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Abstract

Face recognition (FR) models have become an integral part of day-to-day activities involv-
ing surveillance and biometric verification. While these models perform remarkably well
in constrained settings, their performance is limited in the presence of certain challenging
covariates. One such covariate is the presence of unforeseen image degradations and corrup-
tions. These degradations, which inevitably occur during image acquisition, transmission,
or storage, substantially impact real-world applicability. In order to analyze the perfor-
mance of FR systems in these scenarios, we provide the first-ever Degraded and Corrupted
Face Recognition (DecordFace) framework to evaluate the robustness of FR models. Cor-
rupted versions of multiple standard datasets are created, and experiments are performed
using more than 3.6 million corrupted face images with over 25 recognition models with
different architectures and backbones, using 16 corruptions at 5 severity levels. For quan-
titative estimation of the impact of corruption, we introduce two novel evaluation metrics,
error-based mVCE and embedding-based mCEI. Using these metrics and a cohort of FR
models, we conduct a detailed analysis of model robustness under different model and input
parameters. We observe a severe drop in the performance of models for unconstrained face
recognition with performance errors over 20% across different corruptions. The performance
of model variants with shallow backbones is observed to suffer even more. The code for the
DecordFace framework can be accessed at https://github.com/IAB-IITJ/DecordFace.
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Figure 1: The performance of state-of-the-art FR models degrades under image corrup-
tions. Predictions are shown for the Adaface iResNet100 model (Kim et al.,
2022) trained on MS1MV2 (Deng et al., 2019) dataset. The image pair belongs
to the AgeDB-decord (Moschoglou et al., 2017) set.

1 Introduction

Deep learning-based technologies have resulted in face recognition models becoming an in-
dispensable part of our everyday interactions. They have also been widely used for security
and surveillance-based applications from airports to mobile devices. Therefore, it has be-
come necessary to ensure their robustness, especially in safety-critical applications. The
applications of FR often involve the acquisition of face images in unconstrained environ-
ments. Despite the high accuracies of FR models in constrained settings (Schroff et al.,
2015; Majumdar et al., 2017), the performance of FR models has been observed to degrade
under unconstrained settings (Meng et al., 2021b; Kim et al., 2022).

Since variations in environmental conditions are inherent in the real world, they can lead
to the incorporation of common corruptions and degradations in images, such as brightness
or blur. Further, the acquired images are transmitted for storage or evaluation. The process
of transmission and storage can further introduce noise and compression artifacts in images.
Addressing these corruptions and degradations is crucial for ensuring accurate and reliable
face recognition. In the literature, the impact of degradations and corruptions on face
images has been studied, where researchers have observed a drop in the performance of FR
models (Grm et al., 2017; Goswami et al., 2018) (Fig. 1).1

Further, studies analyzing the impact of corruptions have been conducted in other do-
mains, such as object classification, where image corruptions have been shown to heavily
degrade performance (Hendrycks and Dietterich, 2019). The impact of corruptions is thor-
oughly analyzed in these works, and the performance drop has been attributed to a dis-
tribution shift in the data (Hendrycks and Dietterich, 2019). However, no such study has
been conducted in the domain of face recognition, and there is no existing framework that
evaluates state-of-the-art FR models on datasets containing age, pose, and other important
covariates. In this work, we present a thorough framework that focuses on 16 different
corruptions under noise, blur, light and color, distortion, compression, and occlusion, each
at five levels of severity (refer Fig. 2).

1. We use the terms degradations and corruptions interchangeably in this work.
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Figure 2: The DecordFace framework corrupts multiple FR datasets with 16 image cor-
ruptions at 5 severity levels. The image corruptions can broadly be classified
into the categories of light and color, compression, noise, transform, blur, and
occlusion. On evaluation using multiple FR models, the verification performance
for different corruptions decreases with increasing corruption severity. The sam-
ples are shown at severity level 3, and the clean image belongs to the CPLFW
dataset (Zheng and Deng, 2018).

In the proposed Degraded and Corrupted Face Recognition (DecordFace) framework, we
create corrupted versions of 5 popular FR datasets used for face verification, including the
AgeDB (age variation), CALFW (age variation), CFP-FP (pose variation), CPLFW (pose
variation) and the large-scale IJB-C datasets. A total of 80 corruptions with 16 corruption
types, each at five severity levels, are utilized to corrupt the face images. In the DecordFace
framework, we analyze the performance of over 25 popular face recognition models. These
models include the popular FR models with variations in the depth of model backbones.
Two metrics are proposed to quantify the effect of corruptions on model performance- the
mean Verification Corruption Error (mVCE) and mean Corruption Embedding Invariance
(mCEI). While the mVCE metric evaluates the verification performance of a given model
in the presence of corruption, mCEI focuses on evaluating the influence on the feature
embedding space. Detailed analysis across factors of corruption type, the training dataset,
model design, and influence on model fairness showcases the relevance of the proposed
framework. The key observations via DecordFace include,

• The performance drop in the vast majority of models occurs for noise-based and blur-
based corruptions, including state-of-the-art quality-aware methods such as Adaface
(Kim et al., 2022). We further observe a significant dip in model performance due
to a change in contrast, contrary to observations made in previous work (Grm et al.,
2017).

• The performance of shallow model backbones, such as those with 18 and 34 layers,
show a significant drop in model performance even at lower corruption severity levels.
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This performance drop is especially alarming since these models perform well on non-
corrupted face image pairs.

• On evaluating model performance using dataset-defined ‘gender’ subgroups, it is ob-
served that the model performance drops significantly more for the female subgroup
for all corruptions.

Through DecordFace, we aim to provide a robust framework for comparison of FR algo-
rithms in the presence of distribution shifts caused by common corruptions. The framework
would act as a good valuation step during training, leading to robust models. To support
the relevance of our diagnostic framework, we also evaluate on two datasets with naturally
occurring degradations, CelebA Blurry and a distance-based subset of D-LORD, where we
observe that model performance trends align with those observed under synthetic corrup-
tions.

2 Related Work

The impact of image quality and data distribution shifts, where the test data statistics are
different from those of the training dataset, on the prediction of deep learning models has
been studied for a long time (Dodge and Karam, 2016; Liu et al., 2021). These DNN models
have been known to undergo performance degradation in the presence of such distribution
shifts. The model behavior is influenced based on the type of degradation it encounters.
In the literature, researchers have worked on exploring the impact of shifts caused due to
adversarial noise, label noise, and common corruptions. FR models have been extensively
tested against different adversarial attacks due to their key role in security systems. While
adversarial noise is crucial for building secure systems, it is associated with the deliberate
motive to sabotage model performance.

Another popular line of study involves studying the impact of corruption in labels. It
refers to the presence of incorrect ground truth labels leading to suboptimal performance
of the FR models. Wang et al. (2018a) show how popular training datasets like MegaFace
(Kemelmacher-Shlizerman et al., 2016) and MS-Celeb-1M contains over 33% and 67% noisy
labels. The authors also show how increasing levels of these noisy labels on a clean dataset
from 0% to 50% causes a drop in identification performance of up to 20%. Hu et al. (2019)
shows how these noisy labels adversely affect the cosine-similarity of the embeddings of
the class centers with the embeddings of the face images in the dataset. In this work, we
focus on common corruption where corruption is performed on the images. Dodge and
Karam (2016) provided evidence for this degradation in the image classification setting and
highlighted the susceptibility of older models, such as VGG-16 and GoogleNet, to blur and
noise. Similarly, other older works have highlighted the impact of different degradations on
deep FR models.

Common Corruptions refers to the frequently occurring image corruptions such as those
of blur, noise, contrast, light, digital transformation, and compression, which change the
data distribution by perturbing image properties, keeping the semantic content of the im-
ages intact. These common corruptions may get injected into the dataset at any step during
image collection, transmission, or generation. From the perspective of FR datasets, they
keep the facial features of the images unaffected and easily recognizable by humans. Kara-
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han et al. (2016) showed performance degradation under corruptions using the LFW dataset
identification protocol. Similarly, Grm et al. (2017) use LFW and VGGFace datasets and
observe that high levels of noise, blur, missing pixels, and brightness have a detrimen-
tal effect on the verification performance of all models, whereas the impact of contrast
changes and compression artifacts is limited. It is important to note that the aforemen-
tioned works showcased results using older deep learning models such as AlexNet, VGGFace,
and GoogLeNet on the LFW dataset. There is inconsistency in the experimental settings
for the different studies, and the face recognition performance of models has since saturated
on these easier FR benchmarks (Huang et al., 2008). However, current research in face
recognition focuses on datasets with challenging covariates such as age and pose, where the
FR models still struggle to generalize (Zheng and Deng, 2018; Sengupta et al., 2016).

Although benchmark datasets like ImageNet-C (Hendrycks and Dietterich, 2019), CIFAR-
C (Hendrycks and Dietterich, 2019), Coco-C (Michaelis et al., 2019), etc. exist for evaluating
computer vision models on various downstream tasks like classification and object detec-
tion in presence of common corruptions, there has been no such benchmark to measure the
test efficacy of FR models. This has led to scattered research on the corruption perfor-
mance of various FR models under different settings, making corruption-based performance
comparison between FR models difficult (Grm et al., 2017; Majumdar et al., 2021). Exten-
sive studies in FR literature exist showing the model’s performance across various directions
like adversarial attacks, age, disguise, morphing, retouching, gender, and other biases (Singh
et al., 2020; Cavazos et al., 2020). Another research includes work by Lu et al. (2019) on
face verification, studying the impact of multiple covariates such as pose, age, and facial
hair on model performance. We believe that in order to study the robustness of models
and algorithms in an effective manner, it is imperative to have a common benchmark for
comparison. Hence, with the proposed DecordFace framework, we facilitate future research
toward the effective study and development of robust FR models in the presence of common
image corruptions.

3 The DecordFace Framework

The Degraded and Corrupted Face Recognition Evaluation (DecordFace) framework is de-
signed to aid the development of robust face recognition systems through thorough evalua-
tion of a variety of image corruptions. In this section, we describe the key components of the
proposed framework and provide details regarding its creation, evaluation protocols, and
the proposed metrics. The framework utilizes existing FR datasets (described in Section
4.1) and can be easily expanded for more datasets through the key components described
here.

3.1 Image Corruptions

As established by previous research, the performance of face recognition is impacted by
different covariates, such as lighting and illumination. Through the use of these common
degradations and corruptions, we simulate multiple scenarios that may lead to performance
deterioration and encourage building systems that are simultaneously robust to these varia-
tions. The DecordFace framework consists of 16 image corruptions, namely Gaussian noise,
impulse noise, shot noise, speckle noise, defocus blur, Gaussian blur, glass blur, motion
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blur, zoom blur, brightness, contrast, saturate, jpeg compression, pixelate, elastic trans-
form, and spatter. Each corruption is applied at five increasing levels of severity. The
different corruptions used can be categorized as follows,

• Blur: Defocus, Gaussian, Glass, Motion, Zoom

• Noise: Gaussian, Impulse, Shot, Speckle

• Light and Color: Brightness, Contrast, Saturate

• Distortion: Elastic transform

• Compression: JPEG compression, Pixelate

• Occlussion: Spatter

The sources of these different kinds of corruptions are either during image acquisition or
image transmission. The common corruptions in DecordFace are inspired by the ImageNet-
C benchmark (Hendrycks and Dietterich, 2019).

