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Figure 1: We introduce X Robotic Model 1 (XR-1), a versatile and scalable vision-language-action frame-
work. XR-1 supports robust multi-task learning across diverse robot embodiments and environments.

ABSTRACT

Recent progress in large-scale robotic datasets and vision-language models
(VLMs) has advanced research on vision-language-action (VLA) models. How-
ever, existing VLA models still face two fundamental challenges: (i) producing
precise low-level actions from high-dimensional observations, (ii) bridging do-
main gaps across heterogeneous data sources, including diverse robot embodi-
ments and human demonstrations. Existing methods often encode latent vari-
ables from either visual dynamics or robotic actions to guide policy learning, but
they fail to fully exploit the complementary multi-modal knowledge present in
large-scale, heterogeneous datasets. In this work, we present X Robotic Model 1
(XR-1), a novel framework for versatile and scalable VLA learning across di-
verse robots, tasks, and environments. At its core, XR-1 introduces the Uni-
fied Vision-Motion Codes (UVMC), a discrete latent representation learned via
a dual-branch VQ-VAE that jointly encodes visual dynamics and robotic motion.
UVMC addresses these challenges by (i) serving as an intermediate representa-
tion between the observations and actions, and (ii) aligning multimodal dynamic
information from heterogeneous data sources to capture complementary knowl-
edge. To effectively exploit UVMC, we propose a three-stage training paradigm:
(i) self-supervised UVMC learning, (ii) UVMC-guided pretraining on large-scale
cross-embodiment robotic datasets, and (iii) task-specific post-training. We vali-
date XR-1 through extensive real-world experiments with more than 14,000 roll-
outs on six different robot embodiments, spanning over 120 diverse manipulation
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tasks. XR-1 consistently outperforms state-of-the-art baselines such as π0.5, π0,
RDT, UniVLA, and GR00T-N1.5 while demonstrating strong generalization to
novel objects, background variations, distractors, and illumination changes. Our
project is at https://xr-1-vla.github.io/.

1 INTRODUCTION

The long-term goal of Embodied Artificial Intelligence (Embodied AI) (Pfeifer & Iida, 2004) is to
build general-purpose robotic agents capable of following natural language instructions to perform
diverse tasks in real-world environments, ranging from households and factories to hospitals and
laboratories. Recent progress in Vision-Language Models (VLMs) (Bai et al., 2023; Gao et al., 2024;
Li et al., 2023; Liu et al., 2023; Zhang et al., 2024; Beyer et al., 2024; Wang et al., 2024b) has shown
that large-scale pretraining on Internet-scale image-text corpora yields strong visual and semantic
understanding capabilities. Extending this line, Vision-Language-Action (VLA) models (Zitkovich
et al., 2023; Kim et al., 2024; Black et al., 2024; Liu et al., 2025b; Wen et al., 2025a; Cheang et al.,
2025b; Liu et al., 2025a; Lee et al., 2025; Intelligence et al., 2025; Bu et al., 2025b) extend VLMs
with an action head that grounds perception and language into executable motor commands.

A common training paradigm of VLAs follows a two-stage pipeline: (i) large-scale pretraining on
cross-embodiment datasets (Walke et al., 2023; O’Neill et al., 2024; Wu et al., 2025a), learning gen-
eral visuomotor and linguistic priors; and (ii) task-specific post-training for a target robot. Despite
advances in data-driven learning and the fruitful capacities of VLMs, current VLA models face two
key challenges. (i) Generating precise low-level actions from high-dimensional observations re-
mains difficult due to the vast search space and inherent multimodal uncertainty. Especially in dex-
terous or contact-rich tasks, even centimeter-level errors can cause failure. (ii) Cross-embodiment
datasets utilization is hindered by morphological heterogeneity: robots differ in hardware configu-
ration and degrees of freedom (DoF), while human demonstration videos lack explicit action labels
and exhibit appearance discrepancies.

To address these challenges, prior works (Cui et al., 2023; Shafiullah et al., 2022; Lee et al., 2024;
Xie et al., 2025; Zheng et al., 2025a) have explored latent representations as intermediate abstrac-
tions between observations and actions. One direction encodes robotic action sequences for com-
pact motion modeling (Shafiullah et al., 2022; Wu et al., 2025b; Bauer et al., 2025), but typically
requires large labeled datasets that are costly to collect. Another line encodes only visual dynamics
from videos (Cui et al., 2023; Hu et al., 2024; Bu et al., 2025a), exploiting abundant video data
that contain human demonstrations, but lack explicit action grounding. Both approaches treat vision
and action largely in isolation. This separation overlooks the necessity of multimodal alignment:
Without integrating visual dynamics and motor actions into a unified space, it is difficult for VLA
models to capture coherent task-relevant correspondences across modalities. In contrast, humans
naturally fuse heterogeneous sensory inputs into supramodal codes (Park et al., 2025), abstracting
away embodiment-specific details while preserving task semantics. Inspired by this observation, we
argue that effective representation learning for robotics should move beyond unimodal abstractions
toward multimodal alignment that jointly encodes visual dynamics and motor control.

Motivated by insights derived from human supramodal cognition and the limitations of prior uni-
modal representation learning, we propose X Robotic Model 1 (XR-1), a novel framework explic-
itly designed to achieve cross-data exploitation, cross-modality alignment, and cross-embodiment
control. At its core lies the Unified Vision-Motion Codes (UVMC), a discrete latent representation
jointly capturing vision dynamics and robotic motion. UVMC is learned via a dual-branch Vec-
tor Quantized Variational Autoencoder (VQ-VAE): one branch encodes visual dynamics from raw
observations while the other encodes robotic motion. Both share a common codebook in the dis-
crete latent space to enforce unified codes across modalities. To further suppress task-irrelevant vi-
sual information and ensure that the vision branch extracts motion-relevant features, we introduce a
vision-motion alignment loss that encourages visual codes to be close to their corresponding motion
codes. Building upon UVMC, XR-1 employs a three-stage training paradigm: (i) self-supervised
learning of UVMC on large-scale robotic manipulation datasets together with Internet-scale human
demonstration videos; (ii) cross-embodiment UVMC-guided pretraining where encoded visuomo-
tor knowledge is injected into the VLM backbone via learnable input tokens; and (iii) task-specific
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post-training for sharpening performance on particular robots and tasks. This design enables XR-1
to leverage heterogeneous data sources while maintaining embodiment-agnostic consistency.

We extensively evaluate XR-1 through more than 14k rollouts across six distinct robot embodiments,
including Tien Kung 1.0/2.0, Single-/Dual-Arm UR-5e, Dual-Arm Franka, and AgileX Cobot Magic
2.0, and covering over 120 manipulation tasks. XR-1 outperforms state-of-the-art baselines such as
π0.5, π0, RDT, UniVLA, and GR00T-N1.5 across challenging scenarios involving bimanual col-
laboration, dexterous manipulation, deformable objects, contact-rich interactions, dynamic settings,
and long-horizon manipulation. Our main contributions are summarized as follows:

• We propose X Robotic Model 1 (XR-1), a scalable three-stage training framework for
VLA learning that effectively leverages heterogeneous data sources, including Internet-
scale human videos and diverse robot datasets, and integrates seamlessly with diverse VLA
architectures.

• We introduce the Unified Vision-Motion Codes (UVMC), a discrete latent representation
that encodes both environmental dynamics and robotic motion, while an alignment loss
enforces consistent multimodal embeddings across embodiments via UVMC.

• We validate XR-1 with over 14, 000 real-world rollouts on six robot embodiments across
123 tasks, and demonstrate that it consistently outperforms strong baselines such as π0.5,
π0, RDT, UniVLA, and GR00T-N1.5.

2 RELATED WORK

2.1 VISION-LANGUAGE-ACTION MODELS

Developing robust, general-purpose Vision-Language-Action (VLA) policies capable of zero-shot
cross-embodiment transfer is a central objective in modern robotics. Initial efforts primarily focused
on Imitation Learning (IL) using narrow expert demonstrations (Cui et al., 2023; Zhao et al., 2023;
Chi et al., 2023; Ze et al., 2024; Fu et al., 2024; Bharadhwaj et al., 2024; Ze et al., 2024; Cao et al.,
2025; Su et al., 2025), which inherently led to limited task scalability and poor generalization across
diverse hardware. This bottleneck has been fundamentally addressed by the emergence of large-
scale robotic datasets, such as BridgeData (Ebert et al., 2022; Walke et al., 2023), DROID (Khaz-
atsky et al., 2024), Open X-Embodiment (O’Neill et al., 2024), RoboMIND (Wu et al., 2025a), and
AgiBot World (Bu et al., 2025a). These datasets paved the way for generalist policies, beginning
with landmark models like RT-1 (Brohan et al., 2022) and RT-2 (Zitkovich et al., 2023), which es-
tablished the paradigm of unifying large-scale vision-language pre-training with action generation.
Subsequent initiatives like RT-X (O’Neill et al., 2024) and Octo (Team et al., 2024b) further con-
solidated data heterogeneity, while models such as PaLM-E (Driess et al., 2023) demonstrated the
power of conditioning Large Language Models (LLMs) on high-fidelity visual inputs to enhance
complex task planning and semantic grounding.

Beyond core training paradigm design, a significant research direction focuses on augmenting VLA
models with richer world knowledge and diverse capabilities, including CrossFormer (Zhang & Yan,
2023), OpenVLA (Kim et al., 2024), HPT (Wang et al., 2024a), π0 (Black et al., 2024), RDT (Liu
et al., 2025b), TinyVLA (Wen et al., 2025b), GR00T (Bjorck et al., 2025), HybridVLA (Liu et al.,
2025a), SwitchVLA (Li et al., 2025a), DTP (Fan et al., 2025), MLA (Liu et al., 2025c), and X-
VLA (Zheng et al., 2025b). This typically involves leveraging representations pre-trained on vast
internet-scale corpora. For instance, π0.5 (Intelligence et al., 2025) and FSD (Yuan et al., 2025)
integrate large-scale image-text pre-training to improve semantic understanding and visual ground-
ing. Other works target higher-level cognitive abilities: CoT-VLA (Zhao et al., 2025) incorporates
complex Chain-of-Thought (CoT) reasoning for planning, while InstructVLA (Yang et al., 2025) fo-
cuses on improving fidelity to natural language instructions. To strengthen the policy’s grasp of the
physical environment, SpatialVLA (Qu et al., 2025) emphasizes enhanced spatial reasoning. Fur-
thermore, generative modeling techniques have been adapted, such as Diffusion-VLA (Wen et al.,
2025c), which utilizes diffusion models for diverse action generation. Our framework, XR-1, devi-
ates from traditional two-stage paradigms by introducing a novel three-stage process that synergizes
human and robot data. Its key feature is an initial self-supervised stage for learning unified vision-
motion representations. These representations act as auxiliary features to help pre-training and en-
hance data utilization for large-scale VLA models in the subsequent stage. This model-agnostic
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approach ensures flexibility. We validate XR-1’s flexibility by building upon base models like π0

and SwitchVLA, yielding the high-performing XR-1 and efficient XR-1-Light models.

2.2 LATENT REPRESENTATION LEARNING

A major bottleneck in learning robust visuomotor policies from raw sensory inputs is the dimen-
sional and semantic gap between high-fidelity pixel observations and low-dimensional motor com-
mands. To effectively abstract away noise, high-dimensionality, and embodiment-specific details,
prior work (Cui et al., 2023; Shafiullah et al., 2022; Lee et al., 2024; Zheng et al., 2025a; Xie
et al., 2025) has extensively utilized latent representations as a critical intermediary layer between
observations and actions. Current methodologies predominantly fall into two distinct, unimodal
categories. The first category focuses on modeling the low-level motor dynamics by discretizing
continuous robotic actions into a sequence of discrete latent tokens. This approach, exemplified by
Behavior Transformers (BeT) (Shafiullah et al., 2022) and refined by methods such as QueST (Mete
et al., 2024), transforms the continuous control problem into a tractable sequence-generation task.
Recent works have further refined this direction. For instance, (Bauer et al., 2025) proposed a dis-
crete latent action framework to enhance data efficiency, while ATE (Zhang et al., 2025) focused
on effective feature alignment between visual input and the discretized action space. Similarly,
approaches such as Moto (Chen et al., 2025) and Discrete Policy (Wu et al., 2025b) on discrete
representations demonstrate the scalability of action tokenization for generalized control. However,
these action-centric methods are fundamentally limited by their reliance on large volumes of high-
quality, labeled robotic action data, which is time-consuming and expensive to acquire at the scale
necessary for truly generalist agents.

