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ABSTRACT
The flourishing of knowledge graph (KG) applications has driven
the need for entity alignment (EA) across KGs. However, the het-
erogeneity of practical KGs, characterized by differing scales, struc-
tures, and limited overlapping entities, greatly surpasses that of
existing EA datasets. This discrepancy highlights an oversimplified
heterogeneity in current EA datasets, which obstructs a full under-
standing of the advancements achieved by recent EA methods.

In this paper, we study the performance of EA methods in practi-
cal settings, specifically focusing on the alignment of highly hetero-
geneous KGs (HHKGs). Firstly, we address the oversimplified het-
erogeneity settings of current datasets and propose two new HHKG
datasets that closely mimic practical EA scenarios. Then, based on
these datasets, we conduct extensive experiments to evaluate previ-
ous representative EAmethods. Our findings reveal that, in aligning
HHKGs, valuable structure information can hardly be exploited
through message-passing and aggregation mechanisms. This phe-
nomenon leads to inferior performance of existing EA methods,
especially those based on GNNs. These findings shed light on the
potential problems associated with the conventional application of
GNN-based methods as a panacea for all EA datasets. Consequently,
in light of these observations and to elucidate what EA methodol-
ogy is genuinely beneficial in practical scenarios, we undertake an
in-depth analysis by implementing a simple but effective approach:
Simple-HHEA. This method adaptly integrates entity name, struc-
ture, and temporal information to navigate the challenges posed by
HHKGs. Our experiment results conclude that the key to the future
EA model design in practical lies in their adaptability and efficiency
to varying information quality conditions, as well as their capability
to capture patterns across HHKGs. The datasets and source code
are available at https://anonymous.4open.science/r/HHEA/.

KEYWORDS
Knowledge Graphs, Entity Alignment, Graph Neural Networks

1 INTRODUCTION
Knowledge Graphs (KGs) are the most representative ways to store
knowledge in the form of connections of entities. With the devel-
opment of KG and relevant applications (e.g., Question Answer-
ing [10], Information Retrieval [22]) in recent years, the need for
aligning KGs from different sources has become increasingly im-
portant in these fields. Entity Alignment (EA) in KGs, which aims
to integrate KGs from different sources based on practical require-
ments, is a fundamental technique in the field of data integration.

Most KGs derived from different sources are heterogeneous,
which brings difficulties when aligning entities. Existing EA stud-
ies mainly make efforts to identify and leverage the correlation
between heterogeneous KGs from various perspectives (e.g., entity
names, structure information, temporal information) through deep
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Figure 1: An example of the HHKGs (ICEWS and WIKI) and
their statistics. The scale and density of the KGs are very
different, and the overlapping ratios (45.79% and 31.82%) in-
dicate that the two KGs are far from the 1-to-1 assumption.

learning techniques. GNN is one of the most popular techniques
for mining graph-structured information. Along with the devel-
opment of GNN-related techniques, over 70% studies of EA since
2019, according to the statistics [39], have incorporated GNNs into
their approaches. Benefiting from the strong ability of GNNs to
capture KGs’ structure correlations, related methods have achieved
remarkable performance on benchmark EA datasets.

How to overcome the heterogeneity and mine the correlations
between KGs is the main concern of EA. Existing EAmethods evalu-
ate the performance on several widely-used KG datasets, especially
cross-lingual KGs (e.g., DBP15K(EN-FR)). However, the heterogene-
ity between KGs is not limited to linguistic differences. Different
data sources, scales, structures, and other information (e.g., tem-
poral information ) are more widespread heterogeneities among
knowledge graphs, and need to be studied urgently in the EA area.
The highly heterogeneous KGs (HHKGs) indicate that the source
and target KG are far different from each other (e.g., General KG-
Domain KG). Figure 1 vividly presents a toy example of HHKGs,
in which KGs have different scales, structures, and densities, and
the overlapping ratio is exceedingly low. For temporal knowledge
graphs (TKGs), the difference in temporal information can also be
considered as a kind of heterogeneity. The above characteristics
lead to the challenges of EA on HHKGs.

The requirements of practical applications reveal the indispens-
ability of studying HHKG alignment. For example, personal KGs [1,
38] intend to integrate domain knowledge about people with gen-
eral KG for personalized social recommendations; Geospatial data-
base, which is today at the core of an ever-increasing number of
Geographic Information Systems, needs to align entities frommulti-
ple knowledge providers [2]. These applications have urgent needs
for EA on HHKGs. Unfortunately, most EA methods are evaluated
on a few benchmarks, there is a lack of datasets for conducting
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research on HHKGs. This one-sided behavior hinders our under-
standing of the real progress achieved by EA methods, especially
GNN-based methods, and results in the limitations of previous EA
methods when applied in practical scenarios. In general, a rethink-
ing of EA methods especially GNN-based methods is warranted.
The goal of this work is to answer two essential research questions:

• RQ1: From the dataset view, what are the existing EA datasets’
limitations, and the gaps between them and practical scenarios?

• RQ2: From the method view, what is the EA method that we
really need in practical applications?

To answer RQ1, we conduct a rethinking of the existing EA
datasets, and discuss the gap between them and practical scenarios
through statistical analysis. Based on the analysis, we sweep the un-
reasonable assumption (e.g., KGs always satisfy 1-to-1 assumption
of entities) and eliminate oversimplified settings (e.g., the exces-
sive similarity of KGs in scale, structure, and other information) of
previous datasets and propose two new entity alignment datasets
called ICEWS-WIKI and ICEWS-YAGO.

To answer RQ2, we perform empirical evaluations across a wide
range of representative EAmethods on HHKG datasets. It is noticed
that the performances of GNN-based methods, which achieve com-
petitive performances on previous EA datasets, decrease sharply
under HHKG conditions. That is to say, GNN-based methods, which
primarily rely on leveraging implicit patterns in structure informa-
tion for EA, do not demonstrate significant advantages over other
EA methods when the structure information of HHKGs becomes
challenging to utilize. The above phenomena lead us to rethink the
so-called progress of existing GNN-based EA methods.

To further investigate the components of GNN that lead to per-
formance degradation, and understand how the characteristics of
HHKGs influence these methods, we conduct statistical analysis,
ablation studies, and sensitivity studies of GNN-based EA methods
on HHKGs, and can summarize that:

(1) The structure information of HHKGs is complicated to utilize
through message passing and aggregation mechanisms, resulting in
the GNN-based methods’ poor performance. The entity name infor-
mation is not effectively utilized because more noise is aggregated
when facing highly heterogeneous graph structures.

(2) It cannot be ignored to leverage structure information, es-
pecially when the quality of other types of information cannot
be guaranteed. Therefore, we need to design EA models that can
mimic the self-loop mechanism of GNNs, and adaptively exploit
different types of information between HHKGs.

In light of these observations, and with the intent to discover
what makes an EA methodology genuinely beneficial in practical
scenarios, we propose a simple but effective method: Simple-HHEA,
which can jointly leverage the entity name, structure, and temporal
information of HHKGs. We conduct extensive experiments on the
proposed datasets and a previous benchmark dataset.

Our experimental insights emphasize three keys for EA models
in real-world scenarios: (1) the methods should possess adaptability
to various information quality conditions to meet the demands of
diverse applications; (2) the methods need the capability to extract
clues from highly heterogeneous data for EA; (3) efficiency is also
vital, striving for a simple yet effective model that maintains high
accuracy while conserving resources.

