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{huangyushi1, gongruihao, lvchengtao}@sensetime.com liujing 95@outlook.com
yifuding@buaa.edu.cn haotong.qin@pbl.ee.ethz.ch eejzhang@ust.hk

ABSTRACT

Video diffusion models (DMs) have enabled high-quality video synthesis. Yet,
their substantial computational and memory demands pose serious challenges to
real-world deployment, even on high-end GPUs. As a commonly adopted solu-
tion, quantization has achieved notable successes in reducing cost for image DMs,
while its direct application to video DMs remains ineffective. In this paper, we
present QVGen, a novel quantization-aware training (QAT) framework tailored for
high-performance and inference-efficient video DMs under extremely low-bit quan-
tization (i.e., 4-bit or below). We begin with a theoretical analysis demonstrating
that reducing the gradient norm is essential to facilitate convergence for QAT. To
this end, we introduce auxiliary modules (Φ) to mitigate large quantization errors,
leading to significantly enhanced convergence. To eliminate the inference overhead
of Φ, we propose a rank-decay strategy that progressively eliminates Φ. Specifi-
cally, we repeatedly employ singular value decomposition (SVD) and a proposed
rank-based regularization γ to identify and decay low-contributing components.
This strategy retains performance while zeroing out additional inference overhead.
Extensive experiments across 4 state-of-the-art (SOTA) video DMs, with parameter
sizes ranging from 1.3B∼14B, show that QVGen is the first to reach full-precision
comparable quality under 4-bit settings. Moreover, it significantly outperforms
existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements
of +25.28 in Dynamic Degree and +8.43 in Scene Consistency on VBench. Code
and models are available at https://github.com/ModelTC/QVGen.

1 INTRODUCTION

Recently, advancements in artificial intelligence-generated content (AIGC) have led to significant
breakthroughs in text (Touvron et al., 2023; DeepSeek-AI et al., 2025), image (Xie et al., 2025;
Labs, 2024), and video synthesis (WanTeam et al., 2025; Kong et al., 2025). The development
of video generative models, driven by the powerful diffusion transformer (DiT) (Peebles & Xie,
2023) architecture, has been particularly notable. Leading video diffusion models (DMs), such as
closed-source OpenAI Sora (OpenAI, 2024) and Kling (Kuaishou, 2024), and open-source Wan
(WanTeam et al., 2025) and CogVideoX (Yang et al., 2025), can successfully model motion dynamics,
semantic scenes, etc. Despite their impressive performance, these models demand high computational
resources and substantial peak memory, especially when generating long videos at a high resolution.
For example, Wan 14B requires more than 30 minutes and 50GB of GPU memory to generate a
10-second 720p resolution video clip on a single H100 GPU. Even worse, deploying such models
is infeasible on most customer-grade PCs, let alone resource-constrained edge devices. As a result,
their practical applications across various platforms face considerable challenges.

In light of these problems, model quantization, which maps high-precision (e.g., FP16/BF16) data
to low-precision (e.g., INT8/INT4) formats, stands out as a compelling solution. For instance,
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(a) BF16 (b) W4A4 QVGen (Ours)

(c) W4A4 EfficientDM (He et al., 2024) (d) W4A4 Q-DM (Li et al., 2023b)

(e) W4A4 LSQ (Esser et al., 2020b) (f) W4A6 SVDQuant (Li et al., 2025)

Text prompt: “In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face
is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has

lost its innocence to the ravages of conflict.”

Figure 1: Comparison of samples generated by CogVideoX-2B (Yang et al., 2025) with a fixed random seed.
“WxAy” denotes “x”-bit per-channel weight and “y”-bit per-token activation quantization. Our approach far
outperforms previous PTQ (i.e., (f)) and QAT (i.e., (c)-(e)) methods. To be noted, methods (c)-(f) have achieved
noticeable performance for 4-bit image DMs. More visual results can be found in Sec. P.

employing 4-bit models with fast kernel implementation can achieve a significant 3× speedup ratio
with about 4× model size reduction compared with floating-point models on NVIDIA RTX4090
GPUs (Li et al., 2025). However, quantizing video DMs is more challenging than quantizing image
DMs, and it has not received adequate attention. As shown in Fig. 1, applying prior high-performing
approaches to quantize a video DM into ultra-low bits (≤ 4 bits) is ineffective. In contrast to post-
training quantization (PTQ), quantization-aware training (QAT) can obtain superior performance
through training quantized weights. Nevertheless, it still leads to severe video quality degradation, as
demonstrated by Fig. 1 (a) vs. (c)-(e). This highlights the need for an improved QAT framework to
preserve video DMs’ exceptional performance under 4-bit or lower quantization.

In this work, we present a novel QAT framework, termed QVGen. It aims to improve the convergence
without additional inference costs of low-bit Quantized DMs for Video Generation.

Specifically, we first provide a theoretical analysis showing that minimizing the gradient norm ∥gt∥2
is the key to improving the convergence of QAT for video DMs. Motivated by this finding, we
introduce auxiliary modules Φ for the quantized video DM to mitigate quantization errors. These
modules effectively help narrow the discrepancy between the discrete quantized and full-precision
models, leading to stable optimization and largely reduced ∥gt∥2. The quantized DM thus achieves
better convergence. Our observation also implies that the significant performance drops (Fig. 1) of
the existing SOTA QAT method (Li et al., 2023b) may result from its high ∥gt∥2 (Fig. 3).

Moreover, to adopt Φ for improving QAT while avoiding its substantial inference overhead, we
progressively remove Φ during training. Upon further analysis, we have found that the amount
of small singular values in WΦ (the weight of Φ) increases throughout the training process. This
indicates that the quantity of low-contributing components in WΦ, which are related to small singular
values (Zhang et al., 2015; Yang et al., 2020), grows during QAT. As a result, an increasing number
of these components can be removed with minimal impact on training. Leveraging this insight,
we introduce a rank-decay strategy to progressively shrink WΦ. To be more specific, singular
value decomposition (SVD) is first applied to recognize WΦ’s low-impact components. Then, a
rank-based regularization γ is utilized to gradually decay these components to ∅. Such processes
(i.e., decompose and then decay) are repeated until WΦ is fully eliminated, which also means that Φ
is removed. In terms of results, this strategy incurs minimal performance impact while getting rid of
the extra inference overhead.

To summarize, our contributions are as follows:

▶ We introduce a general-purpose QAT paradigm, called QVGen. To our knowledge, this is the first
QAT method for video generation and achieves effective 3-bit and 4-bit quantization.
▶ To optimize extremely low-bit QAT, we enhance a quantized DM with auxiliary modules (Φ) to
reduce the gradient norm. Our theoretical and empirical analysis validates the effectiveness of this
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method in improving convergence.
▶ To eliminate the significant inference overhead introduced by Φ, we propose a rank-decay strategy
that progressively shrinks Φ. It iteratively performs SVD and applies a rank-based regularization γ to
obtain and decay low-impact components of Φ, respectively. As a result, this method incurs minimal
impact on performance.
▶ Extensive experiments across advancing CogVideoX and Wan families demonstrate the SOTA
performance of QVGen. Notably, our W4A4 model is the first to show full-precision comparable
performance. In addition, we apply QVGen to Wan 14B, one of the largest open-source SOTA
models, and observe negligible performance drops on VBench-2.0.

2 PRELIMINARIES

Video diffusion modeling. The video DM (Ho et al., 2022; Zheng et al., 2024) extends image
diffusion frameworks (Li et al., 2023b; Song et al., 2021a) into the temporal domain by learning
dynamic inter-frame dependencies. Let x0 ∈ Rf×h×w×c be a latent video variable, where f denotes
the count of video frames, each of size h× w with c channels. DMs are trained to denoise samples
generated by adding random Gaussian noise ϵ∼N (0, I) to x0:

xτ = ατx0 + στϵ, (1)

where ατ , στ > 0 are scalar values that collectively control the signal-to-noise ratio (SNR) according
to a given noise schedule (Song et al., 2021b) at timestep τ ∈ [1, . . . , N ]1. One typical training
objective (i.e., predict the noise (Ho et al., 2020b)) of a denoiser ϵθ with parameter θ can be formulated
as follows:

L(θ) = Ex0,ϵ,C,τ [∥ϵ− ϵθ(xτ , C, τ)∥2F ], (2)
where C represents conditional guidance, like texts or images, and ∥ · ∥F denotes the Frobenius norm.
Additionally, v-prediction (Salimans & Ho, 2022) (i.e., predict dxτ

dτ ) is also a prevailing option (Yang
et al., 2025; WanTeam et al., 2025; Kong et al., 2025) as the target. During inference, we can employ
ϵθ with various sampling methods (Lu et al., 2022; Zheng et al., 2023) progressively denoising from
a random Gaussian noise xN∼N (0, I) to a clean video variable. The raw video is obtained by
decoding the variable via a video variational auto-encoder (VAE) (Yang et al., 2025).

Quantization. The current video DM based on the diffusion transformer (DiT) (Peebles & Xie, 2023)
architecture primarily consists of linear layers. Given an input X ∈ Rm×k, a full-precision linear
layer with weight W ∈ Rn×m and the layer’s quantized version can be formulated as:

Y = WX, Ŷ = Qb(W)Qb(X), (3)

where Y ∈ Rn×k and Ŷ ∈ Rn×k 2 represent the outputs of the full-precision (e.g., FP16/BF16)
and quantized linear layers, respectively. Qb(·) denotes the function of b-bit quantization. In this
paper, we adopt asymmetric uniform quantization. For example, Qb(X) can be represented as:

Qb(X) = (clip(⌊Xs ⌉+ z, 0, 2b − 1)− z)× s,where s = max(X)−min(X)
2b−1

, z = −⌊min(X)
s ⌉.

(4)
Here, quantization parameters s and z denote the scaler and zero shift, respectively. clip(·, ·, ·) bounds
the integer values into [0, 2b− 1]. To ensure the differentiability of the rounding function ⌊·⌉ for QAT,
straight-through estimator (STE) (Bengio et al., 2013) is widely applied as:

∂Qb(X)
∂X = I0≤⌊X

s ⌉+z≤2b−1. (5)

Similar to existing works (Li et al., 2023b; Zheng et al., 2025b), we employ the full-precision model as
the teacher to guide the training of the quantized model in a knowledge distillation-based (KD-based)
manner. Therefore, the training loss can be defined as:

L = Ex0,C,τ [∥ϵ̂θ(xτ , C, τ)− ϵθ(xτ , C, τ)∥2F ]. (6)

where ϵ̂θ denotes the quantized denoiser of a video DM.
1N denotes the maximum timestep.
2Here, n denotes the output channel, m signifies the token dimension, and k is the token number. We omit

the batch dimension for clarity.
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3 QVGEN

Considering the substantial video-quality drops (see Fig. 1) observed in existing QAT methods (Li
et al., 2023b; He et al., 2024; Esser et al., 2020b), we believe that the quantized video DM suffers
from poor convergence. In the following subsections, we propose QVGen (see Fig. 2) to address this
issue while maintaining inference efficiency.
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Figure 2: Overview of the proposed QVGen. (a) This framework integrates auxiliary modules Φ to improve
training convergence (Sec. 3.1). (b) To maintain performance while eliminating inference overhead induced by
Φ, we design a rank-decay schedule that progressively shrinks the entire Φ to ∅ through iteratively applying
the following two strategies (Sec. 3.2): (i) SVD to identify the low-impact components in Φ; (ii) A rank-based
regularization γ to decay the identified components to ∅. A detailed procedure can be found in Sec. A.

