

XR-1: TOWARDS VERSATILE VISION-LANGUAGE-ACTION MODELS VIA LEARNING UNIFIED VISION-MOTION REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent progress in large-scale robotic datasets and vision-language models (VLMs) has advanced research on vision-language-action (VLA) models. However, existing VLA models still face two fundamental challenges: (i) producing precise low-level actions from high-dimensional observations, (ii) bridging domain gaps across heterogeneous data sources, including diverse robot embodiments and human demonstrations. Existing methods often encode latent variables from either visual dynamics or robotic actions to guide policy learning, but they fail to fully exploit the complementary multi-modal knowledge present in large-scale, heterogeneous datasets. In this work, we present **X Robotic Model 1 (XR-1)**, a novel framework for versatile and scalable VLA learning across diverse robots, tasks, and environments. At its core, XR-1 introduces the *Unified Vision-Motion Codes (UVMC)*, a discrete latent representation learned via a dual-branch VQ-VAE that jointly encodes visual dynamics and robotic motion. UVMC addresses these challenges by (i) serving as an intermediate representation between the observations and actions, and (ii) aligning multimodal dynamic information from heterogeneous data sources to capture complementary knowledge. To effectively exploit UVMC, we propose a *three-stage training paradigm*: (i) self-supervised UVMC learning, (ii) UVMC-guided pretraining on large-scale cross-embodiment robotic datasets, and (iii) task-specific post-training. We validate XR-1 through extensive real-world experiments with more than 14,000 rollouts on six different robot embodiments, spanning over 120 diverse manipulation

054 tasks. XR-1 consistently outperforms state-of-the-art baselines such as $\pi_{0.5}$, π_0 ,
 055 RDT, UniVLA, and GR00T-N1.5 while demonstrating strong generalization to
 056 novel objects, background variations, distractors, and illumination changes. Our
 057 project is at <https://xr-1-vla.github.io/>.
 058
 059
 060

1 INTRODUCTION

063 The long-term goal of Embodied Artificial Intelligence (Embodied AI) (Pfeifer & Iida, 2004) is to
 064 build general-purpose robotic agents capable of following natural language instructions to perform
 065 diverse tasks in real-world environments, ranging from households and factories to hospitals and
 066 laboratories. Recent progress in Vision-Language Models (VLMs) (Bai et al., 2023; Gao et al., 2024;
 067 Li et al., 2023; Liu et al., 2023; Zhang et al., 2024; Beyer et al., 2024; Wang et al., 2024b) has shown
 068 that large-scale pretraining on Internet-scale image-text corpora yields strong visual and semantic
 069 understanding capabilities. Extending this line, Vision-Language-Action (VLA) models (Zitkovich
 070 et al., 2023; Kim et al., 2024; Black et al., 2024; Liu et al., 2025b; Wen et al., 2025a; Cheang et al.,
 071 2025b; Liu et al., 2025a; Lee et al., 2025; Intelligence et al., 2025; Bu et al., 2025b) extend VLMs
 072 with an action head that grounds perception and language into executable motor commands.
 073

074 A common training paradigm of VLAs follows a two-stage pipeline: (i) large-scale pretraining on
 075 cross-embodiment datasets (Walke et al., 2023; O’Neill et al., 2024; Wu et al., 2025a), learning general
 076 visuomotor and linguistic priors; and (ii) task-specific post-training for a target robot. Despite
 077 advances in data-driven learning and the fruitful capacities of VLMs, current VLA models face two
 078 key challenges. (i) Generating precise low-level actions from high-dimensional observations re-
 079 mains difficult due to the vast search space and inherent multimodal uncertainty. Especially in dexterous
 080 or contact-rich tasks, even centimeter-level errors can cause failure. (ii) Cross-embodiment
 081 datasets utilization is hindered by morphological heterogeneity: robots differ in hardware configu-
 082 ration and degrees of freedom (DoF), while human demonstration videos lack explicit action labels
 083 and exhibit appearance discrepancies.
 084

085 To address these challenges, prior works (Cui et al., 2023; Shafiuallah et al., 2022; Lee et al., 2024;
 086 Xie et al., 2025; Zheng et al., 2025a) have explored latent representations as intermediate abstrac-
 087 tions between observations and actions. One direction encodes robotic action sequences for com-
 088 pact motion modeling (Shafiuallah et al., 2022; Wu et al., 2025b; Bauer et al., 2025), but typically
 089 requires large labeled datasets that are costly to collect. Another line encodes only visual dynamics
 090 from videos (Cui et al., 2023; Hu et al., 2024; Bu et al., 2025a), exploiting abundant video data
 091 that contain human demonstrations, but lack explicit action grounding. Both approaches treat vision
 092 and action largely in isolation. This separation overlooks the necessity of multimodal alignment:
 093 Without integrating visual dynamics and motor actions into a unified space, it is difficult for VLA
 094 models to capture coherent task-relevant correspondences across modalities. In contrast, humans
 095 naturally fuse heterogeneous sensory inputs into *supramodal codes* (Park et al., 2025), abstracting
 096 away embodiment-specific details while preserving task semantics. Inspired by this observation, we
 097 argue that effective representation learning for robotics should move beyond unimodal abstractions
 098 toward multimodal alignment that jointly encodes visual dynamics and motor control.
 099

100 Motivated by insights derived from human supramodal cognition and the limitations of prior uni-
 101 modal representation learning, we propose **X Robotic Model 1 (XR-1)**, a novel framework explic-
 102 itly designed to achieve cross-data exploitation, cross-modality alignment, and cross-embodiment
 103 control. At its core lies the *Unified Vision-Motion Codes (UVMC)*, a discrete latent representation
 104 jointly capturing vision dynamics and robotic motion. UVMC is learned via a dual-branch Vec-
 105 tor Quantized Variational Autoencoder (VQ-VAE): one branch encodes visual dynamics from raw
 106 observations while the other encodes robotic motion. Both share a common codebook in the
 107 discrete latent space to enforce unified codes across modalities. To further suppress task-irrelevant vi-
 108 sual information and ensure that the vision branch extracts motion-relevant features, we introduce a
 109 vision-motion alignment loss that encourages visual codes to be close to their corresponding motion
 110 codes. Building upon UVMC, XR-1 employs a three-stage training paradigm: (i) self-supervised
 111 learning of UVMC on large-scale robotic manipulation datasets together with Internet-scale human
 112 demonstration videos; (ii) cross-embodiment UVMC-guided pretraining where encoded visuomo-
 113 tor knowledge is injected into the VLM backbone via learnable input tokens; and (iii) task-specific
 114

108 post-training for sharpening performance on particular robots and tasks. This design enables XR-1
 109 to leverage heterogeneous data sources while maintaining embodiment-agnostic consistency.
 110

111 We extensively evaluate XR-1 through more than 14k rollouts across six distinct robot embodiments,
 112 including Tien Kung 1.0/2.0, Single-/Dual-Arm UR-5e, Dual-Arm Franka, and AgileX Cobot Magic
 113 2.0, and covering over 120 manipulation tasks. **XR-1 outperforms state-of-the-art baselines such as**
 114 $\pi_{0.5}$, π_0 , **RDT**, **UniVLA**, and **GR00T-N1.5** across challenging scenarios involving bimanual col-
 115 laboration, dexterous manipulation, deformable objects, contact-rich interactions, dynamic settings,
 116 and long-horizon manipulation. Our main contributions are summarized as follows:
 117

- 118 • We propose **X Robotic Model 1 (XR-1)**, a scalable three-stage training framework for
 119 VLA learning that effectively leverages heterogeneous data sources, including Internet-
 120 scale human videos and diverse robot datasets, and integrates seamlessly with diverse VLA
 121 architectures.
- 122 • We introduce the *Unified Vision-Motion Codes (UVMC)*, a discrete latent representation
 123 that encodes both environmental dynamics and robotic motion, while an alignment loss
 124 enforces consistent multimodal embeddings across embodiments via UVMC.
- 125 • We validate XR-1 with over 14,000 real-world rollouts on six robot embodiments across
 126 123 tasks, and demonstrate that it consistently outperforms strong baselines such as $\pi_{0.5}$,
 127 π_0 , RDT, UniVLA, and GR00T-N1.5.

2 RELATED WORK

2.1 VISION-LANGUAGE-ACTION MODELS

132 Developing robust, general-purpose Vision-Language-Action (VLA) policies capable of zero-shot
 133 cross-embodiment transfer is a central objective in modern robotics. Initial efforts primarily focused
 134 on Imitation Learning (IL) using narrow expert demonstrations (Cui et al., 2023; Zhao et al., 2023;
 135 Chi et al., 2023; Ze et al., 2024; Fu et al., 2024; Bharadhwaj et al., 2024; Ze et al., 2024; Cao et al.,
 136 2025; Su et al., 2025), which inherently led to limited task scalability and poor generalization across
 137 diverse hardware. This bottleneck has been fundamentally addressed by the emergence of large-
 138 scale robotic datasets, such as BridgeData (Ebert et al., 2022; Walke et al., 2023), DROID (Khaz-
 139 atsky et al., 2024), Open X-Embodiment (O’Neill et al., 2024), RoboMIND (Wu et al., 2025a), and
 140 AgiBot World (Bu et al., 2025a). These datasets paved the way for generalist policies, beginning
 141 with landmark models like RT-1 (Brohan et al., 2022) and RT-2 (Zitkovich et al., 2023), which es-
 142 tablished the paradigm of unifying large-scale vision-language pre-training with action generation.
 143 Subsequent initiatives like RT-X (O’Neill et al., 2024) and Octo (Team et al., 2024b) further con-
 144 solidated data heterogeneity, while models such as PaLM-E (Driess et al., 2023) demonstrated the
 145 power of conditioning Large Language Models (LLMs) on high-fidelity visual inputs to enhance
 complex task planning and semantic grounding.

146 Beyond core training paradigm design, a significant research direction focuses on augmenting VLA
 147 models with richer world knowledge and diverse capabilities, including CrossFormer (Zhang & Yan,
 148 2023), OpenVLA (Kim et al., 2024), HPT (Wang et al., 2024a), π_0 (Black et al., 2024), RDT (Liu
 149 et al., 2025b), TinyVLA (Wen et al., 2025b), GR00T (Bjorck et al., 2025), HybridVLA (Liu et al.,
 150 2025a), SwitchVLA (Li et al., 2025a), DTP (Fan et al., 2025), MLA (Liu et al., 2025c), and X-
 151 VLA (Zheng et al., 2025b). This typically involves leveraging representations pre-trained on vast
 152 internet-scale corpora. For instance, $\pi_{0.5}$ (Intelligence et al., 2025) and FSD (Yuan et al., 2025)
 153 integrate large-scale image-text pre-training to improve semantic understanding and visual ground-
 154 ing. Other works target higher-level cognitive abilities: CoT-VLA (Zhao et al., 2025) incorporates
 155 complex Chain-of-Thought (CoT) reasoning for planning, while InstructVLA (Yang et al., 2025) fo-
 156 cuses on improving fidelity to natural language instructions. To strengthen the policy’s grasp of the
 157 physical environment, SpatialVLA (Qu et al., 2025) emphasizes enhanced spatial reasoning. Fur-
 158 thermore, generative modeling techniques have been adapted, such as Diffusion-VLA (Wen et al.,
 159 2025c), which utilizes diffusion models for diverse action generation. Our framework, XR-1, devi-
 160 ates from traditional two-stage paradigms by introducing a novel three-stage process that synergizes
 161 human and robot data. Its key feature is an initial self-supervised stage for learning unified vision-
 motion representations. These representations act as auxiliary features to help pre-training and en-
 hance data utilization for large-scale VLA models in the subsequent stage. This model-agnostic

162 approach ensures flexibility. We validate XR-1’s flexibility by building upon base models like π_0
 163 and SwitchVLA, yielding the high-performing XR-1 and efficient XR-1-Light models.
 164

165 2.2 LATENT REPRESENTATION LEARNING

166 A major bottleneck in learning robust visuomotor policies from raw sensory inputs is the dimensional
 167 and semantic gap between high-fidelity pixel observations and low-dimensional motor commands.
 168 To effectively abstract away noise, high-dimensionality, and embodiment-specific details,
 169 prior work (Cui et al., 2023; Shafiuallah et al., 2022; Lee et al., 2024; Zheng et al., 2025a; Xie
 170 et al., 2025) has extensively utilized latent representations as a critical intermediary layer between
 171 observations and actions. Current methodologies predominantly fall into two distinct, unimodal
 172 categories. The first category focuses on modeling the low-level motor dynamics by discretizing
 173 continuous robotic actions into a sequence of discrete latent tokens. This approach, exemplified by
 174 Behavior Transformers (BeT) (Shafiuallah et al., 2022) and refined by methods such as QueST (Mete
 175 et al., 2024), transforms the continuous control problem into a tractable sequence-generation task.
 176 Recent works have further refined this direction. For instance, (Bauer et al., 2025) proposed a dis-
 177 crete latent action framework to enhance data efficiency, while ATE (Zhang et al., 2025) focused
 178 on effective feature alignment between visual input and the discretized action space. Similarly,
 179 approaches such as Moto (Chen et al., 2025) and Discrete Policy (Wu et al., 2025b) on discrete
 180 representations demonstrate the scalability of action tokenization for generalized control. However,
 181 these action-centric methods are fundamentally limited by their reliance on large volumes of high-
 182 quality, labeled robotic action data, which is time-consuming and expensive to acquire at the scale
 183 necessary for truly generalist agents.

184 In contrast, the second category seeks to learn representations by exploiting the vast abundance of
 185 unlabeled video data (Cui et al., 2023; Du et al., 2023; Hu et al., 2024; He et al., 2024; Ye et al.,
 186 2025; Cheang et al., 2025a), focusing on encoding generalized visual flow and state transitions
 187 observed in demonstrations. Models like C-BeT (Cui et al., 2023) and UniPi (Du et al., 2023) learn
 188 goal-conditioned behaviors from uncurated “play” data or text-conditioned video generation. More
 189 recent works, such as VPP (Hu et al., 2024), LAPA (Ye et al., 2025), and GR-2 (Cheang et al.,
 190 2025a), leverage large-scale actionless human videos and web videos for pre-training, aiming to
 191 capture generalized visual dynamics and task semantics. VPDD (He et al., 2024) leverages large-
 192 scale actionless human videos for pre-training and discrete diffusion modeling to enable effective
 193 robot policy learning with limited labeled data. Models like GO-1 (Bu et al., 2025a) leverage this
 194 video-centric approach to capture generalized, task-relevant visual dynamics. UVA (Li et al., 2025b)
 195 typically treats the vision and action modalities in isolation during the core representation learning
 196 phase.

197 However, by learning from action-free data, these methods lack explicit action grounding, creating a
 198 critical alignment gap between understanding visual change and executing the precise, fine-grained
 199 motor control required to effect that change. Crucially, by treating vision and action in isolation,
 200 existing unimodal paradigms fail to capture the causal link between observation and execution. We
 201 address this fundamental limitation with XR-1, a framework that introduces Unified Vision-Motion
 202 Codes (UVMC). UVMC is a novel, discrete latent representation learned jointly from both visual
 203 dynamics and robotic motion. By constructing a shared bimodal latent space, UVMC explicitly
 204 encodes the cause-and-effect relationship between seeing and acting, allowing it to abstract away
 205 embodiment-specific details while preserving core task semantics.

206 3 METHODOLOGY

207 3.1 OVERVIEW

208 Our goal is to build a versatile and generalist Vision-Language-Action (VLA) model that controls
 209 diverse robotic embodiments across tasks. At each inference step t , the policy π receives a language
 210 instruction l and multimodal observations $o = \langle c, m \rangle$, where $c \in \mathbb{R}^{K \times 3 \times H \times W}$ denotes K RGB
 211 images from external or robot-mounted cameras, and m represents proprioceptive states. The model
 212 then predicts the next action $\hat{a} = \pi(l, o)$ in terms of joint positions and gripper commands.
 213

214 We introduce **XR-1**, a scalable framework for VLA learning across robots, tasks, and environments
 215 (Figure 2). Training proceeds in three stages. First, we learn a dual-branch VQ-VAE that encodes

Figure 2: Overview of **X Robotic Model 1 (XR-1)**. In XR-1, we introduce the *Unified Vision-Motion Codes (UVMC)*, a discrete latent representation that jointly encodes visual dynamics and robotic motion. XR-1 adopts a three-stage training paradigm to enable precise low-level control across diverse robots and tasks.

visual dynamics and robot motion into a shared discrete latent space, and extract the *Unified Vision-Motion Codes (UVMC)*. In the second stage, these codes serve as supervision for large-scale pre-training of a policy on cross-embodiment datasets, enabling generalization across different robots and task distributions. Finally, the pretrained policy is fine-tuned on multi-task data collected from the target embodiment, which adapts the model to embodiment-specific dynamics and improves task success rates. This progressive design, including unified representation learning, cross-embodiment pretraining, and task-specific post-training, achieves both scalability and adaptability.

