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ABSTRACT

Multimodal Large Language Models (MLLMs) have shown exceptional capabili-
ties in vision-language tasks; however, effectively integrating image segmentation
into these models remains a significant challenge. In this paper, we introduce
Text4Seg, a novel text-as-mask paradigm that casts image segmentation as a text
generation problem, eliminating the need for additional decoders and significantly
simplifying the segmentation process. Our key innovation is semantic descriptors,
a new textual representation of segmentation masks where each image patch is
mapped to its corresponding text label. This unified representation allows seam-
less integration into the auto-regressive training pipeline of MLLMs for easier
optimization. We demonstrate that representing an image with 16 × 16 semantic
descriptors yields competitive segmentation performance. To enhance efficiency,
we introduce the Row-wise Run-Length Encoding (R-RLE), which compresses
redundant text sequences, reducing the length of semantic descriptors by 74% and
accelerating inference by 3×, without compromising performance. Extensive ex-
periments across various vision tasks, such as referring expression segmentation
and comprehension, show that Text4Seg achieves state-of-the-art performance on
multiple datasets by fine-tuning different MLLM backbones. Our approach pro-
vides an efficient, scalable solution for vision-centric tasks within the MLLM
framework.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Yin et al., 2023) have successfully extended the ca-
pabilities of powerful Large Language Models (LLMs) into the visual domain. Recent advancements
demonstrate the remarkable ability of these models to engage in natural language-based human-
computer interaction and text-based reasoning over visual inputs (Liu et al., 2024c; Lu et al., 2024;
Liu et al., 2024a; Bai et al., 2023; Chen et al., 2024). MLLMs have emerged as powerful tools
for vision-centric tasks, including image generation (Song et al., 2024; Wang et al., 2024c), object
detection (Wang et al., 2024a; Ma et al., 2024; Zhang et al., 2023) and semantic segmentation (Lai
et al., 2024; Zhang et al., 2024b). However, seamlessly integrating MLLMs with these tasks, partic-
ularly in dense prediction tasks like semantic segmentation, remains challenging due to the intrinsic
differences between language and visual modalities.

A straightforward approach adopted by most existing works (Lai et al., 2024; Xia et al., 2024; Zhang
et al., 2024b; He et al., 2024; Ren et al., 2024; Rasheed et al., 2024; Zhang et al., 2023; Wu et al.,
2024) involves appending additional visual decoders (e.g., SAM (Kirillov et al., 2023)) to MLLMs,
as illustrated in Fig. 1(a). While effective, this combination presents several limitations: 1) it com-
plicates the end-to-end training pipeline with additional loss functions; 2) it requires careful mod-
ifications to MLLM architectures, leading to unexpected challenges when scaling up the training.
VisionLLM (Wang et al., 2024a) attempts to convert segmentation masks into polygon coordinate
sequences, as shown in Fig. 1(b). However, the performance is often unsatisfactory, as LLMs may
struggle to associate polygon coordinates with shapes, leading to the reintroduction of segmentation-
specific decoders in VisionLLMv2 (Jiannan et al., 2024). Finding a more effective method to unlock
the segmentation capabilities for MLLMs remains crucial. Such method should adhere to the next-
token prediction paradigm of MLLMs for easier optimization, require fewer architectural changes
for better scalability, and fully leverage text generation capabilities of LLMs.
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Please segment 
only the black dog 

in the image.

MLLM

Decoder Others, Others,  …,  Black dog, Black dog,  …,  Others.

Please segment 
only the black dog 

in the image.

MLLM

The result is (c, x1, y1, x2, y2, ..., x11, y11) 

Please segment 
only the black dog 

in the image.

MLLM

The black dog is <SEG>

(a) embeddings-as-mask (b) polygon coordinates (c) text-as-mask

Figure 1: Different paradigms of MLLMs based image segmentation: (a) embeddings-as-mask
paradigm that relies on additional segmentation decoder and loss (e.g., LISA (Lai et al., 2024));
(b) polygon coordinates for instance segmentation (e.g., VisionLLM (Wang et al., 2024a)); (c) our
text-as-mask paradigm that relies on semantically consistent text sequences.

In this paper, we introduce a novel text-as-mask paradigm that casts image segmentation as a text
generation problem, which significantly simplifies the segmentation process. We propose Text4Seg,
a decoder-free framework for MLLMs based image segmentation, as illustrated in Fig. 1(c). Cen-
tral to our method is a novel sequence representation of segmentation masks. Instead of using index
masks or numerical coordinates, we map each flattened patch of the input image to its corresponding
text description (e.g., a semantic label, a short phrase, or a long sentence), forming a purely textual
representation of images, named as semantic descriptors. This representation offers several advan-
tages: 1) a unified sequence representation seamlessly integrated into the auto-regressive training
pipeline, making joint optimization with text tasks easier; 2) no architectural changes are required,
allowing full utilization of existing MLLM training infrastructure, making it ideal for scaling up; 3)
support for large label vocabularies, equivalent to semantic words; and 4) flexible switching between
referring expression segmentation, open-vocabulary segmentation, and other visual grounding tasks.

Inspired by ViT (Dosovitskiy et al., 2021), we demonstrate that representing an image with 16 × 16
semantic words, i.e., 256 length of semantic descriptors, is sufficient to achieve satisfactory results.
To improve efficiency, we introduce the Row-wise Run-Length Encoding (R-RLE), which com-
presses the repeated descriptors within each image row while preserving the spatial structure. With-
out compromising performance, R-RLE achieves a 74% reduction in semantic descriptors length and
speeds up inference by 3× on average. To further enhance performance, we apply an off-the-shelf
mask refiner, i.e., SAM, as a post-processing method to obtain pixel-level segmentation masks.

With the proposed semantic descriptors, training MLLMs for segmentation requires minimal ad-
ditional effort. We begin by constructing instruction-following data from existing segmentation
datasets, transforming the vanilla semantic masks into the semantic descriptors format, and then
fine-tuning the model using query-response conversations. This approach applies to a variety of
vision-centric tasks, such as referring expression segmentation, open-vocabulary segmentation, and
visual grounding tasks. Our experiments demonstrate that Text4Seg can seamlessly integrate seg-
mentation capabilities into existing MLLM architectures, such as LLaVA-1.5 (Li et al., 2024a),
Qwen-VL (Bai et al., 2023), DeepseekVL (Lu et al., 2024), and InternVL2 (Chen et al., 2023b),
without any architectural modifications. Without bells and whistles, Text4Seg consistently achieves
superior or comparable performance to previous models, highlighting its efficiency, flexibility, and
robustness. In summary, our key contributions are as follows:

• We propose Text4Seg, a novel text-as-mask paradigm that redefines image segmentation as a text
generation problem, fully leveraging the text generation capabilities of MLLMs.

• We introduce semantic descriptors, a textual sequence representation of segmentation masks that
seamlessly integrates with existing MLLMs for easier optimization. We demonstrate that 16×16
semantic descriptors are sufficient for achieving strong performance.

• We develop Row-wise Run-Length Encoding (R-RLE) to compress semantic descriptors, signif-
icantly reducing its length and inference costs without compromising performance.

• We validate the effectiveness and robustness of Text4Seg based on various MLLMs backbones
by achieving state-of-the-art performance across various vision centric tasks.
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2 RELATED WORK

Multimodal Large Language Models. MLLMs are typically developed by enhancing large lan-
guage models (LLMs) with visual perception modules, which can generate coherent textual con-
versations grounded in multimodal inputs. For instance, Flamingo (Alayrac et al., 2022) introduces
the Perceiver Resampler, which connects a pre-trained vision encoder with LLMs for effective few-
shot learning. OpenFlamingo (Awadalla et al., 2023) and Otter (Li et al., 2023a) build upon this
architecture with a focus on multi-modal in-context instruction tuning. BLIP-2 (Li et al., 2023b)
and InstructBLIP (Dai et al., 2023) bridge the modality gap using a lightweight Querying Trans-
former (Q-Former), demonstrating enhanced performance on zero-shot vision-to-language tasks.
The LLaVA seires (Liu et al., 2024c;a) employs a linear layer or MLP as a modality connector,
trained on multimodal language-image instruction-following data generated with GPT-4, showcas-
ing notable capabilities in multimodal chat interactions. They demonstrate impressive capabilities in
multimodal chat interactions. In contrast, Qwen-VL (Bai et al., 2023) and mPLUG-Owl2 (Ye et al.,
2024) explore feature compression to a fixed length through cross-attention mechanisms with learn-
able queries, optimizing computational efficiency. Recent advancements (Liu et al., 2024b; Xu et al.,
2024; Li et al., 2024a;b;c; Lin et al., 2023) have focused on enhancing visual encoding through high-
resolution inputs. For example, LLaVA-UHD (Xu et al., 2024) implements an image modularization
strategy, segmenting native-resolution images into smaller, variable-sized slices to improve scalabil-
ity and encoding efficiency. Similarly, LLaVA-NEXT (Liu et al., 2024b) and LLaVA-OneVision
(Li et al., 2024a) utilize the AnyRes scheme to accommodate high-resolution image inputs. In this
work, we present Text4Seg to endow existing MLLMs with image segmentation capabilities based
on instruction tuning, without necessitating any changes to their architecture.

