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Abstract

Federated learning (FL) allows agents to jointly train a global model without
sharing their local data to protect the privacy of local agents. However, due to the
heterogeneous nature of local data, existing definitions of fairness in the context of
FL are prone to noisy agents in the network. For instance, existing work usually
considers accuracy parity as the fairness metric for different agents, which is not
robust under the heterogeneous setting, since it will enforce agents with high-quality
data to achieve similar accuracy to those who contribute low-quality data and may
discourage the agents with high-quality data from participating in FL. In this work,
we propose a formal FL fairness definition, fairness via agent-awareness (FAA),
which takes the heterogeneity of different agents into account by measuring the
data quality with approximated Bayes optimal error. Under FAA, the performance
of agents with high-quality data will not be sacrificed just due to the existence
of large numbers of agents with low-quality data. In addition, we propose a fair
FL training algorithm leveraging agent clustering (FOCUS) to achieve fairness
in FL, as measured by FAA and other fairness metrics. Theoretically, we prove
the convergence and optimality of FOCUS under mild conditions for both linear
and general convex loss functions with bounded smoothness. We also prove that
FOCUS always achieves higher fairness in terms of FAA compared with standard
FedAvg under both linear and general convex loss functions. Empirically, we
show that on four FL datasets, including synthetic data, images, and texts, FOCUS
achieves significantly higher fairness in terms of FAA and other fairness metrics,
while maintaining competitive prediction accuracy compared with FedAvg and
four state-of-the-art fair FL algorithms.

1 Introduction

Federated learning (FL) is emerging as a promising approach to enable scalable intelligence over
distributed settings such as mobile networks [14, 24]. Given the wide adoption of FL in medical
analysis [1, 33], recommendation systems [3, 28], and personal Internet of Things (IoT) devices [2], it
has become a central question on how to ensure the fairness of the trained global model in FL networks
before its large-scale deployment by local agents, especially when the data quality/contributions of
different agents are different in the heterogeneous setting.

In standard (centralized) ML, fairness is usually defined as a notion of parity of the underlying
distributions from different groups given by a protected attribute (e.g., gender, race). Typical
definitions include demographic parity [12, 41], equalized odds [15], and accuracy parity [5, 44].
However, it is yet unclear what is the desired notion of fairness in FL. Previous works that explore
fairness in FL mainly focus on the demographic disparity of the final trained model regarding the
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protected attributes as in the centralized setting [7, 17] or the accuracy disparity across agents without
considering different contributions of agents [10, 22, 29]. Some works have taken into consideration
the local data properties [18, 42] and sizes [11] to measure fairness of FL. However, explicit fairness
analysis in FL under heterogeneous agent contributions is still lacking. Thus, in this paper, we aim
to ask: What is a desirable notion of fairness in FL with heterogeneous agents? Can we design
efficient training algorithms to guarantee the fairness? Such fairness notion in FL is critical since on
one hand, it will be able to take the heterogeneity of different local agents into account so that it is
robust to the potential noisy (or low-contribution) nodes in the network; on the other hand, it will also
encourage the participation of benign agents who contribute high-quality data to the FL training.

In light of the above questions, in this work, we aim to define and enhance fairness in FL by explicitly
considering the heterogeneity of local agents. In particular, for FL trained with standard FedAvg
protocol [27], the global model aims to minimize the loss with respect to the global distribution.
In practice, some local agents may contribute low-quality data (e.g., free riders), so intuitively it
is “unfair” to train the final model regarding such global distribution over all agents, which will
sacrifice the performance of agents with high-quality data. In this paper, we define fairness via
agent-awareness in FL (FAA) as FAA({θe}e∈[E]) = maxe1,e2∈E

∣∣Ee1(θe1) − Ee2(θe2)∣∣, where
Ee is the excess risk of an agent e ∈ E with model parameter θe. Technically, the excess risk of
each agent is calculated as Ee(θe) = Le(θe) − minθ∗ Le(θ

∗), which stands for the loss of user e
evaluated on the FL model θe subtracted by the Bayes optimal error of the local data distribution [30].
For each agent, the excess risk measures how close the test loss Ee(θe) is to the possible smallest
error (i.e., Bayes optimal error) on such a data distribution. In other words, lower excess risk Ee(θe)
indicates a higher gain for agent by joining the FL training. Notably, reducing FAA enforces the
equity of excess risks among agents, following the classic philosophy that agents “do not suffer from
scarcity, but inequality of gains”. Lower FAA indicates stronger fairness. Based on our fairness
definition FAA, we then propose an efficient fair FL algorithm based on agent clustering (FOCUS)
to improve the fairness of FL by minimizing FAA of agents. Specifically, we first cluster the local
agents based on their data distributions and then train a model for each cluster. During inference, the
final prediction will be the weighted aggregation over the prediction result of each model trained
with the corresponding clustered local data. Theoretically, we provide the convergence analysis and
fairness analysis for FOCUS; empirically, we extensively evaluate FOCUS on diverse datasets.

Contributions. In summary, we make contributions on both theoretical and empirical fronts.

• We formally define fairness via agent-awareness (FAA) in FL based on agent-level excess risks to
measure fairness in FL, and explicitly take the heterogeneity nature of local agents into account.

• We propose a fair FL algorithm via agent clustering (FOCUS) to improve fairness measured by
FAA, especially in the heterogeneous setting. We prove the convergence rate and optimality of
FOCUS under linear models and general convex losses.

• Theoretically, we also prove that FOCUS achieves stronger fairness measured by FAA compared
with FedAvg for both linear models and general convex losses.

• Empirically, we compare FOCUS with FedAvg and four SOTA fair FL algorithms on four datasets,
including synthetic data, images, and texts under heterogeneous setting. We show that FOCUS
indeed achieves stronger fairness measured by FAA and other fairness metrics, while maintaining
similar or even higher prediction accuracy on all datasets.

2 Related work

Fair Federated Learning There have been several studies exploring fairness in FL. Li et al. [22]
first define agent-level fairness by considering accuracy equity across agents and achieve fairness
by assigning the agents with worse performance with higher aggregation weight during training.
However, such a definition of fairness fails to capture the heterogeneous nature of local agents. Mohri
et al. [29] pursue accuracy parity by improving the performance of the worst-performing agent. Wang
et al. [36] propose to mitigate conflict gradients from local agents to enhance fairness. Instead of
pursuing fairness with one single global model, Li et al. [23] propose to train a personalized model
for each agent to achieve accuracy equity for the personalized models. Zhang et al. [42] predefine
the agent contribution levels based on an oracle assumption (e.g., data volume, data collection cost,
etc.) for fairness optimization, which lacks quantitative measurement in practice. Xu et al. [38]
approximate the Shapely Value based on gradient cosine similarity to evaluate agent contribution.
However, Zhang et al. [42] point out that Shapely Value may discourage agents with rare data. Here
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we provide an algorithm to quantitatively measure the contribution of local data based on each agent’s
excess risk, which will not be affected even if the agent is the minority.

Clustered Federated Learning Clustered FL algorithms are initially designed for multitasking
and personalized federated learning, which assumes that agents can be naturally partitioned into
clusters [13, 26, 32, 37]. Existing clustering algorithms usually aim to assign each agent to a cluster
that provides the lowest loss [13], optimize the clustering center to be close to the local model [37],
or cluster agents with similar gradient updates (with respect to, e.g., cosine similarity [32]) to the
same cluster. In addition to these hard clustering approaches (i.e., each agent only belongs to one
cluster), soft clustering has also been studied [20, 26, 31, 34], which enables the agents to benefit
from multiple clusters. However, none of these works considers the fairness of clustered FL and the
potential implications, and our work makes the first attempt to bridge them.

3 Fair Federated Learning on Heterogeneous Data

We first define our fairness via agent-awareness in FL with heterogeneous data and then introduce
our fair FL based on the agent clustering (FOCUS) algorithm to achieve FAA.

3.1 Fairness via Agent-Awareness in FL (FAA)

Given a set of E agents participating in the FL network, each agent e only has access to its local
dataset: De = {(xe, ye)}ne

i=1, which is sampled from a distribution Pe. The goal of standard
FedAvg training is to minimize the overall loss LE(θ) based on the local loss Le(θ) of each agent:
minθ LE(θ) =

∑
e∈[E]

|De|
n Le(θ), where Le(θ) = E(x,y)∈Pe

ℓ(hθ(x), y). where ℓ(·, ·) is a loss
function given model prediction hθ(x) and label y (e.g., cross-entropy loss), n =

∑
e∈[E] |De|

represents the total number of training samples, and θ represents trained global model.

Intuitively, the performance of agents with high-quality and clean data could be severely compromised
by the existence of large amounts of agents with low-quality and noisy data under FedAvg. To solve
such a problem and characterize the distinctions of local data distributions (contributions) among
agents to ensure fairness, we propose fairness via agent-awareness in FL (FAA) as follows.

Definition 3.1 (Fairness via agent-awareness for FL (FAA)). Given a set of agents E in FL, the
overall fairness score among all agents is defined as the maximal difference of excess risks for any
pair of agents:

FAA({θe}e∈[E]) = max
e1,e2∈[E]

∣∣∣Ee1(θe1)− Ee2(θe2)∣∣∣. (1)

where θe is the local model for agent e ∈ [E]. The excess risk Ee(θe) for agent e given model
θe is defined as the difference between the population loss Le(θe) and the Bayes optimal error of
the corresponding data distribution, i.e., Ee(θe) = Le(θe) −minθ∗ Le(θ

∗), where θ∗ denotes any
possible models.

Note that in FedAvg, each client uses the global model θ as its local model θe. Definition 3.1
represents a quantitative data-dependent measurement of agent-level fairness. Instead of forcing
accuracy parity among all agents regardless of their data quality, we define agent-level fairness as
the equity of excess risks among agents, which takes the contributions of local data into account
by measuring their Bayes errors. For instance, when a local agent has low-quality data, although
the corresponding utility loss would be high, the Bayes error of such low-quality data is also high,
and thus the excess risk of the user is still low, enabling the agents with high-quality data to achieve
low utility loss for fairness. When local data distributions are homogeneous, FAA reduces to the
fairness definition of agnostic loss [29]. Therefore, FAA is a generalization of agnostic loss that
accommodates both homogeneous and heterogeneous data distributions. We defer more detailed
discussion to Appendix C.
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3.2 Fair Federated Learning on Heterogeneous Data via Clustering (FOCUS)

Algorithm 1 EM clustered federated learning algorithm

Input: Agents with data {Di}i∈[E] and M models.
Initialize w

(0)
m and π

(0)
em = 1

M for m ∈ [M ], e ∈ [E].
for t = 0 to T − 1 do

for agent e ∈ [E] do
for model m ∈ [M ] (E step) do

π(t+1)
em ←

π
(t)
em exp

(
−E(x,y)∈De

ℓ(x, y;w
(t)
m )

)
∑M

m=1 π
(t)
em exp

(
−E(x,y)∈De

ℓ(x, y;w
(t)
m )

) (2)

end for
end for
for model m ∈ [M ] (M step) do

w(t+1)
m ← argmin

w

E∑
e=1

π(t+1)
em

ne∑
i=1

ℓ
(
hw(x

(i)
e ), y(i)e

)
(3)

end for
end for
Return model weights w(T )

m

Method Overview. To enhance the fairness of FL in terms of FAA, we provide an agent clustering-
based FL algorithm, FOCUS (Algorithm 1), by partitioning agents conditioned on their data distri-
butions. Intuitively, grouping agents with similar local data distributions and similar contributions
together helps to improve fairness, since it reduces the intra-cluster data heterogeneity. FOCUS
leverages the Expectation-Maximization algorithm to perform agent clustering. Define M as the
number of clusters and E as the number of agents. The goal of FOCUS is to simultaneously optimize
the soft clustering labels Π and model weights W . Specifically, Π = {πem}e∈[E],m∈[M ] are the
dynamic soft clustering labels, representing the estimated probability that agent e belongs to cluster
m; W = {wm}m∈[M ] represent the model weights for M data clusters. Given E agents with datasets
D1, . . . , DE , FOCUS alternately optimizes Π and W in two steps.