To summarize, our main contributions are as follows:
(1) We recognize the limitations of previous EA benchmark

datasets, and propose a challenging but practical task, i.e., EA on
HHKGs. To this end, we have constructed two new datasets to
facilitate the examination of EA in practical applications.

(2) We rethink existing GNN-based EA methods. Through ad-
equate analysis and experiments on new datasets, we shed light
on the potential issues resulting from oversimplified settings of
previous EA datasets to facilitate robust and open EA developments.

(3) We propose an in-depth analysis to provide direction for
future EA method improvement through the implementation of a
simple but effective approach: Simple-HHEA.

2 RETHINKING EXISTING EA RESEARCHES
2.1 Limitations of Existing EA Datasets
Upon conducting an extensive review of the field, we noted that a
substantial majority of Entity Alignment (EA) studies, specifically
more than 90%, utilize a set of established benchmark datasets for
evaluation. These include, but are not limited to, DBP15K datasets,
DBP-WIKI, and WIKI-YAGO datasets. These datasets have undoubt-
edly made substantial contributions to the progression of EA re-
search. However, when applied to the study of HHKGs, the intrinsic
limitations of these datasets become increasingly prominent. These
limitations largely stem from the inherent characteristics of these
datasets. Regrettably, these widely used datasets exhibit a degree of
simplification. While these feature may making them convenient
for conventional EA studies, it significantly deviates from the high
heterogeneity and complexity commonly found in real-world KGs.
Consequently, these datasets fail to adequately represent the chal-
lenges posed by practical applications. This divergence between the
characteristics of benchmark datasets and piratical scenarios poses
substantial challenges to the alignment of entities within HHKGs.

In this paper, we delve into the prevalent issues inherent in ex-
isting EA datasets by conducting rigorous statistical analyses on
widely-used datasets, DBP15K(EN-FR) and DBP-WIKI, proposed by
OpenEA [28]. Our choice to examine DBP15K(EN-FR) is driven by
two factors: (1) its exemplary nature as it shares similar character-
istics with other datasets, thereby enhancing the generalizability
of our analysis; For example, through the statistical analysis [40],
we can observed that DBP15K(EN-FR), other DBP15K series dataset,
DBP-WIKI, and SRPRS have the same feature that aligned KGs share
the similar scale, density, structure distribution, and overlapping
ratios. (2) the datasets are extensively employed within the EA re-
search community, making them the representation of benchmark
datasets, and its broad acceptance by the EA community ensures
the applicability of our findings.

WithDBP15K(EN-FR) andDBP-WIKI as our focal point, we assess
these datasets from three critical dimensions: scale, structure, and
overlapping ratios. Through this systematic exploration, we aim to
provide valuable insights into the challenges inherent in existing
EA datasets and inform future research directions A comprehensive
overview of the dataset statistics is presented in Table 1.

Scale. The statistical analysis of DBP15K(EN-FR) and DBP-WIKI
shows that the KGs exhibit similarities in the number of entities, re-
lations, and facts, indicating that the scales of aligned KGs are same.
However, in practical scenarios, KGs from different sources are
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Table 1: The detailed statistics of the experiment datasets, "Structure. Sim." denotes the average neighbor structure similarity of
entities. "Temporal." denotes whether the dataset contains temporal knowledge information.

Dataset #Entities #Relations #Facts Density #Anchors Overlapping Struc. Sim. Temporal

DBP15K(EN-FR) EN 15,000 193 96,318 6.421 15,000 100% 63.4% No
FR 15,000 166 80,112 5.341 100% No

DBP-WIKI DBP 100,000 413 293,990 2.940 100,000 100% 74.8% No
WIKI 100,000 261 251,708 2.517 100% No

ICEWS-WIKI ICEWS 11,047 272 3,527,881 319.352 5,058 45.79% 15.4% Yes
WIKI 15,896 226 198,257 12.472 31.82% Yes

ICEWS-YAGO ICEWS 26,863 272 4,192,555 156.072 18,824 70.07% 14.0% Yes
YAGO 22,734 41 107,118 4.712 82.80% Yes

Figure 2: The comparison of degree distribution comparison
in DBP15K(EN-FR), DBP-WIKI, and ICEWS-WIKI/YAGO. The
X-axis denotes degree andY-axis represents the entities’ ratio.

not always same in scale, and even show significant differences. In
recent years, there has been research [28] focused on aligning large-
scale KGs. However, there is still a lack of research and datasets
modeling KGs that are significantly different in scale, which widely
exist. For example, the ICEWS(05-15) dataset contains more facts
(461,329) compared to YAGO (138,056) and WIKIDATA (150,079)
dataset [11]. Thus, it is impossible to explore the impact of scale
differences between KGs in real-world scenarios.

Structure. The KGs ofDBP15K(EN-FR) andDBP-WIKI are similar
in density, and also have similar degree distributions as shown in
Figure 2, which reflect that the KGs are similar in structure.

To further evaluate the neighborhood similarity between KGs,
we propose a new metric called structure similarity, which is the
average similarity of aligned neighbors of aligned entity pairs, and
details are illustrated in A.3. The structure similarity of KGs in
DBP15K(EN-FR) and DBP-WIKI reaches 63.4% and 74.8%, indicating
that the entity pairs share similar neighborhoods.

The analysis of the structure of DBP15K(EN-FR) and DBP-WIKI
reveals that the structure information of the aligned KGs in previous
datasets is similar and easy to leverage, particularly by GNN-based
EA methods, such as [7, 17, 32]. These methods exhibit abilities to
capture and leverage the structure correlation between KGs, result-
ing in impressive performances on previous EA datasets. It is worth
further investigation to determine if these EA methods, verified on

previous datasets, are still effective in piratical scenarios where the
structure information of two KGs is significantly different.

Overlapping ratio.We can also notice that the overlapping ratio
of DBP15K(EN-FR) and DBP-WIKI is 100%, which refers to another
important characteristic of most EA datasets: 1-to-1 assumption
(each entity in a KG must have a counterpart in the second KG).
As discussed in the recent EA benchmark study [15], the 1-to-
1 assumption deviates from practical KGs. Especially when the
alignment is performed between KGs from different sources (e.g.,
the global event-related ICEWS and the general KG denoted as
WIKI ), the entities that can be aligned only make up a small fraction
of the aligned KGs, which is manifested by a low overlapping ratio.
For example, some non-political entities in YAGO (e.g., football
clubs) do not appear in the ICEWS dataset.

In conclusion, through the statistical analysis of DBP15K(EN-FR),
we find that the previous EA datasets are oversimplified under the
unrealistic assumption (i.e., 1-to-1 assumption) and settings (i.e.,
the same scale, structure), which are easy to leverage but deviate
from real-world scenarios. This one-sided behavior hinders our un-
derstanding of the real progress achieved by previous EA methods,
especially GNN-based methods, and causes the potential limitations
of these methods for applications. Moreover, the heterogeneities
between real-world KGs are not only language but also the scales,
structure, coverage of knowledge, and others, overcoming the het-
erogeneities and aligning KGs helps complete and enrich them.
Therefore, new EA datasets, which can mimic KGs’ heterogeneities
in more practical scenarios, are urgently needed for EA research.