3.2 STAGE-1: LEARNING UNIFIED VISION-MOTION CODES

We design a dual-branch Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017) to learn the Unified Vision-Motion Codes (UVMC) in a self-supervised manner. Unlike prior works focusing solely on visual dynamics (Cui et al., 2023; Hu et al., 2024; Bu et al., 2025a; He et al., 2024; Ye et al., 2025; Cheang et al., 2025a; Du et al., 2023) or action sequences (Shafiullah et al., 2022; Wu et al., 2025b; Bauer et al., 2025; Zhang et al., 2025; Mete et al., 2024; Chen et al., 2025), our design explicitly unifies the two modalities in a discrete latent space and aligns them with an alignment regularization loss, providing complementary guidance for action prediction and enabling learning from heterogeneous sources such as human demonstrations.

Visual Dynamic Code Extraction. Vision captures universal dynamics across robots and environments. To encode temporal visual variations in the vision branch, we adopt an asymmetric VQ-VAE (Zhu et al., 2023c) structure tailored for future-frame prediction. Given two frames \mathbf{c}_t and \mathbf{c}_{t+h} , the vision encoder $E_{\text{vis}}(\cdot)$ produces a latent code $\mathbf{z}_{\text{vis}} = E_{\text{vis}}(\mathbf{c}_t, \mathbf{c}_{t+h})$, which compresses temporal changes over h steps. The decoder then predicts the future frame via $\hat{\mathbf{c}}_{t+h} = D_{\text{vis}}(\mathbf{c}_t, \mathbf{z}_{\text{vis}})$. Thus, \mathbf{z}_{vis} captures the essential visual dynamics.

Robotic Motion Extraction. The second branch encodes low-level actions and proprioceptive states. Specifically, the motion encoder $E_{\text{mo}}(\cdot)$ takes $(\mathbf{a}_{t:t+h}, \mathbf{m}_{t:t+h})$ as input and outputs $\mathbf{z}_{\text{mo}} = E_{\text{mo}}(\mathbf{a}_{t:t+h}, \mathbf{m}_{t:t+h})$. Unlike the vision branch, no raw images or instructions are used here to ensure that the representation focuses purely on robotic dynamics. The motion decoder $D_{\text{mo}}(\cdot)$ then takes the latent motion embedding \mathbf{z}_{mo} and optional conditions \mathbf{cd} as input, such as the language instruction \mathbf{l} , proprioceptive states \mathbf{m} , and the observations \mathbf{o} . The decoder reconstructs actions as $\hat{\mathbf{a}}_{t:t+h} = D_{\text{mo}}(\mathbf{z}_{\text{mo}}, \mathbf{cd})$. In our implementation, we use the proprioceptive states \mathbf{m} as the condition input.

Unified Vision-Motion Codes. To unify both modalities, we introduce a shared codebook $\mathbf{e} \in \mathbb{R}^{d \times f}$ with d discrete entries of dimension f . Encoder outputs \mathbf{z}_{vis} and \mathbf{z}_{mo} are quantized by nearest-

270 neighbor lookup: $z_{\text{vis}}^e = S(z_{\text{vis}}) = e_j$, where $j = \arg \min_i \|z_{\text{vis}} - e_i\|_2$, and $z_{\text{mo}}^e = S(z_{\text{mo}}) = e_j$, where $j = \arg \min_i \|z_{\text{mo}} - e_i\|_2$. Both decoders then condition on these quantized codes
271 for reconstruction. Training follows standard VQ-VAE objectives (Van Den Oord et al., 2017),
272 combining reconstruction losses with codebook and commitment regularization terms:
273

$$\mathcal{L}_{\text{vis}} = \|\hat{c}_{t+h} - c_{t+h}\|_1 + \beta \|sg(z_{\text{vis}}) - z_{\text{vis}}^e\|_2^2 + \beta \|z_{\text{vis}} - sg(z_{\text{vis}}^e)\|_2^2, \quad (1)$$

$$\mathcal{L}_{\text{mo}} = \|\hat{a}_{t:t+h} - a_{t:t+h}\|_1 + \beta \|sg(z_{\text{mo}}) - z_{\text{mo}}^e\|_2^2 + \beta \|z_{\text{mo}} - sg(z_{\text{mo}}^e)\|_2^2, \quad (2)$$

277 where $sg(\cdot)$ denotes stop-gradient. We set $\beta = 0.25$ in all experiments. To capture both the vision
278 and motion signals, we concatenate the **robotic motion codes** z_{mo}^e and **visual dynamics codes** z_{vis}^e to
279 obtain the Unified Vision-Motion Codes z_{uvmc}^e for subsequent policy learning.
280

281 **Cross-Modality Alignment.** While motion codes provide precise control signals, visual embeddings
282 may capture irrelevant factors (e.g., camera jitter). To mitigate this gap, we introduce an
283 alignment loss that constrains visual codes to remain consistent with their motion counterparts:
284

$$\mathcal{L}_{\text{align}} = D_{\text{KL}}(q(z_{\text{mo}}) \| q(z_{\text{vis}})),$$

285 where $q(\cdot)$ denotes the posterior distribution in the codebook space. This grounding of perception
286 in motor dynamics improves robustness and allows human-only demonstrations to be effectively
287 mapped into the robot’s action space.
288

289 **Final Training Objective.** The overall objective integrates reconstruction and alignment losses
290 from different data sources. For robotic demonstrations, we jointly optimize $\mathcal{L}_{\text{total}}^{\text{robot}} = \mathcal{L}_{\text{vis}} + \mathcal{L}_{\text{mo}} +$
291 $\mathcal{L}_{\text{align}}$, where \mathcal{L}_{vis} and \mathcal{L}_{mo} are the VQ-VAE losses for visual and motion branches, and $\mathcal{L}_{\text{align}}$ enforces
292 cross-modal consistency. For human demonstrations, where low-level actions are unavailable, the
293 objective naturally reduces to $\mathcal{L}_{\text{total}}^{\text{human}} = \mathcal{L}_{\text{vis}}$. This design allows training on both robot rollouts and
294 purely visual human data. Further architectural details are provided in Appendix 6.2.
295

296 3.3 STAGE-2: UVMC-GUIDED PRETRAINING FOR GENERALIST POLICY

297 After learning the Unified Vision-Motion Codes (UVMC) with the dual-branch VQ-VAE, we in-
298 tegrate it into policy learning to enhance low-level control. The policy $\pi(\cdot)$ follows a stan-
299 dard VLA design with a VLM $F(\cdot)$ and an action head $H(\cdot)$. Learnable tokens t are intro-
300 duced into the VLM input, enabling $F(\cdot)$ to predict the UVMC. The prediction loss is defined
301 as $\mathcal{L}_{\text{uvmc}} = \|F(l, o, t) - z_{\text{uvmc}}^e\|_2^2$. In parallel, the action head is pretrained on robot datasets using
302 an action loss \mathcal{L}_{act} , which may be generative or autoregressive depending on the model variant. The
303 overall objective is $\mathcal{L} = \mathcal{L}_{\text{uvmc}} + \mathcal{L}_{\text{act}}$. This joint training encourages the backbone to internalize
304 structured vision-motion representations while ensuring effective large-scale action pretraining.
305

306 3.4 STAGE-3: POST-TRAINING FOR DEPLOYMENT

307 After large-scale UVMC-guided pretraining, the model acquires strong abilities in extracting unified
308 vision-motion knowledge and producing foundation-level actions. To further improve performance
309 on downstream control tasks, we introduce a post-training stage where the VLA policy is fine-tuned
310 with task-specific datasets using an action loss \mathcal{L}_{act} . A key advantage of our framework is its model-
311 agnostic design: it can be directly applied to different VLA architectures. This flexibility enables
312 users to integrate diverse backbones while consistently benefiting from our framework.
313

314 3.5 DATA COLLECTION AND IMPLEMENTATION DETAILS

315 **Dataset Collection.** To support large-scale pretraining, we curate a comprehensive dataset by
316 integrating four complementary sources: Open-X (O’Neill
317 et al., 2024), RoboMIND (Wu et al., 2025a), Ego4D (first-
318 person human activity videos) (Grauman et al., 2022), and
319 XR-D (our in-house collection spanning multiple robot em-
320 bodiments).
321

322 Table 1 summarizes the distribution of episodes and frames
323 across these datasets, together with their relative proportions.
324 Since the number of episodes and frames varies significantly

Table 1: Dataset Statistics.

Dataset	Episodes	Frames	Weight
OXE	978k	59.3M	40%
RoboMIND	69k	21.4M	15%
XR-D	158k	69.1M	35%
Ego4D	59k	14.3M	10%

Figure 3: Experimental Setup. We evaluate XR-1 across six robot embodiments (Tien Kung 1.0/2.0, Single-/Dual-Arm UR-5e, Dual-Arm Franka, and AgileX Cobot Magic 2.0), covering more than 120 manipulation tasks with over 14k rollouts.

among different sources, we assign dataset-specific sampling weights during training to balance contributions and prevent overfitting to dominant datasets. We provide more details of the datasets in Appendix 6.3.

Implementation Details. The framework is model-agnostic. Our main instantiation adopts the design of π_0 (Black et al., 2024), which is built on PaliGemma (Beyer et al., 2024) (SigLIP visual encoder (Zhai et al., 2023) + Gemma backbone (Team et al., 2024a) + action head), while a lightweight variant (XR-1-Light) built up on SwitchVLA (Li et al., 2025a) uses Florence-2 (Xiao et al., 2024) to reduce computation cost with minimal performance drop.

4 EXPERIMENTS

We evaluate XR-1 through four key questions: (1) How does it compare with state-of-the-art (SOTA) vision-language-action (VLA) models? (2) Does large-scale pretraining endow the model with fundamental execution skills and rapid adaptation? (3) How well does it generalize to novel objects, background shifts, distractors, and lighting variations? (4) What is the impact of different components and training strategies on performance? To address these questions, we conduct extensive real-world evaluations on over 120 tasks across six robotic embodiments. The tasks cover diverse and challenging scenarios, including bimanual collaboration, dexterous manipulation, deformable object handling, contact-rich interactions, dynamic environments, and long-horizon manipulation. We benchmark our approach against multiple strong VLA baselines.

4.1 EXPERIMENT SETUP

Real-World Robotic Setup. We evaluate XR-1 on six heterogeneous robotic embodiments (Figure 3): Tien Kung 1.0/2.0, Single-/Dual-Arm UR-5e, Dual-Arm Franka, and AgileX Cobot Magic 2.0. All robots are equipped with parallel grippers and multiple cameras from complementary viewpoints. For each robotic embodiment, we design 20 tasks and collect expert demonstrations via teleoperation, recording synchronized multi-view RGB streams and proprioceptive states (e.g., joint positions and gripper commands). The 20 task examples for Dual-Arm UR-5e and Tien Kung 2.0 are shown in Figure 3, while full task details are provided in the Appendix 6.11.

Training and Evaluation Protocol. We adopt a three-stage training pipeline. First, XR-1 is pre-trained on large-scale heterogeneous datasets (RoboMIND (Wu et al., 2025a), Open-X (O’Neill et al., 2024), XR-D, Ego4D (Grauman et al., 2022)), enabling the dual-branch VQ-VAE to learn the Unified Vision-Motion Codes (UVMC). Second, we pretrain the policy on XR-D to integrate cross-embodiment knowledge. Finally, the policy is fine-tuned on data of specified tasks. For evaluation, we conduct 20 rollouts per task, with human evaluators determining success based on goal completion. Final performance is reported as the success rate.

Figure 4: Success rate results across 20 tasks on Dual-Arm UR-5e.

Table 2: Success rate results across 20 tasks on Tien Kung 2.0.

Method	TK2-Press Button	TK2-Assemble Valve	TK2-Stack Brake	TK2-Place Circuit	TK2-Press ControlBox	TK2-Close DoorKnob	TK2-Gather Tools	TK2-Close Laptop	TK2-Open PotLid	TK2-Hang CupHolder	-
UniVLA	25	0	25	50	10	0	0	20	35	0	-
RDT	15	0	0	65	20	0	0	0	90	0	-
GR00T-N1.5	85	20	85	90	0	0	20	0	75	0	-
π_0	85	10	55	70	85	0	20	85	85	20	-
$\pi_{0.5}$	80	0	65	60	40	25	20	90	80	35	-
XR-1 (ours)	90	15	90	90	90	85	25	90	85	75	-
	TK2-Move CupSauce	TK2-Stack Cup	TK2-Insert ToyBlock	TK2-Find Capacitor	TK2-Move MilkMug	TK2-Pour GearOil	TK2-Place BiscuitBox	TK2-Collect Screws	TK2-Move Tape	TK2-Take BasketTea	Avg.
UniVLA	45	30	0	25	35	35	0	0	20	0	17.8
RDT	50	25	0	0	0	75	0	0	0	0	17.0
GR00T-N1.5	50	55	0	60	55	70	25	0	70	0	38.0
π_0	60	20	10	0	80	55	0	0	0	75	40.8
$\pi_{0.5}$	70	25	20	0	75	75	0	0	0	60	41.0
XR-1 (ours)	70	85	55	75	90	85	75	15	70	85	72.0

4.2 RESULTS ON REAL-WORLD ROBOTIC TASKS

Baseline Methods. We compare XR-1 with strong VLA models, including $\pi_{0.5}$ (Intelligence et al., 2025), π_0 (Black et al., 2024), RDT (Liu et al., 2025b), UniVLA (Bu et al., 2025b), and GR00T-N1.5 (Bjorck et al., 2025). We note a performance degradation with the Lerobot implementation of π_0 . The results of π_0 reported in this paper are based on the original JAX implementation.

Results on Dual-Arm UR-5e. Figure 4 reports success rates across 20 tasks on the Dual-Arm UR-5e. XR-1 surpasses all baselines by a large margin. For instance, in *DUR-FindTapeBasket*, it achieves 85% success compared to 50% from π_0 . Several baselines even collapse to 0% performance on harder tasks, which we attribute to insufficient auxiliary supervision and gradient conflicts during multi-task optimization. In contrast, XR-1 leverages UVMC for richer training signals, yielding more robust representations and stable optimization across diverse objectives. The corresponding tabular results can be found in Appendix Table 13.

Results on Tien Kung 2.0. We further evaluate transferability on Tien Kung 2.0 over another 20 tasks in Table 2. Unlike the UR-5e, this robot is *unseen during pretraining* (e.g., Stages 1 and 2 for XR-1), making the evaluation a stringent embodiment-transfer benchmark. Despite this challenge, XR-1 again outperforms all baselines; e.g., in *TK2-MoveCupSauce*, it reaches 70% versus 60% for π_0 . These results indicate that UVMC effectively encodes embodiment-agnostic dynamics into a shared latent space, enabling efficient transfer of prior knowledge to novel robotic platforms.

Results on Other Robots. XR-1 consistently outperforms all other methods across four diverse robotic arm configurations, achieving a significant relative gain over the strongest baseline. Additional experimental results for Tien Kung 1.0 in Table 9, Dual-Arm Franka in Table 10, AgileX Cobot Magic V2.0 in Table 11, and Single-Arm UR-5e in Table 12 are provided in Appendix 6.4.