3.1 IMPROVING CONVERGENCE WITH AUXILIARY MODULES Φ

To begin with, we analyze the convergence of a quantized video DM using the regret, which is widely
used in analyses of deep learning optimizers (Kingma & Ba, 2017; Luo et al., 2019). It is defined as:

R(T ) =
∑T

t=1 ft(θt)− ft(θ
∗), (7)

where T signifies the total number of training iterations and ft(·) is the unknown cost function
at iteration t. Here, θt represents the parameters of the quantized video DM at training step t,
constrained within a convex compact set Sd, while θ∗ = arg minθ∈Sd

∑T
t=1 ft(θ) is the optimal

parameters. In QAT, θt is updated by gradient descent, with the learning rate ηt and gradient gt, as:

θt+1 = θt − ηtgt. (8)

Theorem 3.1. Assume that ft is convex3 and ∀θi,θj ∈ Sd, ∥θi − θj∥∞ ≤ D∞. Then the average

regret is upper-bounded as: R(T )
T ≤ dD2

∞
2Tηm

T
+ 1

T

∑T
t=1

ηM
t

2 ∥gt∥
2
2

4.

A smaller value of R(T )
T implies a closer convergence to the optimum. Thm. 3.1 (with a proof

provided in Sec. B) suggests that for a large T (i.e., dD2
∞

2Tηm
T

becomes negligible), minimizing ∥gt∥2 is
critical for improving convergence behavior of QAT. A lower ∥gt∥2 is typically observed in more
stable training processes (Takase et al., 2024; Xie et al., 2024). Therefore, to reduce ∥gt∥2, we aim to
stabilize the QAT process by mitigating aggressive training losses (e.g., loss spikes) (Kumar et al.,
2025; Li et al., 2024b). Specifically, we introduce a learnable auxiliary module Φ to enhance each
quantized linear layer of a video DM. This trainable module aims to mitigate severe quantization-
induced errors during QAT, thereby preventing aggressive training losses. The forward computation
of such a Φ-equipped layer becomes:

Ŷ = Qb(W)Qb(X) + Φ(Qb(X)), (9)

where Φ(Qb(X)) = WΦQb(X). Here, WΦ is initialized before QAT by the weight quantization
error, defined as W −Qb(W). More initialization approaches for WΦ can be found in Sec. L.2.

3This may not hold for deep networks. Therefore, we also provide a nonconvex convergence analysis in
Sec. C.

4ηM
t and ηm

t are the maximum and minimum values of ηt, respectively.
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(a) CogVideoX-2B (Yang et al., 2025) (b) Wan 1.3B (WanTeam et al., 2025)

Figure 3: (Upper) ∥gt∥2 vs. #steps and (Lower) training loss
(i.e., Eq. (6)) vs. #steps across different video DMs and 4-bit
QAT methods.“Φ” denotes our approach in Sec. 3.1.

To validate the effectiveness of Φ, we con-
duct experiments for CogVideoX 2B (Yang
et al., 2025) and Wan 1.3B (WanTeam
et al., 2025). Compared with the previ-
ous SOTA QAT method Q-DM (Li et al.,
2023b), the proposed approach exhibits
consistently lower ∥gt∥2 and reduced train-
ing loss, as depicted in Fig. 3. This aligns
well with both the theoretical and the em-
pirical analysis discussed earlier. There-
fore, incorporating Φ in QAT effectively
reduces the gradient norm and leads to bet-
ter convergence for QAT. In addition, as
evidenced by Fig. 3, the substantial perfor-
mance degradation of Q-DM (e.g., depicted
in Fig. 1) for the video generation task could be attributed to its relatively large ∥gt∥2. Besides, we
provide further analyses of ∥gt∥2 in video generation QAT in Sec. H.

3.2 PROGRESSIVELY SHRINKING Φ VIA Rank-Decay

However, during inference, the auxiliary module Φ introduces non-negligible overhead. Concretely,
Φ incurs additional matrix multiplications between b-bit activationsQb(X) and full-precision weights
WΦ. This is inapplicable to low-bit multiplication kernels and thus hinders inference acceleration.
In addition, the storage of full-precision WΦ for each Φ leads to significant memory overhead,
exceeding that of the quantized diffusion model by several fold.

To improve QAT while eliminating the inference overhead, we propose to progressively remove
Φ throughout the training process. This allows the model to benefit from Φ during QAT, while
ultimately yielding a standard quantized model (Li et al., 2023b; Esser et al., 2020b) with no extra
inference cost. To achieve this goal, a straightforward solution is to decay all parameters of Φ directly.
However, we have noticed that it is ineffective and suboptimal (see Tab. 4). This observation calls for
a fine-grained decay strategy.

(a) CogVideoX-2B (Yang et al., 2025)

~14× smaller

99%←73% 98%← 47%

~5× smaller

(b) Wan 1.3B (WanTeam et al., 2025)

~7× smaller

98%← 33%

~4× smaller

99%←33%

Figure 4: Singular value variation in WΦ across training iterations for 4-bit video DMs. We visualize the
average of the singular values {σs}s=1,2,...,210 ∪ {σd} across layers of all Attention blocks (Vaswani et al.,
2023) and feed-forward networks (FFNs), respectively. “0 step” denotes the initialization state before QAT.

Therefore, we begin to investigate the contribution of fine-grained components in Φ. Specifically, we
apply singular value decomposition (SVD) (Li et al., 2025; 2023c) to WΦ at various training steps:

WΦ =
∑d

s=1 σsusv
⊤
s , (10)

where d = min{n,m} and σ1 ≥ σ2 ≥ . . . ≥ σd are the singular values. The vectors us and vs

denote the left and right singular vectors associated with σs, respectively. By tracking the evolution of
the average σs, we observe two key findings (exemplified by Fig. 4 (a) Attention): (i) WΦ contains
a substantial number of small singular values. For example, approximately 73% (0-th step) of the
average σs are ∼14× smaller than the largest one σ1; (ii) The presence of these small σs becomes
increasingly pronounced as QAT progresses, with the proportion rising to 99% (2K-th step).

These findings suggest that an increasing number of orthonormal directions {us,vs} contribute little,
as their associated singular values σs are small (Zhang et al., 2015; Yang et al., 2020). We posit
that the main weight W gradually learns to absorb quantization errors. As training proceeds, WΦ

collapses to low rank and plays an ever-diminishing role in error compensation. This, in turn, implies
that only an increasingly low-rank portion of Φ (i.e., Σd′

s=1σsusv
⊤
s , where d′ < d) is needed, and the
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remaining components can be decayed without noticeably affecting performance. Motivated by this,
we propose a novel rank-decay schedule that progressively shrinks Φ by repeatedly identifying and
eliminating the above-mentioned low-impact parts. First, to attain these parts, we reformulate the
computation of Φ as:

Φ(Qb(X)) = LRQb(X), (11)
where L = [

√
σ1u1, . . . ,

√
σrur] ∈ Rn×r and R = [

√
σ1v1, . . . ,

√
σrvr]

⊤ ∈ Rr×m for a given
rank r. In practice, we set r ≪ d to reduce training costs, as WΦ already exhibits a non-negligible
number of small singular values before QAT. Consequently,

√
σsus and

√
σsvs are the components

in WΦ represent the s-th level of contribution. Then, with a rank-based regularization γ applied, the
forward computation of a quantized linear layer during training is modified as:

Ŷ = Qb(W)Qb(X) + (γ ⊙ L)RQb(X), (12)

where γ is defined as:

γ = concat([1]n×(1−λ)r, [u]n×λr) ∈ Rn×r. (13)

Here, u follows a cosine annealing schedule that decays from 1 to 0, λ ∈ (0, 1] represents the
shrinking ratio, and ⊙ denotes element-wise multiplication. Eq. (12) and Eq. (13) allow us to
progressively eliminate the low-impact components of Φ (i.e., [√σ(1−λ)r+1u(1−λ)r+1, . . . ,

√
σrur]

and [
√
σ(1−λ)r+1v(1−λ)r+1, . . . ,

√
σrvr]

⊤). Once u reaches 0, we truncate {L,R} to {L′,R′}, and
rewrite WΦ as: {

L′ = L[:, : (1− λ)r]

R′ = R[: (1− λ)r, :]
⇒WΦ = L′R′. (14)

In Eq. (14), the rank of WΦ is shrunk from r to (1− λ)r. During the subsequent training phase, the
above procedures (i.e., both decomposition and decay) are iteratively applied. Ultimately, we fully
eliminate Φ by reducing r to 0, which incurs negligible impact on model performance (see Tab. 3). It
is worth noting that we set λ = 1

2 for Eq. (13) in this work, based on its effectiveness demonstrated
in Tab. 4. Overall, the overview of the rank-decay schedule is exhibited in Fig. 2 (b).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Models. We conduct experiments on open-source SOTA video DMs, including CogVideoX-2B and
1.5-5B (Yang et al., 2025), and Wan 1.3B and 14B (WanTeam et al., 2025). Classifier-free guidance
(CFG) (Ho & Salimans, 2022) is used for all models, and the frame number of generated videos is
fixed to 49 for CogVideoX-2B and 81 for the others.

Baselines. We adopt previous powerful PTQ and QAT methods as baselines: ViDiT-Q (Zhao et al.,
2025a), SVDQuant (Li et al., 2025), LSQ (Esser et al., 2020b), Q-DM (Li et al., 2023b), and
EfficientDM (He et al., 2024). Since these methods were designed for image DMs or convolutional
neural networks (CNNs), we adapt these works to video DMs using their open-source code (if
available) or the implementation details provided in the corresponding papers. Without specific
clarification, static per-channel weight quantization with dynamic per-token activation quantization, a
common practice in the community (Zhao et al., 2025a; Liu et al., 2023), is used for all linear layers.

Training. We employ 16K captioned videos from OpenVidHQ-0.4M (Nan et al., 2025) as the
training dataset. The AdamW (Loshchilov & Hutter, 2019) optimizer is utilized with a weight decay
of 10−4. We employ a cosine annealing schedule to adjust the learning rate over training. During
QAT, we train Wan 14B (WanTeam et al., 2025) and CogVideoX1.5-5B (Yang et al., 2025) for 16
epochs on 32×H100 GPUs and 16×H100 GPUs, respectively. For the other DMs, we employ 8
training epochs on 8×H100 GPUs. Additionally, we allocate the same training iterations for each
decay phase (i.e., shrinking the remaining r to (1− λ)r). The same settings are applied to all QAT
baselines.

Evaluation. We select 8 dimensions in VBench (Huang et al., 2024c) with unaugmented prompts
to comprehensively evaluate the performance following previous studies (Zhao et al., 2025a; Ren
et al., 2024). Moreover, for huge (≥ 5B parameters) DMs, we additionally report the results on
VBench-2.0 (Zheng et al., 2025a) with augmented prompts to measure the adherence of videos to
physical laws, reasoning, etc. More detailed experimental setups can be found in Sec. D.

6



Published as a conference paper at ICLR 2026

Table 1: Performance comparison across different quantization methods on VBench (Huang et al., 2024c). “†”
indicates PTQ methods and “*” signifies QAT methods. “Full Prec.” denotes the BF16 model. “♣” represents
that we apply fine-grained per-group weight-activation quantization with a group size of 64 and keep some
linear layers unquantized, which is the same as the official settings of SVDQuant (Li et al., 2025) (details can be
found in Sec. D). “Full Fine-tuning” denotes we fine-tune the model with the same data as QVGen. Best and
second-best results are highlighted in bold and underline formats, respectively.