In contrast, the second category seeks to learn representations by exploiting the vast abundance of
unlabeled video data (Cui et al., 2023; Du et al., 2023; Hu et al., 2024; He et al., 2024; Ye et al.,
2025; Cheang et al., 2025a), focusing on encoding generalized visual flow and state transitions
observed in demonstrations. Models like C-BeT (Cui et al., 2023) and UniPi (Du et al., 2023) learn
goal-conditioned behaviors from uncurated ”play” data or text-conditioned video generation. More
recent works, such as VPP (Hu et al., 2024), LAPA (Ye et al., 2025), and GR-2 (Cheang et al.,
2025a), leverage large-scale actionless human videos and web videos for pre-training, aiming to
capture generalized visual dynamics and task semantics. VPDD (He et al., 2024) leverages large-
scale actionless human videos for pre-training and discrete diffusion modeling to enable effective
robot policy learning with limited labeled data. Models like GO-1 (Bu et al., 2025a) leverage this
video-centric approach to capture generalized, task-relevant visual dynamics. UVA (Li et al., 2025b)
typically treats the vision and action modalities in isolation during the core representation learning
phase.

However, by learning from action-free data, these methods lack explicit action grounding, creating a
critical alignment gap between understanding visual change and executing the precise, fine-grained
motor control required to effect that change. Crucially, by treating vision and action in isolation,
existing unimodal paradigms fail to capture the causal link between observation and execution. We
address this fundamental limitation with XR-1, a framework that introduces Unified Vision-Motion
Codes (UVMC). UVMC is a novel, discrete latent representation learned jointly from both visual
dynamics and robotic motion. By constructing a shared bimodal latent space, UVMC explicitly
encodes the cause-and-effect relationship between seeing and acting, allowing it to abstract away
embodiment-specific details while preserving core task semantics.

3 METHODOLOGY

3.1 OVERVIEW

Our goal is to build a versatile and generalist Vision-Language-Action (VLA) model that controls
diverse robotic embodiments across tasks. At each inference step t, the policy π receives a language
instruction l and multimodal observations o = ⟨c,m⟩, where c ∈ RK×3×H×W denotes K RGB
images from external or robot-mounted cameras, and m represents proprioceptive states. The model
then predicts the next action â = π(l,o) in terms of joint positions and gripper commands.

We introduce XR-1, a scalable framework for VLA learning across robots, tasks, and environments
(Figure 2). Training proceeds in three stages. First, we learn a dual-branch VQ-VAE that encodes
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Figure 2: Overview of X Robotic Model 1 (XR-1). In XR-1, we introduce the Unified Vision-
Motion Codes (UVMC), a discrete latent representation that jointly encodes visual dynamics and
robotic motion. XR-1 adopts a three-stage training paradigm to enable precise low-level control
across diverse robots and tasks.

visual dynamics and robot motion into a shared discrete latent space, and extract the Unified Vision-
Motion Codes (UVMC). In the second stage, these codes serve as supervision for large-scale pre-
training of a policy on cross-embodiment datasets, enabling generalization across different robots
and task distributions. Finally, the pretrained policy is fine-tuned on multi-task data collected from
the target embodiment, which adapts the model to embodiment-specific dynamics and improves task
success rates. This progressive design, including unified representation learning, cross-embodiment
pretraining, and task-specific post-training, achieves both scalability and adaptability.

3.2 STAGE-1: LEARNING UNIFIED VISION-MOTION CODES

We design a dual-branch Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord
et al., 2017) to learn the Unified Vision-Motion Codes (UVMC) in a self-supervised manner. Unlike
prior works focusing solely on visual dynamics (Cui et al., 2023; Hu et al., 2024; Bu et al., 2025a;
He et al., 2024; Ye et al., 2025; Cheang et al., 2025a; Du et al., 2023) or action sequences (Shafiullah
et al., 2022; Wu et al., 2025b; Bauer et al., 2025; Zhang et al., 2025; Mete et al., 2024; Chen et al.,
2025), our design explicitly unifies the two modalities in a discrete latent space and aligns them
with an alighment regulrazation loss, providing complementary guidance for action prediction and
enabling learning from heterogeneous sources such as human demonstrations.

Visual Dynamic Code Extraction. Vision captures universal dynamics across robots and envi-
ronments. To encode temporal visual variations in the vision branch, we adopt an asymmetric
VQ-VAE (Zhu et al., 2023c) structure tailored for future-frame prediction. Given two frames ct
and ct+h, the vision encoder Evis(·) produces a latent code zvis = Evis(ct, ct+h), which compresses
temporal changes over h steps. The decoder then predicts the future frame via ĉt+h = Dvis(ct, zvis).
Thus, zvis captures the essential visual dynamics.

Robotic Motion Extraction. The second branch encodes low-level actions and propriocep-
tive states. Specifically, the motion encoder Emo(·) takes (at:t+h,mt:t+h) as input and outputs
zmo = Emo(at:t+h,mt:t+h). Unlike the vision branch, no raw images or instructions are used
here to ensure that the representation focuses purely on robotic dynamics. The motion decoder
Dmo(·) then takes the latent motion embedding zmo and optional conditions cd as input, such as the
language instruction l, proprioceptive states m, and the observations o. The decoder reconstructs
actions as ât:t+h = Dmo(zmo, cd). In our implementation, we use the proprioceptive states m as
the condition input.

Unified Vision-Motion Codes. To unify both modalities, we introduce a shared codebook e ∈
Rd×f with d discrete entries of dimension f . Encoder outputs zvis and zmo are quantized by nearest-
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neighbor lookup: ze
vis = S(zvis) = ej , where j = argmini ∥zvis − ei∥2, and ze

mo = S(zmo) =
ej , where j = argmini ∥zmo − ei∥2. Both decoders then condition on these quantized codes
for reconstruction. Training follows standard VQ-VAE objectives (Van Den Oord et al., 2017),
combining reconstruction losses with codebook and commitment regularization terms:

Lvis = ∥ĉt+h − ct+h∥1 + β∥sg(zvis)− ze
vis∥22 + β∥zvis − sg(ze

vis)∥22, (1)

Lmo = ∥ât:t+h − at:t+h∥1 + β∥sg(zmo)− ze
mo∥22 + β∥zmo − sg(ze

mo)∥22, (2)

where sg(·) denotes stop-gradient. We set β = 0.25 in all experiments. To capture both the vision
and motion signals, we concatenate the robotic motion codes ze

mo and visual dynamics codes ze
vis to

obtain the Unified Vision-Motion Codes ze
uvmc for subsequent policy learning.

Cross-Modality Alignment. While motion codes provide precise control signals, visual embed-
dings may capture irrelevant factors (e.g., camera jitter). To mitigate this gap, we introduce an
alignment loss that constrains visual codes to remain consistent with their motion counterparts:

Lalign = DKL(q(zmo) ∥ q(zvis)) ,

where q(·) denotes the posterior distribution in the codebook space. This grounding of perception
in motor dynamics improves robustness and allows human-only demonstrations to be effectively
mapped into the robot’s action space.

Final Training Objective. The overall objective integrates reconstruction and alignment losses
from different data sources. For robotic demonstrations, we jointly optimize Lrobot

total = Lvis + Lmo +
Lalign, where Lvis and Lmo are the VQ-VAE losses for visual and motion branches, and Lalign enforces
cross-modal consistency. For human demonstrations, where low-level actions are unavailable, the
objective naturally reduces to Lhuman

total = Lvis. This design allows training on both robot rollouts and
purely visual human data. Further architectural details are provided in Appendix 6.2.

3.3 STAGE-2: UVMC-GUIDED PRETRAINING FOR GENERALIST POLICY

After learning the Unified Vision-Motion Codes (UVMC) with the dual-branch VQ-VAE, we in-
tegrate it into policy learning to enhance low-level control. The policy π(·) follows a stan-
dard VLA design with a VLM F (·) and an action head H(·). Learnable tokens t are intro-
duced into the VLM input, enabling F (·) to predict the UVMC. The prediction loss is defined
as Luvmc = ∥F (l,o, t) − ze

uvmc∥22. In parallel, the action head is pretrained on robot datasets using
an action loss Lact, which may be generative or autoregressive depending on the model variant. The
overall objective is L = Luvmc + Lact. This joint training encourages the backbone to internalize
structured vision-motion representations while ensuring effective large-scale action pretraining.

3.4 STAGE-3: POST-TRAINING FOR DEPLOYMENT

After large-scale UVMC-guided pretraining, the model acquires strong abilities in extracting unified
vision-motion knowledge and producing foundation-level actions. To further improve performance
on downstream control tasks, we introduce a post-training stage where the VLA policy is fine-tuned
with task-specific datasets using an action loss Lact. A key advantage of our framework is its model-
agnostic design: it can be directly applied to different VLA architectures. This flexibility enables
users to integrate diverse backbones while consistently benefiting from our framework.

3.5 DATA COLLECTION AND IMPLEMENTATION DETAILS

Dataset Collection. To support large-scale pretraining, we curate a comprehensive dataset by

Table 1: Dataset Statistics.

Dataset Episodes Frames Weight

OXE 978k 59.3M 40%
RoboMIND 69k 21.4M 15%

XR-D 158k 69.1M 35%
Ego4D 59k 14.3M 10%

integrating four complementary sources: Open-X (O’Neill
et al., 2024), RoboMIND (Wu et al., 2025a), Ego4D (first-
person human activity videos) (Grauman et al., 2022), and
XR-D (our in-house collection spanning multiple robot em-
bodiments).

Table 1 summarizes the distribution of episodes and frames
across these datasets, together with their relative proportions.
Since the number of episodes and frames varies significantly
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Figure 3: Experimental Setup. We evaluate XR-1 across six robot embodiments (Tien Kung 1.0/2.0,
Single-/Dual-Arm UR-5e, Dual-Arm Franka, and AgileX Cobot Magic 2.0), covering more than
120 manipulation tasks with over 14k rollouts.

among different sources, we assign dataset-specific sampling weights during training to balance
contributions and prevent overfitting to dominant datasets. We provide more details of the datasets
in Appendix 6.3.

Implementation Details. The framework is model-agnostic. Our main instantiation adopts the
design of π0 (Black et al., 2024), which is built on PaliGemma (Beyer et al., 2024) (SigLIP vi-
sual encoder (Zhai et al., 2023) + Gemma backbone (Team et al., 2024a) + action head), while a
lightweight variant (XR-1-Light) built up on SwitchVLA (Li et al., 2025a) uses Florence-2 (Xiao
et al., 2024) to reduce computation cost with minimal performance drop.

4 EXPERIMENTS

We evaluate XR-1 through four key questions: (1) How does it compare with state-of-the-art
(SOTA) vision-language-action (VLA) models? (2) Does large-scale pretraining endow the model
with fundamental execution skills and rapid adaptation? (3) How well does it generalize to novel ob-
jects, background shifts, distractors, and lighting variations? (4) What is the impact of different com-
ponents and training strategies on performance? To address these questions, we conduct extensive
real-world evaluations on over 120 tasks across six robotic embodiments. The tasks cover diverse
and challenging scenarios, including bimanual collaboration, dexterous manipulation, deformable
object handling, contact-rich interactions, dynamic environments, and long-horizon manipulation.
We benchmark our approach against multiple strong VLA baselines.

4.1 EXPERIMENT SETUP

Real-World Robotic Setup. We evaluate XR-1 on six heterogeneous robotic embodiments (Fig-
ure 3): Tien Kung 1.0/2.0, Single-/Dual-Arm UR-5e, Dual-Arm Franka, and AgileX Cobot Magic
2.0. All robots are equipped with parallel grippers and multiple cameras from complementary view-
points. For each robotic embodiment, we design 20 tasks and collect expert demonstrations via
teleoperation, recording synchronized multi-view RGB streams and proprioceptive states (e.g., joint
positions and gripper commands). The 20 task examples for Dual-Arm UR-5e and Tien Kung 2.0
are shown in Figure 3, while full task details are provided in the Appendix 6.11.