4.3 GENERALIZATION ANALYSIS

Out-of-Box Evaluation. We assess the foundation ability of XR-1 after Stage-1 and Stage-2, without any post-training in Stage-3. We evaluate on 7 tasks each from the Dual-Arm UR-5e and Dual-Arm Franka in XR-D, covering only 0.9% of the XR-D dataset. For fair comparison, baselines without XR-D pretraining are fine-tuned on data from these tasks before evaluation. As shown in

Figure 5: Out-of-box evaluation results of 7 tasks on Dual-Arm Franka.

Figure 6: Fast adaptation on Tien Kung 2.0. Tien Kung 2.0 is an unseen embodiment in XR-D. In this setup, XR-1 adapts to 15 novel tasks with one model using only 20-shot demonstrations per task, while baselines (ACT and DP) are trained per task.

Figure 5, the pretrained XR-1-oob model, even without adaptation, achieves performance close to GR00T-N1.5 while outperforming RDT and UniVLA. *This robustness stems from UVMC learning, which aligns multimodal dynamics across embodiments into a unified latent space, thereby enabling strong generalization with extremely limited task-specific supervision.* Additional results on Dual-Arm UR-5e are provided in Appendix 6.5

Fast Adaptation to New Tasks. We further evaluate whether XR-1 can rapidly adapt to unseen tasks with limited demonstrations. Specifically, we collect 15 new tasks on both the Dual-Arm UR-5e and Tien Kung 2.0 (unseen in XR-D), each with 20 trajectories. XR-1 is trained jointly across these tasks, while single-task baselines, ACT (Zhao et al., 2023) and Diffusion Policy (DP) (Chi et al., 2023), are trained independently per task. As shown in Figure 6, XR-1 achieves significantly higher success rates than ACT and DP, despite the evaluation setting favoring the baselines. *This advantage stems from large-scale pretraining combined with UVMC supervision, enabling XR-1 to extract transferable features from few-shot data and adapt effectively across diverse embodiments.* Additional results on Dual-Arm UR-5e are provided in Appendix 6.5.

Generalization to Unseen Scenarios. We further evaluate XR-1 on unseen conditions to assess its out-of-distribution generalization. As shown in Figure 7, we test on (i) novel objects (e.g., unseen rubbish or dustpans), (ii) dynamic and static distractors, (iii) illumination changes, and (iv) background variations. As shown in Table 3, XR-1 consistently outperforms the strong VLA method π_0 across all settings. It demonstrates clear gains on novel objects, improved robustness under distractor interference, and stable performance when background and lighting variations are introduced. *These results highlight XR-1’s strong generalization not only across embodiments and tasks but also under diverse environmental shifts never encountered during pretraining or fine-tuning, underscoring its potential for real-world deployment.*

Figure 7: Unseen scenario task setup on Dual-Arm Franka.

Table 3: Generalization results of XR-1 on unseen scenarios.

Method	DFR-SweepTrash			DFR-HangCup		
	Novel Objects (rubbish)	Novel Objects (dustpan)	Dynamic Distractors	Background Variations	Illumination Changes	Static Distractors
π_0	15	50	5	30	15	10
XR-1 (ours)	65	60	55	55	30	30

Table 4: **Ablation study of XR-1.** In Stage-1 and Stage-2, “DT” indicates training directly on the downstream task data.

Exp.	Instantiation	Stage-1	Stage-2	Stage-3	DUR-Clean Table	DUR-Find TapeBasket	DUR-Move CupMilk	DUR-Stack Bowls	DUR-Sweep Trash	DUR-Trans CupHolder	Avg
1	XR-1-Light	×	×	✓	0	70	0	75	60	50	42.5
2	XR-1-Light	DT	DT	✓	40	90	10	90	60	55	57.5
3	XR-1	×	×	✓	0	50	20	55	0	45	28.3
4	XR-1 w/o KL	DT	DT	✓	45	55	35	60	30	65	48.3
5	XR-1	DT	DT	✓	50	75	65	80	60	70	66.7
6	XR-1	1%	DT	✓	15	60	10	55	15	20	29.2
7	XR-1	10%	DT	✓	25	60	25	60	20	40	38.3
8	XR-1	50%	DT	✓	25	80	65	80	20	50	53.3
9	XR-1	100%	DT	✓	60	80	70	85	40	55	65.0
10	XR-1	100%	XR-D	✓	70	85	80	90	85	80	81.6

4.4 ABLATION STUDY

To disentangle the contribution of each component in XR-1, we conduct ablations on six manipulation tasks using the Dual-Arm UR-5e. Table 4 summarizes success rates under different configurations, covering model capacity, UVMC learning, cross-modal alignment, and dataset scaling. Due to space limitation, additional experimental results are provided in Appendix 6.6.

Lightweight Models. We first evaluate a compact variant, XR-1-Light, with only 230MB trainable parameters. Comparing Exp. 1 and Exp. 2 shows that incorporating UVMC with downstream data improves average success from 42.5% to 57.5%. This indicates that UVMC provides substantial benefits even for low-capacity models trained on limited data.

UVMC and Cross-Modal Alignment. Exps. 3–5 examine the role of UVMC together with a cross-modal alignment loss between vision and motion. Performance consistently improves as these components are added, confirming their complementary importance for feature learning across tasks.

Scaling with Pretraining Data. Exps. 6–9 vary the scale of Stage-1 pretraining data from 1% to 100%. Results show a clear monotonic gain in success rates as more data is used, highlighting the central role of large-scale pretraining for robust generalization.

5 CONCLUSION

We presented **X Robotic Model 1 (XR-1)**, a unified framework for versatile and scalable vision-language-action learning that addresses the key limitations of existing approaches: precise low-level action generation and cross-domain multimodal knowledge exploitation across heterogeneous data sources. Central to our approach is the *Unified Vision-Motion Codes (UVMC)*, which serve as embodiment-agnostic abstractions aligning visual dynamics with motor control through a shared discrete latent space. By utilizing a three-stage training paradigm, XR-1 achieves robust performance across diverse robots and tasks while significantly outperforming state-of-the-art baselines such as $\pi_{0.5}$, π_0 , RDT, UniVLA, and GR00T-N1.5. Our results highlight the importance of multi-modal alignment for embodied AI and suggest promising directions toward general-purpose robotic agents capable of interacting with the physical world and adapting seamlessly to new environments.

540 REFERENCES
541

542 Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from hu-
543 man videos as a versatile representation for robotics. In *Proceedings of the IEEE/CVF Conference*
544 *on Computer Vision and Pattern Recognition*, pp. 13778–13790, 2023.

545 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
546 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
547 *arXiv preprint arXiv:2308.12966*, 1(2):3, 2023.

548 Erik Bauer, Elvis Nava, and Robert K. Katzschmann. Latent action diffusion for cross-embodiment
549 manipulation. In *Proceedings of the Conference on Robot Learning (CoRL)*, 2025.

550 Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Hydra: Hybrid robot actions for imitation learning.
551 In *Conference on Robot Learning*, pp. 2113–2133. PMLR, 2023.

552 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
553 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
554 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.

555 Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash
556 Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmenta-
557 tions and action chunking. In *2024 IEEE International Conference on Robotics and Automation*
558 (*ICRA*), pp. 4788–4795. IEEE, 2024.

559 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
560 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
561 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

562 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
563 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow
564 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

565 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
566 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
567 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

568 Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
569 He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
570 scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025a.

571 Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, and
572 Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. In *Proceedings*
573 *of Robotics: Science and Systems (RSS)*, 2025b.

574 Jiahang Cao, Qiang Zhang, Jingkai Sun, Jiaxu Wang, Hao Cheng, Yulin Li, Jun Ma, Kun Wu,
575 Zhiyuan Xu, Yecheng Shao, et al. Mamba policy: Towards efficient 3d diffusion policy with
576 hybrid selective state models. In *Proceedings of the IEEE/RSJ International Conference on Intel-
577 ligent Robots and Systems (IROS)*. IEEE, 2025.

578 Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao
579 Wu, Jiafeng Xu, Yichu Yang, et al. Gr-2: A generative video-language-action model with web-
580 scale knowledge for robot manipulation. *arXiv preprint arXiv:2410.06158*, 2025a.

581 Chilam Cheang, Sijin Chen, Zhongren Cui, Yingdong Hu, Liqun Huang, Tao Kong, Hang Li, Yifeng
582 Li, Yuxiao Liu, Xiao Ma, et al. Gr-3 technical report. *arXiv preprint arXiv:2507.15493*, 2025b.

583 Lawrence Yunliang Chen, Simeon Adebola, and Ken Goldberg. Berkeley UR5 demonstration
584 dataset. <https://sites.google.com/view/berkeley-ur5/home>.

585 Lili Chen, Shikhar Bahl, and Deepak Pathak. Playfusion: Skill acquisition via diffusion from
586 language-annotated play. In *Conference on Robot Learning*, pp. 2012–2029. PMLR, 2023.

594 Yi Chen, Yuying Ge, Yizhuo Li, Yixiao Ge, Mingyu Ding, Ying Shan, and Xihui Liu. Moto: Latent
 595 motion token as the bridging language for robot manipulation. In *Proceedings of the IEEE/CVF*
 596 *International Conference on Computer Vision (ICCV)*. IEEE, 2025.

597 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 598 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Interna-*
 599 *tional Journal of Robotics Research*, pp. 02783649241273668, 2023.

600 Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to
 601 policy: Conditional behavior generation from uncurated robot data. In *Proceedings of the Inter-*
 602 *national Conference on Learning Representations (ICLR)*, 2023.

603 Shivin Dass, Jullian Yapeter, Jesse Zhang, Jiahui Zhang, Karl Pertsch, Stefanos Nikolaidis, and
 604 Joseph J. Lim. Clvr jaco play dataset, 2023. URL https://github.com/clvrai/clvr_jaco_play_dataset.

605 Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
 606 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
 607 Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
 608 Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-e: An embodied
 609 multimodal language model. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 610 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International*
 611 *Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp.
 612 8469–8488. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/driess23a.html>.

613 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
 614 Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in neural*
 615 *information processing systems*, 36:9156–9172, 2023.

616 Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
 617 Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
 618 skills with cross-domain datasets. In *Proceedings of Robotics: Science and Systems (RSS)*, 2022.

619 Shichao Fan, Quantao Yang, Yajie Liu, Kun Wu, Zhengping Che, Qingjie Liu, and Min Wan. Diffu-
 620 sion trajectory-guided policy for long-horizon robot manipulation. *IEEE Robotics and Automa-*
 621 *tion Letters*, 10(12):12788–12795, 2025. doi: 10.1109/LRA.2025.3619794.

622 Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiaolong Wang. Fine-
 623 tuning offline world models in the real world. In *Conference on Robot Learning (CoRL)*, 2023.

624 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
 625 with low-cost whole-body teleoperation. In *Conference on Robot Learning (CoRL)*, 2024.

626 Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
 627 Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
 628 In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2024.

629 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
 630 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 631 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF conference on computer vision*
 632 *and pattern recognition*, pp. 18995–19012, 2022.

633 Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel Pinto. Watch and match: Supercharg-
 634 ing imitation with regularized optimal transport. In *Conference on Robot Learning*, pp. 32–43.
 635 PMLR, 2023.

636 Haoran He, Chenjia Bai, Ling Pan, Weinan Zhang, Bin Zhao, and Xuelong Li. Learning an action-
 637 able discrete diffusion policy via large-scale actionless video pre-training. *Advances in Neural*
 638 *Information Processing Systems*, 37:31124–31153, 2024.

639 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 640 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 641 *vision and pattern recognition*, pp. 16000–16009, 2022.

648 Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J Lim. Furniturebench: Reproducible real-
 649 world benchmark for long-horizon complex manipulation. *The International Journal of Robotics*
 650 *Research*, pp. 02783649241304789, 2023.

651 Noriaki Hirose, Dhruv Shah, Ajay Sridhar, and Sergey Levine. Sacson: Scalable autonomous control
 652 for social navigation. *IEEE Robotics and Automation Letters*, 9(1):49–56, 2023.

653 Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
 654 Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
 655 predictive visual representations. *arXiv preprint arXiv:2412.14803*, 2024.

656 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 657 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_{0.5}$: a vision-language-action
 658 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

659 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
 660 and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In *Confer-
 661 ence on Robot Learning*, pp. 991–1002. PMLR, 2022.

662 Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised
 663 deep reinforcement learning with generalized computation graphs for robot navigation. In *2018
 664 IEEE international conference on robotics and automation (ICRA)*, pp. 5129–5136. IEEE, 2018.

665 Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
 666 Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
 667 ment learning for vision-based robotic manipulation. In *Conference on robot learning*, pp. 651–
 668 673. PMLR, 2018.

669 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 670 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
 671 lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint
 672 arXiv:2403.12945*, 2024.

673 Minchan Kim, Junhyek Han, Jaehyung Kim, and Beomjoon Kim. Pre-and post-contact policy
 674 decomposition for non-prehensile manipulation with zero-shot sim-to-real transfer. In *2023
 675 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 10644–10651.
 676 IEEE, 2023.

677 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 678 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 679 vision-language-action model. In *Conference on Robot Learning (CoRL)*, 2024.

680 Jason Lee, Jiafei Duan, Haoquan Fang, Yuquan Deng, Shuo Liu, Boyang Li, Bohan Fang, Jieyu
 681 Zhang, Yi Ru Wang, Sangho Lee, et al. Molmoact: Action reasoning models that can reason in
 682 space. In *CoRL 2025 Robot Data Workshop*, 2025.

683 Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafullah, and
 684 Lerrel Pinto. Behavior generation with latent actions. In *Proceedings of the International Con-
 685 ference on Machine Learning (ICML)*, 2024.

686 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 687 pre-training with frozen image encoders and large language models. In *International conference
 688 on machine learning*, pp. 19730–19742. PMLR, 2023.

689 Meng Li, Zhen Zhao, Zhengping Che, Fei Liao, Kun Wu, Zhiyuan Xu, Pei Ren, Zhao Jin, Ning Liu,
 690 and Jian Tang. Switchvla: Execution-aware task switching for vision-language-action models.
 691 *arXiv preprint arXiv:2506.03574*, 2025a.

692 Shuang Li, Yihuai Gao, Dorsa Sadigh, and Shuran Song. Unified video action model. In *Proceedings
 693 of Robotics: Science and Systems (RSS)*, 2025b.

694 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
 695 Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
 696 policies in simulation. *arXiv preprint arXiv:2405.05941*, 2024.

702 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 703 *in neural information processing systems*, 36:34892–34916, 2023.

704 Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on the
 706 job: Human-in-the-loop autonomy and learning during deployment. *The International Journal of*
 707 *Robotics Research*, pp. 02783649241273901, 2022.

708 Jiaming Liu, Hao Chen, Pengju An, Zhuoyang Liu, Renrui Zhang, Chenyang Gu, Xiaoqi Li, Ziyu
 709 Guo, Sixiang Chen, Mengzhen Liu, et al. Hybridvla: Collaborative diffusion and autoregression
 710 in a unified vision-language-action model. *arXiv preprint arXiv:2503.10631*, 2025a.

711 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu,
 712 Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. In
 713 *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025b.

714 Zhuoyang Liu, Jiaming Liu, Jiadong Xu, Nuowei Han, Chenyang Gu, Hao Chen, Kaichen
 716 Zhou, Renrui Zhang, Kai Chin Hsieh, Kun Wu, et al. Mla: A multisensory language-action
 717 model for multimodal understanding and forecasting in robotic manipulation. *arXiv preprint*
 718 *arXiv:2509.26642*, 2025c.

719 Jianlan Luo, Charles Xu, Xinyang Geng, Gilbert Feng, Kuan Fang, Liam Tan, Stefan Schaal, and
 720 Sergey Levine. Multistage cable routing through hierarchical imitation learning. *IEEE Transac-*
 721 *tions on Robotics*, 40:1476–1491, 2024.

722 Jianlan Luo, Charles Xu, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, and
 723 Sergey Levine. Fmb: a functional manipulation benchmark for generalizable robotic learning.
 724 *The International Journal of Robotics Research*, 44(4):592–606, 2025.

725 Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
 726 Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. *IEEE Robotics*
 727 *and Automation Letters*, 2023.

728 Ajay Mandlekar, Jonathan Booher, Max Spero, Albert Tung, Anchit Gupta, Yuke Zhu, Animesh
 729 Garg, Silvio Savarese, and Li Fei-Fei. Scaling robot supervision to hundreds of hours with robo-
 730 turk: Robotic manipulation dataset through human reasoning and dexterity. In *2019 IEEE/RSJ*
 731 *International Conference on Intelligent Robots and Systems (IROS)*, pp. 1048–1055. IEEE, 2019.