E step. Expectation steps update the cluster labels Π given the current estimation of (Π,W ). At
k-th communication round, the server broadcasts the M cluster models to all agents. The agents
calculate the expected training loss E(x,y)∈Deℓ(x, y;w

(t)
m ) for each cluster model w(t)

m , m ∈ [M ] , and
then update the soft clustering labels Π according to Equation (2).

M step. The goal of M steps in Equation (3) is to minimize a weighted sum of empirical losses for
all local agents. However, given distributed data, it is impossible to find its exact optimal solution
in practice. Thus, we specify a concrete protocol in Equation (4) ∼ Equation (6) to estimate the
objective in Equation (3). At t-th communication round, for each cluster model w(t)

m received from
server, each agent e first initializes its local model θ(t)em(0) as w(t)

m , and then updates the model using
its own dataset. To reduce communication costs, each agent is allowed to run SGD locally for K local
steps as shown in Equation (5). After K local steps, each agent sends the updated models θ(t)em(K)

back to the central server, and the server aggregates the models of all agents by a weighted average
based on the soft clustering labels {πem}. We provide theoretical analysis for the convergence and
optimality of FOCUS under these multiple local updates in Section 4.

Clients: θ
(t)

em(0) = w(t)
m . (4)

θ
(t)

em(k+1) = θ
(t)

em(k) − ηk∇
ne∑
i=1

ℓ
(
h
θ
(t)
em(k)

(x(i)
e ), y(i)

e

)
, ∀k = 1, . . . ,K − 1. (5)

Server: w(t+1)
m =

E∑
e=1

π
(t+1)
em θ

(t)

em(K)∑E
e′=1 π

(t+1)

e′m

. (6)
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Inference. During inference, each agent ensembles the M models by a weighted average on their
prediction probabilities, i.e., a agent e predicts

∑M
m=1 πemhwm

(x) for input x. Suppose a test
dataset Dtest

e is sampled from distribution Pe. The test loss can be calculated by Ltest(W,Π) =
1

|Dtest
e |

∑
(x,y)∈Dtest

e
ℓ
(∑M

m=1 πemhw(x), y
)
.

4 Theoretical Analysis of FOCUS

In this section, we first present the convergence and optimality guarantees of our FOCUS algorithm;
and then prove that it improves the fairness of FL regarding FAA. Our analysis considers linear
models and then extends to nonlinear models with smooth and strongly convex loss functions.

4.1 Convergence Analysis

Linear models. We first start with linear models to deliver the main idea of our analysis. Suppose
there are E agents, each with a local dataset De = {(x(i)

e , y
(i)
e )}ne

i=1, (e ∈ [E]) generated from a
Gaussian distribution. Specifically, we assume each dataset De has a mean vector µe ∈ Rd, and
(x

(i)
e , y

(i)
e ) is generated by y

(i)
e = µT

e x
(i)
e + ϵ

(i)
e , where x

(i)
e is a random vector x(i)

e ∼ N (0, δ2Id) and
the label y(i)e is perturbed by some random noise ϵ

(i)
e ∼ N (0, σ2). Each agent is asked to minimize

the mean squared error to estimate µe, so the empirical loss function for a local agent given De is
Lemp(De;w) = 1

ne

∑ne
i=1(w

Tx
(i)
e −y

(i)
e )2. We make the following assumption about the heterogeneous

agents.

Assumption 4.1. Suppose there are M predefined vectors {w∗
i }Mi=1, where for any m1,m2 ∈ [M ],

m1 ̸= m2, ∥w∗
m1
− w∗

m2
∥2 ≥ R. A set of agents E satisfy separable distributions if they can be

partitioned into M subsets S1, . . . , SM such that, for any agent e ∈ Sm, ∥µe − w∗
m∥2 ≤ r < R

2 .

Assumption 4.1 guarantees that the heterogeneous local data distributions are separable so that an
optimal clustering solution exists, in which {w∗

1 , . . . , w
∗
M} are the centers of clusters. We next present

Theorem 4.2 to demonstrate the linear convergence rate to the optimal cluster centers for FOCUS.
Detailed proofs can be found in Appendix A.1.
Theorem 4.2. Assume the agent set E satisfies the separable distributions condition in Assumption
4.1. Given trained M models with π

(0)
em = 1

M , ∀e,m. Under the natural initialization wm for each
model m ∈ [M ], which satisfies ∃∆0 > 0, ∥w(0)

m −w∗
m∥2 ≤ minm′ ̸=m ∥w(0)

m −w∗
m′∥2 − 2(r+∆0)

and |De| = O(d). If learning rate η ≤ min( 1
4δ2 ,

β√
T
), FOCUS converges by

π(T )
em ≥ 1

1 + (M − 1) · exp(−2Rδ2∆0T )
, ∀e ∈ Sm, (7)

E∥w(T )
m − w∗

m∥22 ≤ (1− 2ηγmδ2

M
)KT (∥w(0)

m − w∗
m∥22 +A) + 2MKr +Mδ2EβT−1/2O(K3, σ2). (8)

where T is the total number of communication rounds; K is the number of local updates in each
communication round; γm = |Sm| is the number of agents in the m-th cluster, and

A =
2EK(M − 1)δ2

(1− 2ηδ2γm
M

)K − exp(−2Rδ2∆0)
. (caused by initial inaccurate clustering)

Remarks. Theorem 4.2 shows the convergence of parameters (Π,W ) to a near-optimal solution.
Equation (7) implies that the agents will be correctly clustered since πem will converge to 1 as
the number of communication rounds K increases. In Equation (8), the first term diminishes
exponentially, while the second term 2MKr reflects the intra-cluster distribution divergence r. The
last term originates from the data heterogeneity among clients across different clusters. Its influence
is amplified by the number of local updates (O(K3)) and will also diminish to zero as the number of
communication rounds T goes to infinity. Our convergence analysis is conditioned on the natural
clustering initialization for model weights w(0)

m towards a corresponding cluster center w∗
m, which is

standard in convergence analysis for a mixture of models [4, 39]. Detailed proofs can be found in
Appendix A.1.
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Smooth and strongly convex loss functions. Next, we extend our analysis to a more general case
of non-linear models with L-smooth and µ-strongly convex loss function.
Assumption 4.3 (Smooth and strongly convex loss functions). The population loss functions Le(θ)
for each agent e is L-smooth, i.e., ∥∇2Le(θ)∥2 ≤ L. The loss functions are µ-strongly convex, if the
eigenvalues λ of the Hessian matrix∇2Le(θ) satisfy λmin(∇2Le(θ)) ≥ µ.

We further make an assumption similar to Assumption 4.1 for the general case:
Assumption 4.4 (Separable distributions). A set of agents E satisfy separable distributions if they
can be partitioned into M subsets S1, . . . , SM with w∗

1 , ..., w
∗
M representing the center of each set

respectively, and the optimal parameter θ∗ of each local loss Le (i.e., θ∗e = argminθ Le(θ)) satisfy
∥θ∗e − w∗

m∥2 ≤ r. In the meantime, agents from different subsets have different data distributions,
such that ∥w∗

m1
− w∗

m2
∥2 ≥ R,∀m1,m2 ∈ [M ],m1 ̸= m2.

Theorem 4.5. Assume the agent set E satisfies the separable distributions condition in Assump-
tion 4.4. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De [∥∇ℓ(x, y; θ)−∇Le(θ)∥22] ≤ σ2, and the population losses are bounded, i.e., Le ≤ G,∀e ∈
[E]. With π

(0)
em = 1

M
, ∃∆0 > 0, ∥w(0)

m − w∗
m∥2 ≤

√
µR

√
µ+

√
L
− r −∆0, and the learning rate of each agent

η ≤ min( 1
2(µ+L)

, β√
T
),FOCUS converges by

π(T )
em ≥ 1

1 + (M − 1) exp(−µR∆0T )
, ∀e ∈ Sm, (9)

E∥w(T )
m − w∗

m∥22 ≤ (1− ηA)KT (∥w(0)
m − w∗

m∥22 +B) +O(Kr) +MEβO(K3,
σ2

ne
)T−1/2 (10)

where T is the total number of communication rounds; K is the number of local updates in each
communication round; γm = |Sm| is the number of agents in the m-th cluster, and

A =
2γm
M

µL

µ+ L︸ ︷︷ ︸
related to convergence rate

, B =
GMTE( 4L

µ
+ 6

µ(µ+L)
)

(1− ηA)K − exp(−µR∆0)︸ ︷︷ ︸
caused by the offset of initial clustering

. (11)

Remarks. Theorem 4.5 extends the convergence guarantee of (Π,W ) from linear models (Theo-
rem 4.2) to general models with smooth and convex loss functions. For any agent e that in cluster m
(e ∈ Sm), its soft cluster label πem converges to 1 based on Equation (69), indicating the clustering
optimality. Its model weights W converge linearly to a near-optimal solution. The error term O(Kr)
in Equation (70) is expected since r represents the data divergence within each cluster and w∗

m denotes
the center of each cluster. The last term in Equation (70) implies a trade-off between communication
cost and convergence speed. Increasing K reduces communication cost by O( 1

K ) but at the expanse
of slowing down the convergence. Detailed proofs are deferred to Appendix A.2.3.

4.2 Fairness Analysis

To theoretically show that FOCUS achieves stronger fairness in FL based on FAA, here we focus on
a simple yet representative case where all agents share similar distributions except one outlier agent.

Linear models. We first concretize such a scenario for linear models. Suppose we have E agents
learning weights for M linear models. Their local data De(e ∈ [E]) are generated by y

(i)
e =

µT
e x

(i)
e − ϵ

(i)
e with x

(i)
e ∼ N (0, δ2Id) and ϵ

(i)
e ∼ N (0, σ2

e). E − 1 agents learn from a normal dataset
with ground truth vector µ1, . . . , µE−1 and ∥µe − µ∗∥2 ≤ r, while the E-th agent has an outlier data
distribution, with its the ground truth vector µE far away from other agents, i.e., ∥µE − µ∗∥2 ≥ R.
As stated in Theorem 4.2, the soft clustering labels and model weights (Π,W ) converge linearly to
the global optimum. Therefore, we analyze the fairness of FOCUS, assuming an optimal (Π,W ) is
reached. We compare the FAA achieved by FOCUS and FedAvg to underscore how our algorithm
helps improve fairness for heterogeneous agents.
Theorem 4.6. When a single agent has an outlier distribution, the fairness FAA achieved by FOCUS
algorithm with two clusters M = 2 is

FAAfocus(W,Π) ≤ δ2r2. (12)

while the fairness FAA achieved by FedAvg is

FAAavg(W ) ≥ δ2
(R2(E − 2)− 2Rr

E
+ r2

)
= Ω(δ2R2). (13)
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Remarks. The fairness gap between Fedavg and FOCUS with a single outlier is

FAAavg(W )−FAAfocus(W,Π) ≥ δ2
(R2(E − 2)− 2Rr

E

)
. (14)

As long as R > 2r
E−2 , FOCUS is guaranteed to achieve stronger fairness (i.e., lower FAA) than

FedAvg. Note that the outlier assumption only makes sense when E > 2 since one cannot tell which
agent is the outlier when E = 2. Also, we naturally assume R > 2r so that the two underlying
clusters are at least separable. Thus, we conclude that FOCUS dominates than FedAvg in terms of
FAA. Here we discuss a single outlier agent scenario for clarity, and similar conclusions hold for
multiple underlying clusters and M > 2, as shown in Appendix B.1.