Language-Guided Semantic Segmentation and Localization. Recent advancements have en-
abled MLLMs to incorporate task-specific modules for vision-centric tasks. LISA (Lai et al., 2024)
introduces the embedding-as-mask paradigm, utilizing a special <seg> token to prompt a segmen-
tation mask decoder, such as SAM (Kirillov et al., 2023), thereby enhancing performance in reason-
ing and referring expression segmentation. Building on this, GSVA (Xia et al., 2024) employs mul-
tiple <seg> tokens and a <REJ> token to address cases where users reference multiple subjects
or provide descriptions mismatched with image targets. Similarly, GLaMM (Rasheed et al., 2024)
extends LISA’s single-object focus by integrating natural language responses with corresponding
object segmentation masks. They introduce a large-scale, densely annotated Grounding-anything
Dataset to train GLaMM, which significantly improves performance across various vision tasks.
OMG-LLaVA (Zhang et al., 2024a) and PixelLM (Ren et al., 2024) are also capable of grounded
conversation generation. PixelLM (Ren et al., 2024) advances LISA further by replacing SAM with
a lightweight pixel decoder and introducing a comprehensive segmentation codebook for efficient
multi-target reasoning and segmentation. In contrast, GROUNDHOG (Zhang et al., 2024b) proposes
inputting visual entity tokens, rather than visual tokens, using their masked feature extractor, which
enables fine-grained visual understanding. GROUNDHOG also curated a grounded visual instruc-
tion tuning dataset with Multi-Modal Multi-Grained Grounding, M3G2, to fully train the model.
Recent studies (Zhang et al., 2023; Jiannan et al., 2024; Wu et al., 2024; Fei et al., 2024) extend
MLLMs to vision-centric tasks like visual grounding (e.g., bounding boxes, masks) by integrating
task-specific heads for different applications. While effective, these approaches increase training
complexity and limit model scalability due to multiple decoders and loss functions. Other efforts
(Chen et al., 2021; Peng et al., 2023; Wang et al., 2024a) have sought to simplify this process by
learning coordinate sequences or location tokens. However, they tend to perform well only in object
detection tasks with simple location coordinates, and struggle to achieve competitive results on more
complex tasks such as segmentation. In contrast, we introduce a general sequence representation for
vision tasks without task-specific heads, enabling seamless integration with MLLMs and leveraging
their text-generation capabilities for effective, versatile performance across applications.

3 METHODOLOGY

In this section, we begin with an overview of MLLMs in Sec. 3.1. Next, we elaborate on the design
of semantic descriptors and row-wise run-length encoding in Sec. 3.2. Finally, we show how to
construct visual instruction data to train our proposed Text4Seg in Sec. 3.3.
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3.1 PRELIMINARY

Query

LLM

Connector

Vision
Encoder

Response

Figure 2: MLLM architecture.

Multimodal Large Language Models (MLLMs) (Yin
et al., 2023) refer to the LLM-based models with the abil-
ity to process, reason, and generate response from mul-
timodal information. Typically, as shown in Fig. 2, an
MLLM can be abstracted into three main components:
1) a pre-trained vision encoder, which is responsible for
extracting visual tokens from input images, 2) a pre-
trained large language model (LLM), which handles rea-
soning and generating outputs, and 3) a modality connec-
tor, which acts as a bridge between the vision encoder and
the LLM.

3.2 SEMANTIC DESCRIPTORS

Definition of semantic descriptors. Our semantic descriptors are inspired by ViT (Dosovitskiy
et al., 2021), which represents an image as 16 × 16 visual tokens. As illustrated in Fig. 3, for
simplicity, the example uses 6 × 6 visual tokens, the process begins by splitting the image into
fixed-size patches and flattening them. Each patch is then represented by its corresponding semantic
descriptor. A descriptor can be as simple as a semantic label (e.g., “sky,” “sand”), a phrase (e.g.,
“brown dog”, “black dog”), or even a more complex textual description (e.g., “a dog in the left”) for
intricate scenes. This approach encodes an image into a sequence of semantic descriptors of length
256, which meets the requirements for integrating image segmentation into MLLMs by:

• Adhering to the next-token prediction paradigm of MLLMs, facilitating easier optimization.
• Requiring no architectural changes, ensuring seamless integration and scalability.
• Adopting a text-as-mask paradigm, fully using the text generation capabilities of LLMs for seg-

mentation.

Image patches

sky, sky, sky, sky, sky, sky, sky, sky, sky, sky, sky, sky, sky, sky, brown dog, black dog, sky, sky, sky, sky, brown dog, black dog, black dog, sky, sand, sand, brown dog, black dog, 
black dog, sand, sand, sand, brown dog, black dog, sand, sand

Semantic descriptors

sky*14, brown dog *1,  black dog*1,  sky*4, brown dog*1,  black dog*2, sky*1,  sand *2, brown dog *1,  black dog*2,  sand, *3, brown dog*1, black dog*1,  sand*2  

Image-wise RLE

sky *6  \n sky *6  \n sky*2 , brown dog*1, black dog*1, sky*2 \n sky*2 , brown dog*1,  black dog*2, sky*1 \n sand *2, brown dog*1, black dog*2, sand*1 \n 
sand*2, brown dog*1, black dog*1, sand*2 \n

Row-wise RLE

Figure 3: An illustration of semantic descriptors for images and two token compression techniques.

Row-wise RLE. One of the key limitations of full-length semantic descriptors is the long token
length due to the inherent spatial redundancy in images. For instance, the average token length of
256 semantic descriptors on the refCOCO (Kazemzadeh et al., 2014) dataset is 583, requiring ap-
proximately 19s on a V100 GPU for a single round of referring expression segmentation. To address
this issue, we introduce the simple Run-Length Encoding (RLE) (Golomb, 1966) to compress the
adjacent repeated texts in semantic descriptors.

A straight forward approach is to directly apply RLE to the whole semantic descriptors, referred as
Image-wise RLE (I-RLE). However, we empirically found that it results in a notable performance
drop, suggesting that the compressed descriptors may lose crucial spatial information.

To mitigate this issue, we propose a novel Row-wise Run-Length Encoding (R-RLE) technique. As
shown in Fig. 3, R-RLE operates at the row level, with each row separated by “\n”. This approach
reduces the token length from 583 to 154 on average while preserving more spatial information.
Importantly, R-RLE demonstrates no performance degradation compared to the full-length semantic
descriptors, and significantly enhances the inference speed.
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Query: Can you segment the dog laying down in the image?

Response: The segmentation mask for 'dog laying down' is shown below:\n<seg>others *16\n others
*16\n others *16\n others *16\n others *16\n others *16\n others *16\n others *16\n others *16\n dog
laying down *1| others *15\n dog laying down *4| others *12\n dog laying down *5| others *11\n dog
laying down *7| others *9\n others *16\n others *16\n others *16\n</seg>

Query: Please segment the image and highlight 'zebra, grass'.
Response: Here is the segmentation map focusing on the zebra, grass:\n<seg>grass *16\n zebra *2|
grass *2| zebra *3| grass *9\n zebra *8| grass *8\n zebra *9| grass *7\n zebra *10| grass *6\n zebra
*10| grass *6\n zebra *11| grass *5\n zebra *11| grass *5\n grass *4| zebra *2| grass *1| zebra *4|
grass *5\n grass *4| zebra *3| grass *1| zebra *2| grass *6\n grass *4| zebra *1| grass *1| zebra *1|
grass *1| zebra *3| grass *5\n grass *8| zebra *3| grass *5\n grass *9| zebra *2| grass *5\n grass *6|
zebra *1| grass *2| zebra *2| grass *5\n grass *9| zebra *1| grass *6\n grass *16\n</seg>

Figure 4: Visual instruction data.