Training and Evaluation Protocol. We adopt a three-stage training pipeline. First, XR-1 is pre-
trained on large-scale heterogeneous datasets (RoboMIND (Wu et al., 2025a), Open-X (O’Neill
et al., 2024), XR-D, Ego4D (Grauman et al., 2022)), enabling the dual-branch VQ-VAE to learn
the Unified Vision-Motion Codes (UVMC). Second, we pretrain the policy on XR-D to integrate
cross-embodiment knowledge. Finally, the policy is fine-tuned on data of specified tasks. For eval-
uation, we conduct 20 rollouts per task, with human evaluators determining success based on goal
completion. Final performance is reported as the success rate.
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Figure 4: Success rate results across 20 tasks on Dual-Arm UR-5e.
Table 2: Success rate results across 20 tasks on Tien Kung 2.0.

Method TK2-Press TK2-Assemble TK2-Stack TK2-Place TK2-Press TK2-Close TK2-Gather TK2-Close TK2-Open TK2-Hang -Button Valve Brake Circuit ControlBox DoorKnob Tools Laptop PotLid CupHolder

UniVLA 25 0 25 50 10 0 0 20 35 0 -
RDT 15 0 0 65 20 0 0 0 90 0 -

GR00T-N1.5 85 20 85 90 0 0 20 0 75 0 -
π0 85 10 55 70 85 0 20 85 85 20 -
π0.5 80 0 65 60 40 25 20 90 80 35 -

XR-1 (ours) 90 15 90 90 90 85 25 90 85 75 -

TK2-Move TK2-Stack TK2-Insert TK2-Find TK2-Move TK2-Pour TK2-Place TK2-Collect TK2-Move TK2-Take Avg.CupSauce Cup ToyBlock Capacitor MilkMug GearOil BiscuitBox Screws Tape BasketTea

UniVLA 45 30 0 25 35 35 0 0 20 0 17.8
RDT 50 25 0 0 0 75 0 0 0 0 17.0

GR00T-N1.5 50 55 0 60 55 70 25 0 70 0 38.0
π0 60 20 10 0 80 55 0 0 0 75 40.8
π0.5 70 25 20 0 75 75 0 0 0 60 41.0

XR-1 (ours) 70 85 55 75 90 85 75 15 70 85 72.0

4.2 RESULTS ON REAL-WORLD ROBOTIC TASKS

Baseline Methods. We compare XR-1 with strong VLA models, including π0.5 (Intelligence et al.,
2025), π0 (Black et al., 2024), RDT (Liu et al., 2025b), UniVLA (Bu et al., 2025b), and GR00T-
N1.5 (Bjorck et al., 2025). We note a performance degradation with the Lerobot implementation of
π0. The results of π0 reported in this paper are based on the original JAX implementation.

Results on Dual-Arm UR-5e. Figure 4 reports success rates across 20 tasks on the Dual-Arm
UR-5e. XR-1 surpasses all baselines by a large margin. For instance, in DUR-FindTapeBasket, it
achieves 85% success compared to 50% from π0. Several baselines even collapse to 0% performance
on harder tasks, which we attribute to insufficient auxiliary supervision and gradient conflicts during
multi-task optimization. In contrast, XR-1 leverages UVMC for richer training signals, yielding
more robust representations and stable optimization across diverse objectives. The corresponding
tabular results can be found in Appendix Table 13.

Results on Tien Kung 2.0. We further evaluate transferability on Tien Kung 2.0 over another 20
tasks in Table 2. Unlike the UR-5e, this robot is unseen during pretraining (e.g., Stages 1 and 2 for
XR-1), making the evaluation a stringent embodiment-transfer benchmark. Despite this challenge,
XR-1 again outperforms all baselines; e.g., in TK2-MoveCupSauce, it reaches 70% versus 60% for
π0. These results indicate that UVMC effectively encodes embodiment-agnostic dynamics into a
shared latent space, enabling efficient transfer of prior knowledge to novel robotic platforms.

Results on Other Robots. XR-1 consistently outperforms all other methods across four diverse
robotic arm configurations, achieving a significant relative gain over the strongest baseline. Ad-
ditional experimental results for Tien Kung 1.0 in Table 9, Dual-Arm Franka in Table 10, AgileX
Cobot Magic V2.0 in Table 11, and Single-Arm UR-5e in Table 12 are provided in Appendix 6.4.

4.3 GENERALIZATION ANALYSIS

Out-of-Box Evaluation. We assess the foundation ability of XR-1 after Stage-1 and Stage-2, with-
out any post-training in Stage-3. We evaluate on 7 tasks each from the Dual-Arm UR-5e and Dual-
Arm Franka in XR-D, covering only 0.9% of the XR-D dataset. For fair comparison, baselines
without XR-D pretraining are fine-tuned on data from these tasks before evaluation. As shown in
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Figure 5: Out-of-box evaluation results of 7 tasks on Dual-Arm Franka.
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Figure 6: Fast adaptation on Tien Kung 2.0. Tien Kung 2.0 is an unseen embodiment in XR-D. In
this setup, XR-1 adapts to 15 novel tasks with one model using only 20-shot demonstrations per
task, while baselines (ACT and DP) are trained per task.

Figure 5, the pretrained XR-1-oob model, even without adaptation, achieves performance close to
GR00T-N1.5 while outperforming RDT and UniVLA. This robustness stems from UVMC learning,
which aligns multimodal dynamics across embodiments into a unified latent space, thereby enabling
strong generalization with extremely limited task-specific supervision. Additional results on Dual-
Arm UR-5e are provided in Appendix 6.5

Fast Adaptation to New Tasks. We further evaluate whether XR-1 can rapidly adapt to unseen
tasks with limited demonstrations. Specifically, we collect 15 new tasks on both the Dual-Arm UR-
5e and Tien Kung 2.0 (unseen in XR-D), each with 20 trajectories. XR-1 is trained jointly across
these tasks, while single-task baselines, ACT (Zhao et al., 2023) and Diffusion Policy (DP) (Chi
et al., 2023), are trained independently per task. As shown in Figure 6, XR-1 achieves significantly
higher success rates than ACT and DP, despite the evaluation setting favoring the baselines. This
advantage stems from large-scale pretraining combined with UVMC supervision, enabling XR-1 to
extract transferable features from few-shot data and adapt effectively across diverse embodiments.
Additional results on Dual-Arm UR-5e are provided in Appendix 6.5.

Generalization to Unseen Scenrios. We further evaluate XR-1 on unseen conditions to assess its
out-of-distribution generalization. As shown in Figure 7, we test on (i) novel objects (e.g., unseen
rubbish or dustpans), (ii) dynamic and static distractors, (iii) illumination changes, and (iv) back-
ground variations. As shown in Table 3, XR-1 consistently outperforms the strong VLA method π0

across all settings. It demonstrates clear gains on novel objects, improved robustness under distractor
interference, and stable performance when background and lighting variations are introduced. These
results highlight XR-1’s strong generalization not only across embodiments and tasks but also under
diverse environmental shifts never encountered during pretraining or fine-tuning, underscoring its
potential for real-world deployment.
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Figure 7: Unseen scenario task setup on Dual-Arm Franka.

Table 3: Generalization results of XR-1 on unseen scenarios.

DFR-SweepTrash DFR-HangCup

Method Novel Objects
(rubbish)

Novel Objects
(dustpan) Dynamic Distractors Background Variations Illumination Changes Static Distractors

π0 15 50 5 30 15 10
XR-1 (ours) 65 60 55 55 30 30

Table 4: Ablation study of XR-1. In Stage-1 and Stage-2, “DT” indicates training directly on the
downstream task data.

Exp. Instantiation Stage-1 Stage-2 Stage-3 DUR-Clean DUR-Find DUR-Move DUR-Stack DUR-Sweep DUR-Trans AvgTable TapeBasket CupMilk Bowls Trash CupHolder

1 XR-1-Light × × ✓ 0 70 0 75 60 50 42.5
2 XR-1-Light DT DT ✓ 40 90 10 90 60 55 57.5
3 XR-1 × × ✓ 0 50 20 55 0 45 28.3
4 XR-1 w/o KL DT DT ✓ 45 55 35 60 30 65 48.3
5 XR-1 DT DT ✓ 50 75 65 80 60 70 66.7

6 XR-1 1% DT ✓ 15 60 10 55 15 20 29.2
7 XR-1 10% DT ✓ 25 60 25 60 20 40 38.3
8 XR-1 50% DT ✓ 25 80 65 80 20 50 53.3
9 XR-1 100% DT ✓ 60 80 70 85 40 55 65.0

10 XR-1 100% XR-D ✓ 70 85 80 90 85 80 81.6

4.4 ABLATION STUDY

To disentangle the contribution of each component in XR-1, we conduct ablations on six manipula-
tion tasks using the Dual-Arm UR-5e. Table 4 summarizes success rates under different configura-
tions, covering model capacity, UVMC learning, cross-modal alignment, and dataset scaling. Due
to space limitation, additional experimental results are provided in Appendix 6.6.

Lightweight Models. We first evaluate a compact variant, XR-1-Light, with only 230MB trainable
parameters. Comparing Exp. 1 and Exp. 2 shows that incorporating UVMC with downstream data
improves average success from 42.5% to 57.5%. This indicates that UVMC provides substantial
benefits even for low-capacity models trained on limited data.

UVMC and Cross-Modal Alignment. Exps. 3–5 examine the role of UVMC together with a
cross-modal alignment loss between vision and motion. Performance consistently improves as these
components are added, confirming their complementary importance for feature learning across tasks.

Scaling with Pretraining Data. Exps. 6–9 vary the scale of Stage-1 pretraining data from 1% to
100%. Results show a clear monotonic gain in success rates as more data is used, highlighting the
central role of large-scale pretraining for robust generalization.

5 CONCLUSION

We presented X Robotic Model 1 (XR-1), a unified framework for versatile and scalable vision-
language-action learning that addresses the key limitations of existing approaches: precise low-
level action generation and cross-domain multimodal knowledge exploitation across heterogeneous
data sources. Central to our approach is the Unified Vision-Motion Codes (UVMC), which serve
as embodiment-agnostic abstractions aligning visual dynamics with motor control through a shared
discrete latent space. By utilizing a three-stage training paradigm, XR-1 achieves robust perfor-
mance across diverse robots and tasks while significantly outperforming state-of-the-art baselines
such as π0.5, π0, RDT, UniVLA, and GR00T-N1.5. Our results highlight the importance of multi-
modal alignment for embodied AI and suggest promising directions toward general-purpose robotic
agents capable of interacting with the physical world and adapting seamlessly to new environments.
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6 APPENDIX

6.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed Large Language Models (LLMs) solely for assistance in
academic writing, including text refinement and polishing. No other use of LLMs was involved in
the research process, data analysis, or experimental design. All conceptual development, algorithmic
contributions, and empirical evaluations were conducted independently by the authors.

6.2 IMPLEMENTATION DETAILS

In this section, we provide a detailed description of the XR-1 framework, focusing on the architec-
ture and training of the dual-branch VQ-VAE. The model is designed to encode both vision dynam-
ics and robotic motion into a shared discrete latent space, thereby enabling seamless integration of
perception and control.

6.2.1 DUAL-BRANCH VQ-VAE

To achieve a unified latent representation, we introduce a dual-branch VQ-VAE consisting of two
complementary encoders, a vision encoder and a motion encoder, that map their respective modali-
ties into a common discrete codebook. Each branch is paired with a decoder to facilitate reconstruc-
tion during pretraining. The overall design ensures that the majority of representational capacity
resides in the encoders, while the decoders primarily serve as auxiliary components for reconstruc-
tion.

Vision Branch. The vision branch processes raw image observations {ot, ot+h} and encodes them
into compact latent tokens.

Vision Branch Encoder. We adopt SigLIP (Zhai et al., 2023) as the backbone vision encoder, com-
prising approximately 400M parameters. This encoder extracts high-level features from visual in-
puts. To capture temporal dynamics beyond static representations, we incorporate a visual dynamic
module inspired by (Chen et al., 2025). This module is implemented as a four-layer transformer
(ViT (He et al., 2022)) with 32M parameters, which compresses vision dynamic information into a
fixed number of latent tokens by querying dynamic features.

Vision Branch Decoder. For reconstruction, we employ a ViT-based decoder with 12 transformer
layers (94M parameters). Importantly, the encoder contains roughly five times more parameters than
the decoder. This asymmetry is intentional: by allocating more capacity to encoding, we encourage
the model to produce informative latent tokens that simplify downstream decoding. Consequently,
the decoder remains lightweight since its role is auxiliary rather than representationally dominant.