2.2 Towards Practical Datasets
To address the limitations of previous EA datasets, in this paper, we
present two new EA datasets called ICEWS-WIKI and ICEWS-YAGO,
which integrate the event knowledge graph derived from the In-
tegrated Crisis Early Warning System (ICEWS) and general KGs
(i.e.,WIKIDATA, YAGO). There is a considerable demand to align
them in real-world scenarios. ICEWS is a representative domain-
specific KG, which contains political events with time annotations
that embody the temporal interactions between politically related
entities.WIKIDATA and YAGO are two common KGs with exten-
sive general knowledge that can provide background information.
Aligning them can provide a more comprehensive view to under-
stand events and serve temporal knowledge reasoning tasks. The
detailed construction processes are illustrated in A.4

Dataset Analysis. An ideal comparison should include KGs as
they are. From the EA research view, the proposed datasets sweep
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the oversimplified settings and assumptions (i.e., KGs always satisfy
the 1-to-1 assumption, and KGs are similar in scale and structure)
of previous datasets, and thus are closer to the real-world scenarios.

In scale, the original two KGs differ significantly in scale. Cor-
respondingly, the datasets maintained the original distribution of
the two KGs during sampling, which means that the constructed
dataset maintained the scale difference of the KGs.

In structure, we preserved the feature of the original KGs that
the density is significantly different. Figure 2 also shows that the
two proposed datasets exhibit highly different degree distributions.
The structure similarities are very low (15.4%, 14.0% of ICEWS-WIKI /
YAGO) compared with DBP15K(EN-FR) (66.4%), referring that the
KGs of the new datasets are highly heterogeneous in structure.

In overlapping ratio, the datasets mimic a more common scenario
that the KGs come from various sources (i.e., domain-specific KGs
and general KGs). The differences in the sources are typically not
language but the coverage of knowledge, which result in a small
proportion of overlapping entities. The EA task on the new dataset
is challenging but also reaps huge fruits once realized. As shown in
Table 1, the overlapping ratio of the new dataset is exceedingly low
compared with DBP15K(EN-FR), which means that the new datasets
do not follow the 1-to-1 assumption.

Moreover, an increasing number of KGs like YAGO and WIKI-
DATA contain temporal knowledge, and two recent studies [36, 37]
shows that KGs’ temporal information is helpful.

Through the statistical analysis, we deem that the proposed
datasets are highly heterogeneous, which can mimic the consid-
erable practical EA scenarios, and help us better understand the
demands and challenges of real-world EA applications. We expect
the proposed datasets to help design better EA models that can
deal with more challenging problem instances, and offer a better
direction for the EA research community.

The proposed datasets are not only meaningful for EA research
but also valuable in the field of KG applications. From the KG appli-
cation view, ICEWS, WIKIDATA, and YAGO are widely adopted in
various KG tasks such as temporal query [16, 33–35], KG comple-
tion [14, 21] and question answering [20, 23]. Properly aligning and
leveraging these KGs will provide more comprehensive insights for
understanding temporal knowledge and benefit downstream tasks.

2.3 Rethinking Existing EA Methods

Translation-based EA Methods. Translation-based EA ap-
proaches [6, 26, 27, 41] are inspired by the TransE mechanism [3],
focusing on knowledge triplets (𝑢, 𝑟, 𝑣). Their scoring functions
assess the triplet’s validity to optimize knowledge representation.
MTransE [6] uses a translation mechanism for entity and relation
embedding, leveraging pre-aligned entities for vector space trans-
formation. Both AlignE [27] and BootEA [27] adjust aligned entities
within triples to harmonize KG embeddings, with BootEA incorpo-
rating bootstrapping to address limited training data.

GNN-based EA Methods. In recent years, GNNs have gained
popularity in EA tasks for their notable capabilities in modeling
both structure and semantic information in KGs [5, 18, 19, 32, 42].
GCN-Align [32] exemplifies GNN-based EAmethods, utilizing GCN
for unified semantic space entity embedding. Enhancements like
RDGCN [7] and Dual-AMN [17] introduced features to optimize

Figure 3: An example of feature and pre-aligned entity pair
label propagation of messaging passing mechanism.

neighbor similarity modeling. Recent methodologies, e.g., TEA-
GNN [36], TREA [37], and STEA [4], have integrated temporal data,
underscoring its significance in EA tasks.

Essentially, GNNs can be considered as a framework incorporat-
ing four key mechanisms: information messaging (or propagation),
attention, aggregation, and self-loop. Each of these plays a funda-
mental role in GNNs’ effective performance in EA tasks. We first
give a formulation to the general attention-based GNNs as follows:

𝐻 𝑙+1
𝑡 ← AGG

∀(𝑠,𝑟 ,𝑡 ) ∈Q
( ATT (𝐻 𝑙

𝑠 , 𝐻
𝑙
𝑟 , 𝐻

𝑙
𝑡 , ) · MSG (𝐻 𝑙

𝑠 ) ) | | SELF (𝐻 𝑙
𝑡 ), (1)

where 𝐻 denotes the learned entity embedding, MSG, ATT, AGG,
and SELF denote message passing, attention aggregation, and self-
loop mechanism, respectively.

Specifically,Message passing (MSG) enables nodes to exchange
information and assimilate features from neighbors, encapsulating
local context crucial for EA tasks, as illustrated in Figure 3. At-
tention (ATT) assigns varied weights to nodes during messaging
and aggregation, allowing GNNs to focus on more pertinent nodes,
thereby enhancing the extraction of essential structural and seman-
tic KG traits. Aggregation (AGG) offers a summarized view of
a node’s local context by compiling neighbor information into a
concise representation. Lastly, the Self-loop (SELF)mechanism en-
sures the preservation of intrinsic node features amidst the learning
process, even in the face of intricate intra-graph interactions.

Other EAMethods.Certain EA approaches transcend the above
bounds. PARIS [25] is a representative non-neural EA method,
which aligns entities in KGs using iterative probabilistic techniques,
considering entity names and relations. Fualign [31] unifies twoKGs
based on trained entity pairs, learning a collective representation.
BERT-INT [29] addresses KG heterogeneity by solely leveraging
side information, outperforming existing datasets. However, its
exploration of KG heterogeneity remains limited to conventional
datasets, not capturing the nuances of practical HHKGs.

In the context of EA in HHKGs, the efficacy of these methods and
mechanisms may be influenced by various factors, such as the level
of heterogeneity, the number of overlapping entities, and the quality
and quantity of structure and semantic information. This highlights
the need for an in-depth analysis in HHKG settings, which will
be the focus of our subsequent experimental investigation. This
investigation is expected to shed light on the real progress made
by EA methods and guide future research toward more effective
and robust solutions for real-world EA challenges.
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Table 2: The settings of baselines, and the main experiment results on DBP15K(EN-FR), DBP-WIKI, ICEWS-WIKI, and ICEWS-
YAGO. Bold: the best result; Underline: the runner-up result. "Struc., Name., Temporal." denotes whether methods utilize
structure, name, and temporal information, respectively; "Semi." denotes whether methods adopt the semi-supervised strategy;
Baselines are separated according to the groups described in Section A.5.2.