Please segment 
only the black dog 

in the image.

MLLM

Semantic Descriptors

SAM

Inference

Training

LoRA

Figure 5: Text4Seg.

3.3 VISUAL INSTRUCTION TUNING OF TEXT4SEG

Building on the proposed semantic descriptors, we construct visual instruction data by leveraging
existing segmentation datasets. Fig. 4 shows examples for referring expression segmentation and
semantic segmentation. Given a pair of <image, mask>, we resize the mask to a 16× 16 resolution
and flatten it. The indexes in the sequence are then replaced with their corresponding text labels
to create full-length semantic descriptors. We further apply R-RLE to compress the sequence, with
descriptors separated by “|” and rows separated by “\n”. Finally, the image, text labels, and semantic
descriptors are embedded into a query-response template like

Query: <IMAGE> Can you segment the <text labels> in the image?
Response: The result is :\n <seg>semantic descriptors< /seg>.

Note that <seg> and < /seg> are start and end of semantic descriptors.

With such pure text response, Text4Seg can be seamlessly integrated with existing MLLMs without
any architectural modifications, as shown in Fig. 5. We use Low-Rank Adaptation (LoRA) (Hu
et al., 2021), to fine-tune the MLLMs on our visual instruction data, using its original auto-regressive
training objective Ltxt. In contrast to existing models (Lai et al., 2024; Zhang et al., 2024b; Rasheed
et al., 2024), which typically rely on Continued Pre-Training (CPT) with large, mixed datasets to
fuse the architectures before fine-tuning on specific downstream tasks, we apply Supervised Fine-
Tuning (SFT) directly on the downstream tasks. During inference, to obtain a better pixel-level
semantic mask, we optionally apply SAM as the mask refiner with the coarse mask as its prompt.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model architectures. Our method is built upon several open-source MLLMs, including LLaVA-
1.5 (Liu et al., 2024a), DeepseekVL (Lu et al., 2024), InternVL2 (Chen et al., 2024), and Qwen-VL
(Bai et al., 2023). The main experiments cover 6 MLMMs with model sizes ranging from 1.3B
to 13B parameters, and 3 connectors, including MLP (LLaVA-1.5, DeepseekVL), Pixel Shuffle +
MLP (InternVL2) and Cross-attention (Qwen-VL). All architectures were left unaltered during the
experiments. Additionally, we employ the off-the-shelf SAM with ViT-H as our mask refiner.

Model training. Our method is implemented using SWIFT (Zhao et al., 2024). All models are
trained on 8 Tesla A800 GPUs (40GB) with a global batch size of 128. We use the AdamW opti-
mizer (Loshchilov, 2017), starting with an initial learning rate of 2e-4, which follows a linear decay
schedule after a warm-up phase with a ratio of 0.03. The weight decay is set to 0, and gradient
norms are clipped at 1.0. To minimize GPU memory usage, we fine-tune all models using LoRA
with a rank of 64, along with ZeRO-2 stage memory optimization.

4.2 REFERRING EXPRESSION SEGMENTATION

Settings. For referring expression segmentation (RES), we follow standard evaluation protocols
(Lai et al., 2024; Xia et al., 2024) and assess our method using the refCOCO series. We construct
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Table 1: Referring Expression Segmentation results (cIoU) on refCOCO (+/g) datasets
(Kazemzadeh et al., 2014; Mao et al., 2016). GLaMM is depicted in a lighter color as it uses a
training dataset two orders of magnitude larger than ours.

Methods LLM refCOCO refCOCO+ refCOCOg Avg.val testA testB val testA testB val test
Specialised Segmentation Models

LAVT (Yang et al., 2022) 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1 65.8
ReLA (Liu et al., 2023a) 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 68.3
HIPIE (Wang et al., 2024b) 78.3 - - 66.2 - - 69.8 - -
PolyFormer-L (Liu et al., 2023b) 76.0 78.3 73.3 69.3 74.6 61.9 69.2 70.2 71.6
UNINEXT-L (Yan et al., 2023) 80.3 82.6 77.8 70.0 74.9 62.6 73.4 73.7 74.4

Generalist Segmentation Models (≤ 8B)
NEXT-Chat (Zhang et al., 2023) Vicuna-7B 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0 68.9
LISA (Lai et al., 2024) Vicuna-7B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 69.9
PixelLM (Ren et al., 2024) Vicuna-7B 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5 69.2
AnyRef (He et al., 2024) LLaMA2-7B 76.9 79.9 74.2 70.3 73.5 61.8 70.0 70.7 72.2
GSVA (Xia et al., 2024) Vicuna-7B 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3 71.4
LaSagnA (Wei et al., 2024) Vicuna-7B 76.8 78.7 73.8 66.4 70.6 60.1 70.6 71.9 71.1
Groundhog (Zhang et al., 2024b) LLaMA2-7B 78.5 79.9 75.7 70.5 75.0 64.9 74.1 74.6 74.2
GLaMM (Rasheed et al., 2024) Vicuna-7B 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9 75.6
Text4Seg DeepseekVL-1.3B DeepSeek-1.3B 75.0 78.6 70.1 68.4 73.4 60.0 71.5 71.7 71.1
Text4Seg DeepseekVL-7B DeepSeek-7B 78.8 81.5 74.9 72.5 77.4 65.9 74.3 74.4 75.0
Text4Seg LLaVA-1.5-7B Vicuna-7B 79.3 81.9 76.2 72.1 77.6 66.1 72.1 73.9 74.9
Text4Seg Qwen-VL-7B Qwen-7B 78.0 80.9 74.6 71.6 77.3 66.0 74.8 74.7 74.7
Text4Seg InternVL2-8B InternLM2.5-7B 79.2 81.7 75.6 72.8 77.9 66.5 74.0 75.3 75.4

Generalist Segmentation Models (13B)
LISA (Lai et al., 2024) Vicuna-13B 76.0 78.8 72.9 65.0 70.2 58.1 69.5 70.5 70.1
GSVA (Xia et al., 2024) Vicuna-13B 78.2 80.4 74.2 67.4 71.5 60.9 74.2 75.6 72.8
Text4Seg LLaVA-1.5-13B Vicuna-13B 80.2 82.7 77.3 73.7 78.6 67.6 74.0 75.1 76.2

Table 2: Generalized Referring Expression Segmentation results on the grefCOCO dataset (Liu
et al., 2023a).

Methods LLM Validation Set Test Set A Test Set B Avg.gIoU cIoU gIoU cIoU gIoU cIoU
Specialised Segmentation Models

LAVT (Yang et al., 2022) 58.4 57.6 65.9 65.3 55.8 55.0 59.7
ReLA (Liu et al., 2023a) 63.6 62.4 70.0 69.3 61.0 59.9 64.4

Generalist Segmentation Models (≤ 8B)
LISA (Lai et al., 2024) Vicuna-7B 61.6 61.8 66.3 68.5 58.8 60.6 62.9
GSVA (Xia et al., 2024) Vicuna-7B 66.5 63.3 71.1 69.9 62.2 60.5 65.6
Text4Seg DeepseekVL-1.3B DeepSeek-1.3B 69.9 63.2 69.7 67.5 62.3 59.8 65.4
Text4Seg DeepseekVL-7B DeepSeek-7B 74.7 69.0 74.3 73.0 67.4 66.3 70.8
Text4Seg LLaVA-1.5-7B Vicuna-7B 73.6 67.9 74.1 72.8 66.1 64.8 69.9
Text4Seg Qwen-VL-7B Qwen-7B 74.4 68.1 73.1 71.5 66.7 65.3 69.9
Text4Seg InternVL2-8B InternLM2.5-7B 74.4 69.1 75.1 73.8 67.3 66.6 71.1

Generalist Segmentation Models (13B)
LISA (Lai et al., 2024) Vicuna-13B 63.5 63.0 68.2 69.7 61.8 62.2 64.7
GSVA (Xia et al., 2024) Vicuna-13B 68.0 64.1 71.8 70.5 63.8 61.3 66.6
Text4Seg LLaVA-1.5-13B Vicuna-13B 74.8 69.8 75.1 74.3 68.0 67.1 71.5

the referring segmentation dataset by combining the train split of refCLEF, refCOCO, refCOCO+
(Kazemzadeh et al., 2014), and refCOCOg (Mao et al., 2016), resulting in a dataset of 800k sam-
ples. Our model is trained on this dataset for 5 epochs. Additionally, to evaluate the performance
on a multi-object/non-object segmentation task, we construct a generalized referring expression seg-
mentation dataset with 419k samples using the train split of grefCOCO (Liu et al., 2023a). We
continue to fine-tune the model for 2 epochs.