Smooth and strongly convex loss functions. We generalize the fairness analysis to nonlinear
models with smooth and convex loss functions. Suppose we have E agents that learn weights for
M models. We assume their population loss functions are L-smooth, µ-strongly convex (as in
Assumption 4.3) and bounded, i.e., Le(θ) ≤ G. E − 1 agents learn from similar data distributions,
such that the total variation distance between the distributions of any two different agents i, j ∈ [E−1]
is no greater than r: DTV (Pi,Pj) ≤ r. On the other hand, the E-th agent has an outlier data
distribution, such that the Bayes error LE(θ

∗
i )− LE(θ

∗
E) ≥ R for any i ∈ [E − 1]. We claim that

this assumption can be reduced to a lower bound on H-divergence [45] between distributions Pi and
PE that DH(Pi,PE) ≥ LR

4µ . (See proofs in Appendix B.3.)

Theorem 4.7. The fairness FAA achieved by FOCUS with two clusters M = 2 is

FAAfocus(W,Π) ≤ 2Gr

E − 1
(15)

Let B = 2Gr
E−1 . The fairness achieved by FedAvg is

FAAavg(W ) ≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (16)

Remarks. Notably, when the outlier distribution is very different from the normal distribution, such
that R≫ Gr (which means B ≪ R), we simplify Equation (134) as

FAAavg(W ) ≥
(
E − 1

E
− L

µE2

)
R. (17)

Note that FAAfocus(W,Π) ≤ B ≪ R, so the fairness FAA achieved by FedAvg is always larger
(weaker) than that of FOCUS, as long as E ≥

√
L/µ, indicating the effectiveness of FOCUS.

5 Experimental Evaluation

5.1 Experimental Setup

Data and Models. We consider four different datasets with heterogeneous data settings, ranging
from synthetic data for linear models to images (rotated MNIST [8] and rotated CIFAR [19]) to text
data for sentiment classification on Yelp [43] and IMDb [25] datasets. We train an MLP model for
MNIST, a ResNet 18 model [16] for CIFAR, and a pre-trained BERT-base model [9] for the text data.
We refer the readers to Appendix D.1 for more implementation details.

Evaluation Metrics and Baselines. We consider following evaluation metrics: average test accuracy,
average test loss, FAA for fairness, and the existing fairness metric “agnostic loss” introduced by [29]
and “accuracy parity” introduced by [22]. We compare FOCUS to FedAvg and state-of-the-art fair
FL algorithms (i.e., q-FFL [22], AFL [29], Ditto [23], and CGSV [38]). We defer the comparision to
other FL algorithms under heterogeneous data settings [21, 35, 40] in Appendix D.3. To evaluate
FAA of different algorithms, we estimate the Bayes optimal loss minw Le(w) for each local agent e.
Specifically, we train a centralized model based on the subset of agents with similar data distributions
(i.e., the same ground-truth cluster) and use it as a surrogate to approximate the Bayes optimum. We
select the agent pair with the maximal difference of excess risks to measure FAA fairness.

7



Table 1: Comparison of FOCUS, FedAvg, and fair FL algorithms q-FFL, AFL, Ditto and CGSV, in
terms of average test accuracy (Avg Acc), average test loss (Avg Loss), fairness FAA and existing
fairness metric Agnostic Loss and Accuracy Parity. FOCUS achieves the best fairness measured by
FAA compared with all baselines.

FOCUS FedAvg q-FFL AFL Ditto CGSV
q = 0.1 q = 1 q = 10

Synthetic
Avg Loss 0.010 0.108 0.106 0.102 0.110 0.104 0.023 0.260
FAA 0.001 0.958 0.769 0.717 0.699 0.780 0.012 0.010
Loss Parity 4e-5 0.295 0.261 0.238 0.235 0.244 0.004 0.003

Rotated MNIST

Avg Acc 0.953 0.929 0.922 0.861 0.685 0.885 0.940 0.938
Avg Loss 0.152 0.246 0.269 0.489 1.084 0.429 0.210 0.222
FAA 0.094 0.363 0.388 0.612 0.253 0.220 0.104 0.210
Agnostic Loss 0.224 0.616 0.656 1.018 1.271 0.548 0.354 0.331
Accuracy Parity 0.014 0.049 0.052 0.074 0.057 0.032 0.020 0.023

Rotated CIFAR

Avg Acc 0.688 0.654 0.648 0.592 0.121 0.661 0.657 0.515
Avg Loss 1.133 2.386 1.138 1.141 2.526 1.666 2.382 3.841
FAA 0.360 1.115 0.620 0.473 0.379 0.595 0.758 1.317
Agnostic Loss 1.294 3.275 1.610 1.439 2.526 2.179 3.053 3.841
Accuracy Parity 0.027 0.049 0.074 0.069 0.009 0.061 0.040 0.022

Yelp/IMDb

Avg Acc 0.940 0.940 0.938 0.938 0.909 0.934 0.933 0.701
Avg Loss 0.174 0.236 0.188 0.179 0.264 0.187 0.191 0.547
FAA 0.047 0.098 0.052 0.051 0.070 0.049 0.049 0.462
Agnostic Loss 0.257 0.349 0.266 0.253 0.242 0.253 0.263 0.700
Accuracy Parity 0.015 0.018 0.017 0.016 0.005 0.019 0.021 0.171
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Figure 1: The excess risks of different agents trained with FedAvg and FOCUS on MNIST (a) and
Yelp/IMDb text data (b). Ci denotes ith cluster.

5.2 Evaluation Results

Synthetic data for linear models. We first evaluate FOCUS on linear regression models with
synthetic datasets. We fix E = 10 agents with data sampled from Gaussian distributions. We study
the case considered in Section 4.2 where a single agent has an outlier data distribution, and set the
intra-cluster distance r = 0.01 and the inter-cluster distance R = 1. Table 1 shows that FOCUS
achieves FAA of 0.001, much lower than the 0.958 achieved by FedAvg and 0.699 by q-FFL.

Rotated MNIST and CIFAR. Following [13], we rotate the images MNIST and CIFAR datasets
with different degrees to create data heterogeneity among agents. Both datasets are evenly split into
10 subsets for 10 agents. For MNIST, two subsets are rotated for 90 degrees, one subset is rotated for
180 degrees, and the rest seven subsets are unchanged, yielding an FL setup with three ground-truth
clusters. Similarly, for CIFAR, we fix the images of 7 subsets and rotate the other 3 subsets for 180
degrees, thus creating two ground-truth clusters. From Table 1, we observe that FOCUS consistently
achieves higher average test accuracy, lower average test loss, and lower FAA than other methods
on both datasets. In addition, although existing fair algorithms q-FFL and AFL achieve lower FAA
scores than FedAvg, their average test accuracy drops significantly. This is mainly because these fair
algorithms are designed for performance parity via improving low-quality agents (i.e., agents with
high training loss), thus sacrificing the accuracy of high-quality agents. In contrast, FOCUS improves
both the FAA fairness and preserves high test accuracy.

We analyze the surrogate excess risk of each agent on MNIST in Figure 1 (a). The global model
trained by FedAvg has the highest test loss of 0.61 on the outlier cluster (C3), resulting in high excess
risk for the 9th agent. The low-quality data of the outlier cluster affect the agents in the 1st cluster
via FedAvg training, resulting in much higher excess risk than that of FOCUS. FOCUS successfully
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identifies outlier clusters (2 and 3), rendering models trained from them independent from normal
cluster 1. As shown in Figure 1, FOCUS reduces excess risks of all agents, especially the outliers,
on different datasets, leading to strong fairness in terms of FAA. Similar trends are also observed in
CIFAR, in which our FOCUS reduces the surrogate excess risk for the 9th agent from 2.74 to 0.44.
We omit the loss histogram of CIFAR to Appendix D.10.

Sentiment classification. We evaluate FOCUS on the sentiment classification task with text data,
Yelp (restaurant reviews), and IMDb (movie reviews), which naturally form data heterogeneity
among 10 agents and thus create 2 clusters. Specifically, we sample 56k reviews from Yelp datasets
distributed among seven agents and use the whole 25k IMDB datasets distributed among three agents
to simulate the heterogeneous setting. From Table 1, we can see that while the average test accuracy
of FOCUS, FedAvg, and other fair FL algorithms are similar, FOCUS achieves a lower average test
loss. In addition, the FAA of FOCUS is significantly lower than other baselines, indicating stronger
fairness. We also observe from Figure 1 (b) that the excess risk of FOCUS on the outlier cluster (i.e.,
C2) drops significantly compared with that of FedAvg.

Ablation Studies. To provide a more comprehensive evaluation for FOCUS, we present additional
ablation studies on scalability (Appendix D.4), performance on different number of outliers (Ap-
pendix D.5), convergence rate (Appendix D.6), and runtime analysis (Appendix D.7). The results
show that FOCUS is scalable to larger client groups and consumes comparable running time with
other methods on different datasets. Moreover, we compare FOCUS to a cluster-wise FedAvg
algorithm with hard clustering, illustrating the advantages of FOCUS using soft-clustering when
the underlying clusters are not perfectly separable. We refer readers to Appendix D.8 for further
discussions. In addition, we analyze the effect of choosing M in practice Appendix D.9. We evaluate
FOCUS on the FEMNIST dataset [6], where data distributions exhibit ambiguous cluster structure,
showing the robustness of FOCUS against the underlying cluster structures.

6 Conclusion

In this work, we provide an agent-level fairness measurement in FL (FAA) by taking agents’ inherent
heterogeneous data properties into account. Motivated by our fairness definition in FL, we provide
an effective FL training algorithm FOCUS to achieve high fairness. We provide theoretical analysis
for the convergence and fairness of FOCUS, and empirically show that FOCUS achieves stronger
fairness than existing FL methods, while achieving similar or higher prediction accuracy.
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A Convergence Proof

A.1 Convergence of Linear Models (Theorem 4.2)

A.1.1 Key Lemmas

We need to state two lemmas first before proving Theorem 4.2.

Lemma A.1. Suppose e ∈ Sm and the m-th cluster is the one closest to w∗
m. Assume ∥w(t)

m −w∗
m∥ ≤

α < β ≤ minm′ ̸=m ∥w(t)
m′ − w∗

m∥. Then the E-step updates as

π(t+1)
em ≥ π

(t)
em

π
(t)
em + (1− π

(t)
em) exp

(
− (β2 − α2 − 2(α+ β)r)δ2

) (18)

Remark. Our assumption of proper initialization guarantees that ∥w(0)
m − w∗

m∥ ≤ α while ∀m′, we
have ∥wm′ − w∗

m∥2 ≥ ∥w∗
m − µ∗

m′∥ − ∥wm′ − µ∗
m′∥ = R − α. Hence, we substitute β = R − α

and α = R
2 − r −∆, which yields

π(t+1)
em ≥ π

(t)
em

π
(t)
em + (1− π

(t)
em) exp(−2R∆δ2)

, ∀e ∈ Sm (19)

For M-steps, the local agents are initialized with θ
(0)
em = w

(t)
m . Then for k = 1, . . . ,K − 1, each agent

use local SGD to update its personal model:

θ(k+1)
em = θem − ηkgem(θem) = θ(k)em − ηk∇

ne∑
i=1

ℓ(hθem(x(i)
e ), y(i)e ). (20)

To analyze the aggregated model Equation (6), we define a sequence of virtual aggregated models
ŵ

(k)
m .