Method #Bits
(W/A)

Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

CogVideoX-2B (CFG = 6.0, 480p,fps = 8)

Full Prec. 16/16 59.15 54.49 97.43 67.78 94.79 92.82 36.24 25.06
Full Fine-tuning 16/16 61.34 56.53 98.59 65.39 93.84 93.43 34.99 25.50

ViDiT-Q (Zhao et al., 2025a)† 4/6 54.72 43.01 92.18 43.22 90.76 81.02 26.25 20.41
SVDQuant (Li et al., 2025)† 4/6 58.27 47.06 95.28 40.83 92.41 87.45 27.69 21.34

SVDQuant (Li et al., 2025)†♣ 4/4 51.60 49.40 97.69 42.22 94.03 91.78 25.67 22.89
LSQ (Esser et al., 2020a)∗ 4/4 58.73 54.20 97.57 45.00 92.97 92.41 24.06 23.17
Q-DM (Li et al., 2023b)∗ 4/4 54.96 52.71 98.00 48.61 93.82 91.86 28.02 23.87
EfficientDM (He et al., 2024)∗ 4/4 55.96 51.97 98.03 46.67 94.10 91.70 27.76 24.28
QVGen (Ours)∗ 4/4 60.16 54.61 98.06 67.22 94.38 93.01 31.42 24.61

LSQ (Esser et al., 2020a)∗ 3/3 56.46 40.35 97.98 0.56 94.08 89.18 4.80 13.80
Q-DM (Li et al., 2023b)∗ 3/3 50.88 40.41 98.03 5.56 93.93 87.75 7.33 15.98
EfficientDM (He et al., 2024)∗ 3/3 52.86 44.58 97.13 28.61 93.15 88.26 15.42 20.42
QVGen (Ours)∗ 3/3 58.36 50.54 98.37 53.89 94.55 90.50 23.85 22.92

Wan 1.3B (CFG = 5.0, 480p,fps = 16)

Full Prec. 16/16 64.30 58.21 97.37 70.28 95.94 93.84 28.05 24.67
Full Fine-tuning 16/16 64.59 58.85 97.46 83.61 94.30 93.68 27.55 24.86

ViDiT-Q (Zhao et al., 2025a)† 4/6 56.24 50.18 94.81 52.43 89.67 82.53 13.45 19.58
SVDQuant (Li et al., 2025)† 4/6 58.16 51.27 97.05 49.44 93.74 91.71 14.18 23.26

SVDQuant (Li et al., 2025)†♣ 4/4 57.57 46.30 94.21 72.22 93.16 77.96 12.73 21.91
LSQ (Esser et al., 2020a)∗ 4/4 59.11 49.09 98.35 71.11 92.66 91.67 10.38 18.83
Q-DM (Li et al., 2023b)∗ 4/4 60.40 52.50 97.22 76.67 93.37 89.26 13.28 21.63
EfficientDM (He et al., 2024)∗ 4/4 60.70 53.57 96.18 56.39 93.74 91.70 11.77 21.19
QVGen (Ours)∗ 4/4 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01

LSQ (Esser et al., 2020a)∗ 3/3 58.80 46.86 98.22 23.61 91.86 89.42 0.89 15.51
Q-DM (Li et al., 2023b)∗ 3/3 56.19 44.95 95.13 76.94 92.09 83.82 1.79 16.89
EfficientDM (He et al., 2024)∗ 3/3 42.32 33.52 96.50 70.28 92.10 74.79 0.04 11.38
QVGen (Ours)∗ 3/3 67.35 49.71 98.93 84.14 93.62 92.25 5.71 20.11

4.2 PERFORMANCE ANALYSIS

Comparison with baselines. We report VBench score comparisons in Tab. 1. In W4A4 quantization,
recent QAT methods (Esser et al., 2020b; He et al., 2024; Li et al., 2023b) show non-negligible
performance degradation. With W3A3, performance drops become more pronounced. In contrast,
the proposed QVGen achieves substantial performance recovery in 3-bit models and comparable
results to full-precision models in 4-bit quantization. Specifically, it shows higher scores or less than
a 2% decrease in all metrics for W4A4 CogVideoX-2B (Yang et al., 2025), except Scene Consistency.
For PTQ baselines (Zhao et al., 2025a; Li et al., 2025), all fail to generate meaningful content in
W4A4 per-channel and per-token settings. Therefore, we apply W4A6 quantization for these methods
and also utilize fine-grained per-group W4A4 quantization for SVDQuant (Li et al., 2025). In these
cases, W4A4 QVGen outperforms them by a large margin, particularly with 8.37 and 14.61 higher
Aesthetic Quality and Subject Consistency for Wan 1.3B compared to W4A4 SVDQuant. In addition
to these findings, we observe that for Wan 1.3B, Dynamic Degree recovers easily during QAT, even
surpassing that of the BF16 model. However, for CogVideoX-2B, this metric significantly drops.
Moreover, Scene Consistency is the most challenging metric to maintain across models and methods.
Detailed training loss curves across QAT methods and a trial of combining SVDQuant (Li et al.,
2025) and QVGen can be found in Sec. G and Sec. I, respectively.

Beyond the quantitative results, we provide qualitative results in Fig. 1 and Sec. P, where QVGen
markedly improves visual quality over prior methods. Although a clear gap remains between 3-bit
and 4-bit outputs, our approach shifts the Pareto frontier toward higher accuracy at a smaller model
size than existing techniques (e.g., 3-bit QVGen for CogVideoX achieves a superior Aesthetic Quality
than previous 4-bit methods in Tab. 1). We view this initial exploration as setting a direction and
providing valuable insight for future work on 2-bit quantization.

Besides, we provide more comparisons with additional metrics in Sec. J and comparisons under
relatively higher bit-width in Sec. E. We also apply our approach to image generation in Sec. M.

Results for huge DMs. To demonstrate the scalability of our method, we further test two huge
video DMs, including CogVideoX1.5-5B and Wan 14B, at 720p resolution. As illustrated in Tab. 2,
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Table 2: Performance for huge video DMs on VBench. Comparison with baselines can be found in Sec. K.

Method #Bits
(W/A)

Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

CogVideoX1.5-5B (CFG = 6.0, 720p,fps = 16)

Full Prec. 16/16 66.25 59.49 98.42 59.72 96.57 95.28 39.14 26.18

QVGen (Ours) 4/4 66.76 59.52 98.38 64.44 95.83 94.88 28.47 24.45

QVGen (Ours) 3/3 54.44 35.85 97.23 58.89 96.48 90.17 13.27 17.15

Wan 14B (CFG = 5.0, 720p,fps = 16)

Full Prec. 16/16 67.89 61.54 97.32 70.56 96.31 94.08 33.91 26.17

QVGen (Ours) 4/4 66.87 59.41 97.71 76.11 96.50 94.45 19.84 25.70

QVGen (Ours) 3/3 48.70 29.73 99.05 93.33 97.34 94.71 2.81 13.97

our 3-bit and 4-bit models follow the same pattern seen in smaller models (Tab. 1). However, 3-bit
quantization incurs much larger drops on demanding metrics such as Scene and Overall Consistency,

(a) CogVideoX1.5-5B (Yang et al., 2025)
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(b) Wan 14B (WanTeam et al., 2025)
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Figure 5: Performance for huge video DMs on VBench-2.0 (Zheng et al.,
2025a). Our 4-bit models exhibit a minimal drop of ∼1% in total score.

underscoring the challenge of
pushing these larger models
to 3 bits. In Fig. 5, we fur-
ther assess the models with
VBench-2.0; the W4A4 DMs
incur only negligible overall
performance loss.

4.3 ABLATION STUDIES

To demonstrate the effect
of each design, we em-
ploy W4A4 Wan 1.3B with
VBench (Huang et al., 2024c)
for ablation studies. More ab-
lations can be found in Sec. L.

Table 3: Ablation results of each component. “Naive”
denotes naive QAT in a KD-based manner. “Rank”
signifies our rank-decay schedule.

Method Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

Naive 60.40 52.50 76.67 13.28 21.63
+Φ 63.41 54.75 77.89 15.51 22.98
+Rank 63.08 54.67 77.78 15.32 23.01

Effect of different components. We evaluate the
contribution of each component in Tab. 3. The
auxiliary module Φ (Sec. 3.1) yields substantial
performance improvements across all metrics. Fur-
ther, the rank-decay schedule (Sec. 3.2) effectively
eliminates extra inference overhead, while induc-
ing less than a 0.6% drop in most metrics. It even
leads to improvement in Overall Consistency.

Choice of the shrinking ratio λ. To determine a proper shrinking ratio λ in Eq. (13), we conduct
experiments in Tab. 4. By maintaining the same training iterations for each decay phase 5, a small
ratio results in an excessively rapid descent of u in Eq. (13) from 1 to 0, potentially destabilizing
the training process. On the other hand, a larger ratio may cause the premature removal of high-
contributing components during each phase. An extreme scenario would involve a ratio 100% (i.e.,
λ = 1), in which all WΦ is removed in a single decay phase, leading to huge performance drops.

Table 4: Results of different shrinking ratios λ in
Eq. (13) for each decay phase. λ = 1 means directly
decaying the entire WΦ. λ = 1

2
is used in this work.

λ
Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

1/4 63.02 54.23 76.84 15.18 22.85
1/2 63.08 54.67 77.78 15.32 23.01
3/4 62.89 54.62 77.91 15.04 22.89
1 61.05 52.48 76.48 13.82 21.81

Table 5: Results of different initial ranks r for Eq. (14).
r = 0 represents “Naive” in Tab. 3. We employ r = 32
in this work.

r
Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

0 60.40 52.50 76.67 13.28 21.63
8 62.71 54.47 74.62 14.42 22.81

16 62.99 54.62 76.58 14.84 23.00
32 63.08 54.67 77.78 15.32 23.01
64 63.06 54.30 76.74 15.40 22.92

Choice of the initial rank r. We further present the results for different initial ranks r of WΦ in
Tab. 5. As r increases, the performance gains diminish and eventually deteriorate (i.e., at r = 64).
We attribute this trend to the same issue associated with a small shrinking ratio discussed earlier.
Specifically, increasing r to 2r introduces an additional decay phase, which shortens the training time
allocated to each phase and may lead to overly rapid decay (e.g., at r = 64).

5We also employ a fixed total number of training epochs.
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Analysis of different fine-grained decay strategies. To further demonstrate the effectiveness of our
rank-decay strategy, we evaluate alternative decay strategies in Tab. 6. “Linear” in the table denotes
linearly reducing the magnitude of the entire full-rank WΦ to 0 by set λ = 1 with a linear schedule
as u for Eq. (13). Inspired by network pruning (Han et al., 2015; 2016), we introduce a “Sparse”
strategy that progressively prunes the largest values in WΦ during training. Additionally, motivated
by residual quantization (Li et al., 2017), we design a “Res. Q.” strategy, which first quantizes WΦ

into 4×4-bit tensors with the same shape and then progressively removes them one by one. Among
all these methods, the “Rank” strategy outperforms others across all the metrics by a large margin.
Additionally, both “Sparse” and “Res. Q.” strategies require at least 1.8× training hours at the same
setups compared with our “Rank” approach.

Table 6: Results of different decay strategies. Details of these
methods can be found in Sec. F. “Rank” denotes the rank-decay
strategy in this work.