Models Settings DBP15K(EN-FR) DBP-WIKI ICEWS-WIKI ICEWS-YAGO
Struc. Name.Temp.Semi. Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

Tr
an
s. MTransE 0.247 0.577 0.360 0.281 0.520 0.363 0.021 0.158 0.068 0.012 0.084 0.040

AlignE ✓ 0.481 0.824 0.599 0.566 0.827 0.655 0.057 0.261 0.122 0.019 0.118 0.055
BootEA ✓ ✓ 0.653 0.874 0.731 0.748 0.898 0.801 0.072 0.275 0.139 0.020 0.120 0.056

GN
N

GCN-Align ✓ 0.411 0.772 0.530 0.494 0.756 0.590 0.046 0.184 0.093 0.017 0.085 0.038
RDGCN ✓ ✓ 0.873 0.950 0.901 0.974 0.994 0.980 0.064 0.202 0.096 0.029 0.097 0.042
Dual-AMN(basic) ✓ 0.756 0.948 0.827 0.786 0.952 0.848 0.077 0.285 0.143 0.032 0.147 0.069
Dual-AMN(semi) ✓ ✓ 0.840 0.965 0.888 0.869 0.969 0.908 0.037 0.188 0.087 0.020 0.093 0.045
Dual-AMN(name) ✓ ✓ 0.954 0.994 0.970 0.983 0.996 0.991 0.083 0.281 0.145 0.031 0.144 0.068
TEA-GNN ✓ ✓ - - - - - - 0.063 0.253 0.126 0.025 0.135 0.064
TREA ✓ ✓ - - - - - - 0.081 0.302 0.155 0.033 0.150 0.072
STEA ✓ ✓ ✓ - - - - - - 0.079 0.292 0.152 0.033 0.147 0.073

O
th
er

BERT ✓ 0.937 0.985 0.956 0.941 0.980 0.963 0.546 0.687 0.596 0.749 0.845 0.784
FuAlign ✓ ✓ 0.936 0.988 0.955 0.980 0.991 0.986 0.257 0.570 0.361 0.326 0.604 0.423
BERT-INT ✓ ✓ 0.990 0.997 0.993 0.996 0.997 0.996 0.561 0.700 0.607 0.756 0.859 0.793
PARIS ✓ ✓ 0.902 - - 0.963 - - 0.672 - - 0.687 - -

O
ur
s Simple-HHEA ✓ ✓ 0.948 0.991 0.960 0.967 0.988 0.979 0.720 0.872 0.754 0.847 0.915 0.870

Simple-HHEA+ ✓ ✓ ✓ 0.959 0.995 0.972 0.975 0.991 0.988 0.639 0.812 0.697 0.749 0.864 0.775

3 EXPERIMENTAL STUDY

In this section, we delve into an experimental study to verify the
effectiveness of representative EA methods, aiming to shed light
on three main questions, which are detailed below:
• Q1: What is the effect of existing EA methods on HHKGs?
• Q2: Do GNNs really bring performance gain?Which components

of GNNs play a key role in EA performance?
In our experiment, we utilized two classic datasets, DBP15K(EN-

FR) and DBP-WIKI, and introduced our new datasets: ICEWS-WIKI
and ICEWS-YAGO, detailed in Table 1. By reviewing EA meth-
ods, we categorized them based on input features, embedding
modules, and training strategies, subsequently selecting 13 rep-
resentative models. These include translation-based methods such
as MTransE [6] AlignE [27], and BootEA [27], GNN-based meth-
ods like GCN-Align [32], RDGCN [7], TREA [37], TEA-GNN [36],
STEA [4], and Dual-AMN [17], and several other methods like
PARIS [25], BERT [9] and FuAlign [31]. We adopted two main eval-
uation metrics: Hits@k (𝑘 = 1, 10) and Mean Reciprocal Rank (MRR).
More intricate settings can be found in A.5.

3.1 Results and Discussion

To answer Q1, we conducted a detailed analysis in four dimen-
sions (datasets, training strategies, embedding modules, and input
features). The main experiment results are shown in Table 2.

From the perspective of datasets, baselines that generally
perform well on DBP15K(EN-FR) and DBP-WIKI decrease signifi-
cantly on new datasets, especially GNN-based and translation-based
methods. In practice, existing EA methods are difficult to reach the
required accuracy performance for applications on HHKGs.

From the perspective of training strategies, we found that
the semi-supervised methods (i.e., BootEA, Dual-AMN(semi), and
STEA) did not improve performance compared to their basic models
(i.e., AlignE and Dual-AMN(basic)), indicating that the existing
semi-supervised strategies are not suitable for HHKGs.

From the perspective of embeddingmodules, neither translation-
based methods nor GNN-based methods struggle to capture the
correlation between HHKGs, thus the performance of these models
is disappointing on new datasets. Especially, the performances of
GNN-based methods, which demonstrate the superiority on the
DBP15K(EN-FR) dataset, drop sharply on HHKGs. For example, the
SOTA GNN-based model Dual-AMN(basic) [17], which performs
well on the DBP15K datasets, but only achieved MRR of 0.143 and
0.069 on ICEWS-WIKI and ICEWS-YAGO respectively. The huge
performance drops of GNN-based methods responses to Q2. In
previous EA datasets, KGs have similar structure information and
thus GNN-based EA methods can easily exploit the structure simi-
larities between entity pairs for alignment purposes. By contrast,
a pair of identical entities often have diverse neighborhoods in
two HHKGs, resulting in poor performances. BERT and BERT-INT,
which mainly leverages side information instead of aggregating
neighbors, perform better among others (attains MRR of 0.607 and
0.793). FuAlign, which adopt the translation mechanism, performs
poorly on HHKGs. Despite not utilizing neural mechanisms, PARIS
performed competitively on HHKGs.

From the perspective of input features, the models are capa-
ble of utilizing entity name information except Dual-AMN(name)
outperform the others, indicating to some extent the importance
of entity name information in the context of EA models. Specifi-
cally, BERT achieves decent results (MRRs of 0.596 and 0.784) on
ICEWS-WIKI and ICEWS-YAGOdatasets by directly inputting name
embeddings generated by BERT into CSLS similarity [8]. However,
RDGCN and Dual-AMN(name), which also utilize entity name infor-
mation, perform badly on HHKG datasets. BERT-INT and FuAlign
use entity name information without a GNN framework, notably,
they perform much better than existing GNN-based EA models,
proving that the aggregation mechanism limits their performance
on our HHKG datasets. The utilization of structure information
on HHKGs does not bring promising performance gains. Whether
structure information is essential for EA on HHKGs still remains to
be explored. In terms of temporal information, TREA outperforms
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Figure 4: Case studies of the Dual-AMN(name). The X-axis de-
notes the performance of the Dual-AMN(name), measured in
terms of Rank Score (higher indicates poorer performance).
The Y-axis represents the average structure similarity, calcu-
lated based on the similarity in the structure of neighboring
entities with correct alignment labels in the training set.

Table 3: Performance of Dual-AMN without attention (ATT),
aggregation (AGG) and self-loop (SELF) of the GNN.

Settings ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

Dual-AMN(basic) 0.077 0.285 0.143 0.032 0.147 0.069
w/o ATT 0.049 0.241 0.112 0.021 0.102 0.049
w/o AGG 0.000 0.001 0.001 0.000 0.001 0.001
w/o SELF 0.072 0.231 0.136 0.031 0.135 0.068

w/o ATT, AGG, SELF 0.000 0.001 0.001 0.000 0.001 0.001
Dual-AMN(name) 0.083 0.281 0.145 0.031 0.144 0.068

w/o ATT 0.053 0.246 0.113 0.020 0.108 0.050
w/o AGG 0.622 0.796 0.691 0.804 0.876 0.831
w/o SELF 0.082 0.288 0.151 0.031 0.140 0.066

w/o ATT, AGG, SELF 0.471 0.631 0.528 0.770 0.863 0.805

Dual-AMN with temporal information utilization, proving that
temporal information is also valuable in EA tasks when available.

