±3.8 82.5±0.5 49.3±0.3 49.1±0.3
FjORD 43.6±0.8 29.6±4.3 65.1±0.7 49.2±2.2 41.1±6.9 66.3±0.9 52.7±3.9 62.4±0.8 78.5±0.71 42.9±0.5 43.0±0.3
HeteroFL 45.9±0.7 31.0±2.3 69.4±0.2 50.4±2.4 43.4±7.2 69.4±1.0 65.0±0.9 65.4±1.6 79.2±0.31 44.1±0.2 44.1±0.2
FedAvg 35.2±0.2 23.7±0.4 67.7±0.4 48.3±2.5 42.4±7.2 68.2±1.0 67.0±0.6 66.8±1.4 78.5±0.6 40.5±0.3 40.3±0.1

1No configuration for weak devices available, therefore weak devices are dropped.

and FjORD, which are the closest to our technique, as both allow for a per-device reduction of computational
resources, as well as upload volume, and memory. Additionally, we compare to a theoretical bound and a
straightforward baseline that drops all but the strong devices from FL training.

• Centralized: All data is centralized (on one device), serves as a theoretical upper bound.
• FedAvg (full resources) (McMahan et al., 2017): FL is applied, but all devices have full (homoge-

neous) resources, hence, FedAvg has only one configuration, that is training the full network. This
baseline serves as a theoretical upper bound.

• HeteroFL (Diao et al., 2020): A FedAvg variant that drops a number of the CL filters, defined by
a shrinkage ratio, where each ratio represents a training configuration. We set it to the maximum
that a device can train.

• FjORD (Horvath et al., 2021): Similarly, state-of-the-art FjORD drops CL filters to reduce re-
sources. In difference to HeteroFL, each device trains different drop levels (within their capabili-
ties). Devices switch each mini-batch between a feasible configuration. The paper proposes to use
[20, 40, 60, 80, 100]% of the filters, which results in 5 configurations.

• FedAvg (McMahan et al., 2017): Devices that can not train the NN (e.g., due to limited memory) are
dropped from the training (therefore also their data). The reduced set of devices performs FedAvg.
This serves as a naive baseline and is known to be used in production use cases (Yang et al., 2018).

We train with the optimizer SGD with an initial learning rate η of 0.1. For a fair comparison we do not use
momentum, as FjORD is incompatible with a stateful optimizer. The remaining NN-specific hyperparam-
eters, learning rate decay, and weight decay are given in Table 1. For each FL experiment, we report the
average accuracy and standard deviation after R rounds of training using 3 independent seeds. We study
several data split scenarios: First, an iid case, where data is randomly distributed to all devices, and hence,
every device has about the same number of samples per class. Second, we study a non-iid case, where we
vary the non-iid-ness with the value of α of a Dirichlet distribution, similar to Hsu et al. (2019). Hereby, the
number of samples per class varies between devices. Thirdly, we consider a scenario where data is resource
correlated non-iid (rc-non-iid). This means that information about certain classes is only available on spe-
cific device groups, increasing the necessity to include them in the FL process (Fig. 4a). This has recently
been identified as a relevant use case in real-world deployments (Maeng et al., 2022). Similarly, the rate of
rc-non-iid-ness is controlled with α.
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(b) Group accuracies of MobileNet with CIFAR10 and
rc-non-iid@0.1 data. CoCoFL preserves fairness among
groups, since weak and medium devices achieve similar
group accuracies as if they would have full resources.

Figure 4: Fig. 4a visualizes resource-correlated non-iid, while Fig. 4b shows the effects of this distribution
w.r.t. the fairness (group accuracy) in CoCoFL and baselines.

6.2 FL Results

Table 2 presents the accuracy results given in %. For XChest (unbalanced) the F1 macro score is given.