Result of single object. As summarized in Tab. 1, our Text4Seg achieves the highest performance
across all splits of the refCOCO (+/g) datasets. For 7B-scale MLLMs, Text4Seg DeepseekVL-7B deliv-
ers an impressive average cIoU of 75.0, surpassing the closest competitor, Groundhog, which scores
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Table 3: Referring Expression Comprehension results (Acc@0.5) on RefCOCO (+/g) datasets
(Kazemzadeh et al., 2014; Mao et al., 2016).

Methods LLM refCOCO refCOCO+ refCOCOg Avg.val testA testB val testA testB val test
Specialised Segmentation Models

MDETR (Kamath et al., 2021) 86.8 89.6 81.4 79.5 84.1 70.6 81.6 80.9 81.8
G-DINO (Liu et al., 2023c) 90.6 93.2 88.2 82.8 89.0 75.9 86.1 87.0 86.6
PolyFormer-L (Liu et al., 2023b) 90.4 92.9 87.2 85.0 89.8 78.0 85.8 85.9 86.9
UNINEXT-L (Yan et al., 2023) 91.4 93.7 88.9 83.1 87.9 76.2 86.9 87.5 87.0

Generalist Segmentation Models (≤ 8B)
Shikra (Chen et al., 2023a) Vicuna-7B 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2 82.9
Ferret (You et al., 2023) Vicuna-7B 87.5 91.4 82.5 80.8 87.4 73.1 83.9 84.8 83.9
Qwen-VL (Bai et al., 2023) Qwen-7B 88.6 92.3 84.5 82.8 88.6 76.8 86.0 86.3 85.7
InternVL2-8B (Chen et al., 2024) InternLM2.5-7B 87.1 91.1 80.7 79.8 87.9 71.4 82.7 82.7 82.9
LISA (Lai et al., 2024) Vicuna-7B 85.4 88.8 82.6 74.2 79.5 68.4 79.3 80.4 79.8
GSVA (Xia et al., 2024) Vicuna-7B 86.3 89.2 83.8 72.8 78.8 68.0 81.6 81.8 80.3
NEXT-Chat (Zhang et al., 2023) Vicuna-7B 85.5 90.0 77.9 77.2 84.5 68.0 80.1 79.8 80.4
PixelLM (Ren et al., 2024) Vicuna-7B 89.8 92.2 86.4 83.2 87.0 78.9 84.6 86.0 86.0
Groma (Ma et al., 2024) Vicuna-7B 89.5 92.1 86.3 83.9 88.9 78.1 86.4 87.0 86.5
Text4Seg DeepseekVL-1.3B DeepSeek-1.3B 86.4 90.3 81.7 80.5 86.3 72.3 82.4 82.7 82.8
Text4Seg DeepseekVL-7B DeepSeek-7B 89.6 93.3 85.4 84.2 90.2 78.5 84.4 84.7 86.3
Text4Seg LLaVA-1.5-7B Vicuna-7B 90.8 93.7 87.6 84.7 90.2 79.0 84.8 85.0 87.0
Text4Seg Qwen-VL-7B Qwen-7B 89.7 93.0 85.8 84.6 90.1 78.6 85.0 85.1 86.5
Text4Seg InternVL2-8B InternLM2.5-7B 90.3 93.4 87.5 85.2 89.9 79.5 85.4 85.4 87.1

Generalist Segmentation Models (13B)
Shikra (Chen et al., 2023a) Vicuna-13B 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2 84.0
LISA (Lai et al., 2024) Vicuna-13B 85.9 89.1 83.2 74.9 81.1 68.9 80.1 81.5 80.6
GSVA (Xia et al., 2024) Vicuna-13B 87.7 90.5 84.6 76.5 81.7 70.4 83.9 84.9 82.5
Text4Seg LLaVA-1.5-13B Vicuna-13B 91.2 94.3 88.0 85.7 90.8 80.1 85.6 85.5 87.7

74.2 cIoU. Notably, Text4Seg InternVL2-8B stands out with an average of 75.4 cIoU. At the 13B pa-
rameter scale, Text4Seg LLaVA-1.5-13B achieves a marked improvement, with an average cIoU of 76.2,
significantly outperforming GSVA’s 72.8 cIoU. These results demonstrate the clear advantage of
Text4Seg in single-object referring expression segmentation.

Result of multi-/no object. As shown in Tab. 2, Text4Seg maintains its competitive edge in multi-
object and no-object referring expression segmentation tasks. For instance, at the 7B scale, Text4Seg
records average scores between 69.9 and 71.1, a notable improvement over GSVA’s 65.6 on the
gRefCOCO dataset. At the 13B scale, Text4Seg LLaVA-1.5-13B further extends its lead, achieving an
average score of 71.5, outperforming GSVA by 4.9 points. These outcomes highlight the robustness
and versatility of Text4Seg in handling more complex segmentation challenges.

4.3 REFERRING EXPRESSION COMPREHENSION

Settings. Our Text4Seg can also be directly applied in object detection with a simple mask2box
paradigm, which first generates a segmentation mask based on the input and then derives the bound-
ing box from the mask. We employ this method to evaluate the referring expression comprehension
of our model using the same datasets as in RES. Specifically, a prediction is considered correct if
the IoU between the predicted and ground truth bounding boxes exceeds 0.5.

Results. As shown in Tab. 3, our Text4Seg achieves the best results on the refCOCO and re-
fCOCO+ datasets, while Groma performs well on refCOCOg. However, Text4Seg InternVL2-8B
delivers the highest overall accuracy, reaching 87.1%. Notably, both Text4Seg InternVL2-8B and
Text4Seg Qwen-VL-7B surpass their respective MLLM baselines. In particular, Text4Seg InternVL2-8B
demonstrates a significant improvement over InternVL2-8B, increasing its average accuracy from
82.9% to 87.1%. Additionally, our Text4Seg LLaVA-1.5-13B outperforms previous SOTA, Shikra, by
an average margin of 3.7%. These results highlight the superiority of our Text4Seg, which offers a
finer, pixel-level representation that enhances the precision of bounding box predictions.
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Table 4: Results on visual question answering and RES benchmarks. Note: refC denotes ref-
COCO; Mix† is a combination of referring segmentation, semantic segmentation and VQA datasets
from LISA.

Methods Training Data VQA RES (val)
VQAv2 GQA VisWiz ScienceQA TextQA POPE refC refC+ refCg

LISA Mix† - - - - - - 74.1 62.4 66.4
LLaVA-1.5 665k 78.0 61.7 50.6 68.4 55.0 85.4 - - -
Text4Seg 665k + refseg 76.6 60.2 50.9 68.1 55.0 84.2 77.5 70.7 73.4

4.4 VISUAL UNDERSTANDING

Settings. Our text-as-mask paradigm allows for seamless integration of downstream segmentation
task into the pre-training of MLLMs. To evaluate its effectiveness, we assess the model’s perfor-
mance on various visual understanding benchmarks, using the LLaVA-1.5-7B model as the baseline.
Our method, Text4Seg, built upon the stage-2 of LLaVA-1.5-7B, is trained on both the LLaVA-v1.5-
mix665k dataset and our referring segmentation datasets. For a comprehensive comparison, we also
report the performance of the LLaVA-1.5-7B model based on our implementation.

Results. Table 4 presents a comparison between LLaVA-1.5 and Text4Seg across various VQA
and RES benchmarks. Text4Seg, trained on the mixed dataset, not only achieves performance com-
parable to LLaVA-1.5 in visual question answering tasks, but also demonstrates strong results in
RES benchmarks. These results validate that our text generation based segmentation method acts
as a seamless enhancement, offering a streamlined approach for pre-training MLLMs. It success-
fully integrates robust segmentation functionality without compromising the model’s conversational
capabilities.

4.5 OPEN VOCABULARY SEGMENTATION

Table 5: Open Vocabulary Segmenta-
tion results (mIoU) on various segmen-
tation datasets.