Decay
Strategy

Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

Linear 60.82 52.81 73.19 13.34 21.87
Sparse 61.15 54.06 74.24 13.86 22.52
Sparse w/ Wanda 61.43 54.08 74.36 13.94 22.48
Sparse w/ MaskLLM 61.36 54.12 74.82 14.15 22.57
Res. Q. 61.72 54.01 72.41 14.17 22.31
Rank 63.08 54.67 77.78 15.32 23.01

In addition, we introduce two stronger
baselines: “Sparse w/ Wanda” and
“Sparse w/ MaskLLM”. Rather than
pruning the smallest magnitudes as
in “Sparse”, the former employs
Wanda (Sun et al., 2024) to prune
WΦ using 128 randomly selected train-
ing samples in each decay phase
(see “Sparse” in Sec. F). Following
MaskLLM (Fang et al., 2024a), the lat-
ter applies learned 2:4 structured prun-
ing masks to WΦ in each phase. All other settings match those of “Sparse”. “Sparse w/ Wanda”
yields a small improvement over “Sparse”, while “Sparse w/ MaskLLM” provides a larger gain;
however, both remain below “Rank” on all metrics. It is also worth noting that “Sparse w/ Wanda”
requires 1.8× the training time of “Rank”, similar to “Sparse”, and “Sparse w/ MaskLLM” requires
2.1× due to mask learning.

4.4 EFFICIENCY DISCUSSION

Inference efficiency. We report the per-step latency of W4A4 DiT components on one A800
GPU in Fig. 6 (b). Adapted from the CUDA kernel implementation by Ashkboos et al.
(2024), W4A4 QVGen achieves 1.21× and 1.44× speedups for Wan 1.3B and 14B, respectively.

(a) Model Size (GB)↓

3.94× 3.99×

(b) Inference Latency (s)↓
1.21× 1.44×

(c) Inference Latency (s)↓
1.31×

1.70× 1.68×
2.63×

Figure 6: Evaluation of memory compression and inference acceleration.
Blue color and yellow color denote Wan 1.3B and 14B, respectively.

Besides, it exhibits ∼4× mem-
ory savings compared to the
BF16 format, as shown in
Fig. 6 (a). Nevertheless, we be-
lieve that the acceleration ratio
could be further improved with
advanced kernel-fusion tech-
niques and optimization for
specific tensor shapes in these models, which we leave to future work (More discussion can be
found in Secs. N-O). In addition, it is worth noting that our QVGen adheres to standard uniform
quantization, enabling drop-in deployment with existing W4A4 kernels across various devices.

Although previous research (Zhang et al., 2025b) mentioned that the current 3D full-attention
occupies significant computation in video generation, our QVGen is orthogonal to works that focus
on accelerating 3D attention and can deliver notable speedups to models that already employ those
techniques. For example, when SVG (Xi et al., 2025) is paired with W4A4 QVGen, the model runs
1.70× and 2.63× faster, compared with 1.31× and 1.68× for SVG alone, as shown in Fig. 6 (c).

Table 7: Training costs across different methods and models.

Model Train. Time (GPU days)↓ Train. Mem. (GB/GPU)↓
LSQ Q-DM EfficientDM QVGen LSQ Q-DM EfficientDM QVGen

CogVideoX-2B 8.64 9.30 8.97 9.44 62.78 67.26 44.27 67.93
Wan 1.3B 9.92 10.92 10.68 11.11 63.04 66.15 42.74 66.67

Training efficiency. Moreover,
we conduct a comparative train-
ing efficiency analysis across dif-
ferent models and QAT base-
lines, as demonstrated in Tab. 7.
LSQ (Esser et al., 2020b) does not
use distillation-based QAT (i.e., no teacher forward pass) and is therefore the fastest to train. Effi-
cientDM (He et al., 2024) updates only LoRA parameters, which substantially reduces optimizer-state
memory on GPUs. We believe such a strategy in EfficientDM can be combined with our method to
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further improve training efficiency, and we plan to explore this in future work. Relative to distillation-
based QAT (i.e., Q-DM (Li et al., 2023b)), our method with low-rank Φ adds only∼1.02× GPU-days
and ∼1.01× peak GPU memory for Wan 1.3B model. To be noted, all baselines greatly fall short
of our method in final performance, as illustrated in Sec. 4.2. In future work, we will delve into
improving QVGen’s training efficiency while maintaining its strong performance.

5 RELATED WORK

Video diffusion models. Building upon the remarkable success of diffusion models (DMs) (Ho
et al., 2020a; Song et al., 2021a; Chen et al., 2024a) in image generation (Labs, 2024; Xie et al.,
2025), the exploration in the field of video generation (Yang et al., 2025; WanTeam et al., 2025; Kong
et al., 2025) is also becoming popular. In contrast to convolution-based diffusion models (Ho et al.,
2022; Blattmann et al., 2023), the success of OpenAI Sora (OpenAI, 2024) has spurred researchers
to adopt the diffusion transformer (DiT) (Peebles & Xie, 2023) architecture and scale it up for
high-quality video generation. However, advanced video DiTs (WanTeam et al., 2025; Yang et al.,
2025; Kong et al., 2025) often involve billions of parameters, lengthy multi-step denoising, and
intensive computation over long frame sequences. This results in substantial time and memory
overhead, which limits their practical deployment. To enable faster video generation, some works
have introduced step-distillation (Yin et al., 2025; Lin et al., 2025) on pre-trained models to shorten
the denoising trajectory. Others focus on efficient attention (Zhang et al., 2025a; Xi et al., 2025;
Huang et al., 2025a), feature caching (Lv et al., 2025; Zou et al., 2025; Huang et al., 2024b), or
parallel inference (Fang et al., 2024c;b) to accelerate per-step computations. Moreover, to achieve
memory-efficient inference, existing research has explored efficient architecture design (Wu et al.,
2024b; Liu et al., 2025), structure pruning (Ben Yahia et al., 2024; Zhao et al., 2025b), and model
quantization (Zhao et al., 2025a; Chen et al., 2024b; Tian et al., 2024). These methods aim to achieve
both model size and computational cost reduction.

Model quantization. Quantization (Jacob et al., 2017) is a predominant technique for minimizing
storage and accelerating inference. It can be categorized into post-training quantization (PTQ) (Nagel
et al., 2020) and quantization-aware training (QAT) (van Baalen et al., 2020). PTQ compresses models
without re-training, making it fast and data-efficient. Nevertheless, it may result in suboptimal per-
formance, especially under ultra-low bit-width (e.g., 3/4-bit). Conversely, QAT applies quantization
during training or finetuning and typically achieves higher compression rates with less performance
degradation. For DMs, previous quantization research (Li et al., 2023a; He et al., 2023; Huang et al.,
2024a; 2025b; So et al., 2023; Wu et al., 2024a; Shang et al., 2023; Wang et al., 2024) primarily
focuses on image generation. Video DMs, which incorporate complex temporal and spatial modeling,
are still challenging for low-bit quantization. QVD (Tian et al., 2024) and Q-DiT (Chen et al., 2024b)
first apply PTQ to convolution-based (Xu et al., 2023b; Guo et al., 2024) and DiT-based (Zheng et al.,
2024) video DMs, respectively. Furthermore, ViDiT-Q (Zhao et al., 2025a) employs mixed-precision
and fine-grained PTQ to improve performance. However, it experiences video quality loss with
8-bit activation quantization and has not been extended to more advanced models (Yang et al., 2025;
WanTeam et al., 2025). Consequently, QAT for advanced video DMs is urgently needed.

In this work, we identify and address the ineffective low-bit QAT for the video DM. Our proposed
method significantly enhances model performance and incurs zero inference overhead in 3/4-bit
settings. Moreover, our framework is orthogonal to existing QAT methods, which target gradient
estimation (Gong et al., 2019), oscillation reduction (Nagel et al., 2022), etc.

6 CONCLUSIONS AND LIMITATIONS

In this work, we are the first to explore the application of quantization-aware training (QAT) in
video DMs. Specifically, we provide a theoretical analysis that identifies that lowering the gradient
norm is essential to improve convergence. Then, we propose an auxiliary module (Φ) to achieve
this. Additionally, we design a rank-decay schedule to progressively eliminate Φ for zero inference
overhead with minimal impact on performance. Extensive experiments for 3-bit and 4-bit quantization
validate the effectiveness of our framework, QVGen. In terms of limitations, we focus on video
generation in this work. However, we believe that our methods can be generalized to more tasks, e.g.,
natural language processing (NLP), which we will explore in the future.

10



Published as a conference paper at ICLR 2026

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (Nos. 62476018), and
the Postdoctoral Fellowship Program of CPSF (No. BX20250487). This work was also supported by
the Hong Kong Research Grants Council under the Areas of Excellence scheme grant AoE/E-601/22-
R and NSFC/RGC Collaborative Research Scheme grant CRS HKUST603/22.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms, 2024. URL https://arxiv.org/abs/2404.00456. 9

Haitam Ben Yahia, Denis Korzhenkhov, Ioannis Lelekas, Amir Ghodrati, and Amirhossein Habibian.
Mobile video diffusion. arXiv, 2024. URL https://arxiv.org/abs/2412.07583. 10
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A ALOGRITHM OF QVGEN

We summarize our proposed QVGen in Alg. 1. u (see Eq. (13)) in this work follows cosine annealing
schedule. x0 and C denote a clean video clip and its corresponding condition. N is the maximum
timestep for training, which is always set to 1000 (Ho et al., 2020b).
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Algorithm 1 Procedure of QVGen framework
FUNC QVGEN(D, ϵθ , it per decay phase, r, λ, b)
Require: D — training dataset

ϵθ(·) — full-precision DiT model
it per decay phase — amount of training iterations per decay phase
r — initial rank of the introduced auxiliary module
λ — shrinking ratio
b — quantization bit-width

// Preprocess
1: Standard uniform b-bit quantization for ϵθ to get ϵ̂θ ▷ See Eq. (4)
2: Generate all WΦ for ϵ̂θ ▷ See Eq. (9)

// Start QAT
3: while r > 1

λ
do:

4: Decompose all WΦ to {L,R} with rank r by Eq. (11)
5: Generate γ by Eq. (13) ▷ u in γ will decay from 1 to 0 in following it per decay phase iterations
6: for it in 0 to it per decay phase do:
7: Get batched data pair (x0, C) from D
8: ϵ ∼ N (0, I)
9: τ ∼ Uniform([1, ..., N ])

10: Generate xτ by Eq. (1)
11: Calculate L by Eq. (6) ▷ Eq. (12) is employed in ϵ̂θ
12: Update all W, s, z, and {L,R} through back-propagation ▷ Eq. (5) is applied
13: end for
14: Truncate {L,R} to {L′,R′} and regenerate the corresponding WΦ by Eq. (14)
15: r = (1− λ)r
16: end while
17: Generate γ = [u]n×r ▷ u in γ will decay from 1 to 0 in following it per decay phase iterations
18: Train ϵ̂θ for it per decay phase iterations follow the recipe in Lines 6-13
19: Shrink all WΦ to ∅ ▷ Since γ = [0]n×r at the end of training, all WΦ can be removed
20: return ϵ̂θ

B PROOF OF THM. 3.1

Assumption B.1. ft is convex;
Assumption B.2. ∀θi,θj ∈ Sd, ∥θi − θj∥∞ ≤ D∞.

Theorem B.3. The average regret is upper-bounded as: R(T )
T ≤ dD2

∞
2Tηm

T
+ 1

T

∑T
t=1

ηM
t

2 ∥gt∥
2
2.