ŵ(k)
m =

E∑
e=1

πemθ
(k)
em∑E

e′=1 πe′m

. (21)

Lemma A.2. Suppose any agent e ∈ Sm has a soft clustering label π(t+1)
em ≥ p. Then one step of

local SGD updates ŵ(k)
m by Equation (22), if the learning rate ηk ≤ 1

4δ2 .

E∥ŵ(k+1)
m − w∗

m∥22 ≤ (1− 2ηkγmpδ2)E∥ŵ(k+1)
m − w∗

m∥22 + ηkA1 + η2kA2. (22)

A1 = 4γmrδ2 + 2δ2E(1− p), A2 = 16E(K − 1)2δ4 +O(
d

ne
)E(δ4 + δ2σ2) (23)

Remark. Using the recursive relation in Lemma A.2, if the learning rate ηk is fixed, the sequence
ŵ

(k)
m has a convergence rate of

E∥ŵ(k)
m − w∗

m∥22 ≤ (1− 2ηγmpδ2)kE∥ŵ(0)
m − w∗

m∥22 + ηk(A1 + ηA2). (24)

A.1.2 Completing the Proof of Theorem 4.2

We now combine Lemma A.1 and Lemma A.2 to prove Theorem 4.2. The theorem is restated below.

Theorem 4.2. With the assumptions 1 and 2, ne = O(d), if learning rate η ≤ min( 1
4δ2 ,

β√
T
),

π(T )
em ≥ 1

1 + (M − 1) · exp(−2Rδ2∆0K)
,∀e ∈ Sm (25)

E∥w(T )
m − w∗

m∥22 ≤ (1− 2ηγmδ2

M
)KT (∥w(0)

m − w∗
m∥22 +A) + 2MKr +

Mδ2Eβ

2
√
T

O(K3, σ2). (26)

where K is the total number of communication rounds; T is the number of iterations each round;
γm = |Sm| is the number of agents in the m-th cluster, and

A =
2EK(M − 1)δ2

(1− 2ηδ2γm
M

)K − exp(−2Rδ2∆0)
. (27)
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Proof. We prove Theorem 4.2 by induction. Suppose

π(t)
em ≥

1

1 + (M − 1) exp(−2Rδ2∆0t)
(28)

E∥w(t)
m − w∗

m∥2 ≤ (1− 2ηγmδ2

M
)Kt(∥w(0)

m − w∗
m∥2) +A

(
(1− 2ηγmδ2

M
)Kt − exp

(
−2Rδ2∆0t

))
+

ηB

1− (1− 2ηγmδ2

M )K
. (29)

where B = [16Eδ4K3 + EK(δ4 + δ2σ2)]η + 4γmrδ2K.

Then according to Lemma A.1,

π(t+1)
em ≥ π

(t)
em

π
(t)
em + (1− π

(t)
em) exp(−2R∆0δ2)

(30)

≥ 1

1 + (M − 1) exp(−2Rδ2∆0t) exp(−2R∆0δ2)
(31)

≥ 1

1 + (M − 1) exp(−2R∆0δ2(t+ 1))
. (32)

We recall the virtual sequence of ŵm defined by Equation (21). Since models are synchronized after
K rounds, the know ŵ

(0)
m = w

(t)
m and w

(t+1)
m = ŵ

(K)
m . We then apply Lemma A.2 to prove the

induction. Note that instead of proving Equation (26), we prove a stronger induction hypothesis of
Equation (29).

E∥w(t+1)
m − w∗

m∥2

= E∥ŵ(K)
m − w∗

m∥2 (33)

≤ (1− 2ηγmpδ2)KE∥ŵ(t)
m − w∗

m∥2 + ηK(A1 + ηA2) (34)

≤ (1− 2ηγmpδ2)K
(
(1− 2ηγmδ2

M
)Kt∥w(0)

m − w∗
m∥2 +A((1− 2ηγmδ2

M
)Kt − exp

(
−2R∆0δ

2t
)
)

+
ηB

1− (1− 2ηγmδ2

M )K

)
+ ηK(4γmrδ2 + 2δ2E(1− p)) + η2KA2 (35)

≤ (1− 2ηγmδ2

M
)(t+1)K∥w(0)

m − w∗
m∥2

+A(1− 2ηγmδ2

M
)(t+1)K −A exp

(
−2R∆0δ

2t
)
(1− 2ηγmδ2

M
)K + 2δ2E(1− p)︸ ︷︷ ︸

D1

+ (1− 2ηγmδ2

M
)K

ηB

1− (1− 2ηγmδ2

M )K
+ 4ηKγmrδ2 + η2KA2︸ ︷︷ ︸

D2

. (36)

Note that 1− p ≤ (M − 1) exp
(
−2R∆0δ

2t
)
, so

D1 ≤ A(1− 2ηγmδ2

M
)(t+1)K −A exp

(
−2R∆0δ

2t
)
(1− 2ηγmδ2

M
)K + 2δ2EK(M − 1) exp

(
−2R∆0δ

2t
)

≤ A((1− 2ηγmδ2

M
)(t+1)K − exp

(
−2R∆0δ

2(t+ 1)
)
) (37)

For D2 we have

D2 ≤ (1− 2ηγmδ2

M
)K

ηB

[1− (1− 2ηγmδ2

M )K ]
+ 4ηγmrδ2K + 16η2Eδ4K3 + η2EKO(δ4 + δ2σ2)

=
ηB

1− (1− 2ηγmδ2

M )K
. (38)
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Finally we combine Equations (36) to (38) so

E∥w(t+1)
m − w∗

m∥2 ≤ (1− 2ηγmδ2

M
)(t+1)K∥w(0)

m − w∗
m∥2 +A

(
(1− 2ηγmδ2

M
)(t+1)K − exp

(
−2Rδ2∆0(t+ 1)

))
+

ηB

1− (1− 2ηγmδ2

M
)K

. (39)

Since it is trivial to check that both induction hypotheses hold when t = 0, the induction hypothesis
holds. Note that K ≥ 1, so

ηB

1− (1− 2ηγmδ2

M )K
≤ ηB

M

2ηγmδ2
≤ 2MKr +

Mδ2Eβ

2
√
T

O(K3, δ2). (40)

Combining Equation (39) and Equation (40) completes our proof.

A.1.3 Deferred Proofs of Key Lemmas

Lemma 1.

Proof. For simplicity, we abbreviate the model weights w(t)
m by wm in the proof of this lemma. The

n-th E step updates the weights Π by

π(t+1)
em =

π
(t)
em exp

[
−E(x,y)∼De

(wm
Tx− y)2

]∑
m′ π

(t)
em′ exp

[
−E(x,y)∼De

(wm′Tx− y)2
] (41)

so

π(t+1)
em =

π
(t)
em exp

(
−∥w(t)

m − µe∥2δ2
)

∑
m′ π

(t)
em′ exp

[
−∥w′

m
(t) − µe∥2δ2

] (42)

≥
π
(t)
em exp

(
−(β − r)2δ2

)
π
(t)
em exp(−(β − r)2δ2) +

∑
m′ ̸=m π

(t)
em′ exp(−(α+ r)2δ2)

(43)

≥ π
(t)
em

π
(t)
em + (1− π

(t)
em) exp

(
− (β2 − α2 − 2(α+ β)r)δ2

) (44)

Lemma 2.

Proof. Notice that local datasets are generated by Xe ∼ N (0, δ21ne×d) and ye = Xeµe + ϵe with
ϵe ∼ N (0, σ2). Therefore,

∥ŵ(k+1)
m − w∗

m∥2 = ∥w(k)
m − w∗

m − ηkgk∥2 (45)

= ∥ŵ(k)
m − w∗

m − ηk
2

ne

∑
e

πemXT
e Xe(θ

(k)
em − µe) +

2ηk
ne

∑
e

πemXT
e ϵe∥2

(46)

= ∥ŵ(k)
m − w∗

m − ĝk∥2 + η2k∥gk − ĝk∥2 + 2ηk⟨w(k)
m − w∗

m − ĝk, ĝk − gk⟩.
(47)

where ĝk = 2
ne

∑
e πemE(XT

e Xe)(θ
(k)
em − µ). Since the expectation of the last term in Equation (47)

is zero, we only need to estimate the expectation of ∥ŵ(k)
m − w∗

m − ηkĝk∥2 and ∥ĝk − gk∥2.
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∥ŵ(k)
m − w∗

m − ηkĝk∥2

= ∥ŵ(k)
m − w∗

m∥2 +
4η2k
n2
e

∑
e

πemE(XT
e Xe)∥θtem − µe∥2 −

4ηk
ne

∑
e

πem⟨ŵ(k)
m − w∗

m,E(XT
e Xe)(θ

(k)
em − µe)⟩

= ∥ŵ(k)
m − w∗

m∥2 + 4η2kδ
2
∑
e

πem∥θ(k)em − µe∥2 − 4ηk⟨ŵ(k)
m − w∗

m,
∑
e

πemδ2(θ(k)em − µe)⟩︸ ︷︷ ︸
C1

.

(48)

C1 = −4ηk
∑
e

πem⟨ŵ(k)
m − θ(k)em, δ2(θ(k)em − µe)⟩ − 4ηk

∑
e

πem⟨θ(k)em − w∗
m, δ2(θ(k)em − µe)⟩ (49)

≤ 4
∑
e

πem∥ŵ(k)
m − θ(k)em∥2 + 4δ4η2k

∑
e

πem∥θ(k)em − µe∥2 − 4ηkδ
2
∑
e

πem∥θ(k)em − µe∥2

− 4ηkδ
2
∑
e

πem⟨µe − w∗
m, θ(k)em − µe⟩︸ ︷︷ ︸

C2

(50)

Since ηk ≤ 1
4δ2 ,

E∥ŵ(k)
m − w∗

m − ηkĝk∥2 (51)

≤ E∥ŵ(k)
m − w∗

m∥2 + (8δ4η2k − 4ηkδ
2)

∑
e

πemE∥θ(k)em − µe∥2 + 4
∑
e

πemE∥ŵ(k)
m − θ(k)em∥2 + C2

(52)

≤ E∥ŵ(k)
m − w∗

m∥2 − 2ηkδ
2
∑
e

πemE∥θ(k)em − µe∥2 + 4
∑
e

πemE∥ŵ(k)
m − θ(k)em∥2 + C2 (53)

Note that∑
e

πemE∥θ(k)em − µe∥2 (54)

=
∑
e∈Sm

πemE∥θ(k)em − µe∥2 +
∑
e ̸∈Sm

πemE∥θ(k)em − µe∥2 (55)

≥
∑
e∈Sm

πem(E∥θ(k)em − w∗
m∥2 + 2r + r2) +

∑
e ̸∈Sm

πemE∥θ(k)em − µe∥2 (56)

=
∑
e∈Sm

πem(E∥ŵ(k)
m − w∗

m∥2 + E∥ŵ(k)
m − θ(k)em∥2 + 2r + r2) +

∑
e ̸∈Sm

πemE∥θ(k)em − µe∥2 (57)