Methods A-150 PC-59 PAS-20
Specialised Segmentation Models

ClearCLIP 16.7 35.9 80.9
ProxyCLIP 24.2 39.6 83.3
MaskCLIP 23.7 45.9 -
GroupViT 9.2 23.4 79.7
OVSeg 24.8 53.3 92.6
SAN 27.5 53.8 94.0
Generalist Segmentation Models (7B)
LaSagnA 14.3 46.1 69.8
Text4Seg 16.5 52.5 76.5

Settings. We follow LaSagnA (Wei et al., 2024) to eval-
uate the performance of Text4Seg on open-vocabulary
segmentation tasks. Our Text4Seg is built upon LLaVA-
1.5-7B and trained on the COCOStuff (Caesar et al.,
2018) for 1 epoch. We evaluate the model’s performance
on ADE20K (A-150) (Zhou et al., 2019), PASCAL Con-
text 59 (PC-59) (Mottaghi et al., 2014), and PASCAL
VOC 20 (PAS-20) (Everingham, 2009) datasets, using
mIoU as the evaluation metric.

Results. As reported in the Tab. 5, it is expected that
Text4Seg falls behind specialized segmentation models
(e.g., ClearCLIP (Lan et al., 2024a), ProxyCLIP (Lan
et al., 2024b), MaskCLIP (Ding et al., 2022), GroupViT
(Xu et al., 2022), OVSeg (Liang et al., 2023), and
SAN (Xu et al., 2023)), because LLMs typically require
quite large datasets to be sufficiently trained. However,
Text4Seg still demonstrates competitive performance on the PC-59 benchmark, underscoring its ef-
ficiency. More importantly, it significantly outperforms the MLLM-based LaSagnA, which uses an
additional decoder, showcasing its strong potential for open-vocabulary segmentation.

4.6 ABLATION STUDY

Given that the focus of this work is on introducing semantic descriptors for visual segmentation and
grounding, we conducted a series of ablation studies to assess the impact of semantic descriptors on
performance, using InternVL2-8B (Chen et al., 2024) as the MLLM.

Resolution of semantic descriptors. To analyze the impact of varying the resolution of semantic
descriptors on RES performance, we create instruction-tuning datasets with different densities of
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Figure 6: RES comparison across
different resolutions.

162 242 322 SAM

Figure 7: Visualization of RES results across different resolu-
tions, and with SAM as mask refiner.

Table 6: Ablation study of mask refiner on
refCOCO val.

Method Refiner cIoU Acc@0.5 Time (s)
Text4Seg None 73.5 89.3 5.34
Text4Seg SAM-B 75.5 89.9 5.54
Text4Seg SAM-L 79.1 90.6 5.73
Text4Seg SAM-H 79.2 90.0 5.92
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Figure 8: R-RLE is better than I-RLE.

semantic descriptors. Specifically, we represent each image with 16×16, 24×24, and 32×32 se-
mantic descriptors to explore how finer or coarser resolutions affect model accuracy. As shown in
Fig. 6, the performance of Text4Seg without a mask refiner improves with higher resolution, from
67.5 cIoU at 162 to 71.4 cIoU at 322 on average, surpassing LISA at 69.9 cIoU. Two examples are
illustrated in Fig. 7. Note that the improvement is achieved without increasing the feature resolution
from the vision tower of MLLM. While higher-density semantic descriptors improve results, it also
significantly increases token length and computational cost. Therefore, we incorporate an off-the-
shelf SAM to refine the outputs. Experimental results show that using 162 semantic descriptors with
SAM already achieves optimal performance.

Mask refiner with SAM variants. Tab. 6 compares the performance of various mask refiners,
such as SAM with different architectures, against no refiner for semantic descriptors at a 16 × 16
resolution. SAM with the ViT-L architecture achieves similar performance to SAM with ViT-H
while reducing inference time. Notably, Text4Seg with SAM-L increases the average performance
on RES tasks from 73.5 to 79.1 cIoU compared to Text4Seg without a mask refiner, with only a little
increase in inference time.

I-RLE v.s. R-RLE. We investigate the impact of different encoding methods for semantic descrip-
tors at a 16× 16 resolution using the train/val splits of the refCOCO and refCOCO+ datasets.
As illustrated in Fig. 8, while full-length semantic descriptors achieve high performance, they suffer
from significantly longer inference times (∼19 seconds) due to longer output tokens (∼590) on both
datasets. Although the I-RLE method reduces both the number of tokens and inference time, it re-
sults in a notable performance drop, from 74.2 to 70.4 cIoU on refCOCO and 68.0 to 64.7 cIoU on
refCOCO+. Our proposed R-RLE method strikes a better balance, reducing the length of semantic
descriptors by 74% and improving inference speed by an average of 3×, while still maintaining the
same performance.

4.7 VISUALIZATION EXAMPLES

We present qualitative comparisons between Text4Seg and GSVA in Figs. 9 and 10. In the single-
object RES task, Text4Seg demonstrates a superior understanding of referring expressions, generat-
ing more accurate and precise segmentation maps compared to GSVA. In the GRES task (Fig. 10),
GSVA tends to incorrectly segment empty objects despite the inclusion of a <REJ> token (as seen

9
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Figure 9: Visualizations of Text4Seg and GSVA (Xia et al., 2024) on the RES task. Our Text4Seg is
based on InternVL2 backbone. The corresponding referring expressions are displayed in the bottom.
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Figure 10: Visualizations of Text4Seg and GSVA (Xia et al., 2024) on the GRES task.

in the first two columns). In contrast, Text4Seg consistently avoids such mistakes by labeling them
as “others” without special design. Furthermore, Text4Seg significantly outperforms GSVA in
the multiple-object RES task, delivering more precise segmentation results with better grounding
performance. These results fully validate the effectiveness of Text4Seg in handling diverse and
challenging visual grounding and segmentation tasks.

5 CONCLUSION

In this work, we present Text4Seg, a decoder-free framework that integrates seamlessly with exist-
ing MLLMs for image segmentation using a novel text-as-mask paradigm. With the novel semantic
descriptors, Text4Seg achieves state-of-the-art performance across various segmentation tasks, with-
out requiring architecture modifications. We further introduce the Row-wise Run-Length Encoding
(R-RLE) to compress semantic descriptors, which significantly improves the efficiency of Text4Seg
while maintaining the performance. In summary, this work highlights the flexibility and effective-
ness of Text4Seg in bridging the gap between MLLMs and vision-centric tasks, offering a scalable
solution for future research in multimodal learning.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION OF ADOPTING SAM AS MASK REFINER.

We employ SAM with a ViT-H architecture as our mask refiner. For referring expression segmen-
tation tasks, we refine the coarse masks produced by Text4Seg from the semantic descriptors using
the following process:

• Step 1: Convert the binary mask into a logit representation by applying the inverse sigmoid
function.

• Step 2: Randomly select 10 positive and 10 negative points from the coarse binary mask.
• Step 3: Provide the selected points as point prompts, the logit representation as a mask prompt,

and the RGB image as input to SAM, generating a refined mask and updated logits.
• Step 4: Repeat Step 3 twice.

This iterative process helps enhance the quality of the segmentation mask. The final mask produced
by SAM is then resized to the original image dimensions, resulting in pixel-level segmentation
masks. For open-vocabulary segmentation, this strategy is applied iteratively across multiple class
masks, which are then combined to form the final segmentation maps.

A.2 DETAILS OF TRAINING HYPER-PARAMETERS

Table 7 presents the training hyperparameters used for training Text4Seg on the referring expression
segmentation task. We primarily adhere to the same settings as LLaVA-1.5, and these parameters
are consistently applied across other tasks as well.

Table 7: Hyper-parameters and training settings for RES task.

Param Name Value

Optimizer

Type AdamW
Learning rate 2e-4
Weight decay 0.0
(β1, β2) (0.9, 0.95)
Gradient norm clip 1.0
Scheduler Linearly decay
Warmup ratio 0.03

LoRA
Rank 64
Alpha (α) 128
Dropout 0.05
Module Linear layers of connector and LLMs

Training

Trainable #Params. About 2% of the LLM (7B → 160M)
Numerical precision FP16
Global batch size 128
Number of samples per epoch 800k
Total epochs 5
GPUs A800(40G) × 8
Time About 2 Days

B COMPARISON OF TRAINING DATASETS

Most prior methods follow a two-stage training paradigm: Continued Pre-Training (CPT) using
large datasets, followed by Supervised Fine-Tuning (SFT) for specific tasks. The datasets used in
these approaches are summarized in the following tables:
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• Tab. 8: Datasets for Continued Pre-Training (CPT)

• Tab. 9: Datasets for Supervised Fine-Tuning (SFT) in Referring Expression Segmenta-
tion (RES)

• Tab. 10: Datasets for Supervised Fine-Tuning (SFT) in Generalized Referring Expres-
sion Segmentation (GRES)

We can note that:

1. For CPT, previous methods rely heavily on large and diverse datasets, whereas our ap-
proach, Text4Seg, eliminates this requirement, demonstrating superior efficiency and ef-
fectiveness.