732 Tatsuya Matsushima, Hiroki Furuta, Yusuke Iwasawa, and Yutaka Matsuo. Weblab xarm dataset,
 733 2023.

734 Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language with visual affordances
 735 over unstructured data. In *Proceedings of the IEEE International Conference on Robotics and*
 736 *Automation (ICRA)*, 2023.

737 Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Structured world models from human videos.
 738 In *Proceedings of Robotics: Science and Systems (RSS)*, 2023.

739 Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, and Animesh Garg. Quest: Self-
 740 supervised skill abstractions for learning continuous control. *Advances in Neural Information*
 741 *Processing Systems*, 37:4062–4089, 2024.

742 Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior data
 743 for skill-based imitation learning. In *Proceedings of the Conference on Robot Learning (CoRL)*,
 744 2022.

745 Jihoon Oh, Naoki Kanazawa, and Kento Kawaharazuka. X-embodiment u-tokyo pr2 datasets. *URL*
 746 https://github.com/ojh6404/rlds_dataset_builder, 22, 2023.

747 Takayuki Osa. Motion planning by learning the solution manifold in trajectory optimization. *The*
 748 *International Journal of Robotics Research*, 41(3):281–311, 2022.

749 Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 750 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 751 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
 752 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.

756 Abhishek Padalkar, Gabriel Quere, Antonin Raffin, João Silvério, and Freek Stulp. A guided re-
 757 enforcement learning approach using shared control templates for learning manipulation skills in
 758 the real world. 2023a.

759 Abhishek Padalkar, Gabriel Quere, Franz Steinmetz, Antonin Raffin, Matthias Nieuwenhuisen, João
 760 Silvério, and Freek Stulp. Guiding reinforcement learning with shared control templates. In *ICRA*,
 761 pp. 11531–11537, 2023b.

763 Jyothish Pari, Nur Muhammad Shafullah, Sridhar Pandian Arunachalam, and Lerrel Pinto. The sur-
 764 prising effectiveness of representation learning for visual imitation. In *Proceedings of Robotics: Sci-
 765 ence and Systems (RSS)*, 2022.

766 Doyoung Park, Seong-Hwan Hwang, Keonwoo Lee, Yeeun Ryoo, Hyoung F Kim, and Sue-Hyun
 767 Lee. Supramodal and cross-modal representations of working memory in higher-order cortex.
 768 *Nature Communications*, 16(1):4497, 2025.

770 Rolf Pfeifer and Fumiya Iida. Embodied artificial intelligence: Trends and challenges. *Lecture notes
 771 in computer science*, pp. 1–26, 2004.

772 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
 773 Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
 774 language-action model. In *Proceedings of Robotics: Science and Systems (RSS)*, 2025.

776 Gabriel Quere, Annette Hagengruber, Maged Iskandar, Samuel Bustamante, Daniel Leidner, Freek
 777 Stulp, and Jörn Vogel. Shared control templates for assistive robotics. In *2020 IEEE international
 778 conference on robotics and automation (ICRA)*, pp. 1956–1962. IEEE, 2020.

779 Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg, Trevor Darrell, and Jitendra Malik. Robot
 780 learning with sensorimotor pre-training. In *Conference on Robot Learning*, pp. 683–693. PMLR,
 781 2023a.

782 Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
 783 Real-world robot learning with masked visual pre-training. In *Conference on Robot Learning*, pp.
 784 416–426. PMLR, 2023b.

786 Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
 787 plans for task-agnostic offline reinforcement learning. In *Conference on Robot Learning*, pp.
 788 1838–1849. PMLR, 2023.

789 Saumya Saxena, Mohit Sharma, and Oliver Kroemer. Multi-resolution sensing for real-time control
 790 with vision-language models. In *2nd Workshop on Language and Robot Learning: Language as
 791 Grounding*, 2023.

793 Nur Muhammad Shafullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
 794 transformers: Cloning k modes with one stone. *Advances in neural information processing sys-
 795 tems*, 35:22955–22968, 2022.

796 Nur Muhammad Mahi Shafullah, Anant Rai, Haritheja Etukuru, Yiqian Liu, Ishan Misra, Soumith
 797 Chintala, and Lerrel Pinto. On bringing robots home. *arXiv preprint arXiv:2311.16098*, 2023.

799 Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas Rhinehart, and Sergey Levine. Rapid
 800 exploration for open-world navigation with latent goal models. In *Proceedings of the Conference
 801 on Robot Learning (CoRL)*, 2021.

802 Rutav Shah, Roberto Martín-Martín, and Yuke Zhu. Mutex: Learning unified policies from multi-
 803 modal task specifications. In *Proceedings of the Conference on Robot Learning (CoRL)*, 2023.

804 Yue Su, Xinyu Zhan, Hongjie Fang, Han Xue, Hao-Shu Fang, Yong-Lu Li, Cewu Lu, and Lixin
 805 Yang. Dense policy: Bidirectional autoregressive learning of actions. In *Proceedings of the
 806 IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025.

808 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 809 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024a.

810 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 811 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 812 policy. In *Proceedings of Robotics: Science and Systems*, 2024b.

813

814 Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
 815 Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, et al. Wavenet: A generative model for
 816 raw audio. *arXiv preprint arXiv:1609.03499*, 12:1, 2016.

817 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 818 neural information processing systems*, 30, 2017.

819

820 Jörn Vogel, Annette Hagengruber, Maged Iskandar, Gabriel Quere, Ulrike Leipscher, Samuel Bus-
 821 tamante, Alexander Dietrich, Hannes Höppner, Daniel Leidner, and Alin Albu-Schäffer. Edan:
 822 An emg-controlled daily assistant to help people with physical disabilities. In *2020 IEEE/RSJ
 823 International Conference on Intelligent Robots and Systems (IROS)*, pp. 4183–4190. IEEE, 2020.

824 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
 825 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
 826 for robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

827

828 Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learning
 829 with heterogeneous pre-trained transformers. *Advances in neural information processing systems*,
 830 37:124420–124450, 2024a.

831 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 832 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 833 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

834 Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla: Vision-
 835 language model with plug-in diffusion expert for general robot control. In *Proceedings of the
 836 Conference on Robot Learning (CoRL)*, 2025a.

837

838 Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
 839 Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
 840 models for robotic manipulation. *IEEE Robotics and Automation Letters*, 2025b.

841 Junjie Wen, Yichen Zhu, Minjie Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Xiaoyu Liu, Chaomin
 842 Shen, Yixin Peng, and Feifei Feng. Diffusionvla: Scaling robot foundation models via unified
 843 diffusion and autoregression. In *Forty-second International Conference on Machine Learning*,
 844 2025c.

845

846 Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
 847 Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
 848 normative data for robot manipulation. In *Proceedings of Robotics: Science and Systems (RSS)*,
 849 2025a.

850 Kun Wu, Yichen Zhu, Jinming Li, Junjie Wen, Ning Liu, Zhiyuan Xu, and Jian Tang. Discrete
 851 policy: Learning disentangled action space for multi-task robotic manipulation. In *2025 IEEE
 852 International Conference on Robotics and Automation (ICRA)*, pp. 8811–8818. IEEE, 2025b.

853 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 854 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In *Pro-
 855 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4818–
 856 4829, 2024.

857

858 Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation
 859 learning. *arXiv preprint arXiv:2504.16925*, 2025.

860 Wu Yan and Xiaolong Wang. ucsd kitchens Dataset. August 2023.

861

862 Shuai Yang, Hao Li, Yilun Chen, Bin Wang, Yang Tian, Tai Wang, Hanqing Wang, Feng Zhao, Yiyi
 863 Liao, and Jiangmiao Pang. Instructvla: Vision-language-action instruction tuning from under-
 standing to manipulation. *arXiv preprint arXiv:2507.17520*, 2025.

864 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
 865 dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos.
 866 In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025.

867 Yifu Yuan, Haiqin Cui, Yibin Chen, Zibin Dong, Fei Ni, Longxin Kou, Jinyi Liu, Pengyi Li, Yan
 868 Zheng, and Jianye Hao. From seeing to doing: Bridging reasoning and decision for robotic
 869 manipulation. *arXiv preprint arXiv:2505.08548*, 2025.

870 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 871 policy: Generalizable visuomotor policy learning via simple 3d representations. In *Proceedings
 872 of Robotics: Science and Systems (RSS)*, 2024.

873 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 874 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 875 pp. 11975–11986, 2023.

876 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 877 Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the
 878 diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186.
 879 Springer, 2024.

880 Yang Zhang, Chenwei Wang, Ouyang Lu, Yuan Zhao, Yunfei Ge, Zhenglong Sun, Xiu Li, Chi
 881 Zhang, Chenjia Bai, and Xuelong Li. Align-then-steer: Adapting the vision-language action
 882 models through unified latent guidance. *arXiv preprint arXiv:2509.02055*, 2025.

883 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 884 for multivariate time series forecasting. In *The eleventh international conference on learning
 885 representations*, 2023.

886 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
 887 Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
 888 language-action models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 889 pp. 1702–1713, 2025.

890 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 891 manipulation with low-cost hardware. In *Proceedings of Robotics: Science and Systems (RSS)*,
 892 2023.

893 Jinliang Zheng, Jianxiong Li, Dongxiu Liu, Yinan Zheng, Zhihao Wang, Zhonghong Ou, Yu Liu,
 894 Jingjing Liu, Ya-Qin Zhang, and Xianyuan Zhan. Universal actions for enhanced embodied foun-
 895 dation models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 896 22508–22519, 2025a.

897 Jinliang Zheng, Jianxiong Li, Zhihao Wang, Dongxiu Liu, Xirui Kang, Yuchun Feng, Yinan Zheng,
 898 Jiayin Zou, Yilun Chen, Jia Zeng, et al. X-vla: Soft-prompted transformer as scalable cross-
 899 embodiment vision-language-action model. *arXiv preprint arXiv:2510.10274*, 2025b.

900 Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish Pari, Kyle
 901 Hatch, Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, et al. Train offline, test online: A
 902 real robot learning benchmark. In *Proceedings of the Conference on Robot Learning workshop*,
 903 2022a.

904 Yifan Zhou, Shubham Sonawani, Mariano Phielipp, Simon Stepputtis, and Heni Ben Amor. Modu-
 905 larity through attention: Efficient training and transfer of language-conditioned policies for robot
 906 manipulation. In *Proceedings of the Conference on Robot Learning (CoRL)*, 2022b.

907 Yifan Zhou, Shubham Sonawani, Mariano Phielipp, Heni Ben Amor, and Simon Stepputtis. Learn-
 908 ing modular language-conditioned robot policies through attention. *Autonomous Robots*, 47(8):
 909 1013–1033, 2023.

910 Xinghao Zhu, Ran Tian, Chenfeng Xu, Mingxiao Huo, Wei Zhan, Masayoshi Tomizuka,
 911 and Mingyu Ding. Fanuc manipulation: A dataset for learning-based manipula-
 912 tion with fanuc mate 200id robot. <https://sites.google.com/berkeley.edu/fanuc-manipulation>, 2023a.

918 Yifeng Zhu, Peter Stone, and Yuke Zhu. Bottom-up skill discovery from unsegmented demonstra-
 919 tions for long-horizon robot manipulation. *IEEE Robotics and Automation Letters*, 7(2):4126–
 920 4133, 2022.

921 Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke Zhu. Viola: Imitation learning for vision-based
 922 manipulation with object proposal priors. In *Conference on Robot Learning*, pp. 1199–1210.
 923 PMLR, 2023b.

924 Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, and Gang
 925 Hua. Designing a better asymmetric vqgan for stablediffusion. *arXiv preprint arXiv:2306.04632*,
 926 2023c.

927 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 928 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 929 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

933 6 APPENDIX

934 6.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

935 In preparing this manuscript, we employed Large Language Models (LLMs) solely for assistance in
 936 academic writing, including text refinement and polishing. No other use of LLMs was involved in
 937 the research process, data analysis, or experimental design. All conceptual development, algorithmic
 938 contributions, and empirical evaluations were conducted independently by the authors.

939 6.2 IMPLEMENTATION DETAILS

940 In this section, we provide a detailed description of the XR-1 framework, focusing on the architec-
 941 ture and training of the dual-branch VQ-VAE. The model is designed to encode both vision dynam-
 942 ics and robotic motion into a shared discrete latent space, thereby enabling seamless integration of
 943 perception and control.

944 6.2.1 DUAL-BRANCH VQ-VAE

945 To achieve a unified latent representation, we introduce a dual-branch VQ-VAE consisting of two
 946 complementary encoders, a vision encoder and a motion encoder, that map their respective modalities
 947 into a common discrete codebook. Each branch is paired with a decoder to facilitate reconstruc-
 948 tion during pretraining. The overall design ensures that the majority of representational capacity
 949 resides in the encoders, while the decoders primarily serve as auxiliary components for reconstruc-
 950 tion.

951 **Vision Branch.** The vision branch processes raw image observations $\{o_t, o_{t+h}\}$ and encodes them
 952 into compact latent tokens.

953 **Vision Branch Encoder.** We adopt SigLIP (Zhai et al., 2023) as the backbone vision encoder, com-
 954 prising approximately 400M parameters. This encoder extracts high-level features from visual in-
 955 puts. To capture temporal dynamics beyond static representations, we incorporate a visual dynamic
 956 module inspired by (Chen et al., 2025). This module is implemented as a four-layer transformer
 957 (ViT (He et al., 2022)) with 32M parameters, which compresses vision dynamic information into a
 958 fixed number of latent tokens by querying dynamic features.

959 **Vision Branch Decoder.** For reconstruction, we employ a ViT-based decoder with 12 transformer
 960 layers (94M parameters). Importantly, the encoder contains roughly five times more parameters than
 961 the decoder. This asymmetry is intentional: by allocating more capacity to encoding, we encourage
 962 the model to produce informative latent tokens that simplify downstream decoding. Consequently,
 963 the decoder remains lightweight since its role is auxiliary rather than representationally dominant.

964 During training, all parameters in both the SigLIP backbone and the dynamic module remain fully
 965 trainable. Additional details regarding training hyperparameters are provided in Table 5.

972 **Motion Branch.** The motion branch encodes action sequences $\{a_{t:t+h}\}$ into discrete motion
 973 codes.

974 **Motion Branch Encoder.** To capture temporal dependencies across actions, we employ 1D causal
 975 strided convolutions (Van Den Oord et al., 2016), which progressively reduce sequence length h
 976 while preserving causality. The stride configuration determines the degree of temporal abstraction
 977 achieved at each stage. Following this convolutional compression, an 8-layer transformer encoder
 978 (34M parameters) further contextualizes action embeddings before quantization into discrete tokens.
 979

980 **Motion Branch Decoder.** For action reconstruction, we leverage Gemma (Beyer et al., 2024), an
 981 autoregressive language model with approximately 300M parameters. The design closely follows
 982 the action expert structure in π_0 (Black et al., 2024), integrating diffusion-based supervision for
 983 reconstructing low-level actions from motion codes. Pretraining this decoder equips it with strong
 984 generative priors over action sequences, thereby providing an effective initialization for downstream
 985 policy learning. Additional details regarding training hyperparameters are provided in Table 5
 986

987 Overall, this dual-branch architecture ensures that both perception and motion are represented in a
 988 unified tokenized space via vector quantization (VQ), enabling scalable pretraining across multi-
 989 modal data sources.