Vision Models: For iid data, CoCoFL performs close to FedAvg (full res.), improving the final accuracy
over the baselines by 5.5 p.p. for DenseNet (CIFAR10), by 3.7 p.p. for MobileNet (CIFAR10), and by 6.6 p.p.
for ResNet50 (CIFAR100). Similar trends can be seen for CINIC10. This clearly indicates that CoCoFL
uses the available resources on devices more effectively. An outlier is the FEMNIST dataset, where FedAvg
reaches the highest accuracy despite dropping 2/3 of the devices. We attribute this to the high number of
redundant samples in the dataset (10K per class compared to with 5K and 500). Contrary to that, if the
number of samples is more limited, as it is the case in the XChest experiments (12K samples total), the
advantage of CoCoFL over the baselines increases.

The necessity to include less capable devices in the FL training is more clearly visible in cases with rc-non-
iid. In Table 2, it can be seen that α = 0.1 results in a larger gap between the upper bound and the naive
baseline, demonstrating the importance of involving all devices in the training. CoCoFL enables weak and
medium devices to contribute to the global model, reaching up to 20 p.p. higher accuracy compared with the
state of the art. The reason is that CoCoFL allows weak and medium devices to calculate gradients based
on the full NN. In the case of DenseNet and MobileNet, FjORD and HeteroFL even perform close or inferior
to the naive baseline, which excludes weak and medium devices from the training, failing to preserve fairness
(accuracy parity) among devices. Similar conclusions can be driven from ResNet18/50, albeit FjORD and
HeteroFL perform a bit better in these settings compared with FedAvg. For XChest we present results with
α = 0.5 since we observe that 0.1 leads to a complete separation of the binary labels, causing all algorithms
to fail to learn at all.

Fairness in Rc-non-iid Scenarios: To quantify the contribution medium and weak devices make in the
training, we calculate the device-specific accuracy per group (group accuracy), where the class accuracies
are weighted by the groups’ class densities. As it can be seen for MobileNet (rc-non-iid@0.1) in Fig. 4b,
CoCoFL achieves group accuracies of 79%/70%/68% for strong, medium, and weak devices, hence, close to the
accuracy parity of FedAvg (with full resources). The baselines HeteroFL and FjORD reach 88%/48%/23%,
meaning less capable devices can not make a meaningful contribution to the global model, hence, lowering
the fairness among the device groups.

Other Normalization Techniques: We replace BN with GroupNorm (Wu & He, 2018) in MobileNet to
test the robustness of CoCoFL w.r.t. other normalization techniques in vision tasks. For MobileNet with
CIFAR10, we observe that the overall accuracy is lower in all evaluated algorithms (Table 2). However,
the general trends are similar to MobileNet with BN, i.e., independent from the normalization, CoCoFL
outperforms the state of the art. Additionally, we evaluate the rc-non-iid scenario, where CoCoFL reaches
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group accuracies of 63.7 ± 3.5%, 60.7 ± 5.6%, and 58.3 ± 9.8% for strong, medium, and weak devices, whereas
FjORD and HeteroFL reach 80.7±7.2%/42.8±8.5%/18.3±14.4% and 81.3±7.1%/42.8±9.0%/19.0±13.5%,
respectively. Thus, CoCoFL provides better fairness independent of the normalization technique.

NLP Models: To show the applicability of CoCoFL to natural language processing (NLP) problems, we
adapt our freezing and quantization scheme (Section 4) for Transformer. We study text classification with the
IMDB dataset and next character prediction with the Shakespeare dataset. The Transformer model uses 6
encoder layers, with embedding size of 128, hidden size of 128, 2 attention heads, and a single linear decoder
layer. For IMDB the sequence length is 512, for Shakespeare 80. For Shakespeare rc-non-iid, we follow the
non-iid scheme from Leaf (Caldas et al., 2019), such that different plays (total of 25) are distributed over
different device groups. The results in Table 2 show that CoCoFL reaches significantly higher final accuracies
than the state of the art.

In summary, CoCoFL reaches higher accuracies in almost all presented scenarios. Additionally, CoCoFL
preserves fairness (accuracy parity) by enabling constrained devices to contribute to the global model. We
attribute this large accuracy gap w.r.t the baselines to the fact that CoCoFL allows any device to calculate
gradients based on the full NN, while still reducing required resources, as opposed to state-of-the-art techniques
that calculate gradients on subsets of the filters of the NN.