The blur-based variations lead to a loss in image sharpness where defocus blur occurs
when the face of a person is out of focus in the camera, glass blur occurs when a face is
viewed through a frosted glass or mirror, motion blur occurs when a face is captured during
an abrupt movement of the camera or the person, and zoom blur occurs when the camera
or the person move towards each other rapidly. In noise-based corruptions, Gaussian noise
can occur in low-lighting conditions, while shot noise occurs due to the discrete nature
of light, modeled via the addition of random Poisson noise. Impulse noise is caused due
to errors in the electronic transmission of images, similar to salt-and-pepper noise. Light
and color-based variations such as brightness, contrast, and saturation can occur during
acquisition due to varying environmental conditions and/or camera properties at the time
of capture. Compression-based corruption can occur during the transmission and storage of
images. Finally, the spatter corruption simulates the occlusion of random face parts during
image acquisition. Samples from the corruptions can be seen in Fig. 3.

3.2 Evaluation Strategy and Protocol

The DecordFace framework utilizes the face verification setting to evaluate different FR
models for robustness. In face verification, a pair of face images is utilized and based on
the similarity in the representations of faces in the feature space, a decision for their match
or non-match is taken. Let a standard FR model f be defined as z = f(x) on a dataset
D where x ∈ RN denotes the input image and z ∈ Rd denotes the feature embedding of
the face image. In the verification setting, the performance is evaluated based on image
pairs such as (x, x′) with y denoting whether the pair is match or non-match. We use the
similarity matcher δ to define the following function g:

g(x, x′, f, T ) =

{
y1, if δ(f(x), f(x′)) = δ(z, z′) ≥ T

y2, otherwise

where T is the decision threshold, x′ ∈ RN , z′ ∈ Rd and y1 and y2 denote the prediction
as a match and non-match pair, respectively. δ (. , .) computes the similarity between the
feature embeddings.
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Algorithm 1: Obtaining Corrupted Versions of Datasets for DecordFace

Input: Face Recognition dataset D containing N face images ({Xt}Nt=1)
Initialize: Initialize the empty corrupted dataset DC with 5 severity levels
containing 16 corruption types each.

External Dependencies: ImageNet-C corruptions library for the common
corruptions used. The corruption function ϕ(Xt, s, c) takes the original image Xt,
severity level s and the corruption type c to return the corrupted image Xt

s,c

Function corrupt(Xt)
for s=1 to 5 do

for c in {defocus blur, gaussian blur, glass blur, motion blur, zoom blur,
gaussian noise, impulse noise, shot noise, speckle noise, brightness,
contrast, saturate, elastic transform, jpeg compression, pixelate, spatter} do

Corrupt the face image
Xt

s,c ←− ϕ(Xt, s, c)

Save Xt
s,c in DC

end

end

end

In order to aid the robustness evaluation of the FR models, we utilize one corrupted face
image in every verification pair using different corruptions. The set of corruption functions is
denoted as C = ∀i{ci} corresponding to the 16 corruptions shown in Fig. 2. Each corruption
is applied at five increasing levels of severity where severity s ∈ S = {1, 2, 3, 4, 5}, leading to
a total of 80 corruptions. The process of obtaining corrupted versions of images is described
in Algorithm 1.

Let us assume that PC(c) denotes the approximate frequency of common corruptions
in the real world. Then, in the standard verification setting, the performance of an FR
model is evaluated as P(x1,x2,y)∼D(g(x1, x2, f, T ) = y) where on sampling verification pairs
(x1, x2) from the dataset D with ground-truth y, evaluation is performed using the function
g defined above. In the DecordFace framework, we propose to evaluate the models under the
setting of Ec∼C[P(x1,x2,y)∼D(g(x1, c(x2), f, T ) = y)], where we explicitly utilize a corrupted
image x2 in every verification pair (x1, x2).

We study the performance of the FR models as the mean of model performance across
all five corruption severities (refer Section 3.1). Additionally, to effectively understand
the impact of corruption severity, we propose two evaluation protocols- (i) Low-severity
Corruption and (ii) High-severity Corruption Protocol. The first protocol constitutes of
model performance at severity s ∈ SL = {1, 2, 3}, whereas the second protocol focuses on
severity s ∈ SH = {4, 5}. A separate evaluation for low and high corruption severity will
allow us to uncover patterns in model performance as the corruption severity varies.

We would like to emphasize that the evaluation for all protocols is conducted using
the standard verification pairs for all the datasets. The verification performance for all
models is computed using the standard TPR@FPR metric. The FPR values used for the
computation of TPR in this framework are reported in Section 4.3. It should be noted
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Figure 3: The DecordFace framework contains multiple datasets corrupted with 16 image
corruptions. We show all the different corruptions with increasing severity (L-R)
on a sample from the AgeDB-decord dataset.

that the standard evaluation protocol in FR datasets is largely different from ours in terms
of computing the verification performance. We do not conform to the standard evaluation
protocol, which performs cross-validation on the smaller datasets to identify the appropriate
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Figure 4: The ROCs showcase the impact of varying FPR thresholds and how they could
lead to performance inflation. The performance is shown for three corruptions
with disparate impacts on model performance.

decision threshold T . This is done in order to avoid using the performance of the model
on a subset of data to select the evaluation threshold. We refrain from using any cross-
validation-based threshold selection in the design of our protocols and strongly recommend
blind evaluation for better estimation during any unseen distribution shift. Therefore, the
DecordFace framework is designed to be used for evaluation only, based on the TPR@FPR
protocols specified in the paper. Our evaluation protocol is in line with the protocols used
by the popular large-scale IJB-C dataset.

In our protocol, we employ fixed thresholds rather than cross-validation-based selection,
which aligns with established benchmarks such as IJB-C. It ensures that verification accu-
racy is evaluated at predefined false positive rates, independent of dataset-specific biases.
This design better reflects real-world deployment, where thresholds are unlikely to be re-
optimized for each new condition. To demonstrate the impact of threshold selection, we
provide ROC curves and TPR@FPR analysis for the AgeDB dataset (ArcFace R50, severity
level 5) across multiple FPR values (0.01, 0.1, and 0.2) for representative corruptions ((Fig-
ure 4)). These analyses clearly show that threshold variations significantly affect model
performance, confirming that cross-validation can lead to overly optimistic robustness esti-
mates. While fixed thresholds may penalize models sensitive to threshold placement, they
provide fairer cross-model comparisons by applying uniform decision criteria. This ensures
that our mVCE metric reflects genuine performance degradation under corruption rather
than artifacts of threshold optimization. Similar patterns are observed across other model
architectures. These findings support our decision to use fixed thresholds, which provide a
fairer and more generalizable robustness evaluation.

3.3 Evaluation Metrics and Setup

In this section, we present the various evaluation metrics used to evaluate the corruption
robustness of different models. The standard TPR@FPR metric used for evaluating the
performance of face recognition models is described first, followed by two new metrics pro-
posed in the DecordFace framework, the mean Verification Corruption Error (mVCE) and
the mean Corruption Embedding Invariance (mCEI). The mVCE and mCEI metrics sum-
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marize the model performance across different corruptions. While the mVCE metric is
specific to the proposed verification protocol, the mCEI metric is computed for the entire
corrupted set in conjunction with the clean set.

TPR@FPR and Error: The standard TPR@FPR metric calculated for corruption c at
severity s is denoted as TPRf

s,c, which is computed for a given model f . The FPR values
are fixed for corruption c at severity s. Subsequently, the corresponding verification error
is denoted as Ef

s,c and computed as,

Ef
s,c = 100− TPRf

s,c (1)

Mean Verification Corruption Error (mVCE): This metric is inspired by the mean
Corruption Error metric introduced in ImageNet-C(Hendrycks and Dietterich, 2019). The
mVCE metric provides an estimate of the performance degradation of an FR model in the
presence of corruptions with respect to the model performance on the non-corrupted face
images. For the DecordFace framework, mVCE is computed as the mean verification error
for the corruptions over different severities, followed by averaging over all corruptions.

V CEf
c =

1

|S|
∑
s∈S

Ef
s,c (2)

mV CEf =
1

|C|
∑
c∈C

V CEf
c (3)

where the verification error Es,c for a corruption c at severity s is computed as detailed
in the previous subsection. In other words, the mV CE is computed in three steps. First,
the error E is computed from TPR as in Eqn. 1 for a particular corruption c at a specific
severity level s. After obtaining this error, the V CE of a particular corruption c is computed
by aggregating over the 5 severity levels. The V CE value is computed for all corruptions.
Finally, to compute the mV CE, the V CE values for all the corruptions are averaged.

While the mVCE metric highlights the absolute performance degradation due to the
presence of corruptions, it fails to incorporate the possibility where the performance on the
non-corrupted (or clean) images is also low. Incorporating the clean verification performance

Ef
clean allows us to account for the relative drop in model performance due to corruption.

With this in mind, we propose another variant of the mVCE metric called the Relative
Mean Verification Corruption Error (Relative mVCE) computed using Relative V CEf

c =

(1/|S|)
∑

s∈SE
f
s,c−Ef

clean. It is important to note that while Relative mVCE highlights the
relative performance degradation, it is insufficient to measure the robustness of a system
by itself. In a scenario where the clean performance of a model is extremely low, a lower
Relative mVCE might signal a robust model. Therefore, it is important to evaluate mVCE
and Relative mVCE in tandem. The mVCE and Relative mVCE metrics are inversely pro-
portional to the robustness of the model.

Mean Corruption Embedding Invariance (mCEI): In face recognition models, it is
imperative to understand the impact of covariates on feature embeddings. Since pre-trained
models are widely deployed in applications and are essentially used as foundational models
in the context of faces, studying the impact of corruptions on the model feature space is
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Figure 5: Conceptual representation of the proposed mCEI metric, highlighting the increase
in angular distance between the clean and corrupted feature with increasing sever-
ity. Here, zclean and zs,c denote the feature embedding of the clean image and
image corrupted by corruption c at severity s, respectively.

essential. With this goal in mind, we propose the Mean Corruption Embedding Invariance
(mCEI) metric. This metric functions outside of the verification protocol but evaluates the
shift in model embeddings from clean to corrupt faces. We conceptually illustrate the mCEI
metric in Fig. 5, where the core idea is to capture the angular distance between the clean
and corrupted feature embedding, taking into account the type and severity of corruption.
We compute the mCEI metric first for each corruption and then for all severities together
as follows,

CEIfc =
1

|S|
∑
s∈S

δ ( zfs,c , z
f
clean) (4)

mCEIf =
1

|C|
∑
c∈C

CEIfc (5)

where δ(., .) computes the cosine similarity between the feature embeddings. For computing
CEI for a corruption c, the similarity is first calculated at a particular severity s with the
clean embedding. Then, this process is repeated for every severity, and the similarity values
are then averaged across the severities. Finally, to compute mCEI, the CEI values are
aggregated across all the corruptions.