990 Table 5: Implementation Details of Dual-Branch VQ-VAE.

	Hyperparameter	Value		Hyperparameter	Type	Params.
Hyper-parameter	Batch Size	960	Network Architectures	Vision Encoder	SigLIP	400M
	Learning Rate	1e-4		Vision Dynamic Encoder	ViT	32M
	Optimizer	AdamW		Vision Decoder	ViT	94M
	Trainable Parameters	0.9B		Vision Recons. Loss	MSE	-
	Motion/Vision Codebook Category	256		Action Encoder	Convolution and Transformer	33M
	Motion/Vision Codebook Embed. Dim	256		Action Decoder	Transformer Decoder	300M
	Motion/Vision Code Num.	13		Action Recons. Loss	Flow Matching	-
	Action Sequence	50		-	-	-
	Vision Interval	50		-	-	-
	Training Step	275K				

1000 6.2.2 XR-1 MODELS

1001 **XR-1.** The proposed framework is designed to be model-agnostic, making it compatible with a
 1002 wide range of vision-language-action (VLA) architectures. In this work, we instantiate XR-1 us-
 1003 ing a configuration inspired by the baseline policy π_0 (Black et al., 2024) while introducing several
 1004 key modifications that enable more structured representation learning. Specifically, XR-1 builds
 1005 upon the PaliGemma architecture (Beyer et al., 2024), which integrates a SigLIP-based visual en-
 1006 coder (Zhai et al., 2023) with approximately 400 million parameters and a Gemma transformer
 1007 backbone (Team et al., 2024a) with an action prediction head containing around 2.6 billion param-
 1008 eters. This design largely mirrors π_0 in terms of scale and backbone selection, but diverges in how
 1009 supervision is introduced.

1010 Instead of directly optimizing for action prediction as in π_0 , XR-1 leverages the UVMC produced
 1011 by a Dual-Branch VQ-VAE as intermediate supervisory signals. The joint representation z_{uvmc}
 1012 encodes both motion and visual dynamics information, which serves as guidance for training. To
 1013 incorporate this signal effectively, we introduce two learnable tokens, $[ZMO]$ and $[ZVIS]$, that are
 1014 responsible for predicting the robotic motion codes and the visual dynamics codes. These predic-
 1015 tions are optimized using mean squared error loss against their respective targets. By enforcing this
 1016 disentangled supervision on both motor control and perceptual dynamics, XR-1 encourages stronger
 1017 alignment between perception and action.

1018 To ensure fairness in evaluation, XR-1 is initialized from PaliGemma’s publicly available pretrained
 1019 checkpoint rather than directly adopting the released weights of π_0 . This avoids potential con-
 1020 founding effects due to differences in pretraining objectives or data exposure. Overall, XR-1 ex-
 1021 tends beyond π_0 by introducing structured supervision through VQ-VAE latent codes and dedicated
 1022 learnable tokens for motion and visual prediction, while maintaining compatibility with large-scale
 1023 pretrained models such as PaliGemma. Additional details regarding training hyperparameters are
 1024 provided in Table 6.

1025 **XR-1-Light.** To further highlight the flexibility of our approach, we introduce **XR-1-Light**, a
 1026 lightweight variant of XR-1 that significantly reduces computational cost while maintaining com-

Table 6: Implementation Details of XR-1.

	Hyperparameter	Value		Hyperparameter	Value
Hyper-parameter	Batch size	640	Network Architectures	Decoder layer	18
	Learning rate	1e-4		Transformer hidden dim	2048
	Optimizer	AdamW		Heads num	8
	$[ZMO]$ Number	13		Action Decoder layer	18
	$[ZVIS]$ Number	$13 * view_{num}$		Action Transformer hidden dim	1024
	Action sequence	50		Action Heads num	8
	Training step	300k		Action loss	flow matching

petitive performance. The motivation behind XR-1-Light is to replace the large-scale PaliGemma backbone, which contains nearly 3 billion parameters, with a more efficient vision-language model (VLM) without sacrificing the ability to capture rich multimodal representations. For this purpose, we adopt Florence-2 (Xiao et al., 2024), a transformer-based model with approximately 230 million parameters, as the backbone within the SwitchVLA framework (Li et al., 2025a). This substitution enables faster training and inference while lowering memory requirements, making XR-1-Light more suitable for resource-constrained scenarios.

Despite its reduced scale, XR-1-Light preserves the core design principles of XR-1. In particular, it continues to leverage the supervisory signal UVMC from the Dual-Branch VQ-VAE, which encodes both robotic motion and visual dynamics. To integrate this supervision effectively, we employ two learnable tokens, $[ZMO]$ and $[ZVIS]$, that are responsible for predicting the motion codes and the visual dynamics codes. Unlike in XR-1 where these tokens are attached to a decoder-only transformer backbone, in Florence-2 they are inserted between the encoder and decoder layers. This design allows the encoder to specialize in extracting structured latent representations aligned with UVMC, while enabling the decoder to function as an action expert that generates task-specific predictions conditioned on these learned codes.

A notable difference between XR-1 and XR-1-Light lies in their training strategies. While XR-1 benefits from pretraining on XR-D before fine-tuning on downstream tasks, XR-1-Light omits this stage due to its lightweight architecture. Instead, it is directly fine-tuned on task-specific datasets. This choice reflects a trade-off: although pretraining could potentially enhance generalization, direct fine-tuning allows us to fully exploit Florence-2’s efficiency without incurring additional computational overhead.

In summary, XR-1-Light demonstrates that our framework can be instantiated not only with large-scale backbones such as PaliGemma but also with compact VLMs like Florence-2. By maintaining structured supervision through z_{uvmc} while reducing parameter count by more than an order of magnitude, XR-1-Light provides a practical alternative that balances performance with efficiency. Additional details regarding training hyperparameters are provided in Table 7.

Table 7: Implementation Details of XR-1-Light

	Hyperparameter	Value		Hyperparameter	Value
Hyper-parameter	Batch Size	160	Network Architectures	Encoder Layer	6
	Learning Rate	5e-5		Transformer Hidden Dim.	768
	Optimizer	AdamW		Heads Num.	12
	$[ZMO]$ Number	13		Action Decoder Layer	6
	$[ZVIS]$ Number	$13 * view_{num}$		Action Transformer Hidden Dim.	768
	Action Sequence	50		Action Heads Num.	12
	Training Step	50K		Action Loss	Flow Matching

6.2.3 TRAINING AND INFERENCE

The training of our framework is organized into three stages: UVMC learning, UVMC-guided pre-training, and policy fine-tuning. Each stage progressively aligns perception, representation, and control while balancing computational efficiency.

In the first stage, the UVMC module, containing approximately 0.9B parameters, is pretrained on large-scale multimodal data. This process consumed roughly 38,400 GPU hours on a cluster of 80

Figure 8: Overview of the pretraining datasets used for XR-1. We combine Open-X, RoboMIND, Ego4D, and our dataset XR-D, with a total of $\sim 1,264$ k episodes and 110M frames.

NVIDIA A100 GPUs (80GB each), enabling the model to capture both motion and visual dynamics representations.

The second stage involves policy pretraining, where the complete model scales up to about 4B parameters. This step also required around 38,400 GPU hours on the same hardware configuration. The objective here is to integrate the pretrained UVMC representations into a unified vision-language-action policy.

In the final stage, policy fine-tuning is performed for embodiment-specific adaptation. Each embodiment configuration is fine-tuned across 20 downstream tasks using 8 A100 GPUs (80GB), requiring approximately 576 GPU hours per embodiment. This ensures that XR-1 and its variants generalize effectively to diverse robotic environments while remaining computationally practical.

For inference, we emphasize both responsiveness and throughput. The system operates with an action chunk inference frequency of about 5 Hz while maintaining an average action-level inference rate close to 200 Hz (actions per second). These frequencies are achieved on a single commercially available RTX 4090 GPU (24GB), demonstrating that despite large-scale pretraining costs, deployment remains efficient without reliance on massive compute resources.

6.3 DATASET CURATION

Large-scale pretraining has consistently been shown to enhance both generalization and rapid adaptation in multimodal learning systems. Motivated by these findings, we curate a comprehensive dataset tailored for robotic manipulation, integrating diverse sources of visual, linguistic, and action-centric data. Our dataset construction draws from four complementary resources: *Open-X* (O’Neill et al., 2024), which provides large-scale open-world manipulation trajectories; *RoboMIND* (Wu et al., 2025a), a benchmark emphasizing reasoning-driven robotic tasks; *Ego4D* (Grauman et al., 2022), a first-person human activity dataset offering rich egocentric perspectives; and *XR-D*, our in-house collection spanning multiple robotic embodiments and task domains. Together, these sources cover a wide spectrum of sensory modalities, embodiment variations, and task complexities, forming a foundation for scalable pretraining.

The training procedure is organized into three progressive stages. In **Stage-1**, we pretrain a dual-branch VQ-VAE on the combined datasets to learn disentangled latent representations of motion and visual dynamics. In **Stage-2**, we leverage XR-D to pretrain the vision-language-action (VLA) backbone, aligning multimodal perception with action generation across diverse embodiments. Finally, in **Stage-3**, we fine-tune on novel scenes and previously unseen tasks outside XR-D in order to rigorously assess transferability and generalization beyond the pretraining distribution.

A detailed breakdown of dataset statistics, including scale, modality coverage, and embodiment diversity across all sources used for UVMC pretraining, is provided in Figure 8 and Table 8.

Table 8: Pretraining Dataset Details.

Dataset	Episode	Frames	Weight
OXE (O’Neill et al., 2024)	978,582	59.3M	40%
FMB Dataset (Luo et al., 2025)	8611	1137340	0.88%
DROID (Khazatsky et al., 2024)	92233	27044326	9.43%
Language Table (Lynch et al., 2023)	442226	7045476	45.19%
Berkeley Autolab UR5 (Chen et al.)	896	87783	0.09%
Berkeley Fanuc Manipulation (Zhu et al., 2023a)	415	62613	0.04%
Berkeley Cable Routing (Luo et al., 2024)	1482	38240	0.15%
Berkeley Gnm Cory Hall (Kahn et al., 2018)	7331	156012	0.75%
Berkeley Gnm Recon (Shah et al., 2021)	11834	610907	1.21%
Berkeley Gnm Sac Son (Hirose et al., 2023)	2955	241059	0.30%
Berkeley MVP (Radosavovic et al., 2023b)	480	45308	0.05%
Berkeley RPT (Radosavovic et al., 2023a)	908	392578	0.10%
Bridge (Ebert et al., 2022; Walke et al., 2023)	25460	813372	2.60%
BC-Z (Jang et al., 2022)	43264	6015535	4.42%
Taco Play (Rosete-Beas et al., 2023; Mees et al., 2023)	3242	213972	0.33%
NYU Franka Play Dataset (Cui et al., 2023)	365	34448	0.04%
Asu Table Top (Zhou et al., 2022b; 2023)	110	26113	0.01%
Austin Buds Dataset (Zhu et al., 2022)	50	34112	0.01%
Austin Sailor Dataset (Nasiriany et al., 2022)	240	353094	0.02%
Austin Sirius Dataset (Liu et al., 2022)	559	279939	0.05%
CMU Play Fusion (Chen et al., 2023)	576	235922	0.05%
CMU Stretch (Bahl et al., 2023; Mendonca et al., 2023)	135	25016	0.01%
Columbia Cairlab Pusht Real (Chi et al., 2023)	122	24924	0.01%
DLR EDAN Shared Control (Vogel et al., 2020; Quere et al., 2020)	104	8928	0.01%
DLR Sara Grid Clamp (Padalkar et al., 2023a)	107	7622	0.01%
DLR Sara Pour (Padalkar et al., 2023b)	100	12971	0.01%
DobbE (Shafiuallah et al., 2023)	5208	1139911	0.52%
Stanford Hydra Dataset (Belkhale et al., 2023)	570	358234	0.06%
Tokyo U Lsmo (Osa, 2022)	50	11925	0.01%
Toto (Zhou et al., 2022a)	902	294139	0.10%
UCSD Kitchen Dataset (Yan & Wang, 2023)	150	3970	0.02%
UCSD Pick and Place Dataset (Feng et al., 2023)	1355	67750	0.14%
UTAustin Mutex (Shah et al., 2023)	1500	361883	0.15%
U-Tokyo PR2 Opening Fridge (Oh et al., 2023)	64	9140	0.01%
U-Tokyo PR2 Tabletop Manipulation (Oh et al., 2023)	192	26346	0.02%
U-Tokyo xArm Bimanual (Matsushima et al., 2023)	64	1388	0.01%
U-Tokyo xArm Pick and Place (Matsushima et al., 2023)	92	6789	0.01%
Viola (Zhu et al., 2023b)	135	68913	0.01%
Fractal (Brohan et al., 2022)	87212	3786400	8.91 %
Furniture Bench Dataset (Heo et al., 2023)	5100	3948057	0.51%
IAMLab CMU Pickup Insert (Saxena et al., 2023)	631	146241	0.06%
Jaco Play (Dass et al., 2023)	976	70127	0.10%
Kaist Non-prehensile (Kim et al., 2023)	201	32429	0.02%
Kuka (Kalashnikov et al., 2018)	209880	2455879	21.45%
NYU Door Opening Surprising Effectiveness (Pari et al., 2022)	435	18196	0.04%
NYU ROT Dataset (Haldar et al., 2023)	14	440	0.01%
RoboSet (Bharadhwaj et al., 2024)	18250	1419999	1.86%
Roboturk (Mandlekar et al., 2019)	1796	168423	0.18%
RoboMIND (Wu et al., 2025a)	69274	21.4M	15%
Single-Arm Franka	16018	2268033	23.12%
Dual-Arm Franka	1774	375807	2.56%
Single-Arm UR-5e	25721	2643322	37.13%

Continued on next page

Dataset	Episode	Frames	Weight
AgileX Cobot Magic V2.0	10059	6477564	14.52%
Tien Kung 1.0	15702	9683213	22.67%
XR-D	158639	69.1M	35%
Single-Arm Franka	16933	5240845	10.67%
Dual-Arm Franka	56800	17140497	35.80%
Single-Arm UR-5e	21954	3218116	13.84%
Dual-Arm UR-5e	33916	5463729	21.38%
AgileX Cobot Magic V2.0	8004	16576019	5.05%
ARX LIFT	11866	15845836	7.48%
Tien Kung 1.0	9166	5605573	5.78%
Ego4D (Grauman et al., 2022)	59427	14.3M	10%

6.4 ADDITIONAL REAL-WORLD EXPERIMENTS

Table 9: Success rate results across 20 tasks on Tien Kung 1.0.

Method	TK1-Close Drawer	TK1-Flip TennisTube	TK1-Press CookerButton	TK1-Move ChopstickCup	TK1-Stack Cubes	TK1-Stack Cups	TK1-Stack Plates	TK1-Pick WipeTowel	TK1-Hang Towel	TK1-Open PotLid	-
UniVLA	25	0	25	10	0	0	35	0	0	0	-
RDT	45	0	65	0	0	0	70	0	0	0	-
GR00T-N1.5	75	20	85	20	0	0	70	0	0	0	-
π_0	75	40	45	25	0	0	80	0	0	0	-
$\pi_{0.5}$	75	35	55	60	0	0	75	0	0	0	-
XR-1 (ours)	80	50	90	65	65	20	85	55	65	20	-
	TK1-Open Oven	TK1-Pack EggBox	TK1-Close Laptop	TK1-Insert Toaster	TK1-Flip Cup	TK1-Place FlipButton	TK1-Open TrashBin	TK1-Press Machine	TK1-Find Tape	TK1-Stack Bowls	Avg.
UniVLA	30	0	0	30	0	0	25	20	20	30	12.5
RDT	0	0	90	0	0	0	85	55	0	0	20.5
GR00T-N1.5	55	0	15	40	0	0	70	45	45	45	29.3
π_0	75	10	90	65	10	15	75	70	70	80	41.3
$\pi_{0.5}$	80	20	95	65	30	25	65	75	75	80	45.5
XR-1 (ours)	80	65	95	70	65	65	85	75	75	90	68.0

Results on Tien Kung 1.0. Table 9 reports success rates across 20 tasks on Tien Kung 1.0. XR-1 again outperforms all baselines by a clear margin. For example, in *TK1-HangTowel*, it achieves 65% success while all baselines fail (0%). Overall, XR-1 attains an average success rate of 68.0%, substantially higher than π_0 (41.3%) and more than double RDT (20.5%) and UniVLA (12.5%). These results highlight the effectiveness of UVMC supervision in providing robust representations and stable optimization across diverse manipulation skills.

Table 10: Success rate results across 20 tasks on Dual-Arm Franka.