During training, all parameters in both the SigLIP backbone and the dynamic module remain fully
trainable. Additional details regarding training hyperparameters are provided in Table 5.
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Motion Branch. The motion branch encodes action sequences {at:t+h} into discrete motion
codes.

Motion Branch Encoder. To capture temporal dependencies across actions, we employ 1D causal
strided convolutions (Van Den Oord et al., 2016), which progressively reduce sequence length h
while preserving causality. The stride configuration determines the degree of temporal abstraction
achieved at each stage. Following this convolutional compression, an 8-layer transformer encoder
(34M parameters) further contextualizes action embeddings before quantization into discrete tokens.

Motion Branch Decoder. For action reconstruction, we leverage Gemma (Beyer et al., 2024), an
autoregressive language model with approximately 300M parameters. The design closely follows
the action expert structure in π0 (Black et al., 2024), integrating diffusion-based supervision for
reconstructing low-level actions from motion codes. Pretraining this decoder equips it with strong
generative priors over action sequences, thereby providing an effective initialization for downstream
policy learning. Additional details regarding training hyperparameters are provided in Table 5

Overall, this dual-branch architecture ensures that both perception and motion are represented in a
unified tokenized space via vector quantization (VQ), enabling scalable pretraining across multi-
modal data sources.

Table 5: Implementation Details of Dual-Branch VQ-VAE.

Hyperparameter Value Hyperparameter Type Params.

Hyper-
parameter

Batch Size 960

Network
Architectures

Vision Encoder SigLIP 400M
Learning Rate 1e-4 Vision Dynamic Encoder ViT 32M
Optimizer AdamW Vision Decoder ViT 94M
Trainable Parameters 0.9B Vision Recons. Loss MSE -
Motion/Vision Codebook Category 256 Action Encoder Convolution and Transfomer 33M
Motion/Vision Codebook Embed. Dim 256 Action Decoder Transformer Decoder 300M
Motion/Vision Code Num. 13 Action Recons. Loss Flow Matching -
Action Sequence 50 - -
Vision Interval 50 - -
Training Step 275K - -

6.2.2 XR-1 MODELS

XR-1. The proposed framework is designed to be model-agnostic, making it compatible with a
wide range of vision-language-action (VLA) architectures. In this work, we instantiate XR-1 us-
ing a configuration inspired by the baseline policy π0 (Black et al., 2024) while introducing several
key modifications that enable more structured representation learning. Specifically, XR-1 builds
upon the PaliGemma architecture (Beyer et al., 2024), which integrates a SigLIP-based visual en-
coder (Zhai et al., 2023) with approximately 400 million parameters and a Gemma transformer
backbone (Team et al., 2024a) with an action prediction head containing around 2.6 billion param-
eters. This design largely mirrors π0 in terms of scale and backbone selection, but diverges in how
supervision is introduced.

Instead of directly optimizing for action prediction as in π0, XR-1 leverages the UVMC produced
by a Dual-Branch VQ-VAE as intermediate supervisory signals. The joint representation zuvmc

encodes both motion and visual dynamics information, which serves as guidance for training. To
incorporate this signal effectively, we introduce two learnable tokens, [ZMO] and [ZV IS], that are
responsible for predicting the robotic motion codes and the visual dynamics codes. These predic-
tions are optimized using mean squared error loss against their respective targets. By enforcing this
disentangled supervision on both motor control and perceptual dynamics, XR-1 encourages stronger
alignment between perception and action.

To ensure fairness in evaluation, XR-1 is initialized from PaliGemma’s publicly available pretrained
checkpoint rather than directly adopting the released weights of π0. This avoids potential con-
founding effects due to differences in pretraining objectives or data exposure. Overall, XR-1 ex-
tends beyond π0 by introducing structured supervision through VQ-VAE latent codes and dedicated
learnable tokens for motion and visual prediction, while maintaining compatibility with large-scale
pretrained models such as PaliGemma. Additional details regarding training hyperparameters are
provided in Table 6.

XR-1-Light. To further highlight the flexibility of our approach, we introduce XR-1-Light, a
lightweight variant of XR-1 that significantly reduces computational cost while maintaining com-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Implementation Details of XR-1.

Hyperparameter Value Hyperparameter Value

Hyper-
parameter

Batch size 640

Network
Architectures

Decoder layer 18
Learning rate 1e-4 Transformer hidden dim 2048
Optimizer AdamW Heads num 8
[ZMO] Number 13 Action Decoder layer 18
[ZV IS] Number 13*viewnum Action Transformer hidden dim 1024
Action sequence 50 Action Heads num 8
Training step 300k Action loss flow matching

petitive performance. The motivation behind XR-1-Light is to replace the large-scale PaliGemma
backbone, which contains nearly 3 billion parameters, with a more efficient vision-language model
(VLM) without sacrificing the ability to capture rich multimodal representations. For this purpose,
we adopt Florence-2 (Xiao et al., 2024), a transformer-based model with approximately 230 million
parameters, as the backbone within the SwitchVLA framework (Li et al., 2025a). This substitu-
tion enables faster training and inference while lowering memory requirements, making XR-1-Light
more suitable for resource-constrained scenarios.

Despite its reduced scale, XR-1-Light preserves the core design principles of XR-1. In particular, it
continues to leverage the supervisory signal UVMC from the Dual-Branch VQ-VAE, which encodes
both robotic motion and visual dynamics. To integrate this supervision effectively, we employ two
learnable tokens, [ZMO] and [ZV IS], that are responsible for predicting the motion codes and
the visual dynamics codes. Unlike in XR-1 where these tokens are attached to a decoder-only
transformer backbone, in Florence-2 they are inserted between the encoder and decoder layers.
This design allows the encoder to specialize in extracting structured latent representations aligned
with UVMC, while enabling the decoder to function as an action expert that generates task-specific
predictions conditioned on these learned codes.

A notable difference between XR-1 and XR-1-Light lies in their training strategies. While XR-1
benefits from pretraining on XR-D before fine-tuning on downstream tasks, XR-1-Light omits this
stage due to its lightweight architecture. Instead, it is directly fine-tuned on task-specific datasets.
This choice reflects a trade-off: although pretraining could potentially enhance generalization, direct
fine-tuning allows us to fully exploit Florence-2’s efficiency without incurring additional computa-
tional overhead.

In summary, XR-1-Light demonstrates that our framework can be instantiated not only with large-
scale backbones such as PaliGemma but also with compact VLMs like Florence-2. By maintaining
structured supervision through zuvmc while reducing parameter count by more than an order of
magnitude, XR-1-Light provides a practical alternative that balances performance with efficiency.
Additional details regarding training hyperparameters are provided in Table 7.

Table 7: Implementation Details of XR-1-Light

Hyperparameter Value Hyperparameter Value

Hyper-
parameter

Batch Size 160

Network
Architectures

Encoder Layer 6
Learning Rate 5e-5 Transformer Hidden Dim. 768
Optimizer AdamW Heads Num. 12
[ZMO] Number 13 Action Decoder Layer 6
[ZV IS] Number 13*viewnum Action Transformer Hidden Dim. 768
Action Sequence 50 Action Heads Num. 12
Training Step 50K Action Loss Flow Matching

6.2.3 TRAINING AND INFERENCE

The training of our framework is organized into three stages: UVMC learning, UVMC-guided pre-
training, and policy fine-tuning. Each stage progressively aligns perception, representation, and
control while balancing computational efficiency.

In the first stage, the UVMC module, containing approximately 0.9B parameters, is pretrained on
large-scale multimodal data. This process consumed roughly 38,400 GPU hours on a cluster of 80
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Figure 8: Overview of the pretraining datasets used for XR-1. We combine Open-X, RoboMIND,
Ego4D, and our dataset XR-D, with a total of ∼1,264k episodes and 110M frames.

NVIDIA A100 GPUs (80GB each), enabling the model to capture both motion and visual dynamics
representations.

The second stage involves policy pretraining, where the complete model scales up to about 4B
parameters. This step also required around 38,400 GPU hours on the same hardware configura-
tion. The objective here is to integrate the pretrained UVMC representations into a unified vision-
language-action policy.

In the final stage, policy fine-tuning is performed for embodiment-specific adaptation. Each embod-
iment configuration is fine-tuned across 20 downstream tasks using 8 A100 GPUs (80GB), requiring
approximately 576 GPU hours per embodiment. This ensures that XR-1 and its variants generalize
effectively to diverse robotic environments while remaining computationally practical.

For inference, we emphasize both responsiveness and throughput. The system operates with an ac-
tion chunk inference frequency of about 5 Hz while maintaining an average action-level inference
rate close to 200 Hz (actions per second). These frequencies are achieved on a single commer-
cially available RTX 4090 GPU (24GB), demonstrating that despite large-scale pretraining costs,
deployment remains efficient without reliance on massive compute resources.

6.3 DATASET CURATION

Large-scale pretraining has consistently been shown to enhance both generalization and rapid adap-
tation in multimodal learning systems. Motivated by these findings, we curate a comprehensive
dataset tailored for robotic manipulation, integrating diverse sources of visual, linguistic, and action-
centric data. Our dataset construction draws from four complementary resources: Open-X (O’Neill
et al., 2024), which provides large-scale open-world manipulation trajectories; RoboMIND (Wu
et al., 2025a), a benchmark emphasizing reasoning-driven robotic tasks; Ego4D (Grauman et al.,
2022), a first-person human activity dataset offering rich egocentric perspectives; and XR-D, our in-
house collection spanning multiple robotic embodiments and task domains. Together, these sources
cover a wide spectrum of sensory modalities, embodiment variations, and task complexities, forming
a foundation for scalable pretraining.

The training procedure is organized into three progressive stages. In Stage-1, we pretrain a dual-
branch VQ-VAE on the combined datasets to learn disentangled latent representations of motion
and visual dynamics. In Stage-2, we leverage XR-D to pretrain the vision-language-action (VLA)
backbone, aligning multimodal perception with action generation across diverse embodiments. Fi-
nally, in Stage-3, we fine-tune on novel scenes and previously unseen tasks outside XR-D in order
to rigorously assess transferability and generalization beyond the pretraining distribution.

A detailed breakdown of dataset statistics, including scale, modality coverage, and embodiment
diversity across all sources used for UVMC pretraining, is provided in Figure 8 and Table 8.
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Table 8: Pretraining Dataset Details.

Dataset Episode Frames Weight
OXE (O’Neill et al., 2024) 978,582 59.3M 40%
FMB Dataset (Luo et al., 2025) 8611 1137340 0.88%
DROID (Khazatsky et al., 2024) 92233 27044326 9.43%
Language Table (Lynch et al., 2023) 442226 7045476 45.19%
Berkeley Autolab UR5 (Chen et al.) 896 87783 0.09%
Berkeley Fanuc Manipulation (Zhu et al., 2023a) 415 62613 0.04%
Berkeley Cable Routing (Luo et al., 2024) 1482 38240 0.15%
Berkeley Gnm Cory Hall (Kahn et al., 2018) 7331 156012 0.75%
Berkeley Gnm Recon (Shah et al., 2021) 11834 610907 1.21%
Berkeley Gnm Sac Son (Hirose et al., 2023) 2955 241059 0.30%
Berkeley MVP (Radosavovic et al., 2023b) 480 45308 0.05%
Berkeley RPT (Radosavovic et al., 2023a) 908 392578 0.10%
Bridge (Ebert et al., 2022; Walke et al., 2023) 25460 813372 2.60%
BC-Z (Jang et al., 2022) 43264 6015535 4.42%
Taco Play (Rosete-Beas et al., 2023; Mees et al., 2023) 3242 213972 0.33%
NYU Franka Play Dataset (Cui et al., 2023) 365 34448 0.04%
Asu Table Top (Zhou et al., 2022b; 2023) 110 26113 0.01%
Austin Buds Dataset (Zhu et al., 2022) 50 34112 0.01%
Austin Sailor Dataset (Nasiriany et al., 2022) 240 353094 0.02%
Austin Sirius Dataset (Liu et al., 2022) 559 279939 0.05%
CMU Play Fusion (Chen et al., 2023) 576 235922 0.05%
CMU Stretch (Bahl et al., 2023; Mendonca et al., 2023) 135 25016 0.01%
Columbia Cairlab Pusht Real (Chi et al., 2023) 122 24924 0.01%
DLR EDAN Shared Control (Vogel et al., 2020; Quere et al., 2020) 104 8928 0.01%
DLR Sara Grid Clamp (Padalkar et al., 2023a) 107 7622 0.01%
DLR Sara Pour (Padalkar et al., 2023b) 100 12971 0.01%
DobbE (Shafiullah et al., 2023) 5208 1139911 0.52%
Stanford Hydra Dataset (Belkhale et al., 2023) 570 358234 0.06%
Tokyo U Lsmo (Osa, 2022) 50 11925 0.01%
Toto (Zhou et al., 2022a) 902 294139 0.10%
UCSD Kitchen Dataset (Yan & Wang, 2023) 150 3970 0.02%
UCSD Pick and Place Dataset (Feng et al., 2023) 1355 67750 0.14%
UTAustin Mutex (Shah et al., 2023) 1500 361883 0.15%
U-Tokyo PR2 Opening Fridge (Oh et al., 2023) 64 9140 0.01%
U-Tokyo PR2 Tabletop Manipulation (Oh et al., 2023) 192 26346 0.02%
U-Tokyo xArm Bimanual (Matsushima et al., 2023) 64 1388 0.01%
U-Tokyo xArm Pick and Place (Matsushima et al., 2023) 92 6789 0.01%
Viola (Zhu et al., 2023b) 135 68913 0.01%
Fractal (Brohan et al., 2022) 87212 3786400 8.91 %
Furniture Bench Dataset (Heo et al., 2023) 5100 3948057 0.51%
IAMLab CMU Pickup Insert (Saxena et al., 2023) 631 146241 0.06%
Jaco Play (Dass et al., 2023) 976 70127 0.10%
Kaist Non-prehensile (Kim et al., 2023) 201 32429 0.02%
Kuka (Kalashnikov et al., 2018) 209880 2455879 21.45%
NYU Door Opening Surprising Effectiveness (Pari et al., 2022) 435 18196 0.04%
NYU ROT Dataset (Haldar et al., 2023) 14 440 0.01%
RoboSet (Bharadhwaj et al., 2024) 18250 1419999 1.86%
Roboturk (Mandlekar et al., 2019) 1796 168423 0.18%