Measuring the cosine angle between the original and corrupt embeddings of the cor-
responding clean and corrupt input image provides insight into the shift caused in model
embeddings due to corruption. The mCEI metric provides perfect performance when the
model embeddings corresponding to the clean and corrupted images are completely invari-
ant. It is directly proportional to model robustness. This metric can be utilized to study
the effect of any and all variations in an input image, where the feature is expected to be
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Table 1: Summarizing the details about the number of images and verification pairs avail-
able in the datasets and the corresponding corrupted versions generated for the
DecordFace framework. A total of 80 variations (16 corruptions × 5 severity lev-
els) of the images and pairs are generated for DecordFace. Since the IJB-C dataset
uses template- template verification protocol, all 469k images were corrupted first.
The number of template images and pairs is reported. (datasets cited in text)

Dataset
Name

Test Images
(Original)

Test Pairs
(Original)

Images
(DecordFace)

Pairs
(DecordFace)

AgeDB 5298 6000 423k 480k
CALFW 7156 6000 572k 480k
CFP-FP 5901 7000 472k 560k
CPLFW 5984 6000 478k 480k
IJB-C 23k 15.6M 1.8M 125M

invariant. In addition to image-based corruptions, the fundamental rationale behind the
CEI metric may be utilized for studying adversarially attacked images. Further, this metric
may be utilized in the design of robust algorithms.

The mVCE and mCEI metrics provide separate views of the influence of corruption
on the model performance. Under our protocol, verification decisions depend on whether
similarity scores exceed a fixed threshold. Given that the models are fixed and trained only
on clean data, a high similarity between clean and corrupted embeddings leads to a strong
correlation: a higher mCEI implies that distortions cause minimal embedding drift, leading
to lower error rates, while a lower mCEI aligns with degraded performance. However,
there are certain cases where this relationship may falter. For example, if the models
are poorly trained for face recognition. In that scenario, if clean embeddings are already
poorly separated, even a high mCEI may not translate to correct classification because the
decision boundaries are unreliable. Further, mCEI is a dataset-level metric. The verification
performance is dependent on the specific genuine and impostor pairs. Since mCEI averages
over samples, it may remain high if most embeddings are stable, even if a few borderline
samples cross the threshold and cause errors. If the verification set consists largely of these
error cases, mCEI would not be a reliable indicator of model performance. While a high
mCEI is likely to indicate a low mVCE, the same may not be true vice versa. Therefore,
we believe that it is important to compute, analyze, and report both these metrics for a
better understanding of the underlying models in the presence of corruptions.

4 Experimental Design

In this section, we discuss the different datasets that form the DecordFace framework. Next,
we discuss the recognition models used for performing the baseline experiments. Finally,
the details of implementation are provided.

4.1 Datasets

For the framework, we apply the corruptions to the test images of five standard FR datasets,
namely AgeDB (Moschoglou et al., 2017), CALFW (Zheng et al., 2017), CFP-FP (Sengupta
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et al., 2016), CPLFW (Zheng and Deng, 2018), and IJB-C (Maze et al., 2018) to create their
corresponding corrupted variants, namely AgeDB-decord, CALFW-decord, CFP-FP-decord,
CPLFW-decord, and IJB-C-decord. The AgeDB and CALFW are popular frameworks for
capturing age variation, whereas CFP-FP and CPLFW contain high pose variation. The
IJB-C dataset is a large-scale face dataset containing multiple covariates with over 15M test
pairs, allowing for the evaluation of models at lower FPRs. These datasets contain variations
across age, pose, and overall face image quality. The dataset statistics are summarized in
Table 1, and further details are provided below. Collectively, the DecordFace framework
comprises over 126 million image verification pairs. We provide details of the datasets
below.

AgeDB (Moschoglou et al., 2017): The AgeDB-decord is derived from the standard
AgeDB dataset, which is widely used for evaluating the performance of a face recognition
(FR) model. The images in the verification pairs differ by a significant age difference. We
use the 30-year age gap protocol widely known as the AgeDB30 used in standard evaluation
protocols. AgeDB30 contains 6000 verification pairs, out of which 3000 are genuine pairs
and the remaining are impostor pairs. We apply a total of 80 corruptions (refer Section
3.1) on the 5298 images present in the dataset and obtain approximately 423,840 corrupted
images. Using the 6000 test pairs provided in the dataset, we construct variants across the
80 corruptions (as explained in Section 3.2) leading to 480k (6000 x 80) evaluation pairs.

CALFW (Zheng et al., 2017): Similar to the AgeDB dataset, the CALFW dataset
contains faces with age variation and is widely used for evaluating FR models. The dataset
images consist of an age difference between 5 to 27 years. The standard test protocol
contains a total of 6000 verification pairs, out of which 3000 pairs are genuine, and the
remaining are impostor pairs. The images and pairs in DecordFace are created through the
corruptions and are obtained to be approximately 572k (7156 x 80) and 480k (6000 x 80),
respectively.

CFP-FP (Sengupta et al., 2016): CFP-FP-decord is derived from the standard CFP-
FP dataset, which is widely used for evaluating FR models. The images in the verification
pair have significant pose differences, specifically frontal and profile views. The original
dataset consists of two protocols- frontal-frontal and frontal-profile. The frontal-profile
protocol is adopted for evaluation; therefore, we create CFP-FP-decord corresponding to
the second protocol. The CFP-FP dataset contains 7000 verification pairs, out of which
half are genuine pairs and the remaining half are impostor pairs. Then, CFP-FP-decord
contains approximately 472k (5901 x 80) images and 560k (7000 x 80) evaluation pairs.

CPLFW (Zheng and Deng, 2018): CPLFW-decord is created using the CPLFW
dataset. The dataset contains high pose variation. We utilize the images corresponding
to the standard verification protocol for creating CPLFW-decord. The CPLFW dataset
contains 6000 verification pairs, out of which 3000 are genuine pairs and the remaining are
impostor pairs. As a result, CPLFW-decord contains 478k (5984 x 80) images and 480k
(6000 x 80) evaluation pairs.

IJB-C (Maze et al., 2018): For the IJB-C-decord dataset, we use the IJB-C dataset.
Specifically, we use the 1:1 verification test protocol. This protocol contains over 15M ver-
ification pairs created using 23k images in the test set. The testing is performed through
templates created from images present in the IJB-C dataset. As per the standard protocol,
there are 19.5k matching template pairs, whereas the remaining are non-matching. Using
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the 23k test images, we create 1.8M images (23,000 x 80 = 1,840,000). Similarly, corre-
sponding corrupted image pairs are created for the 15.6M test pairs, leading to a total of
125M evaluation pairs.

4.2 Face Recognition (FR) Models

We consider several FR algorithms for evaluation of the DecordFace framework, including
LightCNN (Wu et al., 2018), Arcface (Deng et al., 2022), Cosface (Wang et al., 2018b),
MagFace (Meng et al., 2021b), ElasticFace (Boutros et al., 2022), Adaface (Kim et al.,
2022), and Controllable Face Synthesis Model (CFSM) (Liu et al., 2022), leading to a
total of 27 pre-trained FR models. For each algorithm, we consider multiple backbones.
For LightCNN, we use models with the 9-layer, 29-layer, and 29-layer v2 backbones. For
Cosface and ArcFace, we use models with ResNet18, ResNet34, ResNet50, and ResNet100
backbones. For AdaFace, we use models with iResNet18, iResNet34, iResNet50 and iRes-
Net100 backbones pre-trained on three different datasets. These models are selected based
on their popularity as well as their recency and efficiency in FR literature. The details of
the models, as well as their publicly available repositories, are presented here. A summary
of the models used can also be seen through Columns 1-3 of Table 2 presented as part of
the results.

LightCNN (Wu et al., 2018)2: is a light-weight model which learns a compact embedding
of the face image. In this model, the authors introduced the Max-Feature-Map (MFM)
module, which separates noisy and informative signals from the image as well as performs
effective feature selection.

Cosface (Wang et al., 2018b)3: uses an angular margin loss termed as large margin
cosine loss (LMCL) which replaces the standard softmax loss. The authors show that using
the LMCL loss maximizes the decision margin in the angular space, leading to improved
recognition performance.

Arcface (Deng et al., 2022)4: has arguably been the most widely used loss function in
recent years for face recognition. The ArcFace model uses an angular margin loss to enhance
the discriminative power of the network and has been shown to improve FR performance
considerably.

MagFace (Meng et al., 2021b)5: is a relatively newer FR recognition algorithm that
utilizes a loss function that enables the learning of a universal feature embedding such that
it is aware of the quality of a given face image. This is achieved through an adaptive learning
mechanism that pushes easy samples toward class centers while pushing noisy samples away
to prevent overfitting.

ElasticFace (Boutros et al., 2022)6: uses a loss function that builds on top of margin
losses such as CosFace and ArcFace by updating the fixed penalty margin. The penalty
margin is updated with a variable component, allowing for more flexibility in the learning
of the margin.

2. https://github.com/AlfredXiangWu/LightCNN
3. https://github.com/deepinsight/insightface
4. https://github.com/deepinsight/insightface
5. https://github.com/IrvingMeng/MagFace
6. https://github.com/fdbtrs/ElasticFace
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Figure 6: Samples showcasing the unrealistic appearance of weather-based corruptions on
face images. Modeling realistic weather conditions on faces, while out of scope
for our work, remains an interesting future avenue for research.

Adaface (Kim et al., 2022)7: is a recent FR model that utilizes an adaptive mar-
gin function that factors the quality of the image sample while training. This leads to a
quality-aware FR model and has been shown to provide high-performance improvements
over previous models.

CFSM (Liu et al., 2022)8: is another recent FR model that introduces a face synthesis
model for face recognition such that learns the style of the target distribution during train-
ing. As a result, it is able to learn better face representations. The authors have shown
promising results on face recognition using CFSM-based models.

4.3 Implementation Details

In this section, we discuss the implementation details involved in the creation of the Decord-
Face framework as well as its evaluation.

Dataset Pre-processing: The datasets included in DecordFace are derivatives of pop-
ular benchmark datasets. Since most of the datasets are provided unaligned and un-
cropped, we first crop and align the required images from the original datasets using
the RetinaFace detection algorithm (Deng et al., 2020) (https://github.com/hukkelas/
DSFD-Pytorch-Inference). In cases where there were multiple faces detected in the image,
the cropped face with the maximum score, which was closest to the center of the image,
was retained. This was further verified manually to ensure the correspondence between
the cropped face and the reported identity. The detected 5-point facial landmarks are
used to align the detected faces using affine transform, with the reference points being the
5 landmarks standardized by ArcFace. The images are cropped to 112 × 112 for all the
models.