2. For SFT, we ensure a fair comparison by following previous works and train on:

• The train split of refCOCO series for RES and REC tasks.
• The train split of grefCOCO for the GRES task.

Table 8: Training datasets of Continued Pre-Training (CPT).

Methods Datasets
LISA ADE20K, COCO-Stuff, PACO-LVIS, PartImageNet, PASCAL-Part, refCLEF,

refCOCO, refCOCO+, refCOCOg, LLaVA-v1.5-mix665k
PixelLM ADE20K, COCO-Stuff, PACO-LVIS, refCLEF, refCOCO, refCOCO+, ref-

COCOg, LLAVA-150k, multi-target reasoning segmentation (MUSE)
GSVA ADE20K, COCO-Stuff, PACO-LVIS, Mapillary Vistas, PASCAL-Part, ref-

CLEF, refCOCO, refCOCO+, refCOCOg, gRefCOCO, LLaVA-Instruct-150K,
ReasonSeg

AnyRef ADE20K, COCO-Stuff, PACO-LVIS, refCLEF, refCOCO, refCOCO+, ref-
COCOg, PhraseCut, Flickr30K Entities, AVSBench

NEXT-Chat Flickr30K Entities, Visual Genome, RefCOCO, RefCOCO+, RefCOCOg,
VQAv2, PointQA, Visual7W, VCR, LLaVA-Instruct-150K, VG grounded cap-
tioning, Shikra-RD

Groundhog Multi-Modal Multi-Grained Grounding dataset (M3G2): PNG, Flickr30K-
Entity, refCLEF, refCOCO, refCOCO+, refCOCOg, gRefCOCO, PhraseCut,
D-Cube, ReasonSeg, RIO, SK-VG, VizWiz-G, TextVQA-X, GQA, VQS,
Shikra-BinaryQA, EntityCount, FoodSeg-QA, LVIS-QA, RefCOCO-REG,
RefCOCO+-REG, RefCOCOg-REG, gRefCOCO-REG, VG-SpotCap, V7W,
PointQA, VCR, ShikraRD, SVIT-RD, Guesswhat, VG-RefMatch, HierText

GLaMM Grounding-anything Dataset (GranD): 11M images, 810M masks, 84M refer-
ring expressions, GranD-f

Text4Seg None

Table 9: Referring Expression Segmentation Datasets of Supervised Fine-Tuning (SFT). † Other
methods have already incorporated refCLEF dataset in their CPT training datasets.

Methods Datasets
LISA refCOCO, refCOCO+, refCOCOg
PixelLM None
GSVA refCOCO, refCOCO+, refCOCOg
AnyRef refCOCO, refCOCO+, refCOCOg
NEXT-Chat refCOCO, refCOCO+, refCOCOg
Groundhog None
GLaMM refCOCO, refCOCO+, refCOCOg
Text4Seg refCOCO, refCOCO+, refCOCOg, refCLEF†
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Table 10: Generalized Referring Expression Segmentation Datasets of Supervised Fine-Tuning
(SFT).

Methods Datasets
LISA grefCOCO
GSVA grefCOCO
Text4Seg grefCOCO

C ADDITIONAL VISUAL INSTRUCTION DATA DETAILS

Query-answer template. We provide the question-answer templates in the Figs. 11 to 13. For
partial segmentation tasks, the templates are designed to segment only a subset of objects in the
image, such as a single object in the RES task, multiple objects in the GRES task, or partial labels
in semantic segmentation tasks. For conditioned segmentation tasks, the user provides a list of
condition labels, and the model segments the entire image based on those specified labels. For open-
vocabulary segmentation tasks, the model leverages its open-vocabulary capabilities to segment the
image and label all detected categories.

Visual instruction data on RES datasets. We adopt the question-answer templates from Fig. 11
to construct the training data. Specifically, we iterate through all <image, referring
expression, mask> pairs in the dataset, transforming the vanilla mask into semantic descrip-
tors, using the referring expression as the descriptor. The referring expression is placed in the
[class name] placeholder within each question-answer template. The RES training set is con-
structed by combining the train splits of refCLEF, refCOCO, refCOCO+, and refCOCOg, with
the process repeated twice. This results in a final RES training set comprising 800k samples. The
same method is applied to construct the GRES training set, which contains 419k samples.

Visual instruction data on open-vocabulary segmentation datasets. For the open-vocabulary
segmentation task, we utilize all three types of question-answer templates. Specifically, we construct
our visual instruction data using the COCOStuff dataset. The ratio of open-vocabulary segmentation
templates, partial segmentation templates, and conditioned segmentation templates is set to 1 : 3 : 6.
To further enhance diversity, we apply random cropping to both the image and mask. By iterating
10 times over the COCOStuff train set, we ultimately generate a training dataset consisting of
1.16M samples.

D ADDITIONAL QUANTITATIVE RESULTS

D.1 MORE RESULTS ON MASK REFINER

We present additional ablation study results on the mask refiner in Tab. 11, evaluated on the val
split of the refCOCO(+/g) datasets. The findings indicate that both SAM with ViT-L and ViT-H
architectures achieve similarly strong performance across all datasets, demonstrating the robustness
of the mask refinement process regardless of the test datasets.

Table 11: Ablation study on mask refiner on refCOCO (+/g) datasets.

Method Refiner refCOCO val refCOCO+ val refCOCOg val
cIoU Acc@0.5 Time (s) cIoU Acc@0.5 Time (s) cIoU Acc@0.5 Time (s)

Text4Seg None 73.5 89.3 5.34 67.6 83.6 5.26 69.8 84.0 6.18
Text4Seg SAM-B 75.5 89.9 5.54 69.8 84.7 5.46 71.3 84.6 6.30
Text4Seg SAM-L 79.1 90.6 5.73 72.8 85.1 5.63 74.2 85.2 6.58
Text4Seg SAM-H 79.3 90.0 5.92 72.6 84.3 5.84 74.6 85.6 6.75
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o "Please segment only the [class_name] in the image.",
o "Can you segment the [class_name] in the image?",
o "Where is the [class_name] in this picture? Please respond with segmentation mask.",
o "Where is '[class_name]' in this image? Please output segmentation mask.",
o "Could you provide the segmentation mask for '[class_name]' in this image?",
o "Please segment the image and highlight '[class_name]'."

• "Sure, here is the segmentation mask for '[class_name]':",
• "Here is the segmentation map focusing on the [class_name]:",
• "Here is the segmentation mask highlighting the [class_name]:",
• "The segmentation map for '[class_name]' is:",
• "The segmentation mask for '[class_name]' is shown below:",
• "Sure, Here's the segmentation of the [class_name]:",
• "Sure, the segmented output for '[class_name]' is:",
• "Certainly, the segmentation map for '[class_name]' is:",
• "Certainly, here is the segmentation mask for '[class_name]':",
• "The segmentation mask for '[class_name]' is shown below:"

Question:

Answer:

Figure 11: Question-Answer-Template for partial segmentation tasks, such as referring segmen-
tation and open vocabulary segmentation tasks. [class name] will be replace with the referring
expression in RES datasets or the selected class list in semantic segmentation datasets. The semantic
descriptors are appended at the end of each answer.

D.2 MORE RESULTS ON DIFFERENT RESOLUTION OF SEMANTIC DESCRIPTORS

Figure 14 provides the complete results across all RES datasets, including refCOCO+. The results
indicate that using a 16 × 16 length of semantic descriptors, combined with the SAM refiner, is
an effective approach that delivers strong performance. While it is possible to eliminate the SAM
refiner by further increasing the density of semantic descriptors, this would demand significantly
higher computational resources, and we will leave this optimization for future work.

D.3 MORE RESULTS REGARDING THE MASK REFINER

We provide additional quantitative results on Tabs. 12 to 14. While Text4Seg without a mask refiner
slightly lags behind LISA and GSVA in terms of average cIoU on referring expression segmentation
(RES) tasks, traditional mask refinement techniques, such as Conditional Random Fields (CRF),
can be employed to enhance segmentation accuracy. For instance, Text4Seg,InternVL2-8B with a CRF
refiner improves the baseline performance from an average cIoU of 67.5 to 70.1 on RES tasks.
Additionally, when using 32 × 32 semantic descriptors, Text4Seg outperforms its counterpart with
16 × 16 descriptors. Specifically, Text4Seg,InternVL2-8B with 32 × 32 semantic descriptors achieves
an average cIoU of 71.4, surpassing LISA’s 69.9 and matching GSVA’s 71.4 on RES tasks. On
the GRES tasks, as shown in the Tab. 13, both CRF and SAM refiners significantly enhance per-
formance, outperforming LISA and GSVA. Notably, Text4Seg,InternVL2-8B with 32 × 32 semantic
descriptors, even without a mask refiner, achieves performance superior to existing methods. Fi-
nally, on the REC tasks, Text4Seg without a SAM refiner continues to outperform current methods,
further demonstrating the effectiveness of Text4Seg’s visual grounding capabilities.