Method	DFR-Move CupMilk	DFR-Stack Bowls	DFR-Sweep Trash	DFR-Transfer Cup	DFR-Move Chopstick	DFR-Stack Cubes	DFR-Stack Plates	DFR-Clean Table	DFR-Hang CupHolder	DFR-Hang TowelRack	-
UniVLA	15	20	0	30	0	5	25	35	0	20	-
RDT	55	40	0	0	15	60	90	65	0	0	-
GR00T-N1.5	80	85	35	55	0	15	45	90	25	50	-
π_0	0	75	35	60	0	75	80	80	0	25	-
$\pi_{0.5}$	15	85	60	40	0	55	90	85	45	20	-
XR-1 (ours)	80	85	75	90	55	60	90	90	65	60	-
	DFR-Find TapeBox	DFR-Pick ButtonPress	DFR-Sweep Rubbish	DFR-Close Toolbox	DFR-Collect BasketTea	DFR-Place Tools	DFR-Get Blocks	DFR-Place RagWipe	DFR-Open Toolbox	DFR-Place Screws	Avg.
UniVLA	25	0	0	15	10	0	25	20	0	0	12.3
RDT	0	20	0	25	0	0	5	55	0	0	21.5
GR00T-N1.5	80	0	0	85	35	0	70	0	0	0	37.5
π_0	90	30	0	0	0	0	75	70	50	0	37.3
$\pi_{0.5}$	65	25	30	0	0	60	75	70	0	0	41.0
XR-1 (ours)	90	75	60	90	75	60	85	70	60	55	73.5

Results on Dual-Arm Franka. Table 10 reports success rates across 20 tasks on the Dual-Arm Franka. XR-1 achieves the highest average performance (73.5%), substantially outperforming π_0 (37.3%) and other baselines. For example, in *DFR-TransferCup* it reaches 90% success, while all alternatives fall below 60%. It is because XR-1 leverages UVMC for richer supervision, yielding robust representations and stable learning across diverse objectives.

Table 11: Success rate results across 20 tasks on AgileX Cobot Magic V2.0.

Method	AGX-OpenDrawerButton	AGX-MoveButtonDrawer	AGX-StackBoxes	AGX-FindTapeBox	AGX-SweepRubbish	AGX-ArrangeValves	AGX-HangScissors	AGX-PlaceButton	AGX-CloseToolbox	AGX-GatherScrews	-
UniVLA	25	15	0	0	0	0	25	25	20	0	-
RDT	70	75	20	60	0	30	0	60	0	0	-
GR00T-N1.5	85	75	20	75	0	45	0	80	0	0	-
π_0	85	85	0	60	0	45	0	0	0	0	-
$\pi_{0.5}$	35	70	40	80	15	35	0	70	35	30	-
XR-1 (ours)	90	80	45	75	25	45	80	85	90	30	-
	AGX-FindCircuit	AGX-PlaceBiscuitBox	AGX-CollectBasketTea	AGX-PlaceScrewdriver	AGX-PourGearOil	AGX-StackBrakePads	AGX-MeshStackCup	AGX-PourWine	AGX-HangWipeRag	AGX-StackBowls	Avg.
UniVLA	0	0	0	0	10	10	25	0	0	20	8.8
RDT	0	0	0	0	0	55	0	0	65	85	28.5
GR00T-N1.5	0	50	45	0	0	0	0	0	20	70	24.0
π_0	0	40	45	55	40	0	55	0	50	90	32.5
$\pi_{0.5}$	20	60	25	30	55	40	15	20	60	90	41.3
XR-1 (ours)	15	60	35	35	75	85	90	20	55	85	60.0

Results on AgileX Cobot Magic V2.0. Table 11 reports success rates on 20 tasks with the AgileX Cobot Magic V2.0. XR-1 achieves an average of 60.0%, nearly doubling π_0 (32.5%) and far surpassing UniVLA (8.8%). On challenging tasks such as *AGX-StackBrakePads* and *AGX-CloseToolbox*, it reaches 85–90%, while other methods collapse to near 0%. We attribute these gains to UVMC-driven representations, which provide richer supervision and stabilize multi-task optimization.

Table 12: Success rate results across 20 tasks on Single-Arm UR-5e.

Method	SUR-FindTape	SUR-MoveMilkCup	SUR-StackBowls	SUR-OpenDrawer	SUR-CloseDrawer	SUR-InsertToyBlock	SUR-PlaceChopstick	SUR-StackCubes	SUR-StackCup	SUR-StackPlates	-
UniVLA	35	25	50	20	35	0	0	0	0	0	-
RDT	80	35	20	35	45	0	0	0	0	0	-
GR00T-N1.5	85	70	80	25	70	0	0	0	25	0	-
π_0	25	55	90	50	85	0	0	80	0	55	-
$\pi_{0.5}$	55	30	95	85	95	0	35	90	90	85	-
XR-1 (ours)	95	85	95	90	90	15	20	90	85	85	-
	SUR-SlideDrawer	SUR-OpenUpperDrawer	SUR-OpenOven	SUR-PackEggBox	SUR-CloseLaptop	SUR-InsertBread	SUR-AssembleValve	SUR-PourTubeBeaker	SUR-PourGearOil	SUR-WipeHangRag	Avg.
UniVLA	30	30	35	0	35	0	30	0	20	30	18.8
RDT	40	35	55	15	50	0	15	10	35	30	25.0
GR00T-N1.5	45	65	80	0	90	0	80	0	10	30	37.8
π_0	75	90	55	20	85	30	20	10	45	75	47.3
$\pi_{0.5}$	90	90	95	80	90	85	25	10	50	75	67.5
XR-1 (ours)	80	90	90	70	90	65	90	20	85	75	75.3

Results on Single-Arm UR-5e. Table 12 summarizes success rates over 20 tasks on the Single-Arm UR-5e. XR-1 achieves the highest average success of 75.3%, clearly surpassing π_0 (47.3%) and all other baselines. XR-1 maintains strong performance (65% and 85%) on hard tasks like *SUR-InsertBread* and *SUR-StackPlates* where baselines often collapse to near 0%. These results highlight the robustness and generalization ability of XR-1 enabled by UVMC.

Table 13: Success rate results across 20 tasks Dual-Arm UR-5e.

Method	DUR-FindTapeBasket	DUR-MoveCupMilk	DUR-StackBowls	DUR-SweepTrash	DUR-TransCupHolder	DUR-StackCubes	DUR-HangCupHolder	DUR-StackBrake	DUR-SweepRubbish	DUR-PressButton	-
UniVLA	30	35	35	20	0	0	0	0	0	10	-
RDT	45	65	50	0	30	0	60	15	10	20	-
GR00T-N1.5	25	60	80	0	0	0	0	0	0	0	-
π_0	70	55	80	55	15	15	10	0	0	35	-
$\pi_{0.5}$	45	65	90	60	55	20	10	85	70	80	-
XR-1 (ours)	85	65	85	60	65	20	85	65	80	85	-
	DUR-PickPlaceTape	DUR-CloseToolbox	DUR-AssembleValve	DUR-FlipTennisTube	DUR-PlaceTools	DUR-CloseDoorKnob	DUR-TakeBasketTea	DUR-PickToolbox	DUR-OpenTrashBin	DUR-TransButtons	Avg.
UniVLA	35	30	25	20	30	40	25	30	30	0	19.8
RDT	85	10	0	35	0	20	85	0	0	0	26.5
GR00T-N1.5	55	0	50	45	65	80	90	55	85	0	34.5
π_0	20	85	0	70	35	85	80	70	55	20	42.8
$\pi_{0.5}$	65	90	45	70	65	50	90	75	75	35	62.0
XR-1 (ours)	85	90	55	80	65	90	90	75	85	30	72.0

Results on Dual-Arm UR-5e. In addition to the bar plot reported in Figure 4, we provide the corresponding numerical results in Table 13. The table summarizes success rates across 20 tasks on the Dual-Arm UR-5e, offering a more detailed comparison among different methods.

1296 6.5 ADDITIONAL GENERALIZATION ANALYSIS
12971312 Figure 9: Out-of-box evaluation results of 7 tasks on Dual-Arm UR-5e.
1313

1314 **Out-of-Box Evaluation.** In addition to the evaluation on the Dual-Arm UR-5e, we also conduct
1315 an out-of-box evaluation of XR-1 on the Dual-Arm Franka. Specifically, we select 7 representative
1316 tasks from XR-D, covering only 0.9% of the dataset. To ensure a fair comparison, baselines
1317 without XR-D pretraining are fine-tuned on data from these tasks prior to evaluation. As shown in
1318 Figure 9, the pretrained **XR-1-oob** model, even without Stage-3 task-specific adaptation, achieves
1319 performance comparable to π_0 , while consistently outperforming GR00T-N1.5, RDT, and UniVLA.
1320 This result highlights XR-1’s strong generalization ability in low-data regimes.

1334 Figure 10: Fast adaption on Dual-Arm UR5e. Dual-Arm UR5e is an embodiment included in XR-D.
1335 In this setup, Here, XR-1 adapts to 15 novel tasks with one model using only 20-shot demonstrations
1336 per task, while baselines (ACT and DP) are trained per task.

1337 **Fast Adaptation to New Tasks.** Beyond the experiments on Tien Kung 2.0, we also evaluate fast
1338 adaptation on the Dual-Arm UR-5e. Specifically, we collect 15 new tasks that are unseen in XR-D,
1339 each with 20 trajectories for training. XR-1 is trained jointly across these tasks, while single-task
1340 baselines, ACT (Zhao et al., 2023) and Diffusion Policy (DP) (Chi et al., 2023), are trained indepen-
1341 dently per task. As shown in Figure 10, XR-1 achieves substantially higher success rates than ACT
1342 and DP, even though the evaluation setting is more favorable to the baselines. This performance
1343 gain can be attributed to large-scale pretraining combined with UVMC supervision, which enables
1344 XR-1 to extract transferable representations from few-shot data and adapt effectively across diverse
1345 manipulation tasks.

1346 6.6 ADDITIONAL ABLATION STUDY
1347

1348 **Ablation study of UVMC.** To obtain deeper insights into the UVMC architecture and its key hy-
1349 perparameter choices, we conduct 10 ablation experiments, as summarized in Table 14, with Exp.10

1350 serving as the baseline. By comparing Exp.1–6 against Exp.10, we analyze the influence of different
 1351 codebook category numbers and code dimensions on the final performance. For the code dimension,
 1352 Exp.1–3 adopt 64, 128, and 512, respectively, and are compared with the baseline setting of 256 in
 1353 Exp.10. The results show that when the dimension is below 256, policy performance consistently
 1354 improves as the dimension increases from 64 to 128 and 256, while further increasing it to 512 yields
 1355 no clear additional gains, suggesting that a dimension of 256 is already near-optimal. Using a similar
 1356 protocol in Exp.4–6 for the category number, we finally adopt 256 categories and a 256-dimensional
 1357 codebook as our default configuration. Next, by comparing Exp.7–8 with Exp.10, we evaluate the
 1358 difference between using only motion codes, only vision codes, and the unified vision–motion code
 1359 (UVMC). The results indicate that both motion-only and vision-only variants underperform the unified
 1360 UVMC. Moreover, vision-only codes outperform motion-only codes, while combining both
 1361 modalities within UVMC leads to complementary effects and improved overall performance. Fi-
 1362 nally, by comparing Exp.9 and Exp.10, we investigate whether a combined or separate codebook
 1363 is more effective. The results show that both designs achieve comparable performance, which we
 1364 attribute to the alignment loss imposed during training: although a separate codebook increases the
 1365 number of learnable codes, the alignment constraint effectively regulates cross-modal relationships,
 1366 leading to similar execution capabilities for both schemes.

Table 14: Ablation study of UVMC.

Exp.	Codebook	Category×Embed.Dim	UVMC Token	Stage-1&2&3	DUR-Clean Table	DUR-Find TapeBasket	DUR-Move CupMilk	DUR-Stack Bowls	DUR-Sweep Trash	DUR-Trans CupHolder	Avg
1	combine	256×64	both	DT	35	55	50	60	35	45	46.7
2	combine	256×128	both	DT	45	65	60	70	55	65	60.0
3	combine	256×512	both	DT	55	75	50	85	65	55	64.2
4	combine	64×256	both	DT	45	60	55	65	35	50	51.7
5	combine	128×256	both	DT	50	65	55	65	60	60	59.2
6	combine	512×256	both	DT	40	80	60	80	55	65	63.3
7	combine	256×256	motion-only	DT	25	70	35	60	5	15	35.0
8	combine	256×256	vision-only	DT	10	70	65	70	15	65	50.0
9	separate	256×256	both	DT	55	75	55	85	40	80	65.0
10	combine	256×256	both	DT	50	75	65	80	60	70	66.7

1377 **Ablation study of Ego4d.** To further examine the contribution of human video data (Ego4D) in the
 1378 pre-training stage, we conduct a set of ablation experiments, as summarized in Table 15. To balance
 1379 computational cost and the reliability of the conclusions, we use 10% of the full pre-training dataset
 1380 for these comparisons. Under this setting, we evaluate two variants: one with Ego4D included in
 1381 the pre-training data and one without Ego4D (w/o Ego4D). As shown in Table 15, removing Ego4D
 1382 leads to a 5.8% drop in average success rate compared to the setting that includes Ego4D. These
 1383 results quantitatively suggest that incorporating Ego4D into the pre-training data can effectively
 1384 improve performance.

Table 15: Ablation study of Ego4d.

Exp.	Instantiation	Stage-1	Stage-2	Stage-3	DUR-Clean Table	DUR-Find TapeBasket	DUR-Move CupMilk	DUR-Stack Bowls	DUR-Sweep Trash	DUR-Trans CupHolder	Avg
1	XR-1 w/o Ego4D	10%	XR-D	✓	20	60	10	55	15	35	32.5
2	XR-1 w/ Ego4D	10%	XR-D	✓	25	60	25	60	20	40	38.3

1393 **Cross-Embodied Knowledge Transfer for Enhanced Single Embodiment Performance.** This
 1394 setup is designed to verify whether similar tasks across different embodiments can mutually benefit
 1395 each other. Since the UVMC counterpart of XR-1 learns an embodiment-agnostic feature, this
 1396 setup serves to validate that capability. Specifically, we selected two identical tasks (FindTape and
 1397 SweepRubbish) across three different embodiments (Dual-Arm Franka, Dual-Arm UR5e, and Tien
 1398 Kung 2.0). The detailed results are shown in Table 16. Exp. 2 represents the results of training these
 1399 two skills across three different embodiments, resulting in six tasks. In the comparative experiment
 1400 setup, training two skills for a specific embodiment typically results in only two tasks. Therefore,
 1401 to ensure fairness, in Exp. 1, we added four additional tasks for the same embodiment, ensuring
 1402 that the data volume is equivalent. *The final results indicate that learning the same skills across*
 1403 *different embodiments can enhance the success rate of each embodiment’s skills, increasing the*
 1404 *average success rate by approximately 15%.* This demonstrates that the UVMC module has learned
 1405 an embodiment-agnostic beneficial feature.

Table 16: Ablation study of XR-1 on cross-embodiment knowledge transfer.

Exp.	Instantiation	Stage-1	Stage-2	Stage-3	DFR-Find TapeBox	DFR-Sweep Rubbish	DUR-Pick PlaceTape	DUR-Sweep Rubbish	TK2-Take Tape	TK2-Sweep Rubbish	Avg.
1	XR-1	100%	XR-D	SelfRobot	50	20	70	50	60	30	47
2	XR-1	100%	XR-D	CrossRobot	70	30	70	60	70	70	62

6.7 VISUALIZATION OF UNIFIED VISION-MOTION CODES

6.7.1 FRAME-TO-FRAME NEAREST-NEIGHBOR RETRIEVAL BETWEEN MOTION AND VISION CODES

Figure 11: **Frame-to-Frame Nearest-neighbor Retrieval between motion and vision codes.** In the first column, we select two representative skill actions, grasp and move, and compute their Motion Codes (MC). Columns two through five report the cosine distances between Motion Code (MC) and Vision Code (VC) features and their nearest and farthest neighbors under four settings: Same Embodiment with a Similar Task (SE.ST.), Same Embodiment with a Different Task (SE.DT.), Different Embodiment with a Similar Task (DE.ST.), and Different Embodiment with a Different Task (DE.DT.). For the different-embodiment setting, we use a dual-arm Franka robot. To standardize the notion of left and right across embodiments, we define them with respect to the outward-facing direction of the embodiment.