Image Corruption: After face detection, we perform the image corruption. Face detection
is performed first to ensure that the verification performance or verification pairs are not

7. https://github.com/mk-minchul/AdaFace
8. https://github.com/liufeng2915/CFSM
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impacted by the limitations of the face detection algorithm used. Face images are corrupted
with the 16 corruption types and 5 level of severities. We use the same corruption pipeline
as used by ImageNet-C (https://github.com/hendrycks/robustness). We modified the
code for elastic transform as it appeared to provide incorrect transformations on the images.
We do not include snow, frost, and rain corruption because of their unrealistic appearance.
Some samples are shown in Figure 6. For faces captured close-up (e.g., ID verification,
mugshots, many surveillance scenarios), these corruptions may not realistically appear on
the face as demonstrated by the sample images. We acknowledge that modeling authentic
weather-based corruptions for long-range outdoor surveillance represents a valuable direc-
tion for future research. In this work, 80 variations of the datasets corresponding to all the
5× 16 severity and corruption combinations are created.

Feature Extraction and Evaluation: After the corrupted datasets have been created,
feature extraction is performed using the 27 selected pre-trained models. The input image
transformations for each of the models are applied as per their respective GitHub reposi-
tories. The extracted features for the clean and corrupted images are used for computing
TPR@FPR as per the protocol and subsequently for computing the mVCE and mCEI met-
rics. For AgeDB-decord, CALFW-decord, CPLFW-decord, and CFP-FP-decord, TPR is
calculated at FPR = 1e−2. For the IJB-C dataset, we employ the 1:1 verification protocol
using image templates. The template x2 is constructed using corrupted images, and the
results are computed at FPRs of 1e − 6, 1e − 5, and 1e − 4. The severities set S used for
computing the mVCE and mCEI metrics is considered under three settings- SH = {4, 5},
SL = {1, 2, 3}, and S = {1, 2, 3, 4, 5} for high severity, low severity, and overall severity,
respectively. The similarity between the feature embeddings δ utilizes cosine similarity as
the similarity measure.

Computational Resources: In this section, we elaborate on the computational resources
and approximate time taken for the steps involved in the creation of the DecordFace frame-
work, as well as for computing results using 27 FR models on it. The RetinaFace detector
was used for face detection with a batch size of 64, and required approximately 5 minutes to
detect, crop, and align all the faces from the images in each of the smaller datasets (namely
AgeDB, CPLFW, CALFW, and CFP-FP) on an NVIDIA RTX 3090 GPU machine with
24 GB VRAM. IJB-C, being a considerably larger dataset, took approximately 8 hours to
finish detection and alignment on the same machine. Using the same machine, with Multi-
Processing on a 48 core AMD Threadripper CPU, all the images of the smaller datasets
were corrupted in approximately 25 minutes each. The IJB-C took approximately three
days to corrupt all the images. These corrupted images form our DecordFace dataset. The
most compute-intensive part of the paper was evaluating a large number of models with
various backbones on all the DecordFace framework datasets. This part of the workflow was
executed parallelly on an NVIDIA DGX Station with 3 NVIDIA V100 GPU with 32 GB
each and on a local machine with NVIDIA RTX 3090 GPU. On IJB-C-decord, each of the
R18 and R34 backbones took around 6 hours, whereas the R50 and R100 backbones took
around 8 and 10 hours, respectively. All the FR models on the entire IJB-C-decord dataset
finished computing in about 10 days. The feature extraction for the smaller datasets using
all the models finished in 8 hours each. The evaluation was enhanced using multi-processing.
Finally, computing the verification scores for the mVCE metric and the similarity scores for
the mCEI metric on the IJB-C dataset required 24 hours due to the large number of im-

16

https://github.com/hendrycks/robustness


Submitted to DMLR

(a) (b) (c)

(d) (e)

Corruption Severity →

TP
R

 (%
) →

brightness contrast defocus_blur elastic_transform gaussian_blur gaussian_noise glass_blur impulse_noise jpeg_compression
motion_blur pixelate saturate shot_noise spatter speckle_noise zoom_blur

Figure 7: Trend of drop in TPR@FPR with increasing severity of corruptions in (a) AgeDB-
decord (b) CALFW-decord (c) CPLFW-decord (d) CFP-FP-decord (e) IJB-C-
decord datasets. The results are reported for the ArcFace model with ResNet50
backbone. The TPR decreases with increasing severity across all data subsets.

ages and verification pairs. All experiments are conducted on LINUX-based systems using
Python-based libraries, and specifically, the PyTorch library is used for all experiments.

5 Results and Analysis

In this section, we analyze the performance of different models as impacted by the corrupted
input data provided to them. Intuitively, the model performance should worsen as the
severity of the corruption increases. This phenomenon is observed for different datasets
utilized in the DecordFace framework across multiple models and is depicted in Fig. 7 for
the ArcFace model with R50 backbone. While datasets with age variation, such as AgeDB-
decord and CALFW-decord, are strongly impacted at higher severities, other datasets are
observed to be impacted at even lower severities. This drop in model performance suggests
a lack of robustness in models at the presentation of these common corruptions. The
results obtained on the DecordFace framework are presented below. We begin with an
analysis based on the TPR performance of the models across the different corruptions and
severities. Then, we discuss the model performance based on the proposed mVCE and
mCEI metrics. Finally, we analyze the impact of model architecture and training methods
on model performance, followed by a brief fairness-based analysis.

In order to understand the impact of different corruptions across the models, we analyze
the performance drop in different models through Fig. 8. The results are provided for the
IJB-C-decord dataset computed at FAR 1e-4. The performance drop in TPR of each model
is binned based on four bins. Each bar visually depicts the number of models falling into
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Figure 8: Plot highlighting the relationship between the evaluated models and their % drop
in TPR due to different corruptions for the (a) AgeDB-decord (b) CALFW-decord
(c) IJB-C-decord and (d) CFP-FP-decord datasets. The results are reported
over all severities. Sharp performance drops are observed due to contrast, while
compression-based corruptions have a low impact.

a bin corresponding to a corruption. From the plot, we identify that compression-based
corruptions such as jpeg compression and pixelated (refer to compression corruptions in Fig.
3) have a low impact on model performance as most models fall into the lowest performance
drop bin. This behavior is consistent with observations made in previous literature (Grm
et al., 2017). However, we observe sharp performance drops due to contrast, which has been
shown not to impact model performance (Grm et al., 2017). We also observe high drops
in the range of 5-10% for other light and color-based corruptions, such as brightness and
saturation for most datasets. The corruptions that impact the model performance the most
constitute contrast, Gaussian noise, impulse noise, and shot noise. Similarly, a large number
of models are impacted with a 5-10% performance drop for blur-based corruptions. These
corruptions can easily occur due to poor lighting conditions, bit errors, etc. (refer to blur
corruptions in Fig. 3), and therefore, it is important for models to be robust against these
corruptions. Another corruption that is detrimental to model performance, causing more
than 15% performance drop, is spatter, which occludes random parts of the face image.
Even when the % drops are relatively higher for datasets such as CPLFW, the overall
impact of a given corruption with respect to the other corruptions on the dataset remains
the same.

At high severity, contrast and noise-based corruptions are detrimental to model perfor-
mance, followed by blur-based and light and color-based corruptions. We believe that these
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Figure 9: Activation Maps on the DecordFace framework highlighting shift in model’s
regions-of-interest on prediction using ArcFace R100. The first sample shown
corresponding to each corruption is clean, followed by increasing levels of severity
for each corruption (L-R). For all the samples presented here, the model pro-
vides correct verification prediction using the clean sample but misclassifies when
presented with the corrupted sample. The clean images belong to the AgeDB,
CALFW, and CPLFW datasets.

corruptions cause a shift towards less discriminative regions of interest in the model, leading
to poorer performance. To further understand the change in model behavior, we employ
activation maps to visualize the shift in regions of interest in the presence of corruptions.
In Fig. 9, we provide multiple such samples which are corrupted using glass blur, spatter,
speckle noise, and zoom blur. It can be observed that the model’s focus shifts from dis-
criminative regions such as the eyes, nose, and mouth towards less discriminative features
such as the forehead, cheek, and chin. This explains the misclassification of the samples.

5.1 Quantifying mVCE Corruption Performance

In this section, we report the performance of different models when evaluated using the
proposed mVCE metric. Table 2 shows the performance for this metric for the high sever-
ity protocol. The results for low severity and overall severity are reported in Tables 8
and 9. From the table, it can be observed that the mVCE values differ significantly for
different evaluation datasets. This behavior is expected as different datasets present vary-
ing degrees of difficulty for verification. Based on the trends observed in Table 2, the
CPLFW-decord and CFP-FP-decord datasets are impacted the most in their verification
performance. This trend presents across the different model backbones, indicating the high
difficulty in identifying pose-based variation. A similar trend is observed in the Relative
mVCE for CPLFW-decord and CFP-FP-decord datasets for high severity, indicating that
models tend to fail more in the presence of pose variation along with corruptions. The
results for the Relative mVCE are provided in Tables 10, 11, and 12, corresponding to the
high severity protocol, low severity protocol, and overall performance, respectively.
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Table 2: The mean Verification Corruption Error (mVCE) performance (%) of the different
models on the DecordFace framework for the high severity corruption protocol.
The higher the mVCE, the less robust the model is towards corruptions. ‘R’ and
‘iR’ in column 2 refer to ResNet and iResNet backbones, respectively. * denotes
error on non-corrupted data greater than 40%. (models cited in text)

Model Name Backbone
Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C-decord
1e-4 1e-5 1e-6