E ADDITIONAL QUALITATIVE RESULTS

In this section, we provide more visual examples for different tasks to show the strong capabilities
of the proposed Text4Seg.
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o "Please segment the image based on the category: [class_name].",
o "Segment the image according to the specified category: [class_name].",
o "Segment the image while focusing on the category: [class_name].",
o "Please provide a segmentation map for the category: [class_name].",
o "Segment the image with emphasis on the class: [class_name].",
o "Please segment the image, focusing on the candidate category: [class_name].",
o "Could you segment the image, considering the indicated class: [class_name]?"

• "Sure, here is the segmentation based on the category '[class_name]':",
• "The image has been segmented according to the category '[class_name]':",
• "Certainly, here is the segmentation map for the category '[class_name]':",
• "The image is segmented with emphasis on the class '[class_name]':",
• "Here is the segmented image focusing on the candidate category '[class_name]':",
• "The image has been segmented with the category '[class_name]' in mind:",
• "Sure, the segmentation mask is:",
• "Sure, the segmented image is:",
• "Certainly, the segmented map is:",
• "Certainly, here is the segmentation mask:",
• "Certainly, here is the segmented output:",
• "Sure, here is the segmentation map:",
• "The segmentation mask is shown below:"

Question:

Answer:

Figure 12: Question-Answer-Template for conditioned segmentation tasks like open vocabulary
segmentation task. [class name] will be replace with the condition class list in semantic segmen-
tation datasets. The semantic descriptors are appended at the end of each answer.

Referring expression segmentation. Figure 15 provides additional examples of Text4Seg applied
to the referring expression segmentation (RES) task. It is evident that Text4Seg can segment objects
based on various criteria, including different classes (e.g., “clear glass”), colors (e.g., “blue”), and
positions (e.g., “food in the back right”). This versatility demonstrates its superiority in accurately
identifying and segmenting objects in complex scenarios.

Referring expression comprehension. We also present additional results on the Referring Ex-
pression Comprehension (REC) task in Fig. 16. It is evident that the coarse masks generated by
Text4Seg can be effectively utilized for object localization tasks using the simple mask2box method.
This application highlights the accuracy of Text4Seg in referring object localization, demonstrating
its capability to precisely identify and locate objects within complex images.

Open vocabulary semantic segmentation. Figure 17 presents additional examples of Text4Seg
performing open-vocabulary segmentation. Notably, Text4Seg demonstrates its ability to segment
not only common large objects but also small objects effectively, such as the person and boat on
the river. This versatility highlights Text4Seg’s proficiency in accurately identifying and segmenting
a wide range of object sizes. Figure 18 illustrates the multi-object segmentation capabilities of
Text4Seg. It is evident that Text4Seg successfully segments all identified objects within the image,
showcasing its strong ability to handle multiple objects in complex scenarios. This performance
highlights its robustness and effectiveness in accurately distinguishing various elements within a
single scene.

Visual understanding. Figure 19 presents an example where Text4Seg is used for image caption-
ing, single-object segmentation, and multi-object segmentation. Additionally, Fig. 20 compares the
image reasoning capabilities of Text4Seg with the original LLaVA-1.5. While maintaining similar
reasoning abilities, our proposed Text4Seg extends functionality by enabling segmentation tasks.
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o "Segment the entire image and classify each category separately."
o "Please perform segmentation on this image and highlight all identifiable elements."
o "Perform segmentation on this image and label all detected categories."
o "Please identify and segment all categories present in the image."
o "Segment the image and label all categories detected."
o "Could you segment the image and label each identifiable category?"
o "Segment the image to identify and label all visible categories."
o "Segment and classify all elements in the image."
o "Identify and segment all categories visible in the image."
o "Can you segment and label the image?"
o "Might you segment this image?"
o "Can you perform segmentation on this image?"
o "Could you please segment this image?"

• "Sure, here is the segmented image with each category classified separately:"
• "Sure, here’s the segmented image showing all visible categories:"
• "The image is segmented and annotated with each category:"
• "The image segmentation is complete, with all categories marked:"
• "Sure, the segmentation mask is:"
• "Sure, the segmented image is:"
• "Certainly, the segmented map is:"
• "Certainly, here is the segmentation mask:"
• "Certainly, here is the segmented output:"
• "Sure, here is the segmentation map:"
• "The segmentation mask is shown below:"

Question:

Answer:

Figure 13: Question-Answer-Template for open vocabulary segmentation tasks. Following
LaSagnA (Wei et al., 2024), the class label lists of the test benchmarks are given in the question
for fair quantitative comparison. The semantic descriptors are appended at the end of each answer.

162 242 322
70

72

74

76

78

cIo
U

refCOCO val

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

72.5

75.0

77.5

80.0

82.5

cIo
U

refCOCO testA

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

70

72

74

cIo
U

refCOCO testB

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

66

68

70

72

cIo
U

refCOCO+ val

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

70

72

74

76

78

cIo
U

refCOCO+ testA

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

62

64

66

cIo
U

refCOCO+ testB

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

68

70

72

74

cIo
U

refCOCOg val

Text4Seg (w SAM)
Text4Seg (w/o SAM)

162 242 322

68

70

72

74

cIo
U

refCOCOg test

Text4Seg (w SAM)
Text4Seg (w/o SAM)

Figure 14: Text4Seg with different resolutions of semantic descriptors on all RES datasets.
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Table 12: Additional Referring Expression Segmentation results (cIoU) on refCOCO (+/g)
datasets. † denotes model is based on the semantic descriptors with a resolution of 32×32.

Methods Refiner refCOCO refCOCO+ refCOCOg Avg.val testA testB val testA testB val test
Generalist Segmentation Models (≤ 8B)

LISA (Lai et al., 2024) - 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 69.9
GSVA (Xia et al., 2024) - 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3 71.4
Text4Seg DeepseekVL-1.3B None 66.2 68.7 63.6 60.7 64.5 54.9 64.2 64.2 63.4
Text4Seg DeepseekVL-1.3B SAM-H 75.0 78.6 70.1 68.4 73.4 60.0 71.5 71.7 71.1
Text4Seg DeepseekVL-7B None 69.7 71.2 67.9 64.5 68.0 60.2 66.6 66.7 66.9
Text4Seg DeepseekVL-7B SAM-H 78.8 81.5 74.9 72.5 77.4 65.9 74.3 74.4 75.0
Text4Seg LLaVA-1.5-7B None 70.5 72.3 69.3 64.4 68.7 60.6 65.1 66.5 67.2
Text4Seg LLaVA-1.5-7B SAM-H 79.3 81.9 76.2 72.1 77.6 66.1 72.1 73.9 74.9
Text4Seg Qwen-VL-7B None 68.3 70.0 67.3 63.1 67.2 59.9 66.5 77.4 67.5
Text4Seg Qwen-VL-7B SAM-H 78.0 80.9 74.6 71.6 77.3 66.0 74.8 74.7 74.7
Text4Seg InternVL2-8B None 70.3 71.9 68.7 65.0 68.9 60.8 66.7 67.6 67.5
Text4Seg InternVL2-8B CRF 73.0 75.2 70.7 67.6 72.1 62.6 68.9 70.3 70.1
Text4Seg InternVL2-8B SAM-H 79.2 81.7 75.6 72.8 77.9 66.5 74.0 75.3 75.4
Text4Seg InternVL2-8B

† None 74.7 77.4 71.6 68.5 73.6 62.9 70.7 71.6 71.7
Text4Seg InternVL2-8B

† SAM-H 78.6 81.7 74.3 71.8 77.4 65.1 73.9 74.7 74.7
Generalist Segmentation Models (13B)

LISA (Lai et al., 2024) - 76.0 78.8 72.9 65.0 70.2 58.1 69.5 70.5 70.1
GSVA (Xia et al., 2024) - 78.2 80.4 74.2 67.4 71.5 60.9 74.2 75.6 72.8
Text4Seg LLaVA-1.5-13B None 71.3 72.9 70.3 65.9 70.0 61.8 66.8 67.6 68.3
Text4Seg LLaVA-1.5-13B SAM-H 80.2 82.7 77.3 73.7 78.6 67.6 74.0 75.1 76.2

Table 13: Additional Generalized Referring Expression Segmentation results on the grefCOCO
dataset. † denotes model is based on the semantic descriptors with a resolution of 32×32.