To further evaluate whether the vision code (VC) and motion code (MC) are semantically aligned in the latent space, we design a nearest-neighbor retrieval experiment, as shown in Figure 11. We select 7 tasks, each with 10 trajectory episodes, and compute the VC and MC for all frames in each episode. At the current time step T , we extract the MCs corresponding to the actions GRASP and MOVE, as illustrated in the first column of Figure 11, and visualize the image of the current frame to better interpret the motion code semantics. We then compute VC features from different tasks and embodiments and, using cosine similarity, identify for each MC feature at time T its nearest-neighbor and farthest-neighbor VC feature. Columns two through five of Figure 11 report

1458 the cosine distances between MC and VC features under four settings: Same Embodiment with a
 1459 Similar Task (SE.ST.), Same Embodiment with a Different Task (SE.DT.), Different Embodiment
 1460 with a Similar Task (DE.ST.), and Different Embodiment with a Different Task (DE.DT.). For the
 1461 different-embodiment setting, we use a dual-arm Franka robot. To standardize the notion of left
 1462 and right across embodiments, we define them with respect to the outward-facing direction of the
 1463 embodiment.

1464 Comparing SE.ST. with GRASP and MOVE shows that, under the same embodiment and a simi-
 1465 lar task, the nearest-neighbor VC for a given MC consistently reflects the same action semantics,
 1466 whereas the farthest-neighbor images display clearly different motions. Under the SE.DT. setting,
 1467 despite task changes, the nearest-neighbor VCs still capture the semantics of grasp or move, while
 1468 the farthest-neighbor images correspond to distinct motions. In the DE.ST. setting, even with differ-
 1469 ent embodiments, the nearest-neighbor frames for a similar task consistently depict similar actions,
 1470 in contrast to the clearly different motions in the farthest-neighbor images. Likewise, in the DE.DT.
 1471 setting, nearest-neighbor retrieval continues to select frames whose semantics are closest to grasp or
 1472 move, despite differences in both embodiment and task, whereas the farthest-neighbor images rep-
 1473 resent dissimilar actions. Together, these visualizations demonstrate that UVMC successfully learns
 1474 semantic representations of different actions, and that these representations become embodiment-
 1475 agnostic.

1476 **6.7.2 TASK-TO-TASK NEAREST-NEIGHBOR RETRIEVAL BETWEEN MOTION AND VISION
 1477 CODES**

1503 **Figure 12: Task-to-task nearest-neighbor retrieval between motion and vision codes.** It illus-
 1504 trates four different tasks and annotates the corresponding process phase at each timestep. For each
 1505 task, the annotations correspond one-to-one to the four experimental settings in Table 17, represent-
 1506 ing the actual procedure used to compute nearest-neighbor retrieval across different tasks.

1507 In the preceding analysis (Appendix 6.7.1), we primarily evaluate nearest-neighbor retrieval per-
 1508 formance at the frame-to-frame level for representative skills (e.g., grasp, move) under different
 1509 experimental settings (SE.ST., SE.DT., DE.ST., DE.DT.). To further investigate cross-task similar-
 1510 ity from an episode-to-episode perspective, we construct the nearest-neighbor similarity distribution
 1511 as illustrated in Figure 12. Specifically, we select four distinct tasks and perform pairwise com-

1512 Table 17: Task-to-task Nearest-neighbor similarity statistics
1513

1514 Exp.	1515 The mode of similarity distribution	1516 Average
1517 SE.ST. (Task1.MC vs Task1.VC)	0.97	0.75
1518 DE.ST. (Task1.MC vs Task2.VC)	0.82	0.67
1519 SE.DT. (Task1.MC vs Task3.VC)	0.60	0.56
1520 DE.DT. (Task1.MC vs Task4.VC)	0.46	0.48

1521 parisons among them, following the same experimental configurations as before (SE.ST., SE.DT.,
1522 DE.ST., DE.DT.). Specifically, let the motion code of the i -th frame in the source task be denoted by
1523 MC_i , and the vision code of the j -th frame in the target task be denoted by VC_j . We first compute
1524 the similarity between each MC_i in the source task and all VC_j in the target task:

$$1525 \quad \mathbf{S} \in \mathbb{R}^{T_s \times T_t}, \quad \mathbf{S}_{i,j} = \text{sim}(MC_i, VC_j),$$

1526 where T_s and T_t denote the number of frames in the source and target tasks, respectively. Based on
1527 this matrix \mathbf{S} , we perform a column-wise maximization, i.e., for each target frame j , we select from
1528 all source frames the motion-vision pair that attains the highest similarity:

$$1529 \quad s_j = \max_{1 \leq i \leq T_s} \mathbf{S}_{i,j}.$$

1530 In this way, we reduce the original two-dimensional similarity matrix to a similarity vector:
1531

$$1532 \quad \mathbf{s} = [s_1, s_2, \dots, s_{T_t}],$$

1533 which characterizes, for each target frame, its nearest-neighbor similarity with the source task. Fi-
1534 nally, we normalize the elements of \mathbf{s} to obtain a normalized nearest-neighbor similarity vector $\tilde{\mathbf{s}}$,
1535 whose values are constrained to lie within $[0, 1]$, enabling comparable and stable statistical analysis
1536 across different tasks.

1537 In Table 17, we report pairwise comparison results across different tasks. We take task 1 as the
1538 reference and use cosine similarity to quantify representational similarity between tasks. Under
1539 the SE.ST. setting, the mode of the similarity distribution is close to 1, indicating that for iden-
1540 tical embodiments and tasks the model learns highly consistent representations between MC and
1541 VC. Among the remaining three settings, DE.ST. has the highest mode, suggesting that UVMC
1542 learns features that are largely independent of embodiment and instead capture action-centric skills.
1543 Comparing DE.ST. with SE.DT. further supports this: different-embodiment but similar-task pairs
1544 exhibit higher overall similarity than same-embodiment but different-task pairs, implying stronger
1545 semantic alignment for shared skills than for shared morphology alone. Although DE.DT. has the
1546 lowest mode, it still retains non-trivial similarity, indicating that shared low-level skills (such as
1547 pick, handover, and place) give rise to stable cross-task, cross-embodiment similarity in the learned
1548 representations. We also compute the average nearest-neighbor similarity under these settings and
1549 observe consistent conclusions. Consequently, these analyses demonstrate that UVMC learns se-
1550 mantically meaningful action representations that are largely invariant to embodiment.

1551 6.7.3 VISUALIZING UVMC WITH T-SNE

1552 To qualitatively validate whether UVMC effectively captures intrinsic task dynamics and abstracts
1553 away physical embodiment details, we employ t-SNE to project the high-dimensional latent em-
1554 beddings into a two-dimensional manifold. We conduct this analysis on two distinct subsets: (1)
1555 a single-robot scenario involving 6 tasks performed by a dual-arm UR robot (Figure 13), and (2) a
1556 mixed-embodiment scenario comprising both dual-arm Franka and dual-arm UR robots (Figure 14).
1557 The visualization reveals two critical properties of the representation learned by UVMC.

1558 **Semantic Consistency of Dynamics.** As shown in Figure 13, the embedding space exhibits a struc-
1559 tured organization where tasks characterized by similar motion primitives form cohesive, proximal
1560 clusters. Specifically, in the lower-right corner, tasks sharing the "left-arm pick" primitive—namely
1561 DUR-CleanTable, DUR-StackBowls, and DUR-SweepTrash—are grouped closely together. This
1562 suggests the model successfully encodes the shared underlying semantics of the grasping motion.
1563 Conversely, the model effectively isolates distinct behaviors. Observing the upper region of the plot,
1564

Figure 13: Visualizing UVMC on 6 dual-arm UR tasks using t-SNE.

a cluster of brown points forms a distinct island separate from other task embeddings. This cluster corresponds to the sweeping and translational motions unique to the DUR-SweepTrash task. This separation demonstrates that UVMC can effectively disentangle common dynamical patterns (e.g., picking) from task-specific nuances (e.g., sweeping).

Figure 14: Visualizing UVMC across different embodiments (Dual-Arm Franka and Dual-Arm UR) using t-SNE.

Cross-Embodiment Alignment. A central hypothesis of our approach is that the learned representation should be embodiment-agnostic. Figure 14 substantiates this by illustrating the embedding space for identical tasks executed by morphologically distinct robots. Notably, the embeddings for DFR-CleanTable (represented in red) and DUR-CleanTable (represented in yellow) share a common support and overlap significantly within the latent manifold. Despite the kinematic and appearance discrepancies between the Franka and UR robots, UVMC projects their state-action trajectories onto

1620 a unified manifold. This result indicates that the model has learned a robust, embodiment-invariant
 1621 representation that prioritizes high-level task semantics over low-level proprioceptive differences.
 1622

1624 6.8 FAILURE CASE ANALYSIS ON BASELINE METHODS

1626 We conducted a qualitative analysis of the rollout videos to investigate why baselines struggle com-
 1627 pared to XR-1. We categorize the observed failures into two primary modes:

1628 **Optimization Collapse and Conflicting Gradients.** In some distinct scenarios, baselines fail to
 1629 capture the correct motion trend entirely. The models exhibit "hesitation" or revert to the mean
 1630 pose, suggesting that the optimization objective is torn between conflicting gradients from different
 1631 tasks. Example: In the 'DFR-CloseToolbox' task, the π_0 policy initiates a downward movement
 1632 with the right arm but immediately retracts to the initial position. The robot appears indecisive and
 1633 fails to commit to the task trajectory. We attribute this to the difficulty of fitting a single policy
 1634 distribution to 20 diverse tasks without task-distinguishing representations.

1642 Figure 15: Failure cases of baseline methods.
 1643

1644 **Precision Deficiency and Coordination Failure.** The most common failure mode involves the
 1645 robot attempting the correct action but failing in execution precision or bimanual coordination. Ex-
 1646 ample: In the 'DUR-HangCupHolder' task, GR00T-N1.5 successfully grasps the cup with the right
 1647 arm. However, it drops the cup during the handover to the left arm. This indicates that while the
 1648 model learns the general policy distribution, it lacks the fine-grained control and temporal consis-
 1649 tency required for complex, multi-stage manipulation.

1650 XR-1 addresses these issues through the Unified Vision-Motion Condition (UVMC) introduced in
 1651 Stage 1. The UVMC serves as a compact representation of visual dynamics and motion patterns. By
 1652 conditioning the policy on UVMC, XR-1 can explicitly distinguish between different task modes,
 1653 thereby reducing gradient conflicts during multi-task optimization. As an intermediate feature super-
 1654 vision signal, UVMC guides the model to generate smoother and more physically consistent actions.
 1655 This additional supervision is critical for tasks requiring high precision (e.g., dual-arm handover),
 1656 preventing the coordination failures observed in baselines like GR00T.
 1657

1668 6.9 FAILURE CASE ANALYSIS ON XR-1

1670 **Precision Deficiency.** The most common failure mode involves the robot attempting the cor-
 1671 rect action but failing in execution precision or bimanual coordination. Example: In the 'TK2-
 1672 CollectScrews' task, the robot may fail to grasp a tiny screw or drop it mid-motion due to slight
 1673 localization errors. This reflects the inherent difficulty of learning precise, bimanual coordination
 1674 for dexterous manipulation tasks.

Figure 16: Failure Cases of XR-1.

6.10 SIMULATION BENCHMARK

We conduct simulation experiments on SimplerEnv (Li et al., 2024), a real-to-simulation manipulation benchmark. Concretely, policies are trained on real-robot data from BridgeData V2 (Walke et al., 2023) and then evaluated in SimplerEnv, as illustrated in the left part of Figure 17. To evaluate the effectiveness of our approach, especially UVMC, we compare XR-1 against the baseline π_0 . In these experiments, we set the action chunk size to 4 and train for 60k iterations while keeping all other hyperparameters identical to those used for real-robot experiments. As shown in the right part of Figure 17, XR-1 achieves a higher average success rate than π_0 , with an overall improvement of 27%. This result demonstrates that our method provides consistent performance gains even in the simulation setting.

Figure 17: **Simulation benchmark – SimplerEnv.** The left panel illustrates one SimplerEnv setting, where policies are pretrained on real-robot data from BridgeData V2 and then evaluated in the simulation environment. The right panel reports the test performance of XR-1 and π_0 on SimplerEnv.

6.11 REPRESENTATIVE TASKS

As illustrated in Figure 18, we select a set of representative tasks from real-world experiments to provide detailed descriptions of the evaluation scenarios. These tasks are designed to cover a broad spectrum of challenges, including bimanual collaboration, dexterous manipulation, fluid/deformable object handling, contact-rich interactions, dynamic environments, and long-horizon manipulation. Together, they demonstrate the versatility and robustness of **XR-1** across diverse manipulation settings.

- **Bimanual Collaboration:** *DUR-TransCupHolder*. This task involves a coordinated bi-manual operation: the right arm initially grasps a cup, performs an aerial handover to the left arm, which subsequently places the cup into a cup rack.
- **Dexterous Manipulation:** *DUR-CloseDoorKnob*. The robot performs a dexterous operation to close and lock the control box door. The right arm first manipulates the door to a closed position. Subsequently, the left arm rotates the door handle by 90 degrees and presses it inward to engage the locking mechanism.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

Figure 18: Diverse task settings in evaluation: bimodal collaboration, dexterous manipulation, deformable object handling, contact-rich interactions, dynamic environments, and long-horizon tasks.

- **Fluid Object Handling:** *SUR-PourTubeBeaker*. The task consists of three phases: removing a test tube from the rack, pouring its liquid into a measuring cup, and returning the test tube to the rack.
- **Deformable Object Handling:** *DFR-HangTowelRack*. The robot performs a bimanual manipulation task involving deformable object handling: the right arm first picks up a towel from a surface and transfers it to the left arm via an aerial handover; the left arm then manipulates the towel to drape it over a towel rack, completing the hanging motion.
- **Contact-Rich Interactions:** *DFR-SweepRubbish*. A dual-arm cleaning task is executed where the right arm operates a broom and the left arm stabilizes a dustpan. The robot systematically sweeps food remnants and a crumpled paper ball into the dustpan, followed by transporting and emptying the dustpan into a waste bin after each collection.
- **Dynamic Environments:** *DUR-TransButtons*. The robot’s left arm loads colored button workpieces onto a moving conveyor belt, while the right arm autonomously identifies each part’s color upon arrival and places it into the respective color-matched container.
- **Long-Horizon Manipulation:** *AGX-StoreButton*. This task entails a sequential dual-arm interaction: the left arm opens a drawer and holds it open, enabling the right arm to place a button workpiece inside; the left arm then closes the drawer after object deposition.

6.11.1 DATASET FOR EVALUATION

The dataset is primarily employed for the final fine-tuning stage of XR-1, and for training and evaluation of multiple baselines on this benchmark.

Table 18: The tasks summary of our real-world experiments.