6.3 Ablation Study

We conduct an ablation study to quantify the gains and the error of quantization and operator fusion of
frozen blocks in CoCoFL. For this purpose, we modify the MobileNet/CIFAR10 iid experiment of Section 6.1.
Instead of three, we have two groups: 10% strong devices, i.e., no constraints (training the full NN). We label
the remaining 90% limited devices, with a computation and memory limit l, s.t. tlimited(A) = 1

l · tstrong(A)
and Mlimited = l·Mstrong. We apply no communication constraint, therefore, Slimited = Sstrong. Consequently,
a limited device has to select a configuration A that satisfies both the computation and the memory constraint.
Several experiments are conducted, where l is varied between l ∈ [0, 1]. The remaining hyperparameters
are kept the same (Table 1). We introduce three variants of CoCoFL, where we profile each variant’s
configurations A to measure the execution time and the memory footprint:

• CoCoFLF, where only freezing and no quantization or operator fusion is applied. The set of feasible
configurations is denoted as ÂF.

• CoCoFLFFis a variant where freezing and fusion of operators, but no quantization is applied. Con-
figurations are denoted as ÂFF.

• CoCoFLQFFis the mainline variant (Section 6.1). The configurations are equivalent to Â.

Quantification of the Error: To quantify the error introduced through fusion and estimation of the
statistics as well as quantization noise, we run all three variants CoCoFLF, CoCoFLFF, and CoCoFLQFFfor
different values of l, but each variant uses the configurations in ÂF on the limited devices (ignoring all
computation/memory gains that come from quantization and fusion). For a given l, all variants can train
exactly the same configurations, hence, the same number of blocks. This allows studying the introduced
errors independently of the gains in performance/memory. On the right part of Fig. 5a, the cumulative
number of trainable blocks for a given l in ÂF is displayed. Using ÂF, at least l = 0.35 is required to
train a single block. The accuracy results are visualized in Fig. 5a (left), where the accuracy for different
values of l is reported on the left. Overall, the error is mostly below 1 p.p., with a maximum of 2.3 p.p. for
CoCoFLQFFand 1.7 p.p. for CoCoFLFF. Note that this analysis ignores the performance and memory gains,
which are studied in the next section.

Quantification of the Gains: To quantify the gains, we run the experiments with all three variants where
each variant uses its own profiling results. Hence, CoCoFLQFFand CoCoFLFFuse Â, and ÂFF, respectively.
We measure that CoCoFLQFFreaches a maximum reduction of 75% of computation time and 60% of memory
w.r.t. to CoCoFLF(45% and 28% with CoCoFLFF). Therefore, at a given constraint l, CoCoFLQFFand
CoCoFLFFcan train more configurations and hence, more importantly, configurations with more trained
blocks. This results in an overall higher accuracy in FL as can be seen in Fig. 5b (left), where with the same
constraint of l = 0.25 CoCoFLQFFachieves an increase of the final accuracy of 6.5 p.p. over CoCoFLFF, while
CoCoFLFhas no configuration on the limited devices that satisfies the constraint. At a constraint of l = 0.4,
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(b) (Left) final accuracy utilizing the gains, (right) cumu-
lative number of trainable blocks used for training. When
utilizing the gains, limited devices can train more blocks
and achieve higher accuracies, outweighing the error.

Figure 5: Quantification of the gains and the error.

CoCoFLQFFachieves a final accuracy increase of 14.9 p.p. over CoCoFLF, while CoCoFLFFachieves a final
accuracy increase of 14.3 p.p. over CoCoFLF. From the results it can be concluded that the more blocks
the limited devices can train, the higher the final accuracy. This is visualized in Fig. 5b (right), where
cumulatively the total number of blocks that can be trained for a given constraint is plotted. The figures
also show that in the case of the constraint approaching l = 1.0, the advantage of quantization and fusion is
vanishing, and can even result in small accuracy losses due to the introduced error.

In summary, for limited devices, the benefits of fusion and quantization of blocks, i.e., training more blocks
with the same available resources, largely outweigh the introduced error. Only when the devices’ constraint
approaches full resources, the gains do vanish. Overall, quantization and fusion increase the FL system’s
accuracy, as limited devices can make a higher contribution to the model.