Methods Refiner Validation Set Test Set A Test Set B Avg.gIoU cIoU gIoU cIoU gIoU cIoU
Generalist Segmentation Models (≤ 8B)

LISA (Lai et al., 2024) - 61.6 61.8 66.3 68.5 58.8 60.6 62.9
GSVA (Xia et al., 2024) - 66.5 63.3 71.1 69.9 62.2 60.5 65.6
Text4Seg DeepseekVL-1.3B None 64.3 57.2 62.2 61.2 57.1 54.9 59.5
Text4Seg DeepseekVL-1.3B SAM-H 69.9 63.2 69.7 67.5 62.3 59.8 65.4
Text4Seg DeepseekVL-7B None 69.0 62.7 66.3 65.9 62.1 61.1 64.5
Text4Seg DeepseekVL-7B SAM-H 74.7 69.0 74.3 73.0 67.4 66.3 70.8
Text4Seg LLaVA-1.5-7B None 67.9 61.6 66.2 65.9 60.9 59.8 63.7
Text4Seg LLaVA-1.5-7B SAM-H 73.6 67.9 74.1 72.8 66.1 64.8 69.9
Text4Seg Qwen-VL-7B None 68.5 61.1 64.6 63.6 61.1 59.6 63.1
Text4Seg Qwen-VL-7B SAM-H 74.4 68.1 73.1 71.5 66.7 65.3 69.9
Text4Seg InternVL2-8B None 68.8 63.1 66.9 67.1 62.1 61.6 64.9
Text4Seg InternVL2-8B CRF 70.0 66.1 69.4 70.9 63.1 64.1 67.3
Text4Seg InternVL2-8B SAM-H 74.4 69.1 75.1 73.8 67.3 66.6 71.1
Text4Seg InternVL2-8B

† None 71.8 65.6 71.2 70.0 64.2 62.5 67.6
Text4Seg InternVL2-8B

† SAM-H 74.9 68.8 75.4 73.6 67.0 65.1 70.8
Generalist Segmentation Models (13B)

LISA (Lai et al., 2024) - 63.5 63.0 68.2 69.7 61.8 62.2 64.7
GSVA (Xia et al., 2024) - 68.0 64.1 71.8 70.5 63.8 61.3 66.6
Text4Seg LLaVA-1.5-13B None 69.2 63.9 67.4 67.6 62.7 62.0 65.5
Text4Seg LLaVA-1.5-13B SAM-H 74.8 69.8 75.1 74.3 68.0 67.1 71.5
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Table 14: Additional Referring Expression Comprehension results (Acc@0.5) on RefCOCO
(+/g) datasets. † denotes model is based on the semantic descriptors with a resolution of 32×32.

Methods Refiner refCOCO refCOCO+ refCOCOg Avg.val testA testB val testA testB val test
Generalist Segmentation Models (≤ 8B)

LISA (Lai et al., 2024) - 85.4 88.8 82.6 74.2 79.5 68.4 79.3 80.4 79.8
GSVA (Xia et al., 2024) - 86.3 89.2 83.8 72.8 78.8 68.0 81.6 81.8 80.3
Text4Seg DeepseekVL-1.3B None 83.6 87.3 79.1 78.0 83.6 70.3 78.5 78.8 79.9
Text4Seg DeepseekVL-1.3B SAM-H 86.4 90.3 81.7 80.5 86.3 72.3 82.4 82.7 82.8
Text4Seg DeepseekVL-7B None 87.2 90.8 83.4 82.1 88.1 76.8 81.1 81.0 83.8
Text4Seg DeepseekVL-7B SAM-H 89.6 93.3 85.4 84.2 90.2 78.5 84.4 84.7 86.3
Text4Seg LLaVA-1.5-7B None 89.2 92.0 86.4 83.4 88.6 78.0 81.7 82.4 85.2
Text4Seg LLaVA-1.5-7B SAM-H 90.8 93.7 87.6 84.7 90.2 79.0 84.8 85.0 87.0
Text4Seg Qwen-VL-7B None 87.2 90.1 83.6 82.1 87.4 76.6 81.5 81.3 83.7
Text4Seg Qwen-VL-7B SAM-H 89.7 93.0 85.8 84.6 90.1 78.6 85.0 85.1 86.5
Text4Seg InternVL2-8B None 88.3 91.4 85.8 83.5 88.2 77.9 82.4 82.5 85.0
Text4Seg InternVL2-8B SAM-H 90.3 93.4 87.5 85.2 89.9 79.5 85.4 85.4 87.1
Text4Seg InternVL2-8B

† None 88.9 92.4 84.1 83.1 88.6 77.3 83.6 83.8 85.2
Text4Seg InternVL2-8B

† SAM-H 89.6 92.6 84.9 83.7 88.8 77.6 84.6 84.8 85.8
Generalist Segmentation Models (13B)

Shikra (Chen et al., 2023a) Vicuna-13B 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2 84.0
LISA (Lai et al., 2024) - 85.9 89.1 83.2 74.9 81.1 68.9 80.1 81.5 80.6
GSVA (Xia et al., 2024) - 87.7 90.5 84.6 76.5 81.7 70.4 83.9 84.9 82.5
Text4Seg LLaVA-1.5-13B None 89.6 92.3 87.0 84.4 89.0 79.1 82.9 82.9 85.9
Text4Seg LLaVA-1.5-13B SAM-H 91.2 94.3 88.0 85.7 90.8 80.1 85.6 85.5 87.7

woman washing dishes man on upper right near tvblack suitcase on 
right that is 

closest to camera

pile of green food closest 
to the end of the bread

far right surfboard yellow bikechair on the rightbottom right donut

blueclear glass food in the back rightbike farthest right cut off

Figure 15: Example results of Text4Seg on referring expression segmentation task. The referring
phrases are below the images.
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blue polo white hair brown stationwagen

hotdog on right top

baby elephant

guy on the far leftlaptop on the left

Figure 16: Example results of Text4Seg on referring expression comprehension task. Blue boxes
are ground truth labels, and green ones are the Text4Seg predictions.
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Query: Can you segment the aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, 
dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, TV in the image?

Response: Sure, the segmented mask is:

Figure 17: Example results of open-vocabulary segmentation using Text4Seg on the PAS-20 bench-
mark.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Query: Can you segment the <PC-59 CLASS LIST> in the image?

Response: Sure, the segmented mask is:

Figure 18: Example results of open-vocabulary segmentation using Text4Seg on the PC-59 bench-
mark.
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Descript this image in detail.

Might you segment the white horse in this image?

The image depicts a group of wild horses galloping through a grassy
field. There are ten horses in total, with some running closer to the
foreground and others further back in the scene. The horses are spread
out across the field, with some closer to the left side, others in the
middle, and a few more towards the right side of the image. The horses
appear to be enjoying their time running freely in the open field.

Sure, the segmented output for 'white horse' is:

Please segment all horses in the image.

The segmentation mask for 'horses' is shown below:

Figure 19: An example result of Text4Seg to perform image captioning, single-object segmentation,
and multi-object segmentation.
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The unusual aspect of this image is that a man is standing on the back of a
moving yellow car, holding a clothes dryer. This is not a typical scene, as
people usually do not stand on the back of a moving vehicle, especially not
on top of a car with a clothes dryer. The man's actions are both dangerous
and unconventional, as he could risk falling off the car or causing damage to
the vehicle or himself.

What is unusual about this image?

LLaVA1.5:

Sure, here is the segmentation mask for 'man':

Could you please segment this man?

LLaVA1.5:

The unusual aspect of this image is that a man is standing on a clothesline
mounted on the back of a moving yellow car. This is not a common sight,
as people typically do not use cars as a platform for hanging clothes or
performing other tasks. The man is also wearing a yellow shirt, which
adds to the unconventional nature of the scene. The presence of a taxi in
the background further emphasizes the unusual nature of the image, as it
is not a typical setting for such an activity

Text4Seg

Text4Seg

Figure 20: The capability comparison between Text4Seg and LLaVA-1.5.
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