LightCNN 9L
MS-Celeb-1M +
CASIA-WebFace

60.40 57.09 82.81* 65.14 60.67 71.63 81.71
LightCNN 29L 43.54 42.84 72.97* 47.54 43.17 58.47 71.57
LightCNN 29Lv2 37.55 39.37 69.85* 43.16 40.56 63.17 82.66
CosFace R18 Glint360k 27.74 25.19 64.65 45.46 24.63 34.25 44.05
CosFace R34 Glint360k 14.24 16.30 46.94 30.33 14.11 22.58 33.46
CosFace R50 Glint360k 10.60 13.74 39.00 23.03 12.31 23.73 41.84
CosFace R100 Glint360k 9.28 12.84 34.65 18.80 12.69 25.16 50.87
ArcFace R18 MS1MV3 27.61 26.22 64.72 51.87 22.72 31.57 41.12
ArcFace R34 MS1MV3 16.62 18.04 51.73 38.99 16.56 24.21 35.72
ArcFace R50 MS1MV3 11.80 14.58 44.92 32.59 13.39 19.51 27.85
ArcFace R100 MS1MV3 9.53 13.39 38.93 27.76 11.94 17.90 28.65
MagFace iR100 MS1MV3 13.60 15.78 43.71 29.51 20.13 28.83 39.13
ElasticFace-Arc iR100 MS1MV2 13.63 16.98 43.53 30.00 18.61 26.96 39.28
ElasticFace-Cos iR100 MS1MV2 14.69 16.33 42.75 28.54 16.91 25.73 38.98
ElasticFace-Arc+ iR100 MS1MV2 14.02 16.27 42.17 28.43 16.86 24.14 35.43
ElasticFace-Cos+ iR100 MS1MV2 15.84 17.02 42.66 29.49 17.56 26.17 39.42
AdaFace iR18 VGGFace2 48.01 40.28 65.12* 46.44 33.00 45.97 57.41
AdaFace iR18 CASIA-WebFace 54.34 52.05 98.62* 65.00 97.78* 99.89* 99.99*
AdaFace iR50 CASIA-WebFace 40.76 40.56 88.67* 47.03 96.22* 99.92* 99.98*
AdaFace iR50 MSIMV2 13.51 14.10 44.63 28.99 21.82 33.13 45.91
AdaFace iR100 MS1MV2 10.08 12.48 37.00 23.99 16.09 25.40 38.01
AdaFace iR100 MS1MV3 8.60 10.91 35.67 24.42 9.04 14.84 23.59
AdaFace iR18 WebFace4M 31.35 25.73 58.43 41.38 20.41 31.17 42.56
AdaFace iR50 WebFace4M 12.89 13.90 35.02 21.28 7.50 12.96 21.93
AdaFace iR100 WebFace4M 9.19 11.13 26.96 13.95 5.56 9.43 16.21
AdaFace iR100 WebFace12M 7.59 10.10 25.13 13.40 4.92 9.07 21.95
CFSM-Arc iR50 Cleaned MS1MV2 26.65 15.74 43.47 30.87 14.70 21.10 29.23

Table 3: The mean Corruption Embedding Invariance (mCEI) performance (%) for the
different models on the high severity corruption protocol. Higher values of mCEI
indicate high invariance and greater robustness. (models cited in text)

Model Name Backbone
Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C
-decord

LightCNN 9L
MS-Celeb-1M +
CASIA-WebFace

56.75 56.78 55.99 55.67 59.90
LightCNN 29L 66.58 65.87 63.58 62.83 69.50
LightCNN 29Lv2 67.91 67.49 64.18 65.04 71.09
CosFace R18 Glint360k 63.34 65.56 63.19 63.31 70.66
CosFace R34 Glint360k 69.16 71.11 67.59 68.01 76.20
CosFace R50 Glint360k 71.28 73.08 70.12 70.20 78.05
CosFace R100 Glint360k 71.92 74.36 71.58 71.52 78.08
ArcFace R18 MS1MV3 64.51 64.15 61.15 60.83 69.27
ArcFace R34 MS1MV3 68.11 68.59 63.84 64.49 72.85
ArcFace R50 MS1MV3 70.30 70.68 66.19 66.20 75.01
ArcFace R100 MS1MV3 71.68 71.84 66.83 67.48 76.42
MagFace iR100 MS1MV3 70.37 70.55 65.49 66.85 74.07
ElasticFace-Arc iR100 MS1MV2 67.55 67.73 61.83 63.59 71.07
ElasticFace-Cos iR100 MS1MV2 65.72 65.50 61.19 62.09 69.86
ElasticFace-Arc+ iR100 MS1MV2 67.67 67.79 62.51 63.89 71.74
ElasticFace-Cos+ iR100 MS1MV2 64.85 64.55 60.81 61.55 69.59
AdaFace iR18 VGGFace2 65.94 64.83 60.12 61.34 67.94
AdaFace iR18 CASIA-WebFace 62.01 60.06 56.61 58.69 64.55
AdaFace iR50 CASIA-WebFace 67.76 66.43 61.99 64.48 70.91
AdaFace iR50 MSIMV2 70.33 69.63 65.03 65.88 72.66
AdaFace iR100 MS1MV2 71.40 70.53 65.91 66.98 73.74
AdaFace iR100 MS1MV3 73.34 72.98 68.98 69.01 77.39
AdaFace iR18 WebFace4M 69.73 68.30 66.71 65.81 72.24
AdaFace iR50 WebFace4M 75.53 74.83 73.33 71.74 80.56
AdaFace iR100 WebFace4M 77.22 76.56 75.01 73.65 82.64
AdaFace iR100 WebFace12M 76.69 75.80 74.09 72.72 81.86
CFSM-Arc iR50 Cleaned MS1MV2 61.38 70.88 65.52 66.70 74.67
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Figure 10: The distribution of CEI scores for the CALFW dataset obtained using the feature
embeddings of the Adaface R18 model. The distribution across the five severities
highlights the impact of a given corruption on the feature embeddings.

A comparison between the mVCE and Relative mVCE at low severity highlights that
an overall improvement in FR performance could automatically improve the robustness of
the models towards mVCE. However, at high severity, we can observe that the error values
are very high, even for Relative mVCE. While the models with deeper backbones provide
reasonably low mVCE values at low severity, indicating their robustness (Table 8). It is
important to note that shallower models such as ResNet18 and ResNet50 backbones lead
to high mVCE values with upto 26.99% mVCE on CFP-FP-decord dataset. This shows
that there is a huge scope for improving model robustness, specifically for shallower model
backbones.

Statistical Significance of Drop in Verification Performance: To understand and
validate whether the error generated by the models varies significantly across the five severity
levels for a given corruption, we perform significance testing using the paired t-test. The
test is performed between every two consecutive transitions for a given corruption from
severity 1 to severity 5. We test the null hypothesis that the means of the distributions
underlying the verification scores are equal. At a confidence level of 0.95, we observe p-values
< 0.05 for the majority of the corruption severities in the DecordFace datasets, indicating
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(a) (b)

Figure 11: Plot highlighting the relationship between the evaluated models and their % drop
in TPR due to different corruptions on (a) male and (b) female subgroups. The
female subgroup is impacted by noise significantly more than the male subgroup.

that difference between the underlying distributions and the corruptions affect the model
performances significantly from one severity level to the next. However, under the pixelate
corruptions from severity 1 to 2, models such as LightCNN and certain variants of AdaFace
accept the null hypothesis, depicting the performance difference to be insignificant (on
AgeDB-decord and CFP-FP-decord datasets). The same observations can be made for the
saturation corruption from severity 2 to 3, indicating that the models are not impacted much
differently by these corruptions (on AgeDB-decord and CALFW-decord datasets). However,
these cases are limited. Similarly, on performing paired t-test between the distribution of
scores obtained on non-corrupted images and distribution obtained after using face images
with different severity levels, we observe at a confidence level of 0.95, p-values < 0.05 for
the majority of the corruption severities in the DecordFace datasets, indicating that there
is a difference between the two distributions is significant with the exception of the pixelate
and saturate corruptions for the AgeDB and CFP-FP datasets. This is consistent with the
observations made through the model’s mVCE scores for the datasets.

5.2 Quantifying mCEI Corruption Performance

In this section, we evaluate the performance of different models under corruption using the
mCEI metric. As explained in Section 3.3, the goal of designing this metric is to understand
the influence of corruptions on model-generated face embeddings. The results obtained for
this metric at high severity are shown in Table 3, and for low severity and overall severity are
shown in Tables 13 and 14, respectively. Intuitively, there should be an inverse correlation
between a model’s mVCE and mCEI performance since model embeddings are utilized
for computing verification performance. This behavior is observed across the board where
severely impacted CPLFW-decord and CFP-FP-decord datasets present with lower mCEI
values. In an ideal scenario, the embedding containing facial identity features should not
be influenced by corruption variations. It is interesting to observe that at high severity, all
models report an mCEI value lesser than 83%, showing that the face embeddings changed
by at least 17% in the presence of corruptions. On the other hand, at low severity, the
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mCEI values range from 84-93%, showing relatively higher invariance to corruptions. This
trend in mCEI values can be clearly observed in Fig. 10. The mCEI values are consistently
higher for the IJB-C dataset. We believe this occurs as a result of a reduction in corruption
noise due to the averaging of multiple images in a template. Except for IJB-C, the mCEI
values for a given model are observed to vary within a tight range across different datasets,
highlighting consistent model behavior in the presence of corruptions. It should be noted
that a high mCEI does not necessarily indicate high model performance since a model with
poor clean embeddings might report a high mCEI with equally poor corrupt embeddings.
Hence, we recommend reporting both mVCE and mCEI metrics for proper evaluation on
the DecordFace framework.

5.3 Visualizing Feature Space

To complement the mCEI metric, we use dimensionality reduction and t-SNE to visualize
how embeddings of clean and corrupted images shift in latent space. The t-SNE is shown
in Figure 12. The t-SNE visualizations were generated using 200 random samples from
the AgeDB dataset corrupted at severity level 5, with features extracted using the ArcFace
R18 backbone. The t-SNE plots showcase distinct patterns of embedding behavior across
corruption types. Severe corruptions such as spatter and contrast cause substantial fea-
ture divergence and class collapse, consistent with the significant performance degradation
observed for these corruptions. In contrast, corruptions like blur and JPEG compression
result in minimal feature drift with considerable overlap between clean and corrupted em-
beddings. Noise-based corruptions primarily induce feature drift without complete class
collapse, maintaining some clustering structure. These visual insights effectively comple-
ment our quantitative mCEI metric analysis, providing additional evidence for the diag-
nostic value of DecordFace in understanding model robustness across different corruption
types.

5.4 Quantifying mVCE on Real Samples

To showcase how similar performance degradations occur when an image corruption oc-
curs in the wild, we perform experiments on two datasets- CelebA (Liu et al., 2015) and
DecordFace dataset (Manchanda et al., 2023).

The CelebA dataset (Liu et al., 2015). An evaluation set was created using images from
the CelebA dataset. One of the attributes annotated in the CelebA face images is blurry.
We filtered all images from the dataset which were blurry. Then, using the identities of
these subjects, we sampled face images that were ‘not blurry.’ Using these two sets, we
created a clean subset of images with 6000 pairs (3000 genuine, 3000 impostors) where no
face images were blurry. This is the CelebA Clean set. Similarly, using the same identities,
we created a blurry variant where one of the images is blurry. This is the CelebA Blurry
set containing 6000 verification pairs (3000 genuine, 3000 impostor). This experiment is
conducted to showcase how the observations made using synthetic noises transfer well when
the noise is environmental. Table 4 showcases an increase in mVCE when the images are
blurry. This signifies the impact of image degradations on model performance.