RoboMIND (Wu et al., 2025a) 69274 21.4M 15%
Single-Arm Franka 16018 2268033 23.12%
Dual-Arm Franka 1774 375807 2.56%
Single-Arm UR-5e 25721 2643322 37.13%

Continued on next page
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Dataset Episode Frames Weight
AgileX Cobot Magic V2.0 10059 6477564 14.52%
Tien Kung 1.0 15702 9683213 22.67%

XR-D 158639 69.1M 35%
Single-Arm Franka 16933 5240845 10.67%
Dual-Arm Franka 56800 17140497 35.80%
Single-Arm UR-5e 21954 3218116 13.84%
Dual-Arm UR-5e 33916 5463729 21.38%
AgileX Cobot Magic V2.0 8004 16576019 5.05%
ARX LIFT 11866 15845836 7.48%
Tien Kung 1.0 9166 5605573 5.78%

Ego4D (Grauman et al., 2022) 59427 14.3M 10%

6.4 ADDITIONAL REAL-WORLD EXPERIMENTS

Table 9: Success rate results across 20 tasks on Tien Kung 1.0.

Method TK1-Close TK1-Flip TK1-Press TK1-Move TK1-Stack TK1-Stack TK1-Stack TK1-Pick TK1-Hang TK1-Open -Drawer TennisTube CookerButton ChopstickCup Cubes Cups Plates WipeTowel Towel PotLid

UniVLA 25 0 25 10 0 0 35 0 0 0 -
RDT 45 0 65 0 0 0 70 0 0 0 -

GR00T-N1.5 75 20 85 20 0 0 70 0 0 0 -
π0 75 40 45 25 0 0 80 0 0 0 -
π0.5 75 35 55 60 0 0 75 0 0 0 -

XR-1 (ours) 80 50 90 65 65 20 85 55 65 20 -

TK1-Open TK1-Pack TK1-Close TK1-Insert TK1-Flip TK1-Place TK1-Open TK1-Press TK1-Find TK1-Stack Avg.Oven EggBox Laptop Toaster Cup FlipButton TrashBin Machine Tape Bowls

UniVLA 30 0 0 30 0 0 25 20 20 30 12.5
RDT 0 0 90 0 0 0 85 55 0 0 20.5

GR00T-N1.5 55 0 15 40 0 0 70 45 45 45 29.3
π0 75 10 90 65 10 15 75 70 70 80 41.3
π0.5 80 20 95 65 30 25 65 75 75 80 45.5

XR-1 (ours) 80 65 95 70 65 65 85 75 75 90 68.0

Results on Tien Kung 1.0. Table 9 reports success rates across 20 tasks on Tien Kung 1.0. XR-1
again outperforms all baselines by a clear margin. For example, in TK1-HangTowel, it achieves
65% success while all baselines fail (0%). Overall, XR-1 attains an average success rate of 68.0%,
substantially higher than π0 (41.3%) and more than double RDT (20.5%) and UniVLA (12.5%).
These results highlight the effectiveness of UVMC supervision in providing robust representations
and stable optimization across diverse manipulation skills.

Table 10: Success rate results across 20 tasks on Dual-Arm Franka.

Method DFR-Move DFR-Stack DFR-Sweep DFR-Transfer DFR-Move DFR-Stack DFR-Stack DFR-Clean DFR-Hang DFR-Hang -CupMilk Bowls Trash Cup Chopstick Cubes Plates Table CupHolder TowelRack

UniVLA 15 20 0 30 0 5 25 35 0 20 -
RDT 55 40 0 0 15 60 90 65 0 0 -

GR00T-N1.5 80 85 35 55 0 15 45 90 25 50 -
π0 0 75 35 60 0 75 80 80 0 25 -
π0.5 15 85 60 40 0 55 90 85 45 20 -

XR-1 (ours) 80 85 75 90 55 60 90 90 65 60 -

DFR-Find DFR-Pick DFR-Sweep DFR-Close DFR-Collect DFR-Place DFR-Get DFR-Place DFR-Open DFR-Place Avg.TapeBox ButtonPress Rubbish Toolbox BasketTea Tools Blocks RagWipe Toolbox Screws

UniVLA 25 0 0 15 10 0 25 20 0 0 12.3
RDT 0 20 0 25 0 0 5 55 0 0 21.5

GR00T-N1.5 80 0 0 85 35 0 70 0 0 0 37.5
π0 90 30 0 0 0 0 75 70 50 0 37.3
π0.5 65 25 30 0 0 60 75 70 0 0 41.0

XR-1 (ours) 90 75 60 90 75 60 85 70 60 55 73.5

Results on Dual-Arm Franka. Table 10 reports success rates across 20 tasks on the Dual-Arm
Franka. XR-1 achieves the highest average performance (73.5%), substantially outperforming π0

(37.3%) and other baselines. For example, in DFR-TransferCup it reaches 90% success, while all
alternatives fall below 60%. It is because XR-1 leverages UVMC for richer supervision, yielding
robust representations and stable learning across diverse objectives.
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Table 11: Success rate results across 20 tasks on AgileX Cobot Magic V2.0.

Method AGX-Open AGX-Move AGX-Stack AGX-Find AGX-Sweep AGX-Arrange AGX-Hang AGX-Place AGX-Close AGX-Gather -DrawerButton ButtonDrawer Boxes TapeBox Rubbish Valves Scissors Button Toolbox Screws

UniVLA 25 15 0 0 0 0 25 25 20 0 -
RDT 70 75 20 60 0 30 0 60 0 0 -

GR00T-N1.5 85 75 20 75 0 45 0 80 0 0 -
π0 85 85 0 60 0 45 0 0 0 0 -
π0.5 35 70 40 80 15 35 0 70 35 30 -

XR-1 (ours) 90 80 45 75 25 45 80 85 90 30 -

AGX-Find AGX-Place AGX-Collect AGX-Place AGX-Pour AGX-Stack AGX-Mesh AGX-Pour AGX-Hang AGX-Stack Avg.Circuit BiscuitBox BasketTea Screwdriver GearOil BrakePads StackCup Wine WipeRag Bowls

UniVLA 0 0 0 0 10 10 25 0 0 20 8.8
RDT 0 0 0 0 0 55 0 0 65 85 28.5

GR00T-N1.5 0 50 45 0 0 0 0 0 20 70 24.0
π0 0 40 45 55 40 0 55 0 50 90 32.5
π0.5 20 60 25 30 55 40 15 20 60 90 41.3

XR-1 (ours) 15 60 35 35 75 85 90 20 55 85 60.0

Results on AgileX Cobot Magic V2.0. Table 11 reports success rates on 20 tasks with the AgileX
Cobot Magic V2.0. XR-1 achieves an average of 60.0%, nearly doubling π0 (32.5%) and far surpass-
ing UniVLA (8.8%). On challenging tasks such as AGX-StackBrakePads and AGX-CloseToolbox,
it reaches 85−90%, while other methods collapse to near 0%. We attribute these gains to UVMC-
driven representations, which provide richer supervision and stabilize multi-task optimization.

Table 12: Success rate results across 20 tasks on Single-Arm UR-5e.

Method SUR-Find SUR-Move SUR-Stack SUR-Open SUR-Close SUR-Insert SUR-Place SUR-Stack SUR-Stack SUR-Stack -Tape MilkCup Bowls Drawer Drawer ToyBlock Chopstick Cubes Cup Plates

UniVLA 35 25 50 20 35 0 0 0 0 0 -
RDT 80 35 20 35 45 0 0 0 0 0 -

GR00T-N1.5 85 70 80 25 70 0 0 0 25 0 -
π0 25 55 90 50 85 0 0 80 0 55 -
π0.5 55 30 95 85 95 0 35 90 90 85 -

XR-1 (ours) 95 85 95 90 90 15 20 90 85 85 -

SUR-Slide SUR-Open SUR-Open SUR-Pack SUR-Close SUR-Insert SUR-Assemble SUR-Pour SUR-Pour SUR-Wipe Avg.Drawer UpperDrawer Oven EggBox Laptop Bread Valve TubeBeaker GearOil HangRag

UniVLA 30 30 35 0 35 0 30 0 20 30 18.8
RDT 40 35 55 15 50 0 15 10 35 30 25.0

GR00T-N1.5 45 65 80 0 90 0 80 0 10 30 37.8
π0 75 90 55 20 85 30 20 10 45 75 47.3
π0.5 90 90 95 80 90 85 25 10 50 75 67.5

XR-1 (ours) 80 90 90 70 90 65 90 20 85 75 75.3

Results on Single-Arm UR-5e. Table 12 summarizes success rates over 20 tasks on the Single-
Arm UR-5e. XR-1 achieves the highest average success of 75.3%, clearly surpassing π0 (47.3%)
and all other baselines. XR-1 maintains strong performance (65% and 85%) on hard tasks like SUR-
InsertBread and SUR-StackPlates where baselines often collapse to near 0%. These results highlight
the robustness and generalization ability of XR-1 enabled by UVMC.

Table 13: Success rate results across 20 tasks Dual-Arm UR-5e.

Method DUR-Find DUR-Move DUR-Stack DUR-Sweep DUR-Trans DUR-Stack DUR-Hang DUR-Stack DUR-Sweep DUR-Press -TapeBasket CupMilk Bowls Trash CupHolder Cubes CupHolder Brake Rubbish Button

UniVLA 30 35 35 20 0 0 0 0 0 10 -
RDT 45 65 50 0 30 0 60 15 10 20 -

GR00T-N1.5 25 60 80 0 0 0 0 0 0 0 -
π0 70 55 80 55 15 15 10 0 0 35 -
π0.5 45 65 90 60 55 20 10 85 70 80 -

XR-1 (ours) 85 65 85 60 65 20 85 65 80 85 -

DUR-Pick DUR-Close DUR-Assemble DUR-Flip DUR-Place DUR-Close DUR-Take DUR-Pick DUR-Open DUR-Trans Avg.PlaceTape Toolbox Valve TennisTube Tools DoorKnob BasketTea Toolbox TrashBin Buttons

UniVLA 35 30 25 20 30 40 25 30 30 0 19.8
RDT 85 10 0 35 0 20 85 0 0 0 26.5

GR00T-N1.5 55 0 50 45 65 80 90 55 85 0 34.5
π0 20 85 0 70 35 85 80 70 55 20 42.8
π0.5 65 90 45 70 65 50 90 75 75 35 62.0

XR-1 (ours) 85 90 55 80 65 90 90 75 85 30 72.0

Results on Dual-Arm UR-5e. In addition to the bar plot reported in Figure 4, we provide the
corresponding numerical results in Table 13. The table summarizes success rates across 20 tasks on
the Dual-Arm UR-5e, offering a more detailed comparison among different methods.
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6.5 ADDITIONAL GENERALIZATION ANALYSIS
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Figure 9: Out-of-box evaluation results of 7 tasks on Dual-Arm UR-5e.