#	Task	Trajectory		Task Instruction	Task Setting
		Num.	Avg. Len.		
Dual-Arm UR5e					
T1	DUR-FindTapeBasket	160	155	Find the packaging tape and put it into the other basket	
T2	DUR-MoveCupMilk	198	149	Place the cup in the middle of the table and pick up the milk and place it next to the cup.	
T3	DUR-StackBowls	158	147	Put the blue bowl in the middle of the table and stack the green bowl on top of it	
T4	DUR-SweepTrash	192	293	Sweep up the rubbish and take out the trash	
T5	DUR-TransCupHolder	167	170	Pick up the cup with the right arm, hand it over to the left arm, and hang it on the holder with the left arm	
T6	DUR-StackCubes	158	153	Put the blue cube in the middle of the desk and stack it on top of the other blue cube	

Continued on next page

1836	#	Task	Trajectory		Task Instruction	Task Setting
			Num.	Avg. Len.		
1837	T7	DUR-HangCupHolder	167	223	Hang the cup on the holder	
1838	T8	DUR-StackBrake	200	81	Use the left arm to place Brake Pad Type A in the middle, then use the right arm to pick up Brake Pad Type B and stack it on top of Brake Pad Type A	
1839	T9	DUR-SweepRubbish	185	157	Sweep up the rubbish	
1840	T10	DUR-PressButton	183	121	Pick up and place the green button, then press it	
1841	T11	DUR-PickPlaceTape	192	111	Pick up and place the adhesive tape	
1842	T12	DUR-CloseToolbox	114	190	Use both arms to close the toolbox	
1843	T13	DUR-AssembleValve	253	108	Assemble the valve	
1844	T14	DUR-FlipTennisTube	123	127	Put the tennis tube upright	
1845	T15	DUR-PlaceTools	198	102	Use the left arm to place the screwdriver on the left side of the toolbox, and use the right arm to place the wrench on the right side of the toolbox	
1846	T16	DUR-CloseDoorKnob	201	147	The right arm closes the distribution box door, and the left arm turns and presses the closing knob	
1847	T17	DUR-TakeBasketTea	198	147	The right arm places the shopping basket in the middle, while the left arm takes tea drinks from the shelf and puts them inside	
1848	T18	DUR-PickToolbox	200	117	Use both arms to pick up the toolbox	

Continued on next page

#	Task	Trajectory		Task Instruction	Task Setting	
		Num.	Avg. Len.			
1893	T19	DUR-OpenTrashBin	28	45	Open the trash bin	
1894	T20	DUR-TransButtons	146	184	Transport the buttons from left to right and place them in the corresponding plates	
1895	T21	DUR-CleanTable	197	183	Move the buttons from left to right and place them on the corresponding plates	
1896	Tien Kung 2.0					
1897	T1	TK2-PressButton	291	292	The left arm picks up the green button and places it in the middle, while the right arm presses it	
1898	T2	TK2-AssembleValve	162	382	Assemble the valve	
1899	T3	TK2-StackBrake	178	261	Use the left arm to place Brake Pad Type A in the middle, and use the right arm to pick up Brake Pad Type B and stack it on top of Brake Pad Type A	
1900	T4	TK2-PlaceCircuit	209	359	The left arm picks up the circuit breaker from the red tray and places it in the middle of the table. Then the right arm picks up the circuit breaker and puts it into the blue tray on the right.	
1901	T5	TK2-PressControlBox	256	292	The left arm places the control box in the middle, while the right arm presses the red emergency stop button on it	
1902	T6	TK2-CloseDoorKnob	197	271	The right arm closes the door of the distribution box, and the left arm rotates and presses the closing knob.	
1903	T7	TK2-GatherTools	177	452	Use the left arm to place the screwdriver on the left side of the toolbox, and use the right arm to place the wrench on the right side	
1904	T8	TK2-CloseLaptop	189	186	Close the laptop	
1905	T9	TK2-OpenPotLid	190	304	Open the blue pot lid	

Continued on next page

1944	#	Task	Trajectory		Task Instruction	Task Setting
			Num.	Avg. Len.		
1945	T10	TK2-HangCupHolder	144	277	Hang the oval-bottom cup on the holder	
1946	T11	TK2-MoveCupSauce	129	312	Move the blue cup, pick up the yellow sauce bottle, and pour it into the blue cup	
1947	T12	TK2-StackCup	161	291	Stack the blue cups	
1948	T13	TK2-InsertToyBlock	152	521	Insert the blue toy into the square-bottom slot of the grey block	
1949	T14	TK2-FindCapacitor	232	370	The left arm picks up the red electrolytic capacitor from the blue tray and places it in the middle of the table. Then the right arm picks it up and puts it into the red tray on the right	
1950	T15	TK2-MoveMilkMug	279	284	Pick up and place the milk, then move the white mug	
1951	T16	TK2-PourGearOil	152	503	The left arm places the gear on the middle metal tray, while the right arm pours lubricating oil on it	
1952	T17	TK2-PlaceBiscuitBox	133	447	Pick up the biscuit box from the blue basket with the right arm and place it in the middle of the table. Then, use the left arm to place it on the middle shelf of the black rack	
1953	T18	TK2-CollectScrews	192	620	The right arm places the two long screws into the slot at the very right end of the storage box, while the left arm places the two short screws into the slot at the very left end of the storage box	
1954	T19	TK2-MoveTape	182	547	Pick up and place the rattan basket	
1955	T20	TK2-TakeBasketTea	197	497	The right arm places the shopping basket in the middle, while the left arm takes tea drinks from the shelf and puts them inside	

Continued on next page

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051	#	Task	Trajectory		Task Instruction	Task Setting
			Num.	Avg. Len.		
2001	T21	TK2-TakeTape	297	357	Pick up and place the adhesive tape	
2002	T22	TK2-SweepRubbish	239	421	Sweep up the rubbish	
Tien Kung 1.0						
2011	T1	TK1-FindTape	446	793	Find the packaging tape, pick it up, and place it into another basket	
2012	T2	TK1-StackBowls	260	497	Put the blue bowl in the middle of the table, then stack the green bowl on top of it	
2013	T3	TK1-CloseDrawer	231	223	Slide the drawer closed	
2014	T4	TK1-FlipTennisTube	300	535	Put the tennis tube upright	
2015	T5	TK1-PressCookerButton	98	187	Press the rice cooker's off button	
2016	T6	TK1-MoveChopstickCup	274	574	Move the blue cup to the middle, then place one chopstick from the bamboo holder into it	
2017	T7	TK1-StackCubes	200	520	Stack the two blue cubes	
2018	T8	TK1-StackCups	200	487	Move the blue cup and stack it with the other blue cup	
2019	T9	TK1-StackPlates	200	449	Place the pink plate into the beige plate in the middle, then stack the blue plate on top of the pink plate	
2020	T10	TK1-PickWipeTowel	222	643	Pick up a towel and wipe the water with it	

Continued on next page

2052	#	Task	Trajectory		Task Instruction	Task Setting
			Num.	Avg. Len.		
2055	T11	TK1-HangTowel	242	620	Pick up the towel with the right arm, hand it over to the left arm, and hang it on the rack with the left arm	
2056	T12	TK1-OpenPotLid	104	486	Open the pot lid	
2057	T13	TK1-OpenOven	21	228	Open the oven	
2058	T14	TK1-PackEggBox	192	315	Put the egg into the box and close the lid	
2059	T15	TK1-CloseLaptop	174	188	Close the laptop screen	
2060	T16	TK1-InserToaster	174	254	Insert the bread into the toaster	
2061	T17	TK1-FlipCup	153	578	Flip the cup upright	
2062	T18	TK1-PlaceFlipButton	125	616	Pick up the button with the right arm and place it in the middle. Then use the left arm to flip the button upright	
2063	T19	TK1-OpenTrashBin	177	206	Open the trash bin	
2064	T20	TK1-PressMachine	181	213	Press down the bread machine with the right arm	
Dual-Arm Franka						
2093	T1	DFR-MoveCupMilk	293	254	Place the cup in the middle of the table, then pick up the milk and put it next to the cup	
2094	T2	DFR-StackBowls	298	245	Put the blue bowl in the middle of the table and stack the green bowl on top of it	

Continued on next page

#	Task	Trajectory		Task Instruction	Task Setting	
		Num.	Avg. Len.			
2106	T3	DFR-SweepTrash	248	350	Sweep up the rubbish and take out the trash	
2107	T4	DFR-TransferCup	244	196	Pick up the cup with the right arm, hand it over to the left arm, and hang it on the holder with the left arm	
2108	T5	DFR-MoveChopstick	277	299	The left arm moves the blue cup from the left side of the robot to the middle, while the right arm takes a chopstick from the bamboo holder on the right side and puts it into the blue cup	
2109	T6	DFR-StackCubes	245	166	Put the blue cube in the middle of the desk and stack it on top of the other blue one	
2110	T7	DFR-StackPlates	360	230	Use the left arm to place the pink plate into the beige plate in the middle, then use the right arm to stack the blue plate on top of the pink plate	
2111	T8	DFR-CleanTable	284	201	Put the trash into the trash can, and put the items back in the box	
2112	T9	DFR-HangCupHolder	206	199	Hang the cup on the cup holder	
2113	T10	DFR-HangTowelRack	232	195	Pick up the towel with the right arm, hand it over to the left arm, and hang it on the rack with the left arm	
2114	T11	DFR-FindTapeBox	194	245	Find the packaging tape and put it into the other box	
2115	T12	DFR-PickButtonPress	200	206	The left arm picks up the green button and places it in the middle, while the right arm presses it	
2116	T13	DFR-SweepRubbish	196	288	Sweep up the rubbish	
2117	T14	DFR-CloseToolbox	201	220	Use both arms to close the toolbox	

Continued on next page

#	Task	Trajectory		Task Instruction	Task Setting	
		Num.	Avg. Len.			
2163	T15	DFR-CollectBasketTea	200	186	The right arm places the shopping basket in the middle, while the left arm takes tea drinks from the shelf and puts them inside	
2164	T16	DFR-PlaceTools	199	159	Use the right arm to place the wrench on the right side of the toolbox, and use the left arm to place the screwdriver on the left side	
2165	T17	DFR-GetBlocks	94	255	The right arm grabs the storage box and opens the lid, while the left arm places the red building blocks inside, ensuring they do not fall off	
2166	T18	DFR-PlaceRagWipe	196	301	Use the right arm to place the rag in the middle of the table, and use the left arm to wipe the remaining liquid on the middle of the table with the rag	
2167	T19	DFR-OpenToolbox	199	244	Use both arms to open the toolbox	
2168	T20	DFR-PlaceScrews	189	301	The right arm places the two long screws into the slot at the very right end of the storage box, while the left arm places the two short screws into the slot at the very left end of the storage box	
2169	AgileX Cobot Magic V2.0					
2170	T1	AGX-OpenDrawerButton	272	1418	Slide open the drawer and place the yellow button inside	
2171	T2	AGX-MoveButtonDrawer	387	1612	Place the yellow button in the drawer and close it	
2172	T3	AGX-StackBoxes	169	1514	Put the left box in the middle, then stack the right box on top of it	
2173	T4	AGX-FindTapeBox	182	1058	Find the packaging tape and put it into the other box	
2174	T5	AGX-SweepRubbish	112	2370	Sweep up the rubbish	

Continued on next page

#	Task	Trajectory		Task Instruction	Task Setting	
		Num.	Avg. Len.			
2214						
2215						
2216						
2217						
2218	T6	AGX- ArrangeValves	194	1411	Arrange the valves in a row	
2219						
2220						
2221						
2222	T7	AGX- HangScissors	48	3124	Hang the scissors on the holder	
2223						
2224						
2225						
2226	T8	AGX- PlaceButton	184	1794	Take the blue tray and place a button on it	
2227						
2228						
2229						
2230	T9	AGX- CloseToolbox	184	2003	Use both arms to close the toolbox	
2231						
2232						
2233						
2234	T10	AGX- GatherScrews	152	2918	The right arm places the two long screws into the slot at the very right end of the storage box, while the left arm places the two short screws into the slot at the very left end of the storage box. The left arm picks up the circuit breaker from the red tray and places it in the middle of the table. Then the right arm picks up the circuit breaker and puts it into the blue tray on the right	
2235						
2236						
2237						
2238	T11	AGX- FindCircuit	476	2880	The left arm picks up the biscuit box from the blue basket with the right arm and place it in the middle of the table. Then, use the left arm to place it on the middle shelf of the black rack	
2239						
2240						
2241	T12	AGX- PlaceBiscuitBox	188	1983	The right arm places the shopping basket in the middle, while the left arm takes tea drinks from the shelf and puts them inside	
2242						
2243						
2244	T13	AGX- CollectBasketTea	190	3078	The right arm picks up the Phillips screwdriver and places it in the middle of the table. Then, the left arm picks it up again and puts it into the groove in the toolbox	
2245						
2246						
2247	T14	AGX- PlaceScrewdriver	177	3079	The left arm takes the gear and places it on the middle metal tray, and the right arm pours lubricating oil on the gear	
2248						
2249						
2250	T15	AGX- PourGearOil	192	3144	Use the left arm to place Brake Pad Type A in the middle, and use the right arm to pick up Brake Pad Type B and stack it on top of Brake Pad Type A	
2251						
2252						
2253						
2254						
2255						
2256						
2257						
2258						
2259						
2260						
2261						
2262						
2263						
2264	T16	AGX- StackBrakePads	188	1650		
2265						
2266						
2267						

Continued on next page

2268	#	Task	Trajectory		Task Instruction	Task Setting
			Num.	Avg. Len.		
2269						
2270						
2271						
2272	T17	AGX-MeshStackCup	117	1765	Place the mesh and stack the cup on it	
2273						
2274						
2275						
2276	T18	AGX-PourWine	162	1644	Pour the wine with the right arm and place the cup on the tray with the left arm	
2277						
2278						
2279	T19	AGX-HangWipeRag	199	2257	Use the right arm to place the rag in the middle of the table, and use the left arm to wipe the remaining liquid with it	
2280						
2281						
2282	T20	AGX-StackBowls	185	1314	Stack the blue bowl on top of the green bowl	
2283						
2284						
2285						
2286						
2287						
2288			Single-Arm UR5e			
2289						
2290	T1	SUR-FindTape	134	104	Find the packaging tape and put it into the other basket	
2291						
2292						
2293						
2294	T2	SUR-MoveMilkCup	292	116	Pick up the milk and place it next to the cup	
2295						
2296						
2297						
2298						
2299	T3	SUR-StackBowls	300	118	Stack the blue bowl on top of the green bowl	
2300						
2301						
2302						
2303						
2304	T4	SUR-OpenDrawer	212	168	Slide open the drawer	
2305						
2306						
2307						
2308						
2309	T5	SUR-CloseDrawer	190	191	Slide the drawer closed	
2310						
2311						
2312						
2313						
2314	T6	SUR-InsertToyBlock	150	198	Insert the blue toy into the square-bottom slot of the grey block	
2315						
2316						
2317						
2318						
2319						
2320						
2321						

Continued on next page

#	Task	Trajectory		Task Instruction	Task Setting	
		Num.	Avg. Len.			
2325						
2326	T7	SUR-PlaceChopstick	297	109	Place one chopstick from the bamboo chopstick holder into the blue cup	
2327						
2328						
2329						
2330						
2331	T8	SUR-StackCubes	308	92	Stack the two blue cubes on top of each other	
2332						
2333						
2334						
2335						
2336	T9	SUR-StackCup	284	192	Stack the cups	
2337						
2338						
2339						
2340						
2341	T10	SUR-StackPlates	291	194	Stack the plates in the middle	
2342						
2343						
2344						
2345	T11	SUR-SlideDrawer	56	181	Slide open the drawer	
2346						
2347						
2348						
2349						
2350	T12	SUR-OpenUpperDrawer	182	132	Open the upper drawer	
2351						
2352						
2353						
2354						
2355	T13	SUR-OpenOven	141	70	Open the oven	
2356						
2357						
2358						
2359						
2360	T14	SUR-PackEggBox	183	151	Put the egg into the box and close the lid	
2361						
2362						
2363						
2364						
2365	T15	SUR-CloseLaptop	196	107	Close the laptop screen	
2366						
2367						
2368						
2369						
2370	T16	SUR-InsertBread	193	156	Insert the bread into the toaster	
2371						
2372						
2373						
2374						
2375						

Continued on next page

#	Task	Trajectory		Task Instruction	Task Setting	
		Num.	Avg. Len.			
2379						
2380						
2381	T17	SUR- AssembleValve	182	166	Assemble the valve	
2382						
2383						
2384						
2385	T18	SUR- PourTubeBeaker	152	270	Pick up the test tube and pour wa- ter into a 50 ml glass beaker	
2386						
2387						
2388						
2389						
2390	T19	SUR- PourGearOil	172	214	Take the gear and place it on the middle metal tray, then pour lu- bricating oil on it	
2391						
2392						
2393						
2394						
2395	T20	SUR- WipeHangRag	209	134	After using the rag to wipe the water in the middle of the table, hang the rag on the rag rack	
2396						
2397						
2398						
2399						
2400						
2401						
2402						
2403						
2404						
2405						
2406						
2407						
2408						
2409						
2410						
2411						
2412						
2413						
2414						
2415						
2416						
2417						
2418						
2419						
2420						
2421						
2422						
2423						
2424						
2425						
2426						
2427						
2428						
2429						