The D-LORD dataset (Manchanda et al., 2023). To strengthen our evaluation, we
additionally experiment with a subset of the D-LORD dataset, which includes faces captured
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Figure 12: The t-SNE visualizations generated using 200 random samples from the AgeDB
dataset corrupted at severity level 5, with features extracted using the ArcFace
R18 backbone.
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at increasing distances (5m, 7m, 10m, 15m) from the camera. Distance introduces natural
degradation due to resolution loss and atmospheric effects, making it a relevant real-world
proxy. We evaluated model performance using 6,000 pairs (3,000 genuine, 3,000 impostor)
across the four distance settings. Error rates, computed as 1-TPR@FPR (FPR=0.0001),
demonstrate consistent performance degradation with increasing distance across all eval-
uated models. The results (Table 5) confirm that real-world degradations produce signif-
icant robustness failures similar to those observed with synthetic corruptions. The find-
ings reveal that smaller backbone architectures (LightCNN, ArcFace R18) experience sharp
performance drops, while larger models (CosFace R100, AdaFace iR100) maintain greater
resilience but still exhibit increasing error rates with distance. Importantly, these degrada-
tion patterns closely mirror the trends observed in our synthetic corruption experiments,
supporting the predictive validity of DecordFace for real-world deployment scenarios. This
evaluation demonstrates that DecordFace’s diagnostic framework effectively translates to
authentic degradation contexts, validating our approach despite the inherent challenges in
acquiring comprehensive real-world corruption datasets. The consistency between synthetic
and real-world results reinforces the practical utility of our benchmark for understanding
model robustness characteristics.

5.5 Analyzing the Impact of Model Architecture and Training Method on
Performance

In this section, we discuss the relationship between different FR algorithms and their per-
formance and how factors such as their design, backbone size, and training data may play
a role. The most obvious trend based on performance evaluations presented in Table 2
is that bigger models are more robust in the face of corruptions when compared to their
smaller counterparts. This is true across all corruption severities. For example, in the Ar-
cFace model, the mVCE increases with a decrease in backbone size for all datasets. The
same can be seen to hold true for the CosFace and AdaFace models. The presence of more
parameters enables the learning of more features and, therefore, leads to a more powerful
and robust face feature embedding. Scaling has been shown as an effective way to improve
model robustness. At the same time, it highlights the need for creating more robust, smaller
models, which are essential for deployment on edge devices. In agreement with the mVCE
values, the mCEI metric also shows better feature embedding invariance in the case of larger
backbones.

Among all the models, the iR100 model backbone using the AdaFace algorithm provides
the lowest mVCE values (Table 9). This is consistent with the performance comparison
depicted by the authors in their paper for the quality adaptive recognition algorithm. Com-
paring the performance on AgeDB-decord dataset from Table 2, AdaFace iR100 trained on
MSIMV3 provides an mVCE of 8.60% while the ArcFace R100 trained on the same dataset
provides an mVCE of 9.53%. The same observations can be made between the Elastic-
Face models and the iR100 backbone for AdaFace pretrained on MSIMV2 for all evaluation
datasets. Further, it is interesting to observe that the AdaFace models trained on Web-
Face4M/12M datasets provide better performance on the framework when compared to
those trained on MSIMV2/V3 despite being trained on the same iR100 backbone. Web-
Face4M/12M is the largest among the datasets used for pre-training in the selected models.
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Figure 13: Plots highlighting the relationship between the evaluated models and their %
drop in verification performance due to different corruptions on male and fe-
male subgroups in the (a) AgeDB-decord (b) CPLFW-decord and (c) CALFW-
decord datasets. The standard deviation between the verification performance
of subgroups on ArcFace ResNet50 backbone (top row) and ArcFace ResNet100
backbone (bottom row) are reported for different DecordFace subsets over all
severities. The increasing standard deviation showcases the gap between per-
formance on male and female subgroups increases with increasing corruption
severity.

This aligns with the idea that larger training datasets lead to better models as they see more
variation in data during training. Overall, we observe that the models trained on CASIA-
WebFace perform poorly based on the performance comparison between iR50 backbones
for AdaFace. This is also observed in the performance of the LightCNN model.

5.6 Analyzing the Performance of Models across Demographic Subgroups

In this section, we perform an analysis to understand the influence of corruption across
different demographic subgroups. We divide the verification pairs for each dataset based
on gender using the annotations provided in their respective datasets. Next, we evaluate
these pairs separately using the different models. The TPR values for each subgroup are
computed as per the evaluation protocol for the corresponding dataset. From Fig. 11(a)
and (b), we observe that male and female subgroups are impacted differently by certain
corruptions. The female subgroup is impacted more by nearly all corruptions, with an
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Table 4: mVCE (%) on the clean and blurry subsets from the CelebA dataset showcasing
a drop in model performance for these subsets.

Model Name Backbone Clean Blurry
LightCNN 9L 79.80 85.17
LightCNN 29L 72.54 83.17
LightCNN 29Lv2 71.90 79.70
CosFace R18 63.04 66.04
CosFace R34 37.87 41.64
CosFace R50 22.44 27.84
CosFace R100 15.90 18.37
ArcFace R18 70.77 73.67
ArcFace R34 62.10 69.90
ArcFace R50 61.30 69.54
ArcFace R100 42.47 48.14
MagFace iR100 21.34 26.90
ElasticFace-Arc iR100 19.24 25.87
ElasticFace-Cos iR100 20.54 27.74
ElasticFace-Arc+ iR100 20.10 25.64
ElasticFace-Cos+ iR100 19.37 23.67
AdaFace iR18 (VGGFace2) 59.90 61.77
AdaFace iR18 (CASIA) 75.04 79.84
AdaFace iR50 (CASIA) 62.94 74.94
AdaFace iR50 (MSIMV2) 32.20 41.20
AdaFace iR100 (MS1MV2) 17.10 21.54
AdaFace iR100 (MS1MV3) 32.94 36.90
AdaFace iR18 (WebFace4M) 59.20 64.27
AdaFace iR50 (WebFace4M) 25.90 29.64
AdaFace iR100 (WebFace4M) 12.57 15.44
AdaFace iR100 (WebFace12M) 10.07 12.60
CFSM-Arc iR100 34.97 41.27

Table 5: Results showcasing the performance of different models on the D-LORD dataset,
highlighting how model performance worsens with increasing degradations in real-
world settings.

Model Name Backbone 5m 7m 10m 15m
LightCNN 9L 40.47 58.57 62.00 59.63
LightCNN 29L 24.10 49.07 54.80 51.73
LightCNN 29Lv2 19.40 39.37 45.97 57.57
CosFace R18 38.90 55.67 62.97 64.23
CosFace R34 23.40 51.97 49.17 60.20
CosFace R50 17.87 26.13 43.60 48.40
CosFace R100 9.73 17.40 31.20 38.90
ArcFace R18 58.73 68.10 65.60 86.77
ArcFace R34 53.60 67.67 65.97 68.37
ArcFace R50 47.07 54.20 63.63 65.13
ArcFace R100 34.60 38.23 54.73 59.73
MagFace iR100 19.63 32.80 42.87 52.37
ElasticFace-Arc iR100 21.43 31.20 51.00 49.70
ElasticFace-Cos iR100 19.37 32.30 46.07 46.93
ElasticFace-Arc+ iR100 19.77 34.17 46.30 46.30
ElasticFace-Cos+ iR100 16.53 29.47 45.60 45.70
AdaFace iR18 (VGGFace2) 50.33 48.57 66.83 70.97
AdaFace iR18 (CASIA) 78.40 88.97 87.03 88.83
AdaFace iR50 (CASIA) 57.77 74.73 74.37 72.10
AdaFace iR100 (MS1MV2) 19.60 25.87 48.33 50.03
AdaFace iR100 (MS1MV3) 27.70 36.63 44.57 53.93
AdaFace iR18 (WebFace4M) 33.33 56.30 57.30 58.87
AdaFace iR50 (WebFace4M) 27.80 29.00 44.10 57.30
AdaFace iR100 (WebFace4M) 13.00 19.77 36.20 36.60
AdaFace iR100 (WebFace12M) 11.10 16.63 36.13 35.80
CFSM-Arc iR100 28.07 34.40 54.23 51.40
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Figure 14: Plots highlighting the relationship between the evaluated models and their %
drop in verification performance due to different corruptions on (a-c) young and
old (age) subgroups, and (d-e) White, Black, and Asian (ethnicity) subgroups.
The standard deviation between the verification performance of subgroups on
ArcFace ResNet50 backbone is reported for different DecordFace subsets over all
severities. The increasing standard deviation indicates a widening performance
gap across ethnicity subgroups with increasing corruption severity, while the gap
across age subgroups remains largely consistent.

overall performance degradation greater than 15% for more than 25% of models. On the
other hand, the verification performance of the male subgroup is much less severely affected.
Notably, for spatter, the female subgroup is impacted far more than the male subgroup,
indicating occlusion to be an important factor in the misclassification of females. Similar
observations can be made for blur-based and noise-based corruptions, indicating less robust
learning of facial features associated with females. This could arise due to low variability
in the dataset on which the algorithms are trained.

Since the model performance is also impacted by the severity of the corruptions, we
compute the TPR values of the different subgroups and compute the standard deviation
between the TPR values obtained for males and females. Standard deviation is a standard
mechanism used in fairness studies to estimate the difference in verification performance
across different subgroups. In Fig. 13, we plot this standard deviation between the verifica-
tion performance (%) of male and female subgroups, and show trends on the AgeDB-decord,
CPLFW-decord, and CALFW-decord datasets. An interesting pattern is observed where
the standard deviation between the performance of the subgroups increases with an increase
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in corruption severity, which is in agreement with existing work (Majumdar et al., 2021).
This is an alarming observation since a high-performing model may break down for certain
gender subgroups in the presence of unseen common image corruptions. The gap in perfor-
mance between the subgroups can also be explored through the mVCE and mCEI metrics
by calculating them separately for the male and female subgroups.

Similarly, we perform analysis for age and ethnicity subgroups. For these, we utilize
the Fairface classifier(Karkkainen and Joo, 2021) to obtain age and ethnicity classes for the
test pairs (except for AgeDB, for which ground truth age annotations are readily available).
The age subgroups are divided into two classes- pairs between face images of people below
the age of 50 (young) and above the age of 50 (old). The experiments are performed for the
AgeDB, CALFW, and CPLFW variants of DecordFace. The results are shown in Figure
14(c-e). For the different age groups, we observe that the performance of the model varies
significantly without any corruptions (∼10% for AgeDB), and the performance variation
with corruptions does not follow a clear trend. For blur-based variations, the gap increases
significantly between old and young subgroups for AgeDB30, with the model performing
better for older subgroups. This is because AgeDB consists of test pairs with a 30-year gap.
Therefore, the young pairs consist of samples matching younger faces to their adult versions,
leading to lower performance. This gap is further exacerbated by blur-based corruption. In
CPLFW, a similar trend is observed, however, the performance gap between subgroups is
not as significant. In CALFW, the model performs better for younger test pairs as compared
to old test pairs, signifying no clear trend in model performance. The performance gap is
also less significant in this case.