Out-of-Box Evaluation. In addition to the evaluation on the Dual-Arm UR-5e, we also conduct
an out-of-box evaluation of XR-1 on the Dual-Arm Franka. Specifically, we select 7 representa-
tive tasks from XR-D, covering only 0.9% of the dataset. To ensure a fair comparison, baselines
without XR-D pretraining are fine-tuned on data from these tasks prior to evaluation. As shown in
Figure 9, the pretrained XR-1-oob model, even without Stage-3 task-specific adaptation, achieves
performance comparable to π0, while consistently outperforming GR00T-N1.5, RDT, and UniVLA.
This result highlights XR-1’s strong generalization ability in low-data regimes.
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Figure 10: Fast adaption on Dual-Arm UR5e. Dual-Arm UR5e is an embodiment included in XR-D.
In this setup, Here, XR-1 adapts to 15 novel tasks with one model using only 20-shot demonstrations
per task, while baselines (ACT and DP) are trained per task.

Fast Adaptation to New Tasks. Beyond the experiments on Tien Kung 2.0, we also evaluate fast
adaptation on the Dual-Arm UR-5e. Specifically, we collect 15 new tasks that are unseen in XR-D,
each with 20 trajectories for training. XR-1 is trained jointly across these tasks, while single-task
baselines, ACT (Zhao et al., 2023) and Diffusion Policy (DP) (Chi et al., 2023), are trained indepen-
dently per task. As shown in Figure 10, XR-1 achieves substantially higher success rates than ACT
and DP, even though the evaluation setting is more favorable to the baselines. This performance
gain can be attributed to large-scale pretraining combined with UVMC supervision, which enables
XR-1 to extract transferable representations from few-shot data and adapt effectively across diverse
manipulation tasks.

6.6 ADDITIONAL ABLATION STUDY

Ablation study of UVMC. To obtain deeper insights into the UVMC architecture and its key hy-
perparameter choices, we conduct 10 ablation experiments, as summarized in Table 14, with Exp.10
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serving as the baseline. By comparing Exp.1–6 against Exp.10, we analyze the influence of different
codebook category numbers and code dimensions on the final performance. For the code dimension,
Exp.1–3 adopt 64, 128, and 512, respectively, and are compared with the baseline setting of 256 in
Exp.10. The results show that when the dimension is below 256, policy performance consistently
improves as the dimension increases from 64 to 128 and 256, while further increasing it to 512 yields
no clear additional gains, suggesting that a dimension of 256 is already near-optimal. Using a similar
protocol in Exp.4–6 for the category number, we finally adopt 256 categories and a 256-dimensional
codebook as our default configuration. Next, by comparing Exp.7–8 with Exp.10, we evaluate the
difference between using only motion codes, only vision codes, and the unified vision–motion code
(UVMC). The results indicate that both motion-only and vision-only variants underperform the uni-
fied UVMC. Moreover, vision-only codes outperform motion-only codes, while combining both
modalities within UVMC leads to complementary effects and improved overall performance. Fi-
nally, by comparing Exp.9 and Exp.10, we investigate whether a combined or separate codebook
is more effective. The results show that both designs achieve comparable performance, which we
attribute to the alignment loss imposed during training: although a separate codebook increases the
number of learnable codes, the alignment constraint effectively regulates cross-modal relationships,
leading to similar execution capabilities for both schemes.

Table 14: Ablation study of UVMC.

Exp. Codebook Category×Embed.Dim UVMC Token Stage-1&2&3 DUR-Clean DUR-Find DUR-Move DUR-Stack DUR-Sweep DUR-Trans AvgTable TapeBasket CupMilk Bowls Trash CupHolder

1 combine 256×64 both DT 35 55 50 60 35 45 46.7
2 combine 256×128 both DT 45 65 60 70 55 65 60.0
3 combine 256×512 both DT 55 75 50 85 65 55 64.2
4 combine 64×256 both DT 45 60 55 65 35 50 51.7
5 combine 128×256 both DT 50 65 55 65 60 60 59.2
6 combine 512×256 both DT 40 80 60 80 55 65 63.3
7 combine 256×256 motion-only DT 25 70 35 60 5 15 35.0
8 combine 256×256 vision-only DT 10 70 65 70 15 65 50.0
9 separate 256×256 both DT 55 75 55 85 40 80 65.0

10 combine 256×256 both DT 50 75 65 80 60 70 66.7

Ablation study of Ego4d. To further examine the contribution of human video data (Ego4D) in the
pre-training stage, we conduct a set of ablation experiments, as summarized in Table 15. To balance
computational cost and the reliability of the conclusions, we use 10% of the full pre-training dataset
for these comparisons. Under this setting, we evaluate two variants: one with Ego4D included in
the pre-training data and one without Ego4D (w/o Ego4D). As shown in Table 15, removing Ego4D
leads to a 5.8% drop in average success rate compared to the setting that includes Ego4D. These
results quantitatively suggest that incorporating Ego4D into the pre-training data can effectively
improve performance.

Table 15: Ablation study of Ego4d.

Exp. Instantiation Stage-1 Stage-2 Stage-3 DUR-Clean DUR-Find DUR-Move DUR-Stack DUR-Sweep DUR-Trans AvgTable TapeBasket CupMilk Bowls Trash CupHolder

1 XR-1 w/o Ego4D 10% XR-D ✓ 20 60 10 55 15 35 32.5
2 XR-1 w/ Ego4D 10% XR-D ✓ 25 60 25 60 20 40 38.3

Cross-Embodied Knowledge Transfer for Enhanced Single Embodiment Performance. This
setup is designed to verify whether similar tasks across different embodiments can mutually benefit
each other. Since the UVMC counterpart of XR-1 learns an embodiment-agnostic feature, this
setup serves to validate that capability. Specifically, we selected two identical tasks (FindTape and
SweepRubbish) across three different embodiments (Dual-Arm Franka, Dual-Arm UR5e, and Tien
Kung 2.0). The detailed results are shown in Table 16. Exp. 2 represents the results of training these
two skills across three different embodiments, resulting in six tasks. In the comparative experiment
setup, training two skills for a specific embodiment typically results in only two tasks. Therefore,
to ensure fairness, in Exp. 1, we added four additional tasks for the same embodiment, ensuring
that the data volume is equivalent. The final results indicate that learning the same skills across
different embodiments can enhance the success rate of each embodiment’s skills, increasing the
average success rate by approximately 15%. This demonstrates that the UVMC module has learned
an embodiment-agnostic beneficial feature.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 16: Ablation study of XR-1 on cross-embodiment knowledge transfer.

Exp. Instantiation Stage-1 Stage-2 Stage-3 DFR-Find DFR-Sweep DUR-Pick DUR-Sweep TK2-Take TK2-Sweep Avg.TapeBox Rubbish PlaceTape Rubbish Tape Rubbish

1 XR-1 100% XR-D SelfRobot 50 20 70 50 60 30 47
2 XR-1 100% XR-D CrossRobot 70 30 70 60 70 70 62

6.7 VISUALIZATION OF UNIFIED VISION-MOTION CODES

6.7.1 FRAME-TO-FRAME NEAREST-NEIGHBOR RETRIEVAL BETWEEN MOTION AND VISION
CODES

Figure 11: Frame-to-Frame Nearest-neighbor Retrieval between motion and vision codes. In
the first column, we select two representative skill actions, grasp and move, and compute their Mo-
tion Codes (MC). Columns two through five report the cosine distances between Motion Code (MC)
and Vision Code (VC) features and their nearest and farthest neighbors under four settings: Same
Embodiment with a Similar Task (SE.ST.), Same Embodiment with a Different Task (SE.DT.), Dif-
ferent Embodiment with a Similar Task (DE.ST.), and Different Embodiment with a Different Task
(DE.DT.). For the different-embodiment setting, we use a dual-arm Franka robot. To standardize
the notion of left and right across embodiments, we define them with respect to the outward-facing
direction of the embodiment.

To further evaluate whether the vision code (VC) and motion code (MC) are semantically aligned
in the latent space, we design a nearest-neighbor retrieval experiment, as shown in Figure 11. We
select 7 tasks, each with 10 trajectory episodes, and compute the VC and MC for all frames in
each episode. At the current time step T , we extract the MCs corresponding to the actions GRASP
and MOVE, as illustrated in the first column of Figure 11, and visualize the image of the current
frame to better interpret the motion code semantics. We then compute VC features from different
tasks and embodiments and, using cosine similarity, identify for each MC feature at time T its
nearest-neighbor and farthest-neighbor VC feature. Columns two through five of Figure 11 report
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the cosine distances between MC and VC features under four settings: Same Embodiment with a
Similar Task (SE.ST.), Same Embodiment with a Different Task (SE.DT.), Different Embodiment
with a Similar Task (DE.ST.), and Different Embodiment with a Different Task (DE.DT.). For the
different-embodiment setting, we use a dual-arm Franka robot. To standardize the notion of left
and right across embodiments, we define them with respect to the outward-facing direction of the
embodiment.

Comparing SE.ST. with GRASP and MOVE shows that, under the same embodiment and a simi-
lar task, the nearest-neighbor VC for a given MC consistently reflects the same action semantics,
whereas the farthest-neighbor images display clearly different motions. Under the SE.DT. setting,
despite task changes, the nearest-neighbor VCs still capture the semantics of grasp or move, while
the farthest-neighbor images correspond to distinct motions. In the DE.ST. setting, even with differ-
ent embodiments, the nearest-neighbor frames for a similar task consistently depict similar actions,
in contrast to the clearly different motions in the farthest-neighbor images. Likewise, in the DE.DT.
setting, nearest-neighbor retrieval continues to select frames whose semantics are closest to grasp or
move, despite differences in both embodiment and task, whereas the farthest-neighbor images rep-
resent dissimilar actions. Together, these visualizations demonstrate that UVMC successfully learns
semantic representations of different actions, and that these representations become embodiment-
agnostic.

6.7.2 TASK-TO-TASK NEAREST-NEIGHBOR RETRIEVAL BETWEEN MOTION AND VISION
CODES

Figure 12: Task-to-task nearest-neighbor retrieval between motion and vision codes. It illus-
trates four different tasks and annotates the corresponding process phase at each timestep. For each
task, the annotations correspond one-to-one to the four experimental settings in Table 17, represent-
ing the actual procedure used to compute nearest-neighbor retrieval across different tasks.

In the preceding analysis (Appendix 6.7.1), we primarily evaluate nearest-neighbor retrieval per-
formance at the frame-to-frame level for representative skills (e.g., grasp, move) under different
experimental settings (SE.ST., SE.DT., DE.ST., DE.DT.). To further investigate cross-task similar-
ity from an episode-to-episode perspective, we construct the nearest-neighbor similarity distribution
as illustrated in Figure 12. Specifically, we select four distinct tasks and perform pairwise com-
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Table 17: Task-to-task Nearest-neighbor similarity statistics

Exp. The mode of similarity distribution Average

SE.ST. (Task1.MC vs Task1.VC) 0.97 0.75
DE.ST. (Task1.MC vs Task2.VC) 0.82 0.67
SE.DT. (Task1.MC vs Task3.VC) 0.60 0.56
DE.DT. (Task1.MC vs Task4.VC) 0.46 0.48

parisons among them, following the same experimental configurations as before (SE.ST., SE.DT.,
DE.ST., DE.DT.). Specifically, let the motion code of the i-th frame in the source task be denoted by
MCi, and the vision code of the j-th frame in the target task be denoted by VCj . We first compute
the similarity between each MCi in the source task and all VCj in the target task:

S ∈ RTs×Tt , Si,j = sim(MCi,VCj),

where Ts and Tt denote the number of frames in the source and target tasks, respectively. Based on
this matrix S, we perform a column-wise maximization, i.e., for each target frame j, we select from
all source frames the motion-vision pair that attains the highest similarity:

sj = max
1≤i≤Ts

Si,j .