7 Conclusion

We proposed CoCoFL that is able to better incorporate knowledge from constrained devices into the FL
model, especially in non-iid cases, preserving fairness among participants. Our comparison with the state
of the art, based on real hardware measurements, shows that CoCoFL reaches significantly higher final
accuracies. We believe that the gains through quantization can even be higher on devices like smartphones
that have on-chip integer NN accelerators.

In an FL system, devices are acquiring data through sensing or interaction with the environment. As devices
are distributed in the system, they may have access to different types of data. Examples include sensors
that sample environments that differ from each other, or smartphones that interact with users with different
behaviors. This is therefore important to guarantee that we learn from all these devices, regardless of
their capabilities, as any piece of the gathered data matters. What is then important is to provide fairness
(accuracy parity) among devices, fairness of participation alone, as was the focus of state of the art, is not
enough. By approaching accuracy parity among devices, CoCoFL makes FL systems applicable to a broader
range of use cases, especially use cases when the distribution of classes across devices is skewed.
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A Profiling Setup Details

Profiling: Profiling of the used NNs is done for CoCoFL as well as HeteroFL and FjORD to quantify the
reduction in training time, maximum memory usage, and upload volume. Two platforms are used: An x86-
64 AMD Ryzen 7 with 64 GB RAM and a Raspberry Pi 4 (Cortex-A72 ARM v8 64-bit) with 8 GB RAM.
The profiling is done for all tested NN architectures to acquire all configurations in Â. Similarly, we profile
HeteroFL and FjORD where we vary the drop ratio from 0.1 − 1.0 with 50 linearly spaced steps. We allow
freezing of the last layer (linear layer) bN but do not apply quantization. Profiling takes (MobileNet) 17 min
on x64 and about 1 h on ARM. The profiling procedure measures the following quantities in the training:

• Maximum memory: The following training-related parts are included in the memory measurements:
First, the model is loaded from disk, second, a training batch is loaded from the disk, and third, an
optimizer is initiated. These operations are followed by training of 16 mini-batches. The maximum
memory is measured by using the Linux syscall getrusage(), with parameter RUSAGE_SELF. This
call returns a struct with a variable ru_maxrss, that stores the maximum amount of memory, the
process required at some point in time. For all measurements, we subtract the maximum memory
before the training (e.g., the overhead of the process, PyTorch, and NumPy imports).

• Training time: For the same training procedure, we measure the training time. The time measure-
ments include the NN’s forward pass execution, setting gradients to zero, the backpropagation step,
and optimizer steps. We do not account for mini-batch-level switching between configurations for
FjORD and model the switching as a zero-overhead operation.

• Upload volume: The upload volume can be directly calculated from the size of the NNs’ state_dicts
by filtering for parameters that required gradient calculations during training.

SOTA Comparison: For HeteroFL and FjORD we enforce the same constraints from Eq. (2) as for
CoCoFL. To ensure this we configure the baselines in the following way:

• FjORD (Horvath et al., 2021): In FjORD all devices switch between different configurations for
each mini-batch. We use FjORD’s drop levels of PFjORD = {20%, 40%, . . . , 100%}. A device c with
lower resources can only train with levels pj , that satisfy the constraint PFjORD

c = {pj | tc(pj) ≤
T ∧ mc(pj) ≤ Mc ∧ S(pj) ≤ Sc}.

• HeteroFL (Diao et al., 2020): Similarly, in HeteroFL the ratio of dropped filters in an NN is
set through a shrinkage ratio k ∈ (0, 1], where k = 1 results in training of all available fil-
ters. Contrary to FjORD, a device uses the same shrinkage ratio throughout the round. For
each device c, we set the shrinkage ratio to the maximum value that satisfies the resource con-
straints kc = max0<k≤1 s.t. tc(k) ≤ T ∧ mc(k) ≤ Mc ∧ S(k) ≤ Sc.