Generally, the efficacy of existing methods is constrained, espe-
cially when applied to HHKGs. Specifically, entity name and tempo-
ral information play critical roles in alignment, offering a necessary
foundation for entity matching across varied KGs. However, un-
der high heterogeneity, the effectiveness of structure information
decreases, presenting challenges for traditional EA methods.

3.2 GNN-based EA methods on HHKGs
To answer Q2 and delve deeper into the performance influence of
key components of GNNs (i.e., MSG, ATT, AGG, SELF) mentioned
in Section 2.3, we further take the SOTA GNN-based method: Dual-
AMN as an example, and devised case studies and ablation studies.

Messaging passing (MSG). To explore the influence of MSG,
we conduct case studies as shown in Figure 4.

The experiment reveal that as the structure similarity between en-
tities decreases and their neighbors with alignment labels becomes
different, the GNN-based Dual-AMN(name) model can hardly lever-
age structure information through message passing for EA. From
the perspective of label propagation, the performance of GNNs de-
teriorates because they struggle to propagate the correct alignment
labels from pre-aligned entity pairs to unobserved entities.

We also conduct ablation studies to verify the effectiveness of
ATT, AGG, and SELF on HHKGs, as shown in Table 3.

Attention (ATT). It plays a critical role in both scenarios, em-
phasizing the significance of certain nodes and edges in the graph,
thus contributing to more accurate alignment decisions.

Aggregation (AGG). The experiment results underscore a dual
role of the AGG, which manifests differently depending on the
availability of entity name information for EA. In scenarios where
entity name information is absent, the elimination of the aggre-
gation mechanism causes a considerable decline in performance.
Conversely, when name information is available, the removal of
the aggregation mechanism surprisingly improves the model’s per-
formance. This improvement could be attributed to the aggregation
mechanism’s propensity to introduce noise within HHKGs, which
can obscure the valuable cues embedded in the entity name.

Self-loop (SELF). The self-loop mechanism’s marginal influ-
ence suggests its role might be overshadowed by other components,
especially in a highly heterogeneous context. However, after re-
moving AGG, the self-loop mechanism serves a critical function
by maintaining each node’s individual features, acting as a form of
identity preservation and feature selection in the face of HHKGs.

Through this analysis, it becomes evident that major factor caus-
ing a drastic decrease in performance is the challenge faced by the
message passing and aggregation mechanisms of GNNs on HHKGs.
These mechanisms struggle to propagate and aggregate valuable
information amidst the influx of unrelated data. This revelation
highlights the need for more in-depth analysis and more nuanced,
data-aware approaches in model design and applications, especially
when dealing with highly heterogeneous settings.

4 TOWARD PRACTICAL EA METHODS
Incorporating the above insights, our consideration in this section
is to address two critical questions:What constitutes an effective
EA model for applications, and which factor is impactful in
practical scenarios? To answer it, we embark on a comprehen-
sive examination by implementing a Simple but effective Highly
Heterogeneous Entity Alignment method, namely Simple-HHEA.

4.1 Model Details for Simple-HHEA
Entity Name Encoder.We first adopted BERT [9] to encode the
entity names into initial embeddings. Then we introduced a feature
whitening transformation proposed by [24] to reduce the dimen-
sion of the initial embeddings. The integration of BERT and the
whitening layer allows the model to effectively capture the seman-
tic meaning of entities, without requiring additional supervision.
Finally, we adopted a learnable linear transformation𝑊T to get the
transformed entity name embeddings {h𝑛𝑎𝑚𝑒

𝑛 }𝑁
𝑛=1.

Entity Time Encoder is designed to verify the power of tem-
poral information, building upon evidence of its effectiveness as
demonstrated in the comparative experiments of Dual-AMN and
TREA. Simple-HHEA first annotates the time occurrence of each en-
tity according to facts in KGs. Specifically, for our proposed HHKG
datasets, the time set 𝑇 ranges from 1995 to 2021 (in months) of
KGs. The encoder can obtain a binary temporal vector for entity 𝑒𝑛
denoted as t𝑛 =

{
t𝑖𝑛
} |𝑇 |
𝑖=1, where t

𝑖
𝑛 = 1 if facts involving 𝑒𝑛 happen

at the 𝑖𝑡ℎ time point, otherwise t𝑖𝑛 = 0. We adopted Time2Vec [12]
to obtain the learnable time representation t2v(𝑡) [𝑖], expressed as:

t2v(𝑡) [𝑖] =
{
𝜔𝑖𝑡 + 𝜑𝑖 , if 𝑖 = 0
cos (𝜔𝑖𝑡 + 𝜑𝑖 ) , if 1 ≤ 𝑖 ≤ 𝑘

, (2)
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where t2v(𝑡) [𝑖] is the 𝑖𝑡ℎ element of t2v(𝑡), here we adopt cos(·)
as the activation function to capture the continuity and periodicity
of time, 𝜔𝑖s and 𝜑𝑖s are learnable parameters.

Then, the encoder sums the time representations obtained by
Time2Vec of the entity occurrence time points, and gets entity time
embeddings ℎ𝑡𝑖𝑚𝑒 through a learnable linear transformation𝑊T .
Unlike other methods that strictly correspond to time, Time2Vec
can model the cyclical patterns inherent in the temporal data.

Simple-HHEA+. To study the use of the structure informa-
tion in EA between HHKGs, based on basic Simple-HHEA, we
introduced an entity structure encoder, which is different from the
aggregation mechanism for modeling structure information. To
synchronously model the one-hop and multi-hop relations, the en-
coder employs a biased random walk with a balance between BFS
and DFS [31]. Denote 𝑒𝑛 as the selected node at 𝑖 th step of random
walks, and PATH𝑛 = (𝑒1, 𝑟1, 𝑒2, . . . , 𝑒𝑖−1, 𝑟𝑖−1, 𝑒𝑖 ) as the generated
path. The probability of an entity being selected is defined as:

P𝑟 (𝑒𝑖+1 | 𝑒𝑖 ) =
{
𝛽, 𝑑 (𝑒𝑖−1, 𝑒𝑖+1) = 2
1 − 𝛽, 𝑑 (𝑒𝑖−1, 𝑒𝑖+1) = 1

, 𝑒𝑖+1 ∈ N𝑒𝑖 −, (3)

where N𝑒𝑖 − denotes entity 𝑒𝑖 ’s 1-hop neighbors 𝑁𝑒𝑖 except 𝑒𝑖−1;
𝑑 (𝑒𝑖−1, 𝑒𝑖+1) is the length of the shortest path between 𝑒𝑖−1 and
𝑒𝑖+1; 𝛽 ∈ (0, 1) is a hyper-parameter to make a trade-off between
BFS and DFS [31]. Once an entity 𝑒𝑖+1 is selected, the relation 𝑟𝑖 in
the triple (𝑒𝑖 , 𝑟𝑖 , 𝑒𝑖+1) ∈ 𝑇 ′ is selected simultaneously.