Proof. Considering the update for the p-th entry of parameters in a quantized video DM:

θt+1,p = θt,p − ηt,pgt,p, (A)

where ηt,p is the corresponding learning rate, we have:

(θt+1,p − θ∗
p)

2 = (θt,p − ηt,p gt,p − θ∗
p)

2

= (θt,p − θ∗
p)

2 − 2(θt,p − θ∗
p)ηt,pgt,p + η2t,pg

2
t,p.

(B)

Rearrange the equation, and divide 2ηt,p on both side as ηt,p is none-zero,

gt,p(θt,p − θ∗
p) =

1
2ηt,p

[(θt,p − θ∗
p)

2 − (θt+1,p − θ∗
p)

2] +
ηt,p

2 g2
t,p. (C)

According to Assm. B.1,
ft(θt)− ft(θ

∗) ≤ gT
t (θt − θ∗). (D)

Therefore, summing over d dimensions of θ and T iterations, the regret satisfies:

R(T ) ≤
∑T

t=1

∑d
p=1

1
2ηt,p

[(θt,p − θ∗
p)

2 − (θt+1,p − θ∗
p)

2] +
∑T

t=1

∑d
p=1

ηt,p

2 g2
t,p

=
∑d

p=1[
1

2η1,p
(θ1,p − θ∗

p)
2 − 1

2ηT,p
(θT+1,p − θ∗

p)
2]

+
∑T

t=2

∑d
p=1(

1
2ηt,p

− 1
2ηt−1,p

)(θt,p − θ∗
p)

2

+
∑T

t=1

∑d
p=1

ηt,p

2 g2
t,p.

(E)
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Considering Assm. B.2, we can further relax the above inequality to:

R(T ) ≤
∑d

p=1
D2

∞
2η1,p

+
∑T

t=2

∑d
p=1(

1
2ηt,p

− 1
2ηt−1,p

)D2
∞ +

∑T
t=1

∑d
p=1

ηt,p

2 g2
t,p. (F)

Denoting the maximum and minimum values for {ηt,p}p=1,...,d as ηMt and ηmt , respectively, then:

R(T ) ≤ dD2
∞

2ηm
T

+
∑T

t=1
ηM
t

2 ∥gt∥
2
2. (G)

Thus, the average regret becomes:

R(T )
T ≤ dD2

∞
2Tηm

T
+ 1

T

∑T
t=1

ηM
t

2 ∥gt∥
2
2. (H)

C CONVERGENCE ANALYSIS WITHOUT REQUIRING CONVEXITY

For completeness, we also provide a nonconvex convergence result for video DMs under standard
smoothness assumptions. Here we consider a (possibly nonconvex) training objective F : Sd → R
and the gradient descent updates

θt+1 = θt − ηtgt, gt := ∇F (θt), (I)

where t indexes the optimization iterations. Regret analysis in Sec. B follows the standard online
learning setting, where the per-step loss ft varies with t. In contrast, nonconvex convergence
analysis (Bottou et al., 2018; Ghadimi & Lan, 2013) uses a fixed deep-learning objective F across
iterations, so no subscript is needed, and convergence is certified by a vanishing minimum gradient
norm.
Assumption C.1 (Smoothness). The function F is L-smooth, i.e., for all θ,θ′ ∈ Sd,

∥∇F (θ)−∇F (θ′)∥2 ≤ L∥θ − θ′∥2. (J)

Equivalently, F satisfies the standard descent inequality:

F (θ′) ≤ F (θ) +∇F (θ)⊤(θ′ − θ) + L
2 ∥θ

′ − θ∥22. (K)

Assumption C.2 (Learning rate bounds). The learning rates satisfy

0 < ηm ≤ ηt ≤ ηM ≤ 1
L for all t, (L)

where ηm and ηM are the minimum and maximum learning rates6 across iterations, respectively.
Assumption C.3 (Lower-bounded objective). There exists F ⋆ such that F (θ) ≥ F ⋆ for all θ ∈ Sd.
Theorem C.4 (Convergence to a first-order stationary point). Under Assms. C.1–C.3, the iterates of
Eq. (I) satisfy

1
T

∑T
t=1 ∥gt∥22 ≤

2
(
F (θ1)−F⋆

)
T ηm . (M)

Consequently,
min1≤t≤T ∥gt∥22 ≤ 1

T

∑T
t=1 ∥gt∥22

T→∞−−−−→ 0. (N)

Thus, the iterates converge in the standard nonconvex sense to first-order stationary points, in the
sense that there exists an iterate with arbitrarily small gradient norm when T is sufficiently large.

Proof. By L-smoothness (the descent inequality) and the update θt+1 = θt − ηtgt,

F (θt+1) ≤ F (θt) +∇F (θt)
⊤(θt+1 − θt) +

L
2 ∥θt+1 − θt∥22

= F (θt)− ηt∥gt∥22 + L
2 η

2
t ∥gt∥22 = F (θt)− ηt

(
1− Lηt

2

)
∥gt∥22.

(O)

Since ηt ≤ 1/L, we obtain 1− Lηt/2 ≥ 1/2, hence

F (θt+1) ≤ F (θt)− ηt

2 ∥gt∥
2
2. (P)

6We employ the same learning rate for the entire quantized DM for simplicity.
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Summing over t ∈ {1, . . . , T} and using F (θT+1) ≥ F ⋆ yields∑T
t=1

ηt

2 ∥gt∥
2
2 ≤ F (θ1)− F ⋆. (Q)

With ηt ≥ ηm, we obtain
1
T

∑T
t=1 ∥gt∥22 ≤

2
(
F (θ1)−F⋆

)
T ηm , (R)

which proves Eq. (M). Moreover, we have

min1≤t≤T ∥gt∥22 ≤ 1
T

∑T
t=1 ∥gt∥22 ≤

2
(
F (θ1)−F⋆

)
T ηm

T→∞−−−−→ 0. (S)

Remark C.5 (Connection to our convex analysis). Thm. C.4 shows that, for any finite T , the conver-
gence behavior (i.e., Eq. (N)) of QAT is determined by the average gradient norm 1

T

∑T
t=1 ∥gt∥22.

Since this quantity admits an O(1/T ) upper bound under smoothness and bounded learning rates,
reducing ∥gt∥2 during training directly tightens the bound and improves the finite-step convergence
of QAT. This matches our convex regret analysis, where the same average gradient norm appears as
the core term controlling convergence. Thus, reducing the gradient norm is essential for improving
QAT optimization in both settings.

D MORE EXPERIMENTAL DETAILS

In this section, we provide additional experimental setups.

Models. For testing, we employ DDIM (Song et al., 2021a) and DPM-Solver++ (Lu et al., 2023)
for CogVideoX-2B and 1.5-5B models (Yang et al., 2025), respectively. For flow-based Wan
models (WanTeam et al., 2025), we additionally apply UniPC (Zhao et al., 2023a) corrector and set
flow shift (Lipman et al., 2023) to 3.0 and 5.0 for generating 480p and 720p videos, respectively.

Baselines. For QAT baselines, we employ the same settings as our QVGen, e.g., training iterations,
batch size, and optimizer, to make a fair comparison. For PTQ baselines, we adopt bit-width
in {2, . . . , 8} for the mixed-precision strategy proposed in ViDiT-Q (Zhao et al., 2025a). For
W4A4 group-wise SVDQuant (Li et al., 2025), we retain 16-bit precision for linear layers involved
in adaptive normalization, embedding layers, and the key and value projections in
cross-attention. For both W4A4 and W4A6 SVDQuant, we apply SmoothQuant (Xiao et al.,
2024) as a pre-processing step, and GPTQ (Frantar et al., 2023) as a post-processing step. Except
as noted above, we only quantize all linear layers for a given video DM. For the attention module,
we adopt full-precision flash-attention (Dao et al., 2022) to speed up inference, which is
a common practice. It is also worth noting that, since we only quantize linear layers and employ
flash-attention for the attention modules, the “Naive” baseline (see Tab. K) is equivalent to
Q-DM (Li et al., 2023b) in this paper.

Training. Before QAT, we resize and center-crop the input frames to match the evaluation resolution,
except for Wan 14B, which uses 480p during QAT to reduce training costs. We then sample video
clips containing 49 frames at equal-frame intervals. During QAT, Wan 14B (WanTeam et al.,
2025) and CogVideoX1.5-5B (Yang et al., 2025) are trained using PyTorch FSDP (Zhao et al.,
2023b), while other diffusion models are trained with DeepSpeed ZeRO-2 (Rajbhandari et al.,
2020). Specifically, we adopt a warm-up phase spanning 1

10 of the total training epochs, and set the
global batch size to 48 for Wan 1.3B and 64 for all other models. A cosine annealing schedule is
applied to the learning rate 7, initialized at 3× 10−5 for moderate-sized models (≤2B), 5× 10−5 for
CogVideoX1.5-5B, and 10−5 for Wan 14B. For weight quantization parameters, we adopt LSQ (Esser
et al., 2020b) with an initial learning rate of 3 × 10−5. As described in the preliminary section of
the main text, we use the straight-through estimator (STE) (Bengio et al., 2013) to ensure the
differentiability of the quantization process. To be noted, when the remaining rank r < 1

λ , we directly
apply a cosine annealing function (i.e., γ = [u]n×r) to gradually shrink the remaining WΦ to ∅.
Moreover, the training days are summarized in Tab. A.

Evaluation. For VBench (Huang et al., 2024c), we test 1∼2B models on 8×H100 GPUs. For huge
DMs, we evaluate CogVideoX1.5-5B on 64×H100 GPUs and Wan 14B on 128×H100 GPUs for

7This mentioned learning rate is applied to both model weights and the introduced Φ.
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Table A: #GPU days (H100) across different models. We present the increased time of QVGen compared
with the naive QAT in a KD-based manner in red subscripts. QVGen, which uses r = 32 in this paper, incurs
negligible time overhead but significantly higher performance (see Tab. K) than the naive method.

Method/Model CogVideoX-2B Wan 1.3B CogVideoX1.5-5B Wan 14B

QVGen (Ours) 9.44+0.14 11.11+0.18 ∼51 ∼182

both VBench and VBench-2.0 (Zheng et al., 2025a). The batch size is set to one per GPU, and
each run completes within one day. Besides, we sample 5 videos for each unaugmented text prompt
across the 8 dimensions in VBench. For VBench-2.0 (Zheng et al., 2025a), we generate 3 videos per
augmented text prompt across all dimensions, except for the Diversity dimension, where we generate
20 videos for each prompt.

E COMPARISON WITH BASELINES UNDER RELATIVELY HIGHER BIT-WIDTH

Table B: Performance comparison across different methods on
VBench under W6A6 quantization for Wan 1.3B.

Method Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

Full Prec. 64.30 58.21 70.28 28.05 24.67

SVDQuant (Li et al., 2025) 62.05 54.37 71.08 23.25 24.56
LSQ (Esser et al., 2020b) 63.20 57.83 76.33 24.86 24.07
Q-DM (Li et al., 2023b) 62.89 56.24 74.64 25.38 25.12
EfficientDM (He et al., 2024) 63.38 56.42 68.68 21.47 23.57
QVGen (Ours) 64.27 57.69 78.02 26.84 25.53

Besides 3/4-bit settings, we also con-
duct experiments under W6A6. As
shown in Tab. B, our QVGen achieves
full-precision comparable or even bet-
ter performance than BF16 models.
Since these settings are not challeng-
ing enough for QAT baselines, which
also demonstrate satisfactory perfor-
mance, our QVGen only shows mod-
erate improvements.