And since ŵ
(k)
m = E

∑
e πemθ

(k)
em, we have

4E
∑
e

πem∥ŵ(k)
m − θ(k)em∥2 ≤ 4E

∑
e

πem∥ŵ(0)
m − θ(k)em∥2 (58)

≤ 4
∑
e

πem(K − 1)E
t−1∑
t′

η′k
2∥ 2

ne
XT

e Xe(θ
(k)
em − µe)∥2 (59)

≤ 16η2kE(K − 1)2δ4. (60)

Thus,

E∥ŵ(k)
m − w∗

m − ηkĝk∥2 ≤ (1− 2ηkδ
2
∑
e

πem)E∥ŵ(k)
m − w∗

m∥2 + 16η2kE(K − 1)2δ4

−2ηkδ2
∑
e ̸∈Sm

πemE∥θ(k)em − µe∥2 − 4ηkδ
2
∑
e

πem⟨θ(k)em − µe, µe − w∗
m⟩︸ ︷︷ ︸

C3

(61)
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Since

C3 ≤ 2ηkδ
2
∑
e ̸∈Sm

πem∥µe − w∗
m∥22 − 4ηkδ

2
∑
e∈Sm

πem∥θ(k)em − µe∥2∥µe − w∗
m∥2 (62)

≤ 2ηkδ
2E(1− p) + 4ηkδ

2γmr (63)

we have

E∥ŵ(k)
m −w∗

m−ηkĝk∥2 ≤ (2ηkδ
2γmp)E∥ŵ(k)

m −w∗
m∥2+16η2kE(K−1)2δ4+2ηkδ

2E(1−p)+4ηkδ
2γmr

(64)

Notice that

E∥ĝk − gk∥2 = E
∑
e

4

n2
e

πem∥(XT
e Xe − E(XT

e Xe))(θ
(k)
em − µe)∥2 + E

∑
e

4

n2
e

∑
e

πem∥XT
e ϵe∥2

= E
O(dne)

n2
e

δ4 + E
O(dne)

n2
e

δ2σ2 (65)

so
E∥ŵ(k+1)

m − w∗
m∥22 ≤ (1− 2ηkγmpδ2)E∥ŵ(k)

m − w∗
m∥22 + ηkA1 + η2kA2 (66)

where
A1 = 4δ2γmr + 2δ2E(1− p) (67)

and
A2 = 16E(K − 1)2δ4 +O(

d

ne
)E(δ4 + δ2σ2). (68)

A.2 Convergence of Models with Smooth and Strongly Convex Losses (Theorem 4.5)

We restate Theorem 4.5 for clarity here.
Theorem A.3. Assume the agent set E satisfies the separable distributions condition in Assump-
tion 4.4. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De [∥∇ℓ(x, y; θ)−∇Le(θ)∥22] ≤ σ2, and the population losses are bounded, i.e., Le ≤ G,∀e ∈
[E]. With π

(0)
em = 1

M
, ∃∆0 > 0, ∥w(0)

m − w∗
m∥2 ≤

√
µR

√
µ+

√
L
− r −∆0, and the learning rate of each agent

η ≤ min( 1
2(µ+L)

, β√
T
),FOCUS converges by

π(T )
em ≥ 1

1 + (M − 1) exp(−µR∆0T )
, ∀e ∈ Sm, (69)

E∥w(T )
m − w∗

m∥22 ≤ (1− ηA)KT (∥w(0)
m − w∗

m∥22 +B) +O(Kr) +MEβO(K3,
σ2

ne
)T−1/2 (70)

where T is the total number of communication rounds; K is the number of local updates in each
communication round; γm = |Sm| is the number of agents in the m-th cluster, and

A =
2γm
M

µL

µ+ L︸ ︷︷ ︸
related to convergence rate

, B =
GMTE( 4L

µ
+ 6

µ(µ+L)
)

(1− ηA)K − exp(−µR∆0)︸ ︷︷ ︸
caused by the offset of initial clustering

. (71)

Here we present the detailed proof for Theorem 4.5.

A.2.1 Key Lemmas

We first state two lemmas for E-step updates and M-step updates, respectively. The proofs of both
lemmas are deferred to the Appendix A.2.3
Lemma A.4. Suppose the loss function LPt

(θ) is L-smooth and µ-strongly convex for any cluster m.
If ∥w(t)

m − w∗
m∥ ≤

√
µR

√
µ+

√
L
− r −∆ for some ∆ > 0, then E-step updates as

π(t)
em ≥

π
(t)
em

π
(t)
em + (1− π

(t)
em) exp(−µR∆)

. (72)
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For M-steps, the local agents are initialized with θ
(0)
em = w

(t)
m . Then for k = 1, . . . ,K − 1, each agent

use local SGD to update its personal model:

θ(k+1)
em = θem − ηkgem(θem) = θ(k)em − ηk∇

ne∑
i=1

ℓ(hθem(x(i)
e ), y(i)e ). (73)

To analyze the aggregated model Equation (6), we define a sequence of virtual aggregated models
ŵ

(k)
m .

ŵ(k)
m =

E∑
e=1

πemθ
(k)
em∑E

e′=1 πe′m

. (74)

Lemma A.5. Suppose for any agent e ∈ Sm, its soft clustering label π(t+1)
em ≥ p. Then one step

local SGD updates ŵ(k)
m by Equation (75), if the learning rate ηk ≤ 1

2(µ+L) .

E∥ŵ(k+1)
m − w∗

m∥22 ≤ (1− ηkA0)E∥ŵ(k)
m − w∗

m∥22 + ηkA1 + η2kA2. (75)

where

A0 =
2γmpµL

µ+ L
(76)

A1 = 2γmLr

√
2G

µ
+

G(1− p)E

µ
(4L+

6

µ+ L
) +O(r2). (77)

A2 =
4E(K − 1)2GL2

µ
+

Eσ2

ne
. (78)

Remark. Using this recursive relation, if the learning rate ηk is fixed, the sequence ŵ
(k+1)
m has a

convergence rate of

E∥ŵ(k)
m − w∗

m∥2 ≤ (1− ηA0)
kE∥ŵ(0)

m − w∗
m∥2 + ηk(A1 + ηA2). (79)

A.2.2 Completing the Proof of Theorem 4.5

Theorem 4.5. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De

[∥∇ℓ(x, y; θ)−∇Le(θ)∥22] ≤ σ2. Assume population losses are bounded, i.e., Le ∈
G,∀e ∈ [E]. With initialization from assumptions 3 and 4, if each agent chooses learning rate
η ≤ min( 1

2(µ+L) ,
β√
T
), the weights (Π,W ) converges by

π(T )
em ≥

1

1 + (M − 1) exp(−µR∆0T )
, ∀e ∈ Sm (80)

E∥w(T )
m − w∗

m∥22 ≤ (1− ηA)KT (∥w(0)
m − w∗

m∥22 +B) +O(Kr) +
MEβO(K3, σ2

ne
)

√
T

(81)

where T is the total number of communication rounds; K is the number of iterations each round;
γm = |Sm| is the number of agents in the m-th cluster, and

A =
2γm
M

µL

µ+ L
,B =

GMTE( 4L
µ

+ 6
µ(µ+L)

)

(1− ηA)K − exp(−µR∆0)
. (82)

Proof. The proof is quite similar to Theorem 1 for linear models: we follow an induction proof using
lemmas 3 and 4. Suppose Equation (80) hold for step t. And suppose

E∥w(t)
m −w∗

m∥22 ≤ (1−ηA)Kt(∥w(0)
m −w∗

m∥22)+B((1−ηA)Kt−exp(−µR∆0t))+
ηC

1− (1− ηA)K
. (83)

where

C =
4ηEGK3L2

µ
+ (2γmLr

√
2G

µ
+O(r2)) + η

EKσ2

ne
. (84)
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Then for any e ∈ Sm,

π(t+1)
em ≥ π

(t)
em

π
(t)
em + (1− π

(t)
em) exp(−µR∆t)

(85)

≥ 1

1 + (M − 1) exp(−µR∆0t) exp(−µR∆t)
(86)

≥ 1

1 + (M − 1) exp(−µR∆0(t+ 1))
(87)

We recall the virtual sequence ŵ
(k)
m defined in Equation (74). Models are synchronized after K

rounds of local iterations, so w
(t+1)
m = ŵ

(K)
m . Thus, according to Lemma A.5,

E∥w(t+1)
m − w∗

m∥22 = E∥ŵ(K)
m − w∗

m∥22 (88)

≤ (1− ηA0)
KE∥w(t)

m − w∗
m∥22 + ηK(A1 + ηA2) (89)

≤ (1− ηA0)
K
(
(1− ηA)Kt(E∥w(0)

m − w∗
m∥2) +B((1− ηA)Kt − exp(−µR∆0t)) +

ηC

1− (1− ηA)K

)
+ ηK(A1 + ηA2)

(90)

≤ (1− ηA)(t+1)KE∥w(0)
m − w∗

m∥2 + (1− ηA)KB
(
(1− ηA)Kt − exp(−µR∆0t)

)
+ η

GK(1− p)E

µ
(4L+

6

µ+ L
)︸ ︷︷ ︸

F1

+ (1− ηA)K
ηC

1− (1− ηA)K
+ ηK(2γmLr

√
2G

µ
+O(r2)) + η2KA2︸ ︷︷ ︸

F2

. (91)

For F1, we use the fact that

π(t+1)
em ≥ 1

1 + (M − 1) exp−(µR∆0(t+ 1))
≥ 1− (M − 1) exp(−µR∆(t+ 1)),

so

F1 ≤ (1− ηA)KB
(
(1− ηA)Kt − exp(−µR∆0t)

)
+ η

G(M − 1) exp(−µR∆0t)

µ
(4L+

6

µ+ L
)

(92)

= B
(
(1− ηA)(t+1)K − exp(−µR∆0t)

)
(93)

For F2, we have

F2 ≤ (1− ηA)K
ηC

1− (1− ηA)K
+ ηK(2γmLr

√
2G

µ
+O(r2)) +

4EGL2η2K3

µ
+

η2KEσ2

ne

(94)

≤ ηC

1− (1− ηA)K
. (95)

Combining F1 and F2 finishes the induction proof. Moreover, since T ≥ 1, we have

ηC

1− (1− ηA)K
≤ C

A
= O(Kr) +

MEβ√
T

O(K3,
σ2

ne
). (96)

Combining Equation (83) and Equation (96) completes our proof.

A.2.3 Deferred Proofs of Key Lemmas

Lemma 3.
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Proof. According to Algorithm 1,

π(t+1)
em =

π
(t)
em

π
(t)
em +

∑
m′ ̸=m π

(t)
em′ exp

(
Eℓ(x, y;w(t)

m )− Eℓ(x, y;w(t)
m′)

) (97)

≥ π
(t)
em

π
(t)
em + (1− π

(t)
em) exp

(
maxm′ ̸=m(LPe

(w
(t)
m )− LPe

(w
(t)
m′))

) (98)

Since LPe is L-smooth and µ-strongly convex,

LPe
(w(t)

m )− LPe
(w

(t)
m′) ≤

L

2
∥w(t)

m − θ∗t ∥2 −
µ

2
∥w(t)

m′ − θ∗t ∥2

≤ L

2
(

√
µR

√
µ+
√
L
−∆)2 − µ

2
(

√
LR

√
µ+
√
L

+∆)2

≤ −
√
µLR∆+

L− µ

2
∆2 ≤ −µR∆. (99)

Combining Equation (98) and Equation (99) completes our proof.