Then, the Skip-gram model 𝑆𝑘𝑖𝑝𝐺𝑟𝑎𝑚(·) together with a lin-
ear transformation𝑊D are employed to learn entity embeddings
{𝑑𝑤𝑛}𝑁𝑛=1 based on the generated random walk paths to capture
structure information of KGs. It eliminates the aggregation or
message-passing mechanisms and doesn’t require supervision.

The linear transformations adopted in each encoder bear sim-
ilarities to the self-loop mechanism in GNNs, a mechanism that
has been validated for its effectiveness in previous experiments. By
employing linear transformations, the Simple-HHEA model aims
to be adapted to different data situations. Finally, the multi-view
embeddings of entities are calculated by concatenating different
kinds of embeddings, expressed as:

{h𝑚𝑢𝑙
𝑛 }𝑁𝑛=1 = {[h

𝑛𝑎𝑚𝑒
𝑛 ⊗ h𝑡𝑖𝑚𝑒

𝑛 ⊗ h𝑑𝑤𝑛 ]}𝑁𝑛=1,
where ⊗ denoted the concatenation operation.

We adopt Margin Ranking Loss as the loss function for training,
and Cross-domain Similarity Local Scaling (CSLS) [8] as the distance
metric to measure similarities between entity embeddings.

4.2 In-depth Analyses of EA on HHKGs
This section aims to uncover the essential EA model needed in
practical scenarios through a comprehensive comparison of Simple-
HHEA, Simple-HHEA+, and other baseline methods.

Simple-HHEA vs. baseline methods. As a critical tool for
the in-depth analysis in this section, we will first examine the
performance of Simple-HHEA. Table 2 shows the comparison re-
sults. Compared with the current SOTA methods: BERT-INT and
PARIS, Simple-HHEA and Simple-HHEA+ achieve competitive per-
formances on the previous datasets: DBP15K(EN-DE) and DBP-WIKI.
For the two HHKG datasets, we can observe that Simple-HHEA
and Simple-HHEA+ outperform baselines (including BERT-INT) by
15.9% Hits@1 on ICEWS-WIKI, and 9.1% Hits@1 on ICEWS-YAGO.

Table 4: The total number of parameters in the training phase
of the models compared in the paper.

Model Number of Parameters
MTransE 𝑂 (( |𝐸 | + |𝑅 |) × 𝑑)
AlignE 𝑂 (( |𝐸 | + |𝑅 |) × 𝑑)
BootEA 𝑂 (( |𝐸 | + |𝑅 |) × 𝑑)

GCN-Align 𝑂 ( |𝐸 | × 𝑑 + 𝑑 × 𝑑 × 𝐿)
GCN-Align 𝑂 ( |𝐸 | × 𝑑 + |𝑅 | × 𝑑 + 𝑑 × 𝑑 × 𝐿)
TEA-GNN 𝑂 (( |𝐸 | + |𝑅 | × 2 + |𝑇 |) × 𝑑 + 3 × 𝑑 × 𝐿 × 2)
TREA 𝑂 (( |𝐸 | + |𝑅 | × 2 + |𝑇 |) × 𝑑 + 4 × 𝑑 × 𝐿 × 2)
STEA 𝑂 (( |𝐸 | + |𝑅 |) × 𝑑)

Simple-HHEA 𝑂 (( |𝑇 | + 3 × 2) × 𝑑)

Table 5: Ablation study of our proposed framework.

Model DBP15K(EN-FR) DBP-WIKI ICEWS-WIKI ICEWS-YAGO
Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR

Simple-HHEA 0.948 0.960 0.967 0.979 0.720 0.754 0.847 0.870
𝑤/𝑜 Temp - - - - 0.701 0.748 0.829 0.857

𝑤/𝑜 Whitening 0.923 0.942 0.930 0.956 0.632 0.683 0.786 0.820
Simple-HHEA+ 0.959 0.972 0.975 0.988 0.639 0.697 0.749 0.775

The introduction of Simple-HHEA aims to guide the design of
future EA models. While it is straightforward in design, experimen-
tal comparisons affirm that a well-conceived simple model can also
achieve commendable results. We also conduct an efficiency analy-
sis as shown in Table 4. It corroborates the efficiency superiority
of Simple-HHEA over baselines, which indicates that enhancing
model efficiency through a simpler design is also essential in practi-
cal, rather than pursuing accuracy without considering complexity.

Ablation Studies.We performed ablation studies by ablating
Simple-HHEA to analyze how and when each component of it adds
benefit to the EA task as shown in Table 5. It is worth noting that
the whitening strategy contributes significantly (5.8% and 6.1% im-
provement on Hits@1) to the great performance of our model, and
the temporal information also brings the performance improve-
ment (1.9% and 1.8% on Hits@1). By contrast, the introduction of
structure information of Simple-HHEA+ degrades the performance.

Questioning whether entity name information always holds
value, and if structure information is indeed ineffective on HHKGs,
we conducted sensitivity experiments.

The impact of structure information. To ponder how struc-
ture information affects EA on HHKGs, we selected several SOTA
GNN-based methods (which mainly leverage structure information)
and Simple-HHEA, and then randomly masked proportions (0%
~80%) of facts in KGs to mimic different graph structure conditions.

As shown in Figure 5, the mask of structure information affects
the overall performance of GNN-based EAmethods on both datasets
with the mask ratio of facts increasing. This phenomenon proves
that GNN-based EA methods’ performance mainly depends on the
structure information, even on HHKGs. The structure information
is difficult to exploit in HHKGs due to their structure dissimilarity,
while they still learn a part of meaningful patterns of the HHKGs’
structural information for EA, which indicates that existing GNN-
based EA methods still have much room for improvement by better
leveraging structure information in HHKGs.

For Simple-HHEA, with the mask ratio of graph structure grad-
ually increasing, the temporal information is lost, resulting in the
performance decreases of Simple-HHEA. It is worth noting that as
the mask ratio of structure information increases, the performance

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon. Submission Id: 2540

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.083 

0.067 

0.052 

0.037 

0.018 

0.081 

0.050 0.049 

0.028 

0.011 

0.00

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8

(a) ICEWS-WIKI

0.720 0.718 0.717 0.711 0.712 

0.633 
0.646 

0.686 

0.727 0.733 

0.60

0.65

0.70

0.75

0.80

…

0.031 

0.024 

0.017 

0.011 

0.006 

0.033 

0.021 

0.017 

0.009 

0.004 
0.00

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8

0.847 0.845 0.846 0.844 0.840 

0.749 
0.764 

0.794 

0.823 
0.838 

0.70

0.75

0.80

0.85

0.90

…

(b) ICEWS-YAGO

Simple-HHEA

Simple-HHEA+

Dual-AMN(basic)

Dual-AMN(name)

TREA

Simple-HHEA

Simple-HHEA+

Dual-AMN(basic)

Dual-AMN(name)

TREA

Figure 5: Comparison of different structure mask ratios on
the ICEWS-WIKI/YAGO. TheX-axis denotes themask propor-
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Figure 6: Comparison of different name mask ratios on the
ICEWS-WIKI/YAGO. The X-axis denotes the mask ratio of
entity names, and the Y-axis represents the Hits@1 metric.

of Simple-HHEA+ improves. At a mask ratio of 60%, Simple-HHEA+
even outperforms the basic version. This reflects that in HHKGs, the
overly complex and highly heterogeneous structure information
will introduce additional noise, and distract the structure correlation
mining of Simple-HHEA+ for EA.