In this way, we reduce the original two-dimensional similarity matrix to a similarity vector:

s = [s1, s2, . . . , sTt ],

which characterizes, for each target frame, its nearest-neighbor similarity with the source task. Fi-
nally, we normalize the elements of s to obtain a normalized nearest-neighbor similarity vector s̃,
whose values are constrained to lie within [0, 1], enabling comparable and stable statistical analysis
across different tasks.

In Table 17, we report pairwise comparison results across different tasks. We take task 1 as the
reference and use cosine similarity to quantify representational similarity between tasks. Under
the SE.ST. setting, the mode of the similarity distribution is close to 1, indicating that for iden-
tical embodiments and tasks the model learns highly consistent representations between MC and
VC. Among the remaining three settings, DE.ST. has the highest mode, suggesting that UVMC
learns features that are largely independent of embodiment and instead capture action-centric skills.
Comparing DE.ST. with SE.DT. further supports this: different-embodiment but similar-task pairs
exhibit higher overall similarity than same-embodiment but different-task pairs, implying stronger
semantic alignment for shared skills than for shared morphology alone. Although DE.DT. has the
lowest mode, it still retains non-trivial similarity, indicating that shared low-level skills (such as
pick, handover, and place) give rise to stable cross-task, cross-embodiment similarity in the learned
representations. We also compute the average nearest-neighbor similarity under these settings and
observe consistent conclusions. Consequently, these analyses demonstrate that UVMC learns se-
mantically meaningful action representations that are largely invariant to embodiment.

6.7.3 VISUALIZING UVMC WITH T-SNE

To qualitatively validate whether UVMC effectively captures intrinsic task dynamics and abstracts
away physical embodiment details, we employ t-SNE to project the high-dimensional latent em-
beddings into a two-dimensional manifold. We conduct this analysis on two distinct subsets: (1)
a single-robot scenario involving 6 tasks performed by a dual-arm UR robot (Figure 13), and (2) a
mixed-embodiment scenario comprising both dual-arm Franka and dual-arm UR robots (Figure 14).
The visualization reveals two critical properties of the representation learned by UVMC.

Semantic Consistency of Dynamics. As shown in Figure 13, the embedding space exhibits a struc-
tured organization where tasks characterized by similar motion primitives form cohesive, proximal
clusters. Specifically, in the lower-right corner, tasks sharing the ”left-arm pick” primitive—namely
DUR-CleanTable, DUR-StackBowls, and DUR-SweepTrash—are grouped closely together. This
suggests the model successfully encodes the shared underlying semantics of the grasping motion.
Conversely, the model effectively isolates distinct behaviors. Observing the upper region of the plot,
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UVMC: 
left-arm hold

Figure 13: Visualizing UVMC on 6 dual-arm UR tasks using t-SNE.

a cluster of brown points forms a distinct island separate from other task embeddings. This cluster
corresponds to the sweeping and translational motions unique to the DUR-SweepTrash task. This
separation demonstrates that UVMC can effectively disentangle common dynamical patterns (e.g.,
picking) from task-specific nuances (e.g., sweeping).

Task:
DFR-CleanTable

UVMC: 
Dual-Arm Clean

Task:
DUR-CleanTable

Task:
DUR-HangCupHolder

UVMC: 
Dual-Arm Hang
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DUR-StackBowls
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Right-Arm Pick

Task:
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DUR-HangCupHolder

DUR-StackBowls

UVMC: 
Right-Arm 
Mid Move

Figure 14: Visualizing UVMC across different embodiments (Dual-Arm Franka and Dual-Arm UR)
using t-SNE.

Cross-Embodiment Alignment. A central hypothesis of our approach is that the learned represen-
tation should be embodiment-agnostic. Figure 14 substantiates this by illustrating the embedding
space for identical tasks executed by morphologically distinct robots. Notably, the embeddings for
DFR-CleanTable (represented in red) and DUR-CleanTable (represented in yellow) share a common
support and overlap significantly within the latent manifold. Despite the kinematic and appearance
discrepancies between the Franka and UR robots, UVMC projects their state-action trajectories onto
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a unified manifold. This result indicates that the model has learned a robust, embodiment-invariant
representation that prioritizes high-level task semantics over low-level proprioceptive differences.

6.8 FAILURE CASE ANALYSIS ON BASELINE METHODS

We conducted a qualitative analysis of the rollout videos to investigate why baselines struggle com-
pared to XR-1. We categorize the observed failures into two primary modes:

Optimization Collapse and Conflicting Gradients. In some distinct scenarios, baselines fail to
capture the correct motion trend entirely. The models exhibit ”hesitation” or revert to the mean
pose, suggesting that the optimization objective is torn between conflicting gradients from different
tasks. Example: In the ‘DFR-CloseToolbox‘ task, the π0 policy initiates a downward movement
with the right arm but immediately retracts to the initial position. The robot appears indecisive and
fails to commit to the task trajectory. We attribute this to the difficulty of fitting a single policy
distribution to 20 diverse tasks without task-distinguishing representations.

Precision Deficiency & Coordination Failure: DUR-TransCupHolder

Optimization Collapse & Conflicting Gradients: DFR-CloseToolbox

Hesitation Down Wrong Action

� 0
GR

00
T-

N
1.

5

Imprecise Drop Drop

Figure 15: Failure cases of baseline methods.

Precision Deficiency and Coordination Failure. The most common failure mode involves the
robot attempting the correct action but failing in execution precision or bimanual coordination. Ex-
ample: In the ‘DUR-HangCupHolder‘ task, GR00T-N1.5 successfully grasps the cup with the right
arm. However, it drops the cup during the handover to the left arm. This indicates that while the
model learns the general policy distribution, it lacks the fine-grained control and temporal consis-
tency required for complex, multi-stage manipulation.

XR-1 addresses these issues through the Unified Vision-Motion Condition (UVMC) introduced in
Stage 1. The UVMC serves as a compact representation of visual dynamics and motion patterns. By
conditioning the policy on UVMC, XR-1 can explicitly distinguish between different task modes,
thereby reducing gradient conflicts during multi-task optimization. As an intermediate feature super-
vision signal, UVMC guides the model to generate smoother and more physically consistent actions.
This additional supervision is critical for tasks requiring high precision (e.g., dual-arm handover),
preventing the coordination failures observed in baselines like GR00T.

6.9 FAILURE CASE ANALYSIS ON XR-1

Precision Deficiency. The most common failure mode involves the robot attempting the cor-
rect action but failing in execution precision or bimanual coordination. Example: In the ‘TK2-
CollectScrews‘ task, the robot may fail to grasp a tiny screw or drop it mid-motion due to slight
localization errors. This reflects the inherent difficulty of learning precise, bimanual coordination
for dexterous manipulation tasks.
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Figure 16: Failure Cases of XR-1.

6.10 SIMULATION BENCHMARK

We conduct simulation experiments on SimplerEnv (Li et al., 2024), a real-to-simulation manipu-
lation benchmark. Concretely, policies are trained on real-robot data from BridgeData V2 (Walke
et al., 2023) and then evaluated in SimplerEnv, as illustrated in the left part of Figure 17.To evaluate
the effectiveness of our approach, especially UVMC, we compare XR-1 against the baseline π0. In
these experiments, we set the action chunk size to 4 and train for 60k iterations while keeping all
other hyperparameters identical to those used for real-robot experiments. As shown in the right part
of Figure 17, XR-1 achieves a higher average success rate than π0, with an overall improvement of
27%. This result demonstrates that our method provides consistent performance gains even in the
simulation setting.

Figure 17: Simulation benchmark – SimplerEnv. The left panel illustrates one SimplerEnv setting,
where policies are pretrained on real-robot data from BridgeData V2 and then evaluated in the
simulation environment. The right panel reports the test performance of XR-1 and π0 on SimplerEnv.

6.11 REPRESENTATIVE TASKS

As illustrated in Figure 18, we select a set of representative tasks from real-world experiments to
provide detailed descriptions of the evaluation scenarios. These tasks are designed to cover a broad
spectrum of challenges, including bimanual collaboration, dexterous manipulation, fluid/deformable
object handling, contact-rich interactions, dynamic environments, and long-horizon manipulation.
Together, they demonstrate the versatility and robustness of XR-1 across diverse manipulation set-
tings.

• Bimanual Collaboration: DUR-TransCupHolder. This task involves a coordinated bi-
manual operation: the right arm initially grasps a cup, performs an aerial handover to the
left arm, which subsequently places the cup into a cup rack.

• Dexterous Manipulation: DUR-CloseDoorKnob. The robot performs a dexterous oper-
ation to close and lock the control box door. The right arm first manipulates the door to
a closed position. Subsequently, the left arm rotates the door handle by 90 degrees and
presses it inward to engage the locking mechanism.
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Figure 18: Diverse task settings in evaluation: bimanual collaboration, dexterous manipulation, de-
formable object handling, contact-rich interactions, dynamic environments, and long-horizon tasks.
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• Fluid Object Handling: SUR-PourTubeBeaker. The task consists of three phases: remov-
ing a test tube from the rack, pouring its liquid into a measuring cup, and returning the test
tube to the rack.

• Deformable Object Handling: DFR-HangTowelRack. The robot performs a bimanual
manipulation task involving deformable object handling: the right arm first picks up a
towel from a surface and transfers it to the left arm via an aerial handover; the left arm then
manipulates the towel to drape it over a towel rack, completing the hanging motion.

• Contact-Rich Interactions: DFR-SweepRubbish. A dual-arm cleaning task is executed
where the right arm operates a broom and the left arm stabilizes a dustpan. The robot
systematically sweeps food remnants and a crumpled paper ball into the dustpan, followed
by transporting and emptying the dustpan into a waste bin after each collection.

• Dynamic Environments: DUR-TransButtons. The robot’s left arm loads colored button
workpieces onto a moving conveyor belt, while the right arm autonomously identifies each
part’s color upon arrival and places it into the respective color-matched container.

• Long-Horizon Manipulation: AGX-StoreButton. This task entails a sequential dual-arm
interaction: the left arm opens a drawer and holds it open, enabling the right arm to place a
button workpiece inside; the left arm then closes the drawer after object deposition.

6.11.1 DATASET FOR EVALUATION

The dataset is primarily employed for the final fine-tuning stage of XR-1, and for training and
evaluation of multiple baselines on this benchmark.

Table 18: The tasks summary of our real-world experiments.

# Task Trajectory Task Instruction Task Setting
Num. Avg. Len.

Dual-Arm UR5e

T1 DUR-
FindTapeBasket 160 155 Find the packaging tape and put

it into the other basket

T2 DUR-
MoveCupMilk 198 149

Place the cup in the middle of the
table and pick up the milk and
place it next to the cup.

T3 DUR-
StackBowls 158 147

Put the blue bowl in the middle
of the table and stack the green
bowl on top of it

T4 DUR-
SweepTrash 192 293 Sweep up the rubbish and take

out the trash

T5 DUR-
TransCupHolder 167 170

Pick up the cup with the right
arm, hand it over to the left arm,
and hang it on the holder with the
left arm

T6 DUR-
StackCubes 158 153

Put the blue cube in the middle of
the desk and stack it on top of the
other blue cube

Continued on next page
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# Task Trajectory Task Instruction Task Setting
Num. Avg. Len.

T7 DUR-
HangCupHolder 167 223 Hang the cup on the holder

T8 DUR-
StackBrake 200 81

Use the left arm to place Brake
Pad Type A in the middle, then
use the right arm to pick up Brake
Pad Type B and stack it on top of
Brake Pad Type A

T9 DUR-
SweepRubbish 185 157 Sweep up the rubbish

T10 DUR-
PressButton 183 121 Pick up and place the green but-

ton, then press it

T11 DUR-
PickPlaceTape 192 111 Pick up and place the adhesive

tape

T12 DUR-
CloseToolbox 114 190 Use both arms to close the tool-

box

T13 DUR-
AssembleValve 253 108 Assemble the valve

T14 DUR-
FlipTennisTube 123 127 Put the tennis tube upright

T15 DUR-
PlaceTools 198 102

Use the left arm to place the
screwdriver on the left side of the
toolbox, and use the right arm to
place the wrench on the right side
of the toolbox

T16 DUR-
CloseDoorKnob 201 147

The right arm closes the distri-
bution box door, and the left
arm turns and presses the closing
knob

T17 DUR-
TakeBasketTea 198 147

The right arm places the shop-
ping basket in the middle, while
the left arm takes tea drinks from
the shelf and puts them inside

T18 DUR-
PickToolbox 200 117 Use both arms to pick up the tool-

box
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T19 DUR-
OpenTrashBin 28 45 Open the trash bin

T20 DUR-
TransButtons 146 184

Transport the buttons from left to
right and place them in the corre-
sponding plates

T21 DUR-
CleanTable 197 183

Move the buttons from left to
right and place them on the cor-
responding plates

Tien Kung 2.0

T1 TK2-
PressButton 291 292

The left arm picks up the green
button and places it in the middle,
while the right arm presses it

T2 TK2-
AssembleValve 162 382 Assemble the valve

T3 TK2-
StackBrake 178 261

Use the left arm to place Brake
Pad Type A in the middle, and
use the right arm to pick up Brake
Pad Type B and stack it on top of
Brake Pad Type A

T4 TK2-
PlaceCircuit 209 359

The left arm picks up the cir-
cuit breaker from the red tray and
places it in the middle of the ta-
ble. Then the right arm picks up
the circuit breaker and puts it into
the blue tray on the right.