F ADDITIONAL FINE-GRAINED DECAY STRATEGIES

In this section, we detail the “Sparse” and “Res. Q.” decay strategies (see Tab. N), which shrink Φ to
∅, as follows:

• “Sparse” strategy. Inspired by pruning techniques (Han et al., 2015; 2016), at the start of QAT, we
sparsify WΦ with a sparse ratio of a% = 50%. Specifically, we set the a% smallest-magnitude
values in WΦ to zero and freeze them in the whole training process. The quantized model is
then trained with the remaining non-zero values in WΦ. We divide the training process into 6
equal-length phases. In each subsequent phase, we set an additional a

2% of the remaining non-zero
values in WΦ to zero and update a← a

2 . The resulting cumulative sparse ratios across the 6 phases
are as follows: 50%(1-st phase) → 75%(2-nd phase) → . . .→ 96.875%(5-th phase) → 100%(6-th phase).

• “Res. Q” strategy. Motivated by residual quantization (Li et al., 2017), we first decompose WΦ

into a series of 4-bit quantized residuals. At the beginning of QAT, we quantize WΦ to its 4-
bit approximation Q4(WΦ), and then recursively quantize the quantization-induced residuals.
Specifically, we define E1 = WΦ −Q4(WΦ) and quantize it to Q4(E1); the remaining residual
E2 = E1 − Q4(E1) is quantized to Q4(E2); and finally, E3 = E2 − Q4(E2) is quantized to
Q4(E3). This yields a 4-term additive decomposition of WΦ:

WΦ = Q4(WΦ) +Q4(E1) +Q4(E2) +Q4(E3). (T)

These 4×4-bit quantized tensors8 are jointly trained with the rest of the quantized model. During
QAT, we divide the training process into 4 equal-length phases, and apply cosine annealing within
each phase to progressively decay these components in the following order: Q4(E3)(1-st phase) →
Q4(E2)(2-nd phase) → Q4(E1)(3-rd phase) → Q4(WΦ)(4-th phase).

Compared with our rank-decay strategy (with r = 32), both alternative methods require storing
multiple tensors9, each with the same shape as the corresponding linear layer’s weight matrix.
In particular, the “Res. Q.” strategy incurs substantial memory overhead and necessitates CPU

8The use of these 4×4-bit tensors is designed to align with the original BF16 format, as 4×4-bit data could
theoretically match a 16-bit representation.

9The “Sparse” strategy additionally requires storing binary masks to enforce sparsity.
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offloading to avoid out-of-memory (OOM) issues. Furthermore, the “Sparse” strategy introduces
extra computational cost due to the matrix multiplication between the mask and WΦ. In practice,
the “Sparse” and “Res. Q.” strategies consume 20.12 and 28.78 GPU days, respectively, whereas our
proposed rank-decay requires only 11.11 GPU days (see Tab. A). More importantly, rank-decay also
achieves significantly better performance than both alternatives, as demonstrated in Tab. N.

G TRAINING LOSS CURVES

In this section, we present training loss curves across different methods and models. As shown
in Fig. A, QVGen and our method in Sec. 3.1 achieve faster and more stable convergence, which
supports the effectiveness of the proposed approaches. Note that LSQ (Esser et al., 2020b) uses
Ex0,C,τ [∥ϵ − ϵθ(xτ , C, τ)∥2F ] with xτ = ατx0 + στϵ as its training objective, instead of Eq. (6)
used by the remaining distillation-based methods.

(a) CogVideoX-2B (Yang et al., 2025)
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(b) Wan 1.3B (WanTeam et al., 2025)
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Figure A: Training loss vs. #steps across different video DMs and 4-bit QAT methods. “Φ” denotes our approach
in Sec. 3.1

H FURTHER ANALYSES OF GRADIENT NORM IN VIDEO GENERATION QAT

H.1 VIDEO GENERATION QAT vs. IMAGE GENERATION QAT

First, we conduct experiments to compare the gradient norm between image generation QAT and
video generation QAT. In Tab. C, we employ W4A4 Q-DM (Li et al., 2023b) to quantize the diffusion
models under the same settings. We observe that reducing the gradient norm during QAT, ignored by
previous research (Li et al., 2023b; He et al., 2024; Esser et al., 2020b), is far more critical for video
generation QAT than for image generation QAT. As Tab. C shows, with a similar parameter count
and the same QAT recipe, video diffusion reaches a significantly larger gradient norm than image
diffusion. This leads to much more unstable optimization (Xie et al., 2024) in training. We believe the
phenomenon happens because video generation introduces complicated temporal modeling, which
eventually makes quantization for video diffusion more challenging than image diffusion.

Table C: Average gradient norm comparison. SD3-medium (Esser et al., 2024a) is an advanced diffusion
model for image generation. We train SD3-medium for 2K steps with 16K images from the LAION-5B
dataset (Schuhmann et al., 2022) on 8×H100 GPUs. “Avg. ∥gt∥2” is the average of the gradient norm across
training steps.

Model SD3-medium CogVideoX-2B

Avg. ∥gt∥2 0.2047 0.3283
#Params. (B) 2.0 2.0

H.2 IMPACT OF MOTION DYNAMICS ON GRADIENT NORM

Here, we study how the motion dynamics of video generation affect the gradient norm. Specifically,
using UniMatch (Xu et al., 2023a), we compute an optical-flow score as a motion difference score for
each clip and split the training data (Sec. 4.1) into high-motion and low-motion subsets, each with 8K
videos. In Tab. D, the model trained on the low-motion subset shows a much lower average gradient
norm and a better Imaging Quality score, but its Dynamic Degree is lower than that of the model
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Table D: Results between different training videos. We employ
W4A4 QVGen with the same configurations as those in Tab. 1 to
quantize CogVideoX-2B (Yang et al., 2025).

8K Training Videos Avg. ∥gt∥2 Imaging Quality↑Dynamic Degree↑

high-motion 0.1972 57.47 68.21
low-motion 0.1768 60.63 62.54

half high-motion + half low-motion 0.1821 60.12 67.08

trained on the high-motion subset.
This pattern suggests that a high-
motion training set makes QAT harder
and less stable (i.e., higher gradi-
ent norm), lowering static quality but
boosting motion quality. The reverse
holds for low-motion clips. To be
noted, with a mixed dataset (containing low-motion + high-motion) in the 4-th row of Tab. D,
the quantized model generalizes well in producing either high-motion or low-motion content. There-
fore, although a low-motion dataset in training can cause slightly lower ∥gt∥2 (i.e., better training
convergence), it is necessary to properly add high-motion data to improve motion quality.

H.3 DIRECTLY REGULATE THE GRADIENT NORM

In this subsection, we study the effect of directly constraining the gradient norm during QAT. We use
torch.nn.utils.clip grad norm to rescale the gradients. As shown in Tab. E, reducing the
clipping threshold from 1.0 to 0.5 improves performance, which supports the benefit of controlling
gradient norms for video generation QAT. However, a threshold of 0.1 causes clear performance
degradation, likely because the quantized model is updated too weakly or aggressive gradient clipping
disrupts normal QAT. This highlights the need for more principled ways to reduce the gradient norm.

Table E: W4A4 results for Wan 1.3B under different thresholds for gradient clipping. “1.0” corresponds to our
baseline Q-DM (Li et al., 2023b). We use a clipping threshold of 1.0 for all other experiments in the paper.

Grad.
Clipping

Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

1.0 60.40 52.50 76.67 13.28 21.63
0.5 60.58 52.95 76.50 13.28 21.71
0.1 56.68 51.06 71.00 12.78 21.42

I COMBINATION WITH SVDQUANT

In Tab. F, we show that our method can be combined with the current SOTA PTQ method
SVDQuant (Li et al., 2025). We first apply SVDQuant to obtain a weight-modified DM, the quan-
tization parameters, and the low-rank matrices, which we reuse as Φ. We then run QVGen, which
progressively removes Φ. This combination yields further gains, likely due to the strong initialization
from SVDQuant. We also evaluate an option that updates only the quantization parameters and Φ
within this combination. It achieves sizable improvements over SVDQuant alone, but it still falls short
of QVGen when model weights are updated. This suggests that QAT, which trains model weights, is
currently important for video generation quantization. We will continue to explore more efficient
ways to quantize video DMs while preserving performance.

Table F: W4A4 results of the combination with SVDQuant (Li et al., 2025) for Wan 1.3B (WanTeam et al.,
2025). “♡” denotes we freeze the weights of the DM and only finetune the quantization parameters and the
introduced Φ. “♣” means we employ a more fine-grained and performance-friendly quantization setting as in
SVDQuant’s paper (details can be found in Sec. D).

Method Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

Full Prec. 64.30 58.21 70.28 28.05 24.67

SVDQuant♣ (Li et al., 2025) 57.57 46.30 72.22 12.73 21.91
QVGen 63.08 54.67 77.78 15.32 23.01
QVGen w/ SVDQuant (Li et al., 2025) 63.64 56.23 77.42 17.65 23.89
QVGen♡ w/ SVDQuant (Li et al., 2025) 61.38 52.76 75.85 14.12 22.47

J COMPARISON WITH BASELINES ON ADDITIONAL METRICS

We also evaluate the similarity between videos generated by different quantization methods and those
generated by BF16 models on VBench (Huang et al., 2024c) captions. Specifically, we employ
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity) (Wang et al., 2004), and LPIPS
(Learned Perceptual Image Patch Similarity) (Zhang et al., 2018). In Tab. G, QVGen substantially
outperforms the baselines on these metrics.
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Table G: Additional W4A4 performance comparison across different quantization methods. We employ the
same models as those in Tab. 1.

Method CogVideoX-2B Wan 1.3B

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SVDQuant (Li et al., 2025) 11.06 0.3829 0.6305 10.14 0.3595 0.6907
LSQ (Esser et al., 2020b) 11.75 0.4158 0.6187 11.65 0.4743 0.6235
Q-DM (Li et al., 2023b) 12.07 0.4270 0.6240 11.22 0.4657 0.5942
EfficientDM (He et al., 2024) 11.91 0.4387 0.6220 11.29 0.3926 0.6232
QVGen (Ours) 16.74 0.6085 0.4127 15.94 0.5782 0.4887

K COMPARISON WITH BASELINES FOR HUGE DMS

Table H: Performance comparison for huge DMs across different
methods on VBench (Huang et al., 2024c). We employ W4A4
CogVideo-X 5B (Yang et al., 2025) here.

Method Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

Full Prec. 61.15 54.06 74.24 13.86 22.52

Q-DM (Li et al., 2023b) 61.72 54.01 72.41 14.17 22.31
EfficientDM (He et al., 2024) 61.72 54.01 72.41 14.17 22.31
QVGen (Ours) 63.08 54.67 77.78 15.32 23.01

We include a comparison on VBench
for large-scale CogVideoX-1.5 5B in
Tab. H. QVGen again surpasses all
baselines, just as it does on smaller
models, underscoring its strength
across a wide range of model sizes.
Limited resources currently prevent us
from adding more baselines for these
large-scale models, but we plan to do
so in future work.

L MORE ABLATION STUDIES

L.1 ROBUSTNESS OF Rank-Decay SCHEDULE ACROSS DIFFERENT ANNEALING FUNCTIONS

In this section, we test 5 different annealing functions for u. The results in Tab. I reveal that all the
functions yield comparable performance, highlighting the robustness of our approach.