In conclusion, the structure information should not be ignored,
especially when the quality of other types of information cannot
be guaranteed. Future EA methods should consider strategies for
pruning and extracting valuable cues from highly heterogeneous
structural data for effective EA.

The impact of entity name information. The phenomenon
observed in Table 2 is that both GNN-based methods (e.g., Dual-
AMN(name)) and other methods (e.g., BERT-INT, FuAlign, Simple-
HHEA) can utilize same entity name information, but their per-
formance varies widely. To explore the role of the entity name
information for EA, we randomly mask a proportion (0% ~100%) of
entity names, for mimicking different entity name conditions.

As shown in Figure 6, while the mask ratio of entity names grad-
ually increases, the performances of the EA methods which highly
rely on entity name information, drop sharply. For BERT-INT, al-
though it uses neighbor information in its mechanism setting, it
still needs to filter candidate entities through entity name similar-
ities, so the performance decreases vividly. In addition to entity
name information, FuAlign learns structure information through

Figure 7: Comparison of different name and structure mask
ratios on ICEWS-WIKI/YAGO.

TransE [3]. Therefore, when entity name information is gradually
masked, its drop is much smaller than BERT-INT, which indicates
that the use of structure information plays a more prominent role
in FuAlign, and slows down the performance degradation. Dual-
AMN(name)’s performance does not change significantly when
the entity name information is masked, which shows that Dual-
AMN(name) can leverage structure information to achieve a stable
performance when entity name information is absent.

As the mask ratio of entity name gradually increases, the basic
Simple-HHEA also drops sharply like other baselines which highly
rely on the quantity of entity name information. Notably, as the
quality of entity name information declines, the role of the entity
structure encoder in Simple-HHEA+ becomes prominent, even sur-
passing the basic version when the mask ratio is 80%. It indicates
that the structure information should not be ignored in EA, espe-
cially when the quality of other information can not be guaranteed.

We further designed experiments to explore the performance
of Simple-HHEA+ when both name and structure information are
changed. As shown in Figure 7, when the quality of entity name
information is high (the name mask ratio is less than 80%), the per-
formance of the model decreases when reducing the mask ratio of
the structure information; Notably, when the quality of entity name
information becomes very low (mask ratio reaches 80%), the above
phenomenon is reversed, and the performance increases when in-
troducing entity structure information. This phenomenon reflects
that when the quality of different types of information changes, our
proposed Simple-HHEA+ can also achieve self-adaptation through
simple learnable linear transformations.

In summary, the design of effective EA methods requires the
ability to exploit various types of information and adapt to different
levels of information quality.

5 CONCLUSION AND FUTUREWORK
In this paper, we re-examine the existing benchmark EA datasets,
and construct two new datasets, which aim to study EA on HHKGs.
Then, we rethink the existing EA methods with extensive experi-
mental studies, and shed light on the limitations resulting from the
oversimplified settings of previous EA datasets. To explore what
EA methodology is genuinely beneficial in applications, we under-
take an in-depth analysis by implementing a simple but effective
approach: Simple-HHEA. The extensive experiments show that the
success of future EA models in practice hinges on adaptability and
efficiency under diverse information quality scenarios, and their
ability to discern patterns in HHKGs.
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A APPENDIX
A.1 Preliminary
Knowledge Graph (KG) Knowledge graph (KG) KG = (E,R,Q)
stores the real-world knowledge in the form of facts Q, given a set
of entities E and relations R, the (𝑒ℎ𝑒𝑎𝑑 , 𝑟 , 𝑒𝑡𝑎𝑖𝑙 ) ∈ E × R denotes
the set of facts Q, where 𝑒ℎ𝑒𝑎𝑑 , 𝑒𝑡𝑎𝑖𝑙 ∈ E respectively denote the
head entity and tail entity, 𝑟 ∈ R denotes the relation. Besides, we
also model the temporal information in KGs, given timestamps T ,
we denote 𝑡 ∈ T as the temporal information of the facts, and each
fact is represented in the form of (𝑒ℎ𝑒𝑎𝑑 , 𝑟 , 𝑒𝑡𝑎𝑖𝑙 , 𝑡).

Based on the basic concept of the KGs, we proposed a concept
called highly heterogeneous knowledge graphs (HHKGs). Specifi-
cally, it is a relative concept, and indicates that the source KG and
the target KG are far different from each other in scale, structure,
and overlapping ratios.

Entity Alignment (EA) plays a crucial role in the field of knowl-
edge graph research. Given two KGs, KG1 = (E1,R1,Q1) and
KG2 = (E2,R2,Q2), the goal of EA is to determine the identical
entity set S = (𝑒𝑖 , 𝑒 𝑗 ) |𝑒𝑖 ∈ E1, 𝑒 𝑗 ∈ E2. In this set, each pair (𝑒𝑖 , 𝑒 𝑗 )
represents the same real-world entity but exists in different KGs.

A.2 Related Works
Translation-based Entity Alignment. Translation-based EA ap-
proaches [6, 26, 27, 41] are inspired by the TransE mechanism [3],
focusing on knowledge triplets (𝑢, 𝑟, 𝑣). Their scoring functions
assess the triplet’s validity to optimize knowledge representation.
MTransE [6] uses a translation mechanism for entity and relation
embedding, leveraging pre-aligned entities for vector space trans-
formation. Both AlignE [27] and BootEA [27] adjust aligned entities
within triples to harmonize KG embeddings, with BootEA incorpo-
rating bootstrapping to address limited training data.

GNN-based Entity Alignment. GNNs, designed to represent
graph-structured data using deep learning, have become pivotal in
EA tasks [5, 18, 19, 32, 42]. Foundational models like GCN [13] and
GAT [30] create entity embeddings by aggregating neighboring
entity data, with GAT emphasizing crucial neighbors through atten-
tion. GCN-Align [32] exemplifies GNN-based EA methods, utilizing
GCN for unified semantic space entity embedding. Enhancements
like RDGCN [7] and Dual-AMN [17] introduced features to op-
timize neighbor similarity modeling. Recent methodologies, e.g.,
TEA-GNN [36], TREA [37], and STEA [4], have integrated tempo-
ral data, underscoring its significance in EA tasks. A fundamental
assumption of these methods is the similarity in neighborhood
structures across entities, yet its universality remains unexplored.

Others. Certain EA approaches transcend the above bounds.
PARIS [25] aligns entities in KGs using iterative probabilistic tech-
niques, considering entity names and relations. Fualign [31] unifies
two KGs based on trained entity pairs, learning a collective represen-
tation. BERT-INT [29] addresses KG heterogeneity by solely lever-
aging side information, outperforming existing datasets. However,
its exploration of KG heterogeneity remains limited to conventional
datasets, not capturing the nuances of practical HHKGs.

A.3 Structure Similarity
To further evaluate the neighborhood similarity between KGs,
we propose a new metric called structure similarity, which is the

average similarity of aligned neighbors of aligned entity pairs, its
function is expressed as follows:

Structure Similarity(KG1,KG2) =

=
1
𝑁𝑆

∑︁
(𝑖, 𝑗 ) ∈𝑆 cos (AKG1 [𝑖] · AKG2 [ 𝑗])),

(4)

whereA denotes KGs’ adjacency matrix,A[𝑖] is the vector of entity
𝑒𝑖 , which reflects 1-hop neighbors of 𝑒𝑖 , 𝑆 is aligned entity pairs.