T5 TK2-
PressControlBox 256 292

The left arm places the control
box in the middle, while the right
arm presses the red emergency
stop button on it

T6 TK2-
CloseDoorKnob 197 271

The right arm closes the door of
the distribution box, and the left
arm rotates and presses the clos-
ing knob.

T7 TK2-
GatherTools 177 452

Use the left arm to place the
screwdriver on the left side of the
toolbox, and use the right arm to
place the wrench on the right side

T8 TK2-
CloseLaptop 189 186 Close the laptop

T9 TK2-
OpenPotLid 190 304 Open the blue pot lid
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T10 TK2-
HangCupHolder 144 277 Hang the oval-bottom cup on the

holder

T11 TK2-
MoveCupSauce 129 312

Move the blue cup, pick up the
yellow sauce bottle, and pour it
into the blue cup

T12 TK2-StackCup 161 291 Stack the blue cups

T13 TK2-
InsertToyBlock 152 521

Insert the blue toy into the
square-bottom slot of the grey
block

T14 TK2-
FindCapacitor 232 370

The left arm picks up the red
electrolytic capacitor from the
blue tray and places it in the mid-
dle of the table. Then the right
arm picks it up and puts it into the
red tray on the right

T15 TK2-
MoveMilkMug 279 284 Pick up and place the milk, then

move the white mug

T16 TK2-
PourGearOil 152 503

The left arm places the gear on
the middle metal tray, while the
right arm pours lubricating oil on
it

T17 TK2-
PlaceBiscuitBox 133 447

Pick up the biscuit box from the
blue basket with the right arm
and place it in the middle of the
table. Then, use the left arm to
place it on the middle shelf of the
black rack

T18 TK2-
CollectScrews 192 620

The right arm places the two
long screws into the slot at the
very right end of the storage box,
while the left arm places the two
short screws into the slot at the
very left end of the storage box

T19 TK2-
MoveTape 182 547 Pick up and place the rattan bas-

ket

T20 TK2-
TakeBasketTea 197 497

The right arm places the shop-
ping basket in the middle, while
the left arm takes tea drinks from
the shelf and puts them inside
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T21 TK2-TakeTape 297 357 Pick up and place the adhesive
tape

T22 TK2-
SweepRubbish 239 421 Sweep up the rubbish

Tien Kung 1.0

T1 TK1-FindTape 446 793
Find the packaging tape, pick it
up, and place it into another bas-
ket

T2 TK1-
StackBowls 260 497

Put the blue bowl in the middle
of the table, then stack the green
bowl on top of it

T3 TK1-
CloseDrawer 231 223 Slide the drawer closed

T4 TK1-
FlipTennisTube 300 535 Put the tennis tube upright

T5 TK1-
PressCookerButton98 187 Press the rice cooker’s off button

T6 TK1-
MoveChopstickCup274 574

Move the blue cup to the middle,
then place one chopstick from the
bamboo holder into it

T7 TK1-
StackCubes 200 520 Stack the two blue cubes

T8 TK1-
StackCups 200 487 Move the blue cup and stack it

with the other blue cup

T9 TK1-
StackPlates 200 449

Place the pink plate into the beige
plate in the middle, then stack the
blue plate on top of the pink plate

T10 TK1-
PickWipeTowel 222 643 Pick up a towel and wipe the wa-

ter with it
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T11 TK1-
HangTowel 242 620

Pick up the towel with the right
arm, hand it over to the left arm,
and hang it on the rack with the
left arm

T12 TK1-
OpenPotLid 104 486 Open the pot lid

T13 TK1-
OpenOven 21 228 Open the oven

T14 TK1-
PackEggBox 192 315 Put the egg into the box and close

the lid

T15 TK1-
CloseLaptop 174 188 Close the laptop screen

T16 TK1-
InserToaster 174 254 Insert the bread into the toaster

T17 TK1-FlipCup 153 578 Flip the cup upright

T18 TK1-
PlaceFlipButton 125 616

Pick up the button with the right
arm and place it in the middle.
Then use the left arm to flip the
button upright

T19 TK1-
OpenTrashBin 177 206 Open the trash bin

T20 TK1-
PressMachine 181 213 Press down the bread machine

with the right arm

Dual-Arm Franka

T1 DFR-
MoveCupMilk 293 254

Place the cup in the middle of the
table, then pick up the milk and
put it next to the cup

T2 DFR-
StackBowls 298 245

Put the blue bowl in the middle
of the table and stack the green
bowl on top of it

Continued on next page

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

# Task Trajectory Task Instruction Task Setting
Num. Avg. Len.

T3 DFR-
SweepTrash 248 350 Sweep up the rubbish and take

out the trash

T4 DFR-
TransferCup 244 196

Pick up the cup with the right
arm, hand it over to the left arm,
and hang it on the holder with the
left arm

T5 DFR-
MoveChopstick 277 299

The left arm moves the blue cup
from the left side of the robot to
the middle, while the right arm
takes a chopstick from the bam-
boo holder on the right side and
puts it into the blue cup

T6 DFR-
StackCubes 245 166

Put the blue cube in the middle of
the desk and stack it on top of the
other blue one

T7 DFR-
StackPlates 360 230

Use the left arm to place the pink
plate into the beige plate in the
middle, then use the right arm to
stack the blue plate on top of the
pink plate

T8 DFR-
CleanTable 284 201 Put the trash into the trash can,

and put the items back in the box

T9 DFR-
HangCupHolder 206 199 Hang the cup on the cup holder

T10 DFR-
HangTowelRack 232 195

Pick up the towel with the right
arm, hand it over to the left arm,
and hang it on the rack with the
left arm

T11 DFR-
FindTapeBox 194 245 Find the packaging tape and put

it into the other box

T12 DFR-
PickButtonPress 200 206

The left arm picks up the green
button and places it in the middle,
while the right arm presses it

T13 DFR-
SweepRubbish 196 288 Sweep up the rubbish

T14 DFR-
CloseToolbox 201 220 Use both arms to close the tool-

box
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T15 DFR-
CollectBasketTea 200 186

The right arm places the shop-
ping basket in the middle, while
the left arm takes tea drinks from
the shelf and puts them inside

T16 DFR-
PlaceTools 199 159

Use the right arm to place the
wrench on the right side of the
toolbox, and use the left arm to
place the screwdriver on the left
side

T17 DFR-
GetBlocks 94 255

The right arm grabs the storage
box and opens the lid, while the
left arm places the red building
blocks inside, ensuring they do
not fall off

T18 DFR-
PlaceRagWipe 196 301

Use the right arm to place the rag
in the middle of the table, and use
the left arm to wipe the remaining
liquid on the middle of the table
with the rag

T19 DFR-
OpenToolbox 199 244 Use both arms to open the tool-

box

T20 DFR-
PlaceScrews 189 301

The right arm places the two
long screws into the slot at the
very right end of the storage box,
while the left arm places the two
short screws into the slot at the
very left end of the storage box

AgileX Cobot Magic V2.0

T1 AGX-
OpenDrawerButton272 1418 Slide open the drawer and place

the yellow button inside

T2 AGX-
MoveButtonDrawer387 1612 Place the yellow button in the

drawer and close it

T3 AGX-
StackBoxes 169 1514

Put the left box in the middle,
then stack the right box on top of
it

T4 AGX-
FindTapeBox 182 1058 Find the packaging tape and put

it into the other box

T5 AGX-
SweepRubbish 112 2370 Sweep up the rubbish
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T6 AGX-
ArrangeValves 194 1411 Arrange the valves in a row

T7 AGX-
HangScissors 48 3124 Hang the scissors on the holder

T8 AGX-
PlaceButton 184 1794 Take the blue tray and place a

button on it

T9 AGX-
CloseToolbox 184 2003 Use both arms to close the tool-

box

T10 AGX-
GatherScrews 152 2918

The right arm places the two
long screws into the slot at the
very right end of the storage box,
while the left arm places the two
short screws into the slot at the
very left end of the storage box

T11 AGX-
FindCircuit 476 2880

The left arm picks up the cir-
cuit breaker from the red tray and
places it in the middle of the ta-
ble. Then the right arm picks up
the circuit breaker and puts it into
the blue tray on the right

T12 AGX-
PlaceBiscuitBox 188 1983

Pick up the biscuit box from the
blue basket with the right arm
and place it in the middle of the
table. Then, use the left arm to
place it on the middle shelf of the
black rack

T13 AGX-
CollectBasketTea 190 3078

The right arm places the shop-
ping basket in the middle, while
the left arm takes tea drinks from
the shelf and puts them inside

T14 AGX-
PlaceScrewdriver 177 3079

The right arm picks up the
Phillips screwdriver and places it
in the middle of the table. Then,
the left arm picks it up again and
puts it into the groove in the tool-
box

T15 AGX-
PourGearOil 192 3144

The left arm takes the gear and
places it on the middle metal tray,
and the right arm pours lubricat-
ing oil on the gear

T16 AGX-
StackBrakePads 188 1650

Use the left arm to place Brake
Pad Type A in the middle, and
use the right arm to pick up Brake
Pad Type B and stack it on top of
Brake Pad Type A
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T17 AGX-
MeshStackCup 117 1765 Place the mesh and stack the cup

on it

T18 AGX-
PourWine 162 1644

Pour the wine with the right arm
and place the cup on the tray with
the left arm

T19 AGX-
HangWipeRag 199 2257

Use the right arm to place the rag
in the middle of the table, and use
the left arm to wipe the remaining
liquid with it

T20 AGX-
StackBowls 185 1314 Stack the blue bowl on top of the

green bowl

Single-Arm UR5e

T1 SUR-FindTape 134 104 Find the packaging tape and put
it into the other basket

T2 SUR-
MoveMilkCup 292 116 Pick up the milk and place it next

to the cup

T3 SUR-
StackBowls 300 118 Stack the blue bowl on top of the

green bowl

T4 SUR-
OpenDrawer 212 168 Slide open the drawer

T5 SUR-
CloseDrawer 190 191 Slide the drawer closed

T6 SUR-
InsertToyBlock 150 198

Insert the blue toy into the
square-bottom slot of the grey
block
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T7 SUR-
PlaceChopstick 297 109

Place one chopstick from the
bamboo chopstick holder into the
blue cup

T8 SUR-
StackCubes 308 92 Stack the two blue cubes on top

of each other

T9 SUR-StackCup 284 192 Stack the cups

T10 SUR-
StackPlates 291 194 Stack the plates in the middle

T11 SUR-
SlideDrawer 56 181 Slide open the drawer

T12 SUR-
OpenUpperDrawer182 132 Open the upper drawer

T13 SUR-
OpenOven 141 70 Open the oven

T14 SUR-
PackEggBox 183 151 Put the egg into the box and close

the lid

T15 SUR-
CloseLaptop 196 107 Close the laptop screen

T16 SUR-
InsertBread 193 156 Insert the bread into the toaster

Continued on next page

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

# Task Trajectory Task Instruction Task Setting
Num. Avg. Len.

T17 SUR-
AssembleValve 182 166 Assemble the valve

T18 SUR-
PourTubeBeaker 152 270 Pick up the test tube and pour wa-

ter into a 50 ml glass beaker

T19 SUR-
PourGearOil 172 214

Take the gear and place it on the
middle metal tray, then pour lu-
bricating oil on it

T20 SUR-
WipeHangRag 209 134

After using the rag to wipe the
water in the middle of the table,
hang the rag on the rag rack
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