Lemma 4.

Proof. We define g
(k)
m =

∑
e πem

1
ne

∑ne

i=1∇ℓ(hθem(x
(i)
e ), y

(i)
e ) and ĝ

(k)
m =

∑
e πem∇L(θ(k)em).

E∥ŵ(k+1)
m − w∗

m∥2 = E∥ŵ(k)
m − w∗

m − ηkg
(k)
m ∥2 (100)

= E∥ŵ(k)
m − w∗

m − ηkĝ
(k)
m ∥2 + η2kE∥g(k)m − ĝ(k)m ∥2

+ 2ηkE⟨w(k)
m − w∗

m − ηkĝ
(k)
m , ĝ(k)m − g(k)m ⟩ (101)

= E∥ŵ(k)
m − w∗

m − ηkĝ
(k)
m ∥2 + η2kE∥g(k)m − ĝ(k)m ∥2. (102)

The first term can be decomposed into

∥ŵ(k)
m − w∗

m − ηkĝ
(k)
m ∥2 = ∥ŵ(k)

m − w∗
m∥2 + η2k∥ĝ(k)m ∥2 − 2ηk⟨ŵ(k)

m − w∗
m, ĝ(k)m ⟩. (103)

Note that

∥ĝ(k)m ∥2 ≤
E∑

e=1

πem∥∇Le(θ
(k)
em)∥2. (104)

− ⟨ŵ(k)
m − w∗

m, ĝ(k)m ⟩ = −
E∑

e=1

πem⟨ŵ(k)
m − θ(k)em,∇Le(θ

(k)
em)⟩ −

E∑
e=1

πem⟨θ(k)em − w∗
m,∇Le(θ

(k)
em)⟩.

(105)

We further decompose the two terms in Equation (105) by

−2⟨ŵ(k)
m − θ(k)em,∇Le(θ

(k)
em)⟩ ≤ 1

ηk
∥ŵ(k)

m − θ(k)em∥2 + ηk∥∇Le(θ
(k)
em)∥2. (106)

and

⟨θ(k)em − w∗
m,∇Le(θ

(k)
em)⟩ ≥ ⟨θ(k)em − w∗

m,∇Le(θ
(k)
em)−∇Le(w

∗
m)⟩ − ∥∇Le(w

∗
m)∥2∥θ(k)em − w∗

m∥2.

(107)

≥ µL

µ+ L
∥θ(k)em − w∗

m∥2 +
1

µ+ L
∥∇Le(θ

(k)
em −∇Le(w

∗
m))∥2 − ∥∇Le(w

∗
m)∥2∥θ(k)em − w∗

m∥2.

(108)
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Therefore,

E∥ŵ(k+1)
m − w∗

m∥2 ≤ E∥ŵ(k)
m − w∗

m∥2 − 2ηk
µL

µ+ L

∑
e

πemE∥θ(k)em − w∗
m∥2︸ ︷︷ ︸

E1

+
∑
e

πemE∥ŵ(k)
m − θ(k)em∥2︸ ︷︷ ︸

E2

+
(
2η2k

∑
e

πemE∥∇Le(θ
(k)
em)∥2 − 2ηk

1

µ+ L

∑
e

πemE∥∇Le(θ
(k)
em)−∇Le(w

∗
m)∥2

)
︸ ︷︷ ︸

E3

+ 2ηkE
∑
e

πem∥θ(k)em − w∗
m∥2 · ∥∇Le(w

∗
m)∥2︸ ︷︷ ︸

E4

+ η2kE∥g(k)m − ĝ(k)m ∥2︸ ︷︷ ︸
E5

.

(109)

E1 = E∥ŵ(k)
m − w∗

m∥2 − 2ηk
µL

µ+ L
E
(∑

e

πem∥ŵ(k)
m − w∗

m∥2 +
∑
e

πem∥ŵ(k)
m − θ(k)em∥2

)
≤ (1− 2ηkµLpγm

µ+ L
)E∥w(k)

m − w∗
m∥2 + E2. (110)

E2 = E
∑
e

πem∥ŵ(k)
m − θ(k)em∥2

= E
∑
e

πem∥(w(0)
m − θ(k)em) + (θ(k)em − w(k)

m )∥2

≤ E
∑
e

πem∥(w(0)
m − θ(k)em)∥2

≤
∑
e

πem(K − 1)E
k−1∑
k′=0

ηk′
2∥gem(θ(k

′)
em )∥2

≤ 2η2kE(K − 1)2G2L2

µ
. (111)

E3 = 2E
∑
e

πem

(
(η2k −

ηk
µ+ L

)∥∇Le(θ
(k)
em)∥2 + 2ηk

µ+ L
⟨∇Le(θ

(k)
em),∇Le(w

∗
m)⟩ − ηk

∥∇Le(w
∗
m)∥2

µ+ L

)
≤ 4ηkE

∑
e

πem

(
− 1

2(µ+ L)
∥∇Le(θ

(k)
em)∥2 + 1

µ+ L
⟨∇Le(θ

(k)
em),∇Le(w

∗
m)⟩ − ∥∇Le(w

∗
m)∥2

µ+ L

)
≤ 6ηk

∑
e

πem
∥∇Le(w

∗
m)∥2

µ+ L

≤ 6ηk
∑
e∈Sm

πem
L2r2

µ+ L
+ 6ηk

∑
e ̸∈Sm

πem
2G

µ(µ+ L)

≤ ηkO(r2) + 6ηk
G(1− p)E

µ(µ+ L)
. (112)

E4 = 2ηkE
∑
e∈Sm

πem∥θ(k)em − w∗
m∥2 · ∥∇Le(w

∗
m)∥2 + 2ηkE

∑
e̸∈Sm

πem∥θ(k)em − w∗
m∥2 · ∥∇Le(w

∗
m)∥2

≤ 2ηkγmLr

√
2G

µ
+ 2ηk(1− p)EL · 2G

µ
. (113)
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E5 = η2kE∥g(k)m − ĝ(k)m ∥2

≤ η2kE
∥∥∥∑

e

πem

( 1

ne

ne∑
i=1

∇ℓ(hθem(x(i)
e ), y(i)e )− L(θ(k)em)

)∥∥∥2
≤ η2kE

σ2

ne
. (114)

Combining Equation (110) to Equation (114) yields the conclusion of Lemma A.5.
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B Fairness Analysis

B.1 Proof of Theorem 4.6

Proof. Let the first cluster m1 contain agents µ1, . . . , µE−1, while the second cluster contains only
the outlier µE . Then, for e = 1, . . . , E − 1,

Ee(wm1) = δ2

∥∥∥∥∥µe −
∑E−1

e′=1 µe′

E − 1

∥∥∥∥∥
2

≤ δ2r2 (115)

And for the outlier agent, the expected output is just the optimal solution, so
EE(wm2) = 0 (116)

As a result, the fairness of this algorithm is bounded by
FAAfocus(P ) = max

i,j∈[E]
|Ei(Π,W )− Ej(Π,W )| ≤ δ2r2. (117)

On the other hand, the expected final weights of of FedAvg algorithm is wavg = µ̄ =
∑E

e=1 µe

E , so
the expected loss for agent e shall be

E(x,y)∼Pe
(ℓθ̂(x)) = Ex∼N (0,δ2Id),ϵ∼N (0,σ2

e)
[(µT

i x+ ϵ− µ̄Tx)2] = σ2
e + δ2∥µe − µ̄∥2 (118)

The infimum risk for agent t1 is σ2
1 , and after subtracting it from the expected loss, we have

E1(wavg) = δ2∥µ1 − µ̄∥2 (119)

= δ2∥µ1 −
∑E−1

e=1 µ1

E
− µE

E
∥2 (120)

≤ δ2
(
r · E − 1

E
+
∥µ1 − µE∥

E

)2

(121)

≤ δ2(r · E − 1

E
+

R+ r

E
)2 = δ2(r +

R

E
)2 (122)

However for the outlier agent,
EE(wavg) = δ2∥µE − µ̄∥2 (123)

= δ2

∥∥∥∥∥E − 1

E
µE −

∑E−1
e=1 µE

E

∥∥∥∥∥
2

(124)

≥
(E − 1

E

)2

δ2R2 (125)

Hence,

FAAavg(P ) ≥ EE(wavg)− E1(wavg) = δ2
(R2(E − 2)− 2Rr

E
+ r2

)
(126)

Remark. When there are Ek > 1 outliers, we can similarly derive FAA for FedAvg algorithm:

E1(wavg) ≤ δ2(r +
EkR

E
)2 (127)

EE(wavg) ≥ δ2(
E − Ek

E
R− Ek

E
r)2 (128)

so as long as Ek < E
2 ,

FAAavg ≥ EE(wavg)− E1(wavg) = Ω(δ2R2) (129)
The FOCUS algorithm produces a result with

E1(wm1) ≤ δ2r2 (130)

EE(wm2) ≤ δ2r2 (131)
Hence we still have

FAAfocus ≤ δ2r2. (132)
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B.2 Proof of Theorem 4.7

We restate Theorem 4.7 for clarity here.
Theorem B.1. The fairness FAA achieved by FOCUS with two clusters M = 2 is

FAAfocus(W,Π) ≤ 2Gr

E − 1
(133)

Let B = 2Gr
E−1 . The fairness achieved by FedAvg is

FAAavg(W ) ≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (134)

Proof. Note that the local population loss for agent i with weights θ is

Li(θ) =

∫
pi(x, y)ℓ(fθ(x), y)dxdy. (135)

Thus,

|Li(θ
∗
i )− Lj(θ

∗
i )| =

∫
|pi(x, y)− pj(x, y)| · ℓ(fθ∗

i
(x), y)dxdy (136)

≤ G ·
∫
|pi(x, y)− pj(x, y)|dxdy ≤ Gr. (137)

Hence,
Li(θ

∗
j ) ≤ Lj(θ

∗
j ) +Gr ≤ Lj(θ

∗
i ) +Gr ≤ Li(θ

∗
i ) + 2Gr. (138)

For the cluster that combines agents {1, . . . , E − 1} together, the weight converges to
θ̄′ = 1

E−1

∑E−1
i=1 θ∗i . Then ∀i = 1, . . . , E − 1, the population loss for the ensemble predic-

tion

Li(θ,Π) = Li

(∑E−1
j=1 θ∗j

E − 1

)
(139)

≤ 1

T − 1

T−1∑
j=1

Li(θ
∗
j ) (140)

≤ Li(θ
∗
i ) +

2Gr

E − 1
. (141)

Therefore, for any i = 1, . . . , T − 1,

Ei(θ,Π) ≤ 2Gr

E − 1
. (142)

Since ET (θ,Π) = 0,

FAAfocus(W,Π) ≤ 2Gr

E − 1
(143)

Now we prove the second part of Theorem 4.7 for the fairness of Fedavg algorithm. For simplicity,
we define B = 2Gr

E−1 in this proof. Also, we denote the mean of all optimal weight θ̄ =
∑E

i=1 θ∗
i

E and

θ̄′ =
∑E−1

i=1 θ∗
i

E−1 .