For ethnicity, we considered the subgroups of Black, White, and Asian for the CALFW
and CPLFW datasets. These three ethnicities were selected since there were 100+ genuine
and impostor pairs for each of them ethnicities in the datasets. The results for the standard
deviation are shown in Figure 14(a-b). Without any corruptions, the model performance
across the three subgroups is observed to be consistent for CALFW, while for pairs in
CPLFW, the performance on White pairs is slightly higher than that on Asian and Black
pairs. The performance on Black pairs degrades the least for the spatter corruption. This is
observed for both CALFW, and CPLFW pairs, showcasing the robustness of the model to-
wards occlusion for faces belonging to the Black ethnicity. There are discrepancies in model
performance degradation across corruption severities. However, these differences fall within
the standard deviation of <3% for CALFW-decord and <5% for CPLFW-decord.Further
exploration of fairness under common image corruptions can be considered as future work.

5.7 Analyzing the Performance of FROM (Qiu et al., 2021b)

Towards the robustness of FR models, there have been some approaches focusing on tackling
the impact of occlusion on model performance (Song et al., 2019; Qiu et al., 2021a). These
algorithms utilize trainable masks to discard non-meaningful features from the images.
We utilize FROM (Qiu et al., 2021a) to showcase performance under corruptions on the
AgeDB and CFP-FP datasets. The authors provide the pretrained models for the baseline
and proposed method9.

9. https://github.com/haibo-qiu/FROM/
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Table 6: The mVCE performance (%) on the AgeDB-decord and CFP-FP-decord sets from
the DecordFace framework on the different corruption severity protocols for the
FROM algorithm (Qiu et al., 2021a). FROM uses the iR50 model backbone and
the CASIA dataset for training.

Dataset mVCE (low) mVCE (high) mVCE (overall)
AgeDB 44.17 66.32 53.03
CFP-FP 18.53 39.67 26.98

In Table 6, the performance of FROM is provided for the low severity and high severity
protocols, as well as the mVCE on all the corruption severities. The results indicate that the
FROM algorithm also suffers from performance degradation in the presence of corruptions.
Specifically, the model suffers severely for the AgeDB dataset, consisting of age variations
(comparing performance with Table 9). The clean mVCE for the AgeDB dataset is 32.10%
while the overall mVCE obtained from FROM is 53.03%. On the other hand, the model
performance on CFP-FP varies from 13.06% on clean to 26.98% on the corrupted set. The
FROM algorithm is trained on the CASIA dataset and using the iR50 model backbone. For
the CFP-FP dataset, the performance degradation is comparable to other models, while for
the AgeDB, the performance drop is significant, highlighting the algorithm is more robust
to pose variations compared to age variations.

We also evaluate the baseline model utilized in the evaluation of FROM algorithm.
While this baseline model also suffers from performance degradation under corruption,
interesting trends appear. The FROM model appears to degrade less on the spatter cor-
ruption for the high severity protocol. Notably, the V CEspatter for the baseline is 77.87%
while FROM is 71.27%. This is expected as the FROM algorithm primarily deals with oc-
clusion and spatter is an occlusion-based corruption where random parts of the input image
are removed. On the other hand, FROM performs significantly worse on all noise-based
corruptions, losing robustness for other types of corruptions.

With this experiment, we observe that models trained for occlusion lead to performance
degradation on other types of corruptions. While there is lesser performance degradation
on occlusion-based corruptions like spatter, other corruptions still lead to large performance
errors.

5.8 Denoising Baseline Evaluation using Restormer (Zamir et al., 2022)

We include a defense mechanism to demonstrate the practical utility of DecordFace for
improving robustness. Specifically, we conducted experiments using Restormer (Zamir et al.,
2022), a state-of-the-art transformer-based denoiser known for handling diverse corruptions
efficiently, making it suitable for test-time integration. We employed its ‘Real Denoising’
variant to handle unknown distortions without retraining. The Restormer model is applied
to images before face verification on the AgeDB30 dataset, following the same evaluation
protocol as Table 2. The mVCE results (Table 7) show-

• Smaller backbones (e.g., LightCNN 9L, CosFace R18): denoising reduced error by up
to 4%, indicating improved robustness.

• Intermediate models (e.g., R34): gains were minimal or inconsistent.
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Table 7: Results showcasing the performance of models after images are denoised using
Restormer(Zamir et al., 2022) before evaluation using the DecordFace framework.

Model Name Backbone AgeDB AgeDB + RestFormer
LightCNN 9L 60.40 56.73
LightCNN 29L 43.54 43.76
LightCNN 29Lv2 37.55 38.11
CosFace R18 27.74 25.29
CosFace R34 14.24 15.11
CosFace R50 10.60 12.32
CosFace R100 9.28 10.99
ArcFace R18 27.61 27.10
ArcFace R34 16.62 16.68
ArcFace R50 11.80 13.27
ArcFace R100 9.53 10.78
MagFace iR100 13.60 13.52
ElasticFace-Arc iR100 13.63 12.61
ElasticFace-Cos iR100 14.69 14.15
ElasticFace-Arc+ iR100 14.02 13.39
ElasticFace-Cos+ iR100 15.84 14.62
AdaFace iR18 (VGGFace2) 48.01 46.01
AdaFace iR18 (CASIA) 54.34 52.24
AdaFace iR50 (CASIA) 40.76 41.28
AdaFace iR100 (MS1MV2) 10.08 9.99
AdaFace iR100 (MS1MV3) 8.60 9.34
AdaFace iR18 (WebFace4M) 31.35 31.80
AdaFace iR50 (WebFace4M) 12.89 14.23
AdaFace iR100 (WebFace4M) 9.19 10.95
AdaFace iR100 (WebFace12M) 7.59 8.98
CFSM-Arc iR100 26.65 15.21

• Larger backbones (e.g., R50, R100): denoising slightly degraded performance, likely
because these models already encode robust identity patterns, and Restormer-induced
distribution shifts move samples away from known representations.

• An exception was CFSM-Arc, which exhibited substantial improvement (26.65% →
15.21% mVCE), highlighting model-specific responses to preprocessing interventions.

These findings suggest that denoising is beneficial for models with limited generalization
capacity but can be counterproductive for more powerful models that rely on fine-grained
identity features. Our hypothesis is that smaller models benefit when denoising pushes
samples toward learned patterns, while larger models may be adversely affected by repre-
sentation drift.

6 Discussion and Future Work

This work analyzes the limitations of current FR models in handling image degradations
and corruptions. While existing work in the domain of Face Recognition has not emphasized
building algorithms robust towards degradations, various works focus on image corruptions
in the Computer Vision literature. However, these works focus largely on a classification
setting with a limited number of classes, while in FR, the number of classes is generally
large, and the models are expected to work in an open recognition setting.

In this section, we describe potential methods for solving this problem based on existing
work and our understanding and knowledge of face recognition models.

Adversarial Training: Adversarial training in machine learning and deep learning
refers to training a model on ‘adversarial’ examples for robust design. By learning adver-
sarial samples, the model circumvents a distribution shift at test time. In the DecordFace
framework, this would entail training the model on ‘corrupted’ samples of the data. This
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is the simplest solution to this problem. However, this raises the question of other ‘unseen’
corruptions which are likely to occur in deployment settings.

Image Restoration with Corruption Detection: Another solution would involve
utilizing a corruption detection module followed by an image enhancement method such as
face restoration and super-resolution. Work corresponding to detection in faces has been
conducted under face-spoofing detection, deepfake detection, attack detection, and face
forgery detection (Chhabra et al., 2023; Thakral et al., 2023; Narayan and Patel, 2024).
These methods may be extended to corruption. Some research has also been conducted into
studying super-resolution and face restoration in conjunction with face recognition (Wang
et al., 2022; Dosi et al., 2024). The performance of corruption detection in conjunction
with image restoration will be dictated by the accuracy of the detection and restoration
methods.

Using AntiAliased Models during Training: Zhang (2019) proposed the use of
blurpool operation during the training of deep models. The rationale is that in signal pro-
cessing, the fix for image corruptions is anti-aliasing by low-pass filtering before downsam-
pling. Adapting FR models to incorporate the blurpool operation instead of the traditional
pooling may enhance model robustness to corruptions. While this method would not require
corrupted data for training, it would require re-training the FR models from scratch.

LCANets in an FR Setting: Teti et al. (2022) proposed LCANets which utilizes a
spatiotemporal dictionary at the front of the model backbone to obtain robust features.
These models are tested in an image recognition setting. Given the rich dictionary learning
literature in the domain of face recognition (Manjani et al., 2017; Yadav et al., 2017),
LCANets can be adapted to mitigate the impact of corruption in the FR setting. This
method would also require training the FR models from scratch.

Leveraging CEI for obtaining Compatible Embeddings: In this work, we intro-
duce the mCEI metric, which showcases the dissimilarity between the embedding of a clean
image and its corrupted counterpart across the different models. For a given model, this
metric stays consistent across the different datasets, highlighting stability in model behav-
ior. By fine-tuning the model such that the invariance between the clean and corrupted
embedding is optimized towards zero, it is possible to create a robust variant of the existing
model. Existing work has shown that it is possible to obtain compatible embeddings across
different models (Meng et al., 2021a), while no such research has been done for the same
model but different distributions of data. Leveraging existing work along with our insights
may aid in the development of a lightweight, robust FR algorithm.

In the future, exploring fairness mitigation strategies and adversarial robustness are both
critical directions for responsible face recognition research. In this work, our primary goal is
to diagnose and quantify robustness gaps under common real-world corruptions (e.g., blur,
brightness, noise) using a standardized evaluation framework. Our framework is intended
to serve as a diagnostic tool that can also be used to evaluate the effectiveness of future
mitigation methods, including those addressing bias or adversarial threats.

While our contributions in this work remain diagnostic, the framework and corruptions
in DecordFace could be adapted into training pipelines for face recognition models in future
work. DecordFace’s diagnostic results can directly inform targeted augmentation strategies,
reinforcing its broader value, as these augmentations could also be combined to further
enhance model robustness. However, it should be noted that if DecordFace is used for
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training, models should be evaluated on datasets outside the framework to ensure fair
assessment and avoid bias from reusing the same corruptions seen during training.

7 Summary

In this work, we introduce the DecordFace framework. The framework utilizes several exist-
ing FR datasets and creates their corrupted versions. We propose two important evaluation
metrics, namely the mean Verification Corruption Error (mVCE) and mean Corruption
Embedding Invariance (mCEI) metric, for the quantitative evaluation of performance degra-
dation in the presence of corruptions. Based on thorough experimentation using over 25
pre-trained models across different architectures, algorithms, and pre-trained datasets, we
summarize our observations as follows,

• The current deep learning models strongly suffer from performance degradation in the
presence of common corruptions, especially when the corruptions are of high severity.
In the DecordFace framework, we observed high-performance degradation under the
high-severity corruption protocol across the board.