B Implementation Details and Hyperparameters

Miscellaneous Hyperparameters for Vision Models: We evaluate our technique in an FL setup where
we train the NN models DenseNet40 (Huang et al., 2017), MobileNetV2 (Howard et al., 2017), ResNet50 (Gao
et al., 2020), and ResNet18 (Gao et al., 2020). The image datasets CIFAR10 (Krizhevsky & Hinton, 2009),
CINIC10 (Darlow et al., 2018), CIFAR100 (Krizhevsky & Hinton, 2009), XChest (Wang et al., 2017) and
FEMNIST (Cohen et al., 2017) are used, where each individual image has a resolution of 32 × 32 pixels,
with 3 color channels. In the case of FEMNIST, we scale the 28 × 28 grayscale image to 32 × 32 and 3
channels to have the same NN structure, independent of the dataset type. Additionally, we do not split the
written digits and numbers by writers, as proposed by Caldas et al. (2019), but randomly distribute the
images to the devices in case of iid to have an equal amount of data on each device. A mini-batch size of 32
is used for all experiments. For XChest (Wang et al., 2017) we sample 12.7K samples from the full available
dataset and train for finding/no finding. The images are downscaled to 256 × 256 with 3 color channels. Per
round, each active device c ∈ C(r) trains for one local epoch. We apply no data augmentation techniques.

Miscellaneous Hyperparameters for NLP Models: We evaluate our technique in an FL setup using
Transformers (Vaswani et al., 2017) with two datasets. In the case of IMDB (Maas et al., 2011) a sentence-
piece tokenizer is used with a vocabulary size of 16, 000 to detect if a movie review is positive or negative.
In the case of Shakespeare (Caldas et al., 2019) every character of the alphabet represents a possible to-
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Figure 6: Configuration selection heuristic ablation study evaluating with l ∈ [0.2, 0.3, 0.4, 0.5].

ken. For Transformer models the baselines HeteroFL and FjORD scale down the feature embedding and
hidden size instead of training with subsets of CNN filters. To adjust to the resource requirements we use
[12.5%, 40%, 62.5%, 81.25%, 100%] of the hidden/embedding dim, yet, for IMDB a large memory overhead
remains, hence, weak devices have to be dropped from the training.

Centralized Experiments: For centralized experiments, we reduce the number of rounds R by a factor of
10, hence, per experiment, we train for R

10 epochs over the full dataset. We adjust the learning rate decay
steps accordingly.

C Configuration Selection Ablation Study

To verify the robustness of our configuration selection heuristic (Section 5), specifically, the per-device per-
round random selection of a configuration out of Amax, we perform several experiments. We reuse the setting
from the ablation study (Section 6.3) using MobileNet with CIFAR10, 10% strong devices and 90% limited
devices. The strong devices train the NN end-to-end. We run several experiments with l ∈ [0.2, 0.3, 0.4, 0.5]
to verify that our heuristic is robust within a large range of constraints (and available configurations). Firstly,
we study the effect of our configuration reduction mechanism. Specifically, we compare:

• max: Keeping only maximal configurations Amax⊆Af ,i.e., configurations that are not a subset of
other feasible configurations (as used in CoCoFL).

• all: Keeping all feasible configurations Af ⊆Â.

We further compare our random approach against other mentioned baselines, such as

• max: Using the configuration that trains the maximum number of blocks within the device’s capa-
bilities. The combination of this selection mechanism and both reduction mechanisms (max+max
and max+all) result in the same configurations selected, hence, we only evaluate it once.

• min: Training the configuration with the minimum number of blocks.
• round-robin: Switching between feasible configurations in a round-based manner (all limited de-

vices train the same configuration in a round).
• random: Randomly switching between configurations (as used in CoCoFL).

We provide the average final accuracy of three independent runs after 1000 rounds in Fig. 6. We observe
that in almost all cases, using only maximal configurations (i.e., configurations that are not a subset of
another feasible configuration) increases the final accuracy independent of the selection strategy. Further,
we observe that random+max (as done in CoCoFL), independent of l, is within the highest-performing
selection strategies. It can be observed from the results that training the same blocks on all devices does not
improve upon random, as round-robin+max performs worse than random+max. Depending on l, max
and min+max can outperform random+max, but not consistently throughout different values of l.
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