Remember that we assume loss functions to be L-smooth, so

LE(θ
∗
i ) ≤ LE(θ̄

′) + ⟨∇LE(θ̄
′), θ∗i − θ̄′⟩+ L

2
∥θ̄′ − θi∥2. (144)

Taking summation over i = 1, . . . , E − 1, we get

LE(θ̄
′) ≥ 1

E − 1

(E−1∑
i=1

LE(θ
∗
i )− ⟨∇LE(θ̄

′),

E−1∑
i=1

(θi − θ̄′)⟩ − L

2

E−1∑
i=1

∥θ̄′ − θi∥2
)

(145)

=
1

E − 1

(E−1∑
i=1

LE(θ
∗
i )−

L

2

E−1∑
i=1

∥θ̄′ − θi∥2
)

(146)

≥ LE(θ
∗
E) +R− LB

µ
. (147)
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The last inequality uses the µ-strongly convex condition that implies

B ≥ Li(θ̄
′)− Li(θ

∗
i ) ≥

µ

2
∥θ̄′ − θi∥2. (148)

By L-smoothness, we have

LE(θ̄
′) ≤ LE(θ̄) + ⟨∇LE(θ̄), θ̄

′ − θ̄⟩+ L

2
∥θ̄′ − θ̄∥2. (149)

LE(θ
∗
E) ≤ LE(θ̄) + ⟨∇LE(θ̄), θ

∗
E − θ̄⟩+ L

2
∥θ∗E − θ̄∥2. (150)

Note that θ̄ =
θ̄′+(E−1)θ∗

E

E , we take a weighted sum over the above two inequalities to cancel the dot
product terms out. We thus derive

LE(θ̄) ≥
(E − 1)LE(θ̄

′) + LE(θ
∗
E)− L

2 (E − 1)∥θ̄′ − θ̄∥2 − L
2 ∥θ

∗
E − θ̄∥2

E
(151)

=
E − 1

E

(
R− LB

µ
− L∥θ∗E − θ̄′∥2

2E

)
+ LE(θ

∗
E). (152)

Note that LE(·) is µ-strongly convex, which means

R− LB

µ
≥ LE(θ̄

′)− LE(θ
∗
E) ≥

µ

2
∥θ∗E − θ̄′∥2. (153)

so

LE(θ̄) ≥ (1− L

µE
) · E − 1

E
(R− LB

µ
) + LE(θ

∗
E). (154)

And

EE(θ̄) ≥ (1− L

µE
) · E − 1

E
(R− LB

µ
). (155)

On the other hand, for agent i = 1, . . . , E − 1 we know

Li(θ̄) ≤ Li(θ̄
′) + ⟨∇Li(θ̄

′), θ̄ − θ̄′⟩+ L

2
∥θ̄ − θ̄′∥2. (156)

By L smoothness,

∥∇Li(θ̄
′)∥2 ≤ L∥θ̄′ − θ∗i ∥ ≤ L

√
2B

µ
. (157)

So

Li(θ̄) ≤ Li(θ
∗
i ) +B + L

√
2B

µ

√
2(R− LB

µ )

µ

1

E
+

L(R− LB
µ )

µE2
(158)

Ei(θ̄) ≤ B +
2L

µE

√
B(R− LB

µ
) +

L(R− LB
µ )

µE2
(159)

In conclusion, the fairness can be estimated by

FAAavg(P ) ≥ EE(θ̄)− E1(θ̄) (160)

≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (161)
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B.3 Proof of Divergence Reduction

Here we prove the claim that the assumption LE(θ
∗
e)− LE(θ

∗
E) ≥ R is implied by a lower bound of

the H-divergence [45].

DH(Pe,PE) ≥
LR

4µ
(162)

Proof. Note that

DH(Pe,PE) =
1

2
min
θ

(
Le(θ) + LE(θ)

)
+

1

2

(
Le(θ

∗
e) + LE(θ

∗
E)

)
(163)

≤ 1

2

(
Le(

θ∗e + θ∗E
2

) + LE(
θ∗e + θ∗E

2
)
)
− 1

2

(
Le(θ

∗
e) + LE(θ

∗
E)

)
(164)

≤ 1

2
× (

1

2
L∥θ

∗
E − θ∗e
2

∥22 × 2) (165)

=
1

8
L∥θ∗E − θ∗e∥22 (166)

Therefore,

LE(θ
∗
e)− LE(θ

∗
E) ≥

µ∥θ∗E − θ∗e∥22
2

(167)

≥ µ

2

8DH(Pe,PE)

L
= R. (168)
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C Fairness Discussion

This section discusses the difference between FAA and some existing fairness metrics.

We first formally recall the definition of existing fairness metrics. Suppose E clients join the federate
learning process, and train models {θ1, . . . , θE}. We denote the accuracy for client e as ae.

Var(a1, . . . , aE) (Accuracy Parity)
max
e∈[E]

Le(θe) (Agnostic Loss)

max
e1,e2

(
(Le1(θ)−min

w
Le1(w))− (Le2 −min

w
Le2(w))

)
(FAA)

When the local data distributions of clients are identical, the Bayes optimal errors minw Le(w) for
all clients e are equal, which reduces FAA to

max
e1,e2∈[E]

(Le1(θe1)− Le2(θe2)). (169)

This means when local data distributions are IID, optimizing agnostic loss is equivalent to optimizing
our fairness metric FAA. In this case, agnostic loss is an upper bound of FAA.

However, both accuracy parity and agnostic loss malfunction when local distributions are disparate.
An extreme but illustrative example is that a client e joins the federated learning with pure random
noises as its data. The best prediction for this client is just a random guess, so ae = 1

C (C is the
number of classes in a classification task) and Le(θe) is high. On the other hand, FAA notifies the data
contribution of client e by measuring its excess risk, i.e., Le(θe)−minw Le(w) = 0. In conclusion,
FAA is a generalization of agnostic loss to a more general scenario when local data distributions are
heterogeneous.
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D Additional Experimental Results

D.1 Experimental Setups

Here we elaborate more details of our experiments.

Machines. We simulate the federated learning setup on a Linux machine with AMD Ryzen Thread-
ripper 3990X 64-Core CPUs and 4 NVIDIA GeForce RTX 3090 GPUs.

Hyperparameters. For each FL experiment, we implement both FOCUS algorithm and FedAvg
algorithm using SGD optimizer with the same hyperparameter setting. Detailed hyperparameter
specifications are listed in Table 2 for different datasets, including learning rate, the number of local
training steps, batch size, the number of training epochs, etc.

Table 2: Dataset description and hyperparameters.
Dataset # training samples # test samples E M batch size learning rate local training epochs epochs

MNIST 60000 10000 10 3 6000 0.1 10 300

CIFAR 50000 10000 10 2 100 0.1 2 300

Yelp/IMDB 56000/25000 38000/25000 10 2 512 5e-5 2 3

D.2 Comparison with existing fair FL methods

We present the full results of existing fair federated learning algorithms on our data settings in terms
of FAA. The results in Tables 3 and 4 show that FOCUS achieves the lowest FAA score compared to
existing fair FL methods. We note that fair FL methods (i.e., q-FFL [22] and AFL [29]) have lower
FAA scores than FedAvg, but their average test accuracy is worse. This is mainly because they mainly
aim to improve bad agents (i.e., with high training loss), thus sacrificing the accuracy of agents with
high-quality data.

Table 3: Comparison of FOCUS and the existing fair federated learning algorithms on the rotated
MNIST dataset.

FOCUS FedAvg q-FFL AFL
q = 0.1 q = 1 q = 3 q = 5 q = 10 λ = 0.01

Avg test accuracy 0.953 0.929 0.922 0.861 0.770 0.731 0.685 0.885
Avg test loss 0.152 0.246 0.269 0.489 0.777 0.900 1.084 0.429
FAA 0.094 0.363 0.388 0.612 0.547 0.419 0.253 0.220

Table 4: Comparison of FOCUS and the existing fair federated learning algorithms on the rotated
CIFAR dataset.

FOCUS FedAvg q-FFL AFL
q = 0.1 q = 1 q = 3 q = 5 q = 10 λ = 0.01

Avg test accuracy 0.688 0.654 0.648 0.592 0.426 0.181 0.121 0.661
Avg test loss 1.133 2.386 1.138 1.141 1.605 2.4746 2.526 1.666
FAA 0.360 1.115 0.620 0.473 0.384 0.313 0.379 0.595

D.3 Comparison with state-of-the-art FL methods

We compare FOCUS with other SOTA FL methods, including FedMA [35], Bayesian nonparametric
FL [40] and FedProx [21]. Specifically, the matching algorithm in [40] is designed for only fully-
connected layers, and the matching algorithm in [35] is designed for fully-connected and convolutional
layers, while our experiments on CIFAR use ResNet-18 where the batch norm layers and residual
modules are not considered in [35, 40]. Therefore, we evaluate [21, 35, 40] on MNIST with a
fully-connected network, and [21] on CIFAR with a ResNet-18 model.
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The results on MNIST and CIFAR in Tables 5 and 6 show that FOCUS achieves the highest average
test accuracy and lowest FAA score than SOTA FL methods.

Table 5: Comparison of FOCUS and other SOTA federated learning algorithms on the rotated MNIST
dataset.

FOCUS FedAvg FedProx FedMA Bayesian
µ = 1 µ = 0.1 µ = 0.01 Nonparametric

Avg test accuracy 0.953 0.929 0.908 0.927 0.929 0.753 0.517
Avg test loss 0.152 0.246 0.315 0.252 0.246 0.856 2.293
FAA 0.094 0.363 0.526 0.378 0.365 1.810 0.123

Table 6: Comparison of FOCUS and other SOTA federated learning algorithms on the rotated CIFAR
dataset.

FOCUS FedAvg FedProx
µ = 1 µ = 0.1 µ = 0.01

Avg test accuracy 0.688 0.654 0.647 0.643 0.653
Avg test loss 1.133 2.386 1.206 2.151 2.404
FAA 0.360 1.115 0.397 0.884 0.787

D.4 Scalability with more agents

To study the scalability of FOCUS, we evaluate the performance and fairness of FOCUS and existing
methods under 100 clients on MNIST. Table 7 shows that FOCUS achieves the best fairness measured
by FAA and Agnostic Loss, higher test accuracy, and lower test loss than Fedavg and existing fair FL
methods.

Table 7: Comparison of different methods on MNIST 100 clients setting, in terms of average test
accuracy (Avg Acc), average test loss (Avg Loss), fairness FAA and existing fairness metric Agnostic
loss. FOCUS achieves the best fairness measured by FAA.

FOCUS FedAvg q-FFL AFL Ditto CGSV

q = 1 λ = 0.01 λ = 1 β = 1

Rotated MNIST (100 clients)
Avg Acc 0.9533 0.9236 0.8371 0.8813 0.9351 0.8691
Avg Loss 0.157 0.2571 0.5668 0.4355 0.2206 0.6294
FAA 0.5605 1.0652 1.5055 0.8901 0.7459 1.2935
Agnostic Loss 0.5028 0.8894 1.4227 0.7767 0.620 1.5133

D.5 Evaluation on scenarios with different numbers of outlier agents

Additionally, we evaluate FOCUS with different numbers of outliers in Table 8. In the presence of
1, 3, and 5 outlier agents (e.g., agents with data rotated with 90 or 180 degrees), forming 2, 3, or 4
underlying true clusters, FOCUS consistently achieves a lower FAA score and higher accuracy.

Table 8: Comparison of FOCUS and FedAvg with different numbers of outlier agents (k) in terms of
average test accuracy (Avg Acc) and fairness FAA.

Rotated MNIST Rotated CIFAR

k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Avg Acc FOCUS 0.957 0.953 0.948 0.683 0.688 0.677
FedAvg 0.945 0.929 0.910 0.683 0.654 0.651

FAA FOCUS 0.159 0.094 0.153 1.168 0.360 0.436
FedAvg 0.515 0.363 0.476 2.464 1.115 1.166

29



D.6 Convergence of FOCUS

We report the test accuracy and test loss of different methods over FL communication rounds on
Rotated MNIST with 10/100 clients and Rotated CIFAR in Figure 2. The results show that FOCUS
converges faster and achieves higher accuracy and lower loss than other methods on both settings.
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(a) Rotated MNIST with 10 clients.