Table I: Results of different annealing factors u. All of them decay from 1 to 0. We employ “Cosine” in this
work.

u
Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

Cosine 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01
Logarithmic 63.15 54.46 98.02 77.52 93.98 92.59 14.99 22.87
Exponential 63.04 54.48 97.88 77.81 93.96 92.56 15.32 22.66

Square 63.02 54.59 98.41 77.24 94.12 92.57 15.18 22.94
Linear 63.10 54.63 98.31 77.44 94.06 92.58 15.24 22.91

L.2 INITIALIZATION METHODS FOR AUXILIARY MODULES Φ

Besides employing W −Qb(W) to initialize WΦ, we provide an alternative initialization approach
that considers both weight and activation effects. Specifically, we train each WΦ for 200 iterations to
minimize the quantization error of its corresponding linear layer’s output (i.e., arg minWΦ

∥Y −
Ŷ∥2F ). The resulting layer-wise trained WΦ is then used to initialize Φ. As shown in Tab. J, both
initialization strategies yield similar performance. Therefore, we believe that QVGen is not sensitive
to such choices of initialization. Moreover, we also consider two deliberately suboptimal initialization
approaches: zero initialization (i.e., “0”) and initialization with parameters randomly sampled from
a normal distribution (i.e., “Random”). The “0” scheme leads to a slight performance degradation,
while “Random” causes a more noticeable performance drop. We attribute this to the fact that “0”
does not compensate for quantization errors, whereas “Random” further injects noise into the model.

L.3 COMPLETE RESULTS OF TABLES IN ABLATION STUDIES

In Tabs. K to N, we present the complete ablation results across all 8 dimensions on VBench (Huang
et al., 2024c), corresponding to the incomplete versions shown in the ablation study of the main text.
These results are consistent with the analyses provided in the main text.
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Table J: W4A4 results of different initialization strategies for WΦ.
Init.

Strategy
Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

CogVideoX-2B (CFG = 6.0, 480p,fps = 8)

W −Qb(W) 60.16 54.61 67.22 31.42 24.61
Layer-wise Train. 59.97 54.84 66.71 31.14 25.02

0 59.86 54.47 65.59 31.32 24.59
Random 49.42 37.68 26.57 6.24 11.68

Wan 1.3B (CFG = 5.0, 480p,fps = 16)

W −Qb(W) 63.08 54.67 77.78 15.32 23.01
Layer-wise Train. 63.23 54.67 77.56 15.38 23.00

0 62.80 54.59 77.69 15.28 22.98
Random 54.41 44.14 34.44 3.13 10.17

Table K: Complete ablation results of each component. “Naive” denotes naive QAT in a KD-based manner.
“−decay” denotes the setting where WΦ = LR is initialized with r = 32 but not eliminated during QAT.
The comparable performance between “−Decay” and “+Φ” validates that a low-rank setting with r < d (as
mentioned in the main text) is sufficient. Furthermore, the negligible performance loss of “+Rank” compared to
“−Decay” confirms the effectiveness of our proposed decay strategy.

Method Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

Naive 60.40 52.50 97.22 76.67 93.37 89.26 13.28 21.63
+Φ 63.41 54.75 98.40 77.89 94.36 93.29 15.51 22.98
+Rank 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01

−Decay 63.32 54.64 98.34 77.79 94.15 92.61 15.40 23.03

Table L: Complete results of different shrinking ratios λ for each decay phase. λ = 1 means directly decaying
the entire WΦ.

λ
Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

1/4 63.02 54.23 97.89 76.84 94.02 92.13 15.18 22.85
1/2 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01
3/4 62.89 54.62 98.15 77.91 93.89 91.63 15.04 22.89
1 61.05 52.48 97.31 76.48 93.42 90.04 13.82 21.81

Table M: Complete results of different initial ranks r. r = 0 represents “Naive” in Tab. K.

r
Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

0 60.40 52.50 97.22 76.67 93.37 89.26 13.28 21.63
8 62.71 54.47 97.95 74.62 93.76 91.05 14.42 22.81
16 62.99 54.62 98.31 76.58 93.92 91.82 14.84 23.00
32 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01
64 63.06 54.30 98.18 76.74 94.01 91.49 15.40 22.92

Table N: Complete results of different decay strategies. “Rank” denotes the rank-decay strategy in this work.
To be noted, the “Sparse” and “Res. Q.” strategies incur substantially 1.81× and 2.60× GPU days for training
compared with the “Rank” approach, respectively (see Sec. F).

Decay
Strategy

Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

Sparse 61.15 54.06 97.45 74.24 93.32 90.63 13.86 22.52
Res. Q. 61.72 54.01 97.62 72.41 93.46 91.24 14.17 22.31
Rank 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01

L.4 ADDITIONAL RANK-BASED REGULARIZATION γ

In this section, we conduct experiments to validate the superiority of the proposed rank-based
regularization compared with additional rank-based regularization. As shown in Tab. O, the set-
ting “concat([1]n×(1−λ)r, [u]n×λr)” (adopted in this work) outperforms both “Random×3” and
“concat([u]n×λr, [1]n×(1−λ)r)” by a large margin. Moreover, the results in the table confirm our idea
that removing Φ by repeatedly decaying components of WΦ associated with small singular values
maintains performance. This also reflects that components associated with small singular values
contribute little (Zhang et al., 2015; Yang et al., 2020) under the setting of this paper (i.e., jointly
training Φ and the quantized video DM during QAT).
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Table O: Results of different γ. “concat([u]n×λr, [1]n×(1−λ)r)” denotes the setting where components of WΦ

associated with the largest singular values are decayed in each phase. “Random×3” represents the average
performance over 3 experiments, each employing a different randomly generated γ per decay phase. Specifically,
a random index set Su = {b1, b2, . . . , bλr} is sampled such that bi ∈ {1, 2, . . . , r} and ∀i ̸= j, bi ̸= bj . We
then define the complementary index set as S1 = {1, 2, . . . , r}\Su. The decay matrix γ ∈ Rn×r is constructed
by setting γ:,Su = [u]n×λr and γ:,S1 = [1]n×(1−λ)r . The green subscripts indicate the standard deviations.

γ
Imaging
Quality ↑

Aesthetic
Quality ↑

Motion
Smoothness↑

Dynamic
Degree ↑

Background
Consistency↑

Subject
Consistency↑

Scene
Consistency↑

Overall
Consistency↑

concat([1]n×(1−λ)r, [u]n×λr) 63.08 54.67 98.25 77.78 94.08 92.57 15.32 23.01
Random ×3 60.96±0.41 53.13±0.67 97.40±0.24 76.45±0.08 93.40±0.03 90.76±0.30 13.77±0.22 21.92±0.51

concat([u]n×λr, [1]n×(1−λ)r) 60.56 52.61 97.28 75.36 93.35 89.47 13.46 22.24

L.5 DURATION OF EACH DECAY FOR γ

Here, we discuss the situation if Φ’s rank is diminished too rapidly relative to the schedule γ. In this
case, we believe that keeping the redundant parts (that is, the rank-diminished components in Φ)
during QAT does not harm performance and can even lead to a small improvement. This is mainly
because the slow change of u in γ (1→ 0) increases the training time by making each decay phase
longer. The results in the following table support this intuition.

Table P: W4A4 quantization results across different durations of each decay phase for Wan 1.3B. We control the
duration to determine the changing speed of the schedule γ. When applying a long duration, we suggest Φ’s
rank is diminished (as an intrinsic behavior) rapidly relative to the schedule γ.

Duration
(Epoch)

Imaging
Quality ↑

Aesthetic
Quality ↑

Dynamic
Degree ↑

Scene
Consistency↑

Overall
Consistency↑

3/4 63.08 54.67 77.78 15.32 23.01
1 63.07 55.09 77.54 15.29 23.03
3/2 63.11 54.58 78.15 15.36 23.01

L.6 WEIGHT-ONLY QUANTIZATION vs. ACTIVATION-ONLY QUANTIZATION

As demonstrated in Fig. B, activation-only quantization causes severe degradation in video generation
quality compared with weight-only quantization under the 4-bit setting. This indicates that the
activations of video generation models are much harder to quantize than the weights. Similar
observations have also been reported in previous studies (Zhao et al., 2025a; Tian et al., 2024).

(a) BF16 (b) BF16

(c) W4A16 (d) W4A16

(e) W16A4 (f) W16A4

Figure B: Performacne for weight-only quantization vs. activation-only quantization. We employ Min-
max (Nagel et al., 2021) per-channel weight quantization and per-token activation quantization for (Left)
CogVideoX-2B (Yang et al., 2025) and (Right) Wan 1.3B (WanTeam et al., 2025).

M RESULTS FOR IMAGE GENERATION

Our theoretical insight is broadly applicable to QAT. Additionally, the proposed QAT strategy is
independent of model architecture and data type, so it can be transferred to other domains. However,
further studies are needed to confirm whether the same strategy and insight can deliver similar
significant improvements in other tasks. To be specific, the large gains we report for video generation
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rely on the observed behavior of the gradient norm and the singular values during QAT for video
diffusion. Here, we report the initial results for image generation in Tab. Q, which show that our
approach can also achieve non-negligible performance enhancement without additional inference
overhead. We will explore more about this in the future.
Table Q: W4A4 quantization results for SD3-medium (Esser et al., 2024b). We evaluate FID (Heusel et al., 2018)
and CLIP score (Hessel et al., 2022) on the MJHQ-30K (Li et al., 2024a) dataset and employ GenEval (Ghosh
et al., 2023) to further measure text-image alignment.

Method FID↓ CLIP Score↑GenEval↑

Full Prec. 11.92 27.83 0.62

LSQ (Esser et al., 2020b) 14.87 27.72 0.56
EfficientDM (He et al., 2024) 15.23 27.11 0.61
Q-DM (Li et al., 2023b) 13.82 27.68 0.59
QVGen (Ours) 12.24 27.85 0.61

N PROFILING AND PROJECTED GAINS FROM KERNEL FUSION

Table R: Latency breakdown (ms) and INT4 GEMM throughput on A800. For ease of analysis, we adopt the
shapes from Wan 1.3B. A DiT block for the model is composed of Self-Attention, Cross-Attention, and FFN.
“q1/k1/v1/o1” and “q2/k2/v2/o2” denote projections in Self-Attention and Cross-Attention, respectively.

Op. (M,N,K) Quant INT4GEMM DeQuant Total Quant
(%)

INT4GEMM
(%)

DeQuant
(%) TOPS

q1/k1/v1/o1/q2/o2 (32760, 1536, 1536) 0.041 0.186 0.114 0.341 12.0 54.5 33.5 831.08
k2/v2 (512, 1536, 1536) 0.001 0.007 0.002 0.010 11.2 72.3 16.5 345.13
up proj (32760, 8960, 1536) 0.041 1.246 0.661 1.948 2.10 64.0 33.9 721.76
down proj (32760, 1536, 8960) 0.232 1.031 0.117 1.380 16.8 74.7 8.48 872.27

To better understand the efficiency bottlenecks in our current non-fused INT4 implementation,
we profile representative transformer operators on an NVIDIA A800 (SM80) by annotating stages
such as activation quantization (Quant), INT4 general matrix multiplication (INT4GEMM), and
dequantization (DeQuant) with NVTX ranges (torch.cuda.nvtx.range push/pop). For
each operator in Tab. R, we report its GEMM dimensions (M,K,N) (i.e., [M,K]×[K,N ]), per-stage
latency, the fraction of the total operator time, and the effective INT4 GEMM throughput computed
as

TOPS = 2MNK
tINT4GEMM

÷ 1012, (U)
where tINT4GEMM is the measured INT4GEMM time in seconds. Across all tested shapes, the INT4
GEMM kernels achieve 345–872 TOPS, within the same order of magnitude as the A800’s INT4
tensor-core peak (1248 TOPS). However, the surrounding non-GEMM stages (activation quantization
and dequantization) still account for 25–45% of the operator latency, primarily due to extra global
memory traffic and the absence of fused epilogues. Given the measured GEMM time fraction G and
assuming kernel fusion removes a fraction r of non-GEMM overhead (e.g., fusing quant/dequant and
avoiding intermediate reads/writes), the achievable speedup is approximated by

ρ ≈ 1
G+(1−G)(1−r) . (V)

Using our NVTX-derived G values, r = 0.6 yields ρ ≈ 1.18× (down proj), 1.20× (k2/v2),
1.28× (up proj), 1.38× (q1/k1/v1/o1/q2/o2); and r ≈ 0.8 yields ρ≈1.25×, 1.28×, 1.40×,
and 1.57×, respectively. These results indicate that a 1.2–1.6× per-layer speedup is a realistic target
once fusion is introduced.