A.4 Datasets Construction
We illustrate the detailed construction processes of the datasets.
For ease of explanation, we will take ICEWS-WIKI as an example
in the following discussion, while the process for ICEWS-YAGO is
similar.

Firstly, we pre-processed the raw event data of ICEWS obtained
from the official website 1 in the period from 1995 to 2021, and
transformed the raw data into the KG format including entities,
relations, and facts. Concretely, we pre-processed the entity name
in ICEWS, and retrieved corresponding entities inWikidata through
the official Wikidata API. Next, we reviewed the candidate entity
pairs, and manually filtered unrealistic data, resulting in 20,826
high-quality entity pairs across ICEWS andWIKIDATA. Then, we
sampled the neighbors of the above entity pairs from the original
data without enforcing the 1-to-1 assumption. To keep the distri-
bution of the dataset similar to the original KGs, we adopted the
Iterative Degree-based Sampling (IDS) algorithm [28]. It simultane-
ously deletes entities in two KGs, under the guidance of the original
KGs’ degree distribution, until the demanded size is achieved. Fi-
nally, the ICEWS-WIKI dataset is obtained after sampling. Table 1
summarizes the statistics of the proposed datasets.

A.5 Detailed Experiment Settings

A.5.1 Datasets. We first adopted two representative EA datasets
DBP15K(EN-FR) andDBP-WIKI [28], whichwerewidely adopted
previously. To measure the real effect of the existing EAmethods on
HHKGs, we also conducted extensive experiments on our proposed
datasets: ICEWS-WIKI and ICEWS-YAGO. The statistics of these
selected datasets are summarized in Table 1.
A.5.2 Baselines. After carefully reviewing existing EA studies,
we found that most existing EA models can be summarized and
classified from the following three perspectives: (1) input features,
(2) embedding modules, and (3) training strategies. Specifically, for
input features, EA methods mainly adopt entity name informa-
tion, structure information, and other information (e.g., temporal
information). For embedding modules, EA methods mainly adopt
translation mechanisms, GNNmechanisms, and others. For training
ways, EA methods mainly follow supervised and semi-supervised
strategies.

Then, based on the above observations, we selected 11 state-of-
the-art EA methods, which cover different input features, embed-
ding modules, and training strategies. The characteristics of these
models are annotated in Table 2. We outline the baselines based on
the type of embedding module.

1https://dataverse.harvard.edu/dataverse/icews
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Translation-based methods: MTransE [6], AlignE [27], and
BootEA [27]. BootEA is one of the most competitive translation-
based EAmethods. Above translation-basedmethods adopt TransE [3]
to learn entity embeddings for EA.

GNN-based methods: GCN-Align [32], RDGCN [7], TREA [37],
and Dual-AMN [17]. GCN-Align and RDGCN are two GCN-based
EA methods, where RDGCN uses entity name information. Dual-
AMN is one of the most competitive GAT-based EA methods. We
evaluate the performance of Dual-AMN under three conditional
settings(basic/semi/name), where Dual-AMN(semi) adopts the semi-
supervised strategy, and Dual-AMN(name) utilizes entity name
information. TEA-GNN [36], TREA [37] and STEA [4] additionally
leverage temporal information for EA.

Other methods: BERT [9], FuAlign [31], and BERT-INT [29].
BERT denotes the basic pre-trained language model we adopted for
initial entity embedding by using entity name information. FuAlign
and BERT-INT are two advanced methods that comprehensively
leverage structure and entity name information without GNNs.
PARIS [25] is a probabilistic algorithm that iteratively aligns entities
in knowledge graphs, even without pre-existing alignments.

A.5.3 Evaluation Settings. In this section, we provide detailed
explanations of the model settings, feature initialization, and evalu-
ation metrics.

Model Settings. For all baselines of our experiments, we fol-
lowed their hyper-parameter configurations reported in the original
papers except that we keep the hidden dimensions 𝑑 = 64 for fair
comparisons. We followed the 3:7 splitting ratio in training/ testing
data. All baselines follow the same pre-process procedure to obtain
the initial feature as input. In order to eliminate the influence of
randomness, all experimental results are performed 10 times, and
we take the average as the results. We use PyTorch for developing
our work. Our experiments are performed on a CentOS Machine
with sixteen 2.1GHz Intel cores and four 24GB TITAN RTX GPUs.

Feature Initialization. In our experiments, all EAmodels, which
are capable of modeling entity name information, adopt the same
entity name embeddings. Specifically, in DBP15K(EN-FR), we used
machine translation systems to get entity names. In DBP-WIKI, we
converted the QIDs from wikidata into entity names. In ICEWS-
WIKI and ICEWS-YAGO, we used their entity names. After obtain-
ing the textual feature of entities, we adopted the BERT with the
whitening transformation [24] to get the initial name embedding.

In addition, for the structure-based EA methods that do not
leverage any entity name information, we followed the original
settings of these methods to initialize embeddings randomly.

Evaluation Metrics. Following the previous work, we adopted
two evaluation metrics: (1) Hits@k: the proportion of correctly
aligned entities ranked in the top k (𝑘 = 1, 10) similar to source enti-
ties. (2) Mean Reciprocal Rank (MRR): the average of the reciprocal
ranks of results. Higher Hits@k and MRR scores indicate better
entity alignment performance.

A.6 Detailed Efficiency Analysis
Table 4 illustrates the parameter number of Simple-HHEA, along
with all baselines. The efficiency of an EA method in real-world
scenarios is a vital consideration, and this is where Simple-HHEA
stands out. With a parameter complexity of 𝑂 (( |𝑇 | + 3 × 2) × 𝑑), it

shows that the parameter count is independent of the size of KGs.
Furthermore, Simple-HHEA+ introduces a relation-aware random
walk for inductive learning through sampling. This combined with
size-independent training parameters underscores its adaptabil-
ity, demonstrating that effectiveness and efficiency are essential
considerations for EA tasks on HHKGs.

A.7 Future Work
In the future, building upon the analysis of this paper, we summa-
rize several exciting directions:

More high-quality EA datasets. The creation of high-quality
EA datasets that closely mimic practical scenarios is crucial for
advancing the development of EA methods. It would be beneficial
to develop more high-quality EA datasets that cover different types
of KGs, domains, and heterogeneities. These datasets will provide a
comprehensive evaluation of alignment methods and improve un-
derstanding of their strengths and weaknesses. They will also serve
as a valuable resource for researchers to develop better methods to
handle practical EA challenges.

More advanced methods. To address the limited ability of
previous EA methods to effectively capture the structure infor-
mation of HHKGs, developing more advanced models should be
the priority. This could involve exploring new EA architectures
that can better handle highly heterogeneous structures. It may also
involve incorporating more sophisticated GNN methods that can
better capture the complex structure correlations between HHKGs.
Additionally, investigating the leveraging of various information,
including entity names, structure, temporal information, and oth-
ers could overcome the difficulties of highly heterogeneous, thus
resulting in more comprehensive and effective EA methods.

More application scenarios. It is important to further explore
the potential applications of the newly proposed HHKG datasets in
other knowledge graph-related tasks such as temporal knowledge
graph completion and reasoning. This will provide valuable insights
into the versatility of these HHKG datasets and could lead to new
advancements in these related applications.
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