0 40 80 120 160 200 240 280
Communication Round

0

1

2

Te
st

 L
os

s

FOCUS
FedAvg
q-FFL
AFL
Ditto

0 40 80 120 160 200 240 280
Communication Round

0
10
20
30
40
50
60
70
80
90

100

Te
st

 A
cc

ur
ac

y
FOCUS
FedAvg
q-FFL
AFL
Ditto

(b) Rotated MNIST with 100 clients.
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(c) Rotated CIFAR with 10 clients.

Figure 2: The test accuracy and test loss of different methods over FL communication rounds on
different datasets. FOCUS converges faster and achieves higher accuracy and lower loss than other
methods.

D.7 Runtime analysis

Computation time analysis for proposed metric FAA and its scalability to more clients. In
FAA, to calculate the maximal difference of excess risks for any pair of agents, it suffices to calculate
the difference between the maximal per-client excess risks and the minimum per-client excess risk,
and we don’t need to calculate the difference for any pairs of agents. We compare the computation
time (averaged over 100 trials) of FAA and existing fairness criteria (i.e., Accuracy Parity [22] and
Agnostic Loss [29] ) under 10 clients and 100 clients on MNIST. Table 9 shows that the computation
of FAA is efficient even with a large number of agents. Moreover, calculating the difference between
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Table 9: Computation time of different FL fairness metric on Rotated MNIST. The computation of
FAA is efficient under 10 clients and 100 client settings.

10 clients 100 clients

Accuracy Parity [22] 4.70 e-05 second 6.48 e-05 second

Agnostic loss [29] 9.41 e-07 second 3.92 e-06 second

FAA 6.09 e-06 second 4.27 e-05 second

Table 10: The number of communication rounds that different methods take to reach a target accuracy
on Rotated MNIST. FOCUS requires a significantly smaller number of communication rounds than
other methods.

70% 80% 85% 90%

FOCUS 9 16 20 29
FedAvg 10 51 88 177

q-FFL 28 151 261 > 300

AFL 16 94 180 > 300

maximal excess risk and minimum excess risk (i.e., FAA) is even faster than calculating the standard
deviation of the accuracy between agents (i.e., Accuracy Parity).

Communication rounds analysis. Here, we report the number of communication rounds that each
method takes to achieve targeted accuracy on MNIST and CIFAR in Table 10. We note that FOCUS
requires significantly a smaller number of communication rounds than FedAvg, q-FFL, and AFL on
both datasets, which demonstrates the small costs required by FOCUS.

Training time and inference time analysis. In terms of runtime, we report the training time for
one FL round (averaged over 20 trials) as well as inference time (averaged over 100 trials) in Table 12.
Since the local updates and sever aggregation for different cluster models can be run in parallel, we
find that FOCUS has a similar training time compared to FedAvg, q-FFL, and AFL which train one
global FL model. For the inference time, FOCUS is slightly slower than existing methods by about
0.17 seconds due to the ensemble prediction of all cluster models at each client. However, we note
that such cost is small and the forward passes of different cluster models for the ensemble prediction
can also be made in parallel to further reduce the inference time.

D.8 Comparison to FedAvg with clustering

In this section, we construct a new method by combining the clustering and Fedavg together (i.e.,
FedAvg-HardCluster), which serves as a strong baseline. Specifically, FedAvg-HardCluster works as
below:

Table 11: The number of communication rounds that different methods take to reach a target accuracy
on Rotated CIFAR. FOCUS requires a significantly smaller number of communication rounds than
other methods.

55% 60% 65% 70%

FOCUS 8 10 19 37
FedAvg 8 14 34 > 300

q-FFL 182 > 300 > 300 > 300

AFL 24 53 190 > 300
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Table 12: Training time per FL round and inference time for different methods on Rotate MNIST.
Training time per FL round Inference time

FOCUS 6.59 second 0.28 second

FedAvg 6.23 second 0.12 second

q-FFL 6.32 second 0.11 second

AFL 6.24 second 0.12 second

Table 13: Comparison between FOCUS and FedAvg-HardCluster on Rotate MNIST under two
scenarios.

Scenario 1
(underly clusters are clearly separatable)

Scenario 2
(underly clusters are not separatable)

FOCUS FedAvg-HardCluster FOCUS FedAvg-HardCluster

Avg test acc 0.953 0.954 0.814 0.812
Avg test loss 0.152 0.152 1.168 1.244
FAA 0.094 0.099 0.449 0.459
Agnostic loss 0.224 0.224 1.333 1.397

• Step 1: before training, for each agent, it takes the arg max of the learned soft cluster assignment
from FOCUS to get the hard cluster assignment (i.e., each agent only belongs to one cluster).

• Step 2: during training, each cluster then trains a FedAvg model based on corresponding agents.
• Step 3: during inference, each agent only uses the corresponding one cluster FedAvg model for

inference.

To compare the performance between FOCUS and FedAvg-HardCluster, we consider two scenarios
on MNIST:

• Scenario 1: underly clusters are clearly separatable, where each cluster contains samples from one
distribution, which is the setting used in our paper.

• Scenario 2: underlying clusters are not separatable, where each cluster has 80%, 10%, and 10%
samples from three different distributions, respectively. For example, the first underlying cluster
contains 80% samples without rotation, 10% samples rotating 90 degrees, and 10% samples rotating
180 degrees.

We observe that the learned soft cluster assignments from FOCUS align with the underlying distri-
bution, so the hard cluster assignment for Step 1 in FedAvg-HardCluster is equal to the underlying
ground-truth clustering for both scenarios.

Table 13 presents the results of FOCUS and FedAvg-HardCluster on Rotated MNIST under two
scenarios. Under Scenario 1, the accuracy of FOCUS and FedAvg-HardCluster is similar, and
FOCUS achieves better fairness in terms of FAA. The results show that the hard clustering for
FedAvg-HardCluster is as good as the soft clustering for FOCUS when the underlying clusters are
clearly separable, which verifies that clustering is one of the key steps in FOCUS, and it aligns with
our hypothesis for fairness under heterogeneous data. Under Scenario 2, FOCUS achieves higher
accuracy and better FAA fairness than FedAvg-HardCluster. The results show that when underly
clusters are not separatable, soft clustering is better than hard clustering since each agent can benefit
from multiple cluster models with the soft π learned from the EM algorithm in FOCUS.

D.9 Effect of the number of the clusters M

The performance of FOCUS would not be harmed if the selected number of clusters is larger than the
number of underlying clusters since the superfluous clusters would be useless (the corresponding
soft cluster assignment π goes to zero). On the other hand, when the selected number of clusters is
smaller than the number of underlying clusters, FOCUS would converge to a solution when some
clusters contain agents from more than one underlying cluster.
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Table 14: The effect of M on Rotate MNIST when the number of underlying clusters is 3.
M=1 M=2 M=3 M=4

Avg test acc 0.929 0.952 0.953 0.953
Avg test loss 0.246 0.167 0.152 0.153
FAA 0.363 0.079 0.094 0.091
Agnostic loss 0.616 0.272 0.224 0.223

Table 15: The effect of M on Rotate CIFAR when the number of underlying clusters is 2.
M=1 M=2 M=3 M=4

Avg test acc 0.654 0.688 0.696 0.693
Avg Loss 2.386 1.133 0.932 0.921
FAA 1.115 0.360 0.323 0.350
Agnostic loss 3.275 1.294 1.115 1.098

Rotate MNIST and Rotate CIFAR. Empirically, in Table 14, we have 3 true underlying clusters
while we set M = 1, 2, 3, 4 in our experiments, and we see that when M = 3 and M = 4, FOCUS
achieves similar accuracy and fairness, which verifies our hypothesis that the superfluous clusters
would become useless. When M = 2, FOCUS even achieves the highest fairness, which might
be because one cluster benefits from the shared knowledge of multiple underlying clusters. When
M = 1, FOCUS reduces to FedAvg, which does not have the clustering mechanism, leading to the
lowest accuracy and fairness under heterogeneous data.

FEMNIST. Here we conduct the experiment on FEMNIST, which represents a more realistic
situation where local distributions are not well-separated. The FEMNIST contains 62 classes, and we
consider 204 clients for FL, where each client contributes to a writer of handwritten digits or letters.
The data distributions might exhibit ambiguous cluster structure since the writing style of different
writers could potentially be clustered together.

We treat the number of clusters M as a hyperparameter and run the experiments with varying. The
results in the below table show that, compared to FedAvg, FOCUS achieves higher accuracy and
stronger fairness in terms of FAA and accuracy parity. Moreover, FOCUS is robust to the choice of
the number of clusters as it maintains similar performance across M = 2, 3, 4, 7, 10, 12, 15. This
indicates FOCUS is applicable in diverse FL settings, even when the cluster structure is ambiguous.

D.10 Histogram of loss on CIFAR

Figure 3 shows the surrogate excess risk of every agent trained with FedAvg and FOCUS on CIFAR
dataset. For the outlier cluster that rotates 180 degrees (i.e., 2rd cluster), FedAvg has the highest test
loss for the 9th agent, resulting in a high excess risk of 2.74. In addition, the agents in 1st cluster
trained by FedAvg are influenced by the FedAvg global model and have high excess risk. On the other
hand, FOCUS successfully identifies the outlier distribution in 2nd cluster, leading to a much lower
excess risk among agents with a more uniform excess risk distribution. Notably, FOCUS reduces the
surrogate excess risk for the 9th agent to 0.44.

Table 16: The effect of M on FEMNIST when the number of underlying clusters is unknown.
M=1 M=2 M=3 M=4 M=7 M=10 M=12 M=15

Avg test acc 0.676 0.698 0.718 0.727 0.722 0.711 0.720 0.725
FAA 2.700 2.690 2.470 2.670 2.410 2.630 2.370 2.380
Accuracy parity 0.168 0.149 0.137 0.135 0.135 0.139 0.136 0.141
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Figure 3: The excess risk of different agents trained with FedAvg (left) and FOCUS (right) on CIFAR dataset.

E Discussion

E.1 Limitation

A potential limitation of the FOCUS algorithm is that it requires setting the number of clusters M as
a hyperparameter, as in many other FL clustering algorithms [13]. Our results on rotated MNIST,
rotated CIFAR, and FEMINIST show that FOCUS is robust to the choice of M . Our future work
includes evaluating FOCUS on more complex FL data distributions (e.g., real mobile devices data)
and more data modalities (e.g., audio) and investigating the effect of clustering for fairness.

E.2 Broader Impact

This paper presents a novel definition of fairness via agent-level awareness for federated learning,
which considers the heterogeneity of local data distributions among agents. We develop FAA as a
fairness metric for Federated learning and design FOCUS algorithm to improve the corresponding
fairness. We believe that FAA can benefit the ML community as a standard measurement of fairness
for FL based on our theoretical analyses and empirical results.

A possible negative societal impact may come from the misunderstanding of our work. For example,
low FAA does not necessarily mean low loss or high accuracy. Additional utility evaluation metrics
are required to evaluate the overall performance of different federated learning algorithms. We have
tried our best to define our goal and metrics clearly in Section 3; and state all assumptions for our
theorems accurately in Section 4 to avoid potential misuse of our framework.
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