O BREAKDOWN LATENCY ANALYSIS

Because a video DiT is implemented as a stack of identical blocks, we report the latency breakdown
of a single DiT block to estimate its end-to-end impact (see Tabs. S-U). Within this block, attention
computation (51.8%) is the dominant cost, while linear projections (24.5%) account for a large share
of the remaining latency. To be noted, components other than linear projections can be accelerated by
orthogonal strategies:

• Attention: Sparse attention, such as SVG (Xi et al., 2025), achieves a 1.73× speedup for Self-
Attention computation (31.48 vs. 18.23).
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• Other: This category is largely composed of memory-bound operations, including RoPE, norm,
and reshape, etc. These operations often launch many small kernels, so techniques such as
CUDA Graphs and torch.compile can reduce dispatch overhead and enable more effective
kernel fusion. Additionally, combined with fused and layout-aware kernels (Xi et al., 2025), the
runtime of this category can be reduced by 5.59× (14.64 vs. 2.620).

With these strategies applied, linear projections occupy a non-trivial 41.38% of the block runtime.
Therefore, reducing the latency of the linear projections is an important step toward further end-to-end
speedups. In this work, W4A4 quantization achieves a 2.52× speedup for these linear projections
(15.14 vs. 5.991). In addition, we plan to extend QVGen to W4A4 attention quantization, which can
further accelerate attention computation.

Table S: Latency breakdown (ms)
for a DiT block (implemented in
torch) on A800 (Wan 1.3B).

Component Time
(ms)

Share
(%)

Attention 32.08 51.8
Linear Projections 15.14 24.5
Other 14.64 23.7

Table T: Latency breakdown (ms)
for linear projections.

Linear projections Time
(ms)

q1/k1/v1/o1/q2/o2 0.977
k2/v2 0.038
up proj 5.283
down proj 3.913

Table U: Latency break-
down (ms) for attention.

Attention Time
(ms)

Self-Attention 31.48
Cross-Attention 0.597

P QUALITATIVE RESULTS

In this section, we present random samples generated by video DMs without cherry-picking, as
exhibited from Figs. C-J. For a detailed comparison, zoom in to closely examine the relevant frames.

3-bit quantization. As shown in Figs. C and D, our method QVGen far outperforms other baselines
under 3-bit quantization. Although 3-bit quantization still introduces noticeable performance degra-
dation, especially for huge DMs (see Figs. E and F), we believe QVGen represents a promising step
toward practical ultra-low-bit video DMs.

4-bit quantization. As depicted in Figs. G and H, previous QAT methods fail to deliver satisfactory
results. In contrast, our method QVGen achieves video quality that closely approaches that of the
full-precision model. Furthermore, for huge models (see Figs. I and J), QVGen consistently maintains
high visual fidelity and effectively preserves generation quality.

Q THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs), such as OpenAI’s GPT-5, as a writing-
assistance tool in this work. Their role was strictly limited to proofreading and rephrasing sentences
to enhance linguistic quality, without any contribution to the research ideation or experimental results.
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(a) BF16 (b) W3A3 QVGen (Ours)

(c) W3A3 EfficientDM (He et al., 2024) (d) W3A3 Q-DM (Li et al., 2023b)

(e) W3A3 LSQ (Esser et al., 2020b)

Text prompt: “A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea.
The ship’s hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the
ship are various other toys and children’s items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship’s

journey symbolizing endless adventures in a whimsical, indoor setting.”

Figure C: Comparison of samples generated by full-precision and 3-bit CogVideoX-2B (Yang et al., 2025).

(a) BF16 (b) W3A3 QVGen (Ours)

(c) W3A3 EfficientDM (He et al., 2024) (d) W3A3 Q-DM (Li et al., 2023b)

(e) W3A3 LSQ (Esser et al., 2020b)

Text prompt: “The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain
slope, dust kicks up from its tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into
the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen
from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and

mountains, with a clear blue sky above with wispy clouds.”

Figure D: Comparison of samples generated by full-precision and 3-bit Wan 1.3B (WanTeam et al., 2025).

(a) BF16

(b) W3A3 QVGen (Ours)

Text prompt: “On a sunlit beach, a small, intricately detailed sandcastle stands near the shoreline, its turrets and walls casting delicate shadows on the golden sand. As
the gentle waves lap nearby, the castle begins to transform, growing taller and more elaborate with each passing moment. Its towers stretch skyward, adorned with

seashells and seaweed, while intricate patterns emerge on its expanding walls. The sun casts a warm glow, highlighting the castle’s evolving grandeur. Finally, it stands
as a majestic fortress, complete with a moat and flags fluttering in the breeze, a testament to the magic of imagination and the sea’s timeless beauty.”

Figure E: Comparison of samples generated by full-precision and 3-bit CogVideoX1.5-5B (Yang et al., 2025).
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(a) BF16

(b) W3A3 QVGen (Ours)

Text prompt: “A medium-sized golden retriever is initially positioned to the left of a juicy red apple. The dog, wagging its tail, notices something interesting and begins
to run towards the apple, eventually coming to a playful stop right in front of it. The background is a sunny backyard with green grass and some flowers in the distance.
The scene transitions smoothly, capturing the dog’s curious and lively nature. The video is filmed in a dynamic style, with close-ups and medium shots to highlight the

dog’s movements and expressions. The lighting is bright and natural, emphasizing the textures of the dog’s fur and the apple.”

Figure F: Comparison of samples generated by full-precision and 3-bit Wan 14B (WanTeam et al., 2025).

(a) BF16 (b) W4A4 QVGen (Ours)

(c) W4A4 EfficientDM (He et al., 2024) (d) W4A4 Q-DM (Li et al., 2023b)

(e) W4A4 LSQ (Esser et al., 2020b)

Text prompt: “A majestic Siberian Husky stands atop a snowy mound, its sharp blue eyes filled with intelligence. The dog’s thick black-and-white fur contrasts against
the soft twilight sky, where wisps of clouds drift peacefully. Bare trees surround the scene, standing as quiet guardians in the fading light.”

(f) BF16 (g) W4A4 QVGen (Ours)

(h) W4A4 EfficientDM (He et al., 2024) (i) W4A4 Q-DM (Li et al., 2023b)

(j) W4A4 LSQ (Esser et al., 2020b)

Text prompt: “In the heart of a grand, medieval hall, the scene is bathed in a warm, golden glow. A long wooden table stretches into the distance, adorned with
flickering candles that cast a soft, inviting light. The air is filled with a sense of timelessness and reverence. A single, vibrant candle burns brightly in the foreground, its

flame dancing gently atop a small, ornate holder.”

Figure G: Comparison of samples generated by full-precision and 4-bit CogVideoX-2B (Yang et al., 2025).
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(a) BF16 (b) W4A4 QVGen (Ours)

(c) W4A4 EfficientDM (He et al., 2024) (d) W4A4 Q-DM (Li et al., 2023b)

(e) W4A4 LSQ (Esser et al., 2020b)

Text prompt: “A man with tousled dark hair stands in a dramatic landscape, his eyes blazing with fury as he surveys the chaotic scene around him. Clad in a rugged
leather jacket, he turns slightly, revealing a determined posture amid a backdrop of crumbling mountains and a valley littered with abandoned structures and scattered
flags. The sky is overcast, adding a somber tone to the atmosphere, accentuating his emotional intensity. The camera captures a medium shot, focusing on his tense

expression and the desolation surrounding him. The visual style is cinematic with high contrast, enhancing the grim and powerful mood of the moment.”
(f) BF16 (g) W4A4 QVGen (Ours)

(h) W4A4 EfficientDM (He et al., 2024) (i) W4A4 Q-DM (Li et al., 2023b)

(j) W4A4 LSQ (Esser et al., 2020b)

Text prompt: “An elderly gentleman, with a serene expression, sits at the water’s edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand,
as he renders an oil painting on a canvas that’s propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his

loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist’s
canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.”

Figure H: Comparison of samples generated by full-precision and 4-bit Wan 1.3B (WanTeam et al., 2025).

(a) BF16

(b) W4A4 QVGen (Ours)

Text prompt: “A playful squirrel, its fur a mix of brown and gray, stands behind a large rock, peering around it cautiously. The rock sits at the base of a tall tree,
surrounded by a patch of wildflowers. With a swift motion, the squirrel darts out from behind the rock, running to the left with its tail raised high. It quickly scurries

across the forest floor, moving smoothly over the rocks and fallen leaves, eager to continue its journey.”
(c) BF16

(d) W4A4 QVGen (Ours)

Text prompt: “A lively orange tabby cat with striking green eyes dashes across a sunlit meadow, its fur gleaming in the golden light. The cat’s agile movements create a
blur of orange against the lush green grass, as it leaps over small wildflowers and navigates around scattered fallen leaves. Its tail flicks with excitepment, and its ears
are perked up, capturing every sound in the serene environment. The scene captures the essence of freedom and playfulness, with the cat’s paws barely touching the

ground, leaving a trail of gentle rustling in its wake.”

Figure I: Comparison of samples generated by full-precision and 4-bit CogVideoX1.5-5B (Yang et al., 2025).
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(a) BF16

(b) W4A4 QVGen (Ours)

Text prompt: “A person is enjoying a delicious ice cream cone on a sunny day. They are standing in a bustling city park, surrounded by blooming flowers and green
grass. The person has a friendly smile on their face, taking small bites of the ice cream as they savor each lick. Their casual attire includes a light jacket and jeans, with
a pair of sunglasses perched on their nose. The background shows a vibrant cityscape with tall buildings and colorful street signs. The camera pans slightly from the

person to capture the lively atmosphere of the park. Close-up medium shot, showing the person’s joyful expression and the melting ice cream.”
(c) BF16

(d) W4A4 QVGen (Ours)

Text prompt: “A smooth, sweeping camera circle around a lush garden. The garden is filled with vibrant flowers, tall green bushes, and neatly trimmed hedges. Sunlight
filters through the leaves, casting dappled shadows on the ground. A small fountain sits in the center, gently spraying water into the air. Birds chirp and flutter among

the branches. The camera gradually moves from a wide shot of the entire garden to closer views of individual plants and the intricate details of the landscape. The
overall atmosphere is serene and inviting, with a soft, natural lighting style. Wide to medium shot, pans smoothly around the garden.”

Figure J: Comparison of samples generated by full-precision and 4-bit Wan 14B (WanTeam et al., 2025).
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