• Smaller models are far more prone to failure, even in the presence of less severe corrup-
tions. While larger models performed well in the presence of low severity corruptions,
lighter models, such as those with a ResNet18 or iResNet18 backbone, suffered greatly
even in the presence of low severity corruptions. This introduces the important prob-
lem of developing smaller, more robust FR models.

• In the fairness evaluation, we observe a disparate performance across gender subgroups
with an increase in corruption severity. This emphasizes the need for fairer and more
robust models.

We believe that our framework opens important and exciting new challenges in face recogni-
tion, and would aid in the building of robust FR models in the future. Future research may
include the exploration of performance degradation compounded by combining the different
corruption types.

Computational Requirements: We acknowledge that a comprehensive robustness eval-
uation across multiple models and corruption settings can indeed be resource-intensive. To
address this concern and ensure broader accessibility, we have designed DecordFace with
modularity as a core principle. The framework allows researchers to conduct targeted eval-
uations based on their computational constraints through several mechanisms:

• Selective evaluation options: Users can choose specific subsets of models or corruptions
most relevant to their research objectives, rather than requiring full-scale evaluation.
For instance, researchers can demonstrate method efficacy using lightweight backbone
models (e.g., LightCNN) without necessitating evaluation on larger architectures.

• Scalable corruption generation: Our tools support selective generation of corrupted
datasets, enabling focused experiments on specific degradation types or severity levels
rather than the complete corruption suite.
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• Ready-to-use resources: We provide comprehensive evaluation scripts and dataset gen-
eration tools that significantly reduce setup overhead and enable efficient reproduction
of results or targeted experiments.

These design choices ensure that DecordFace remains accessible to researchers with vary-
ing computational resources while preserving the diagnostic value of systematic robustness
evaluation.

Real World Applicability: We clarify that experiments on DecordFace do not perfectly
predict real-world performance. However, they support the view that robustness degra-
dations exposed by DecordFace are indicative of vulnerabilities that also manifest under
real-world shifts. The benchmark is valuable not because it reproduces real noise exactly,
but because it offers a controlled diagnostic setting that generalizes well, especially when
models have not been trained on the same noise patterns. We strongly encourage that the
insights be integrated alongside comprehensive real-world evaluations, as much as possible.

Broader Impact Statement

The DecordFace framework presents both positive and negative societal consequences stem-
ming from its implementation in face recognition (FR) technologies. On the positive side,
the framework enhances the reliability and robustness of FR models, which can signifi-
cantly improve safety and security in critical applications such as surveillance and access
control. Quantifying model performance under various image corruptions enables developers
to create systems that maintain high accuracy in real-world conditions, thus enhancing user
experience in applications like mobile device unlocking and social media tagging. Further-
more, the framework’s focus on analyzing model performance across different demographic
groups can contribute to reducing biases, leading to more equitable FR systems that serve
all users fairly.

Conversely, the deployment of advanced FR technologies raises serious concerns regard-
ing privacy and potential misuse (Mittal et al., 2024). While robust FR models can enhance
security, they also increase the risk of surveillance and the erosion of personal privacy, par-
ticularly if misused by governments or other entities. We build DecordFace using existing
face recognition datasets. All the face images in the paper are either taken or generated
from face images present in existing datasets. As part of the benchmark, we release the
scripts for generation.

Additionally, if the insights from the framework are not carefully considered, there
is a risk of perpetuating existing biases, as systems may still perform inadequately for
certain demographic groups. We acknowledge that performance disparities across gender
and ethnicity in face recognition systems have serious societal implications, including risks of
discrimination and unequal treatment. Therefore, there is an urgent need for fairness-aware
design and evaluation in face recognition. Our framework is intended as a diagnostic tool to
provide practitioners with a structured way to measure and expose such disparities. Further,
a standardized bias mitigation protocol, built upon the insights provided by DecordFace,
would be valuable for guiding industry practices in responsible deployment. To mitigate
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these risks, it is also essential to establish ethical guidelines and regulations governing the
use of FR technologies. We present some of these recommendations below.

• There is a need for measuring the robustness of FR models at deployment time to
ensure sensitivity to different image corruptions.

• There is a need for measuring corruption-based robustness across different demo-
graphic subgroups, such as those of gender, ethnicity, and age.

• For building robust algorithms, the DecordFace framework may be employed for some
datasets as a valuation step during training.

Overall, while the DecordFace framework has the potential to drive significant advance-
ments in FR systems, it is crucial to navigate the associated ethical implications to ensure
that these technologies benefit society as a whole. Our contributions are aimed at informing
and enabling such future efforts, both in research and industrial settings.
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Table 8: The mVCE performance (%) on the DecordFace framework for the low severity
corruption protocol.

Model Name Backbone
Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C-decord
1e-4 1e-5 1e-6

LightCNN 9L 32.46 34.04 67.77 44.85 28.23 40.08 52.79
LightCNN 29L 20.82 23.66 55.72 27.69 18.01 28.63 40.04
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

16.48 20.31 50.01 23.61 15.84 29.94 54.15
CosFace R18 Glint360k 7.70 10.74 43.80 26.99 7.27 11.62 17.25
CosFace R34 Glint360k 4.46 8.33 29.69 16.69 4.80 7.66 13.40
CosFace R50 Glint360k 3.87 8.00 24.15 11.78 4.27 7.71 17.30
CosFace R100 Glint360k 3.46 7.72 20.69 7.87 4.24 8.70 23.68
ArcFace R18 MS1MV3 7.87 11.22 47.49 34.72 8.16 12.17 17.80
ArcFace R34 MS1MV3 4.84 8.61 36.67 25.37 5.94 9.10 15.17
ArcFace R50 MS1MV3 3.97 8.05 31.64 20.39 5.10 7.78 12.92
ArcFace R100 MS1MV3 3.48 7.76 26.48 17.59 4.43 7.00 13.15
MagFace iR100 MS1MV3 3.86 8.03 26.83 15.14 5.76 9.02 14.65
ElasticFace-Arc iR100 MS1MV2 3.81 7.97 26.76 14.72 5.40 8.37 15.78
ElasticFace-Cos iR100 MS1MV2 4.20 7.85 26.69 14.34 5.02 8.04 14.38
ElasticFace-Arc+ iR100 MS1MV2 3.78 7.92 26.90 14.38 5.30 8.10 13.49
ElasticFace-Cos+ iR100 MS1MV2 4.26 7.96 26.24 15.12 5.10 8.21 15.43
AdaFace iR18 VGGFace2 26.37 21.09 47.86 28.84 12.58 20.62 29.64
AdaFace iR18 CASIA-WebFace 31.27 33.33 97.16 44.84 89.76 99.63 99.98
AdaFace iR50 CASIA-WebFace 21.84 24.84 70.93 29.91 82.01 99.71 99.98
AdaFace iR50 MSIMV2 4.91 8.22 29.77 16.50 6.38 12.04 20.84
AdaFace iR100 MS1MV2 3.71 7.78 24.95 13.04 4.88 8.53 15.82
AdaFace iR100 MS1MV3 3.79 7.64 25.34 16.10 4.09 6.77 12.00
AdaFace iR18 WebFace4M 14.98 13.74 42.75 27.92 8.11 13.30 19.77
AdaFace iR50 WebFace4M 5.62 8.83 25.07 13.70 4.06 6.63 11.42
AdaFace iR100 WebFace4M 4.47 8.16 18.97 7.67 3.33 5.46 9.22
AdaFace iR100 WebFace12M 3.81 7.80 17.75 7.57 2.88 4.95 13.22
CFSM-Arc iR100 Cleaned MS1MV2 6.18 8.44 29.78 17.86 5.49 8.33 13.02

Table 9: The mVCE performance (%) on the DecordFace framework across all severities.
Model Name Backbone

Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C-decord
1e-4 1e-5 1e-6

LightCNN 9L 43.63 43.26 73.79 52.96 41.21 52.70 64.36
LightCNN 29L 29.91 31.33 62.62 35.63 28.07 40.57 52.65
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

24.91 27.93 57.95 31.43 25.73 43.24 65.55
CosFace R18 Glint360k 15.71 16.52 52.14 34.38 14.22 20.67 27.97
CosFace R34 Glint360k 8.37 11.52 36.59 22.14 8.52 13.63 21.42
CosFace R50 Glint360k 6.56 10.30 30.09 16.28 7.49 14.12 27.12
CosFace R100 Glint360k 5.79 9.77 26.28 12.24 7.62 15.29 34.56
ArcFace R18 MS1MV3 15.77 17.22 54.38 41.58 13.98 19.93 27.13
ArcFace R34 MS1MV3 9.55 12.38 42.70 30.82 10.18 15.14 23.39
ArcFace R50 MS1MV3 7.10 10.66 36.95 25.27 8.41 12.47 18.89
ArcFace R100 MS1MV3 5.90 10.01 31.46 21.66 7.43 11.36 19.35
MagFace iR100 MS1MV3 7.75 11.13 33.58 20.89 11.51 16.95 24.44
ElasticFace-Arc iR100 MS1MV2 7.74 11.58 33.47 20.83 10.68 15.81 25.18
ElasticFace-Cos iR100 MS1MV2 8.39 11.24 33.11 20.02 9.77 15.12 24.22
ElasticFace-Arc+ iR100 MS1MV2 7.88 11.26 33.01 20.00 9.92 14.52 22.27
ElasticFace-Cos+ iR100 MS1MV2 8.90 11.58 32.81 20.87 10.08 15.39 25.02
AdaFace iR18 VGGFace2 35.03 28.77 54.76 35.88 20.75 30.76 40.75
AdaFace iR18 CASIA-WebFace 40.50 40.82 97.75 52.90 92.97 99.74 99.99
AdaFace iR50 CASIA-WebFace 29.41 31.13 78.03 36.76 87.69 99.80 99.99
AdaFace iR50 MSIMV2 8.35 10.57 35.71 21.50 12.56 20.48 30.87
AdaFace iR100 MS1MV2 6.26 9.66 29.77 17.42 9.36 15.28 24.70
AdaFace iR100 MS1MV3 5.72 8.95 29.47 19.42 6.07 9.99 16.63
AdaFace iR18 WebFace4M 21.48 18.54 49.02 33.30 13.03 20.45 28.89
AdaFace iR50 WebFace4M 8.53 10.86 29.05 16.73 5.44 9.16 15.62
AdaFace iR100 WebFace4M 6.36 9.35 22.17 10.18 4.22 7.05 12.01
AdaFace iR100 WebFace12M 5.32 8.72 20.70 9.91 3.70 6.60 16.71
CFSM-Arc iR100 Cleaned MS1MV2 14.36 11.36 35.26 23.06 9.17 13.44 19.51
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Table 10: The Relative mVCE performance (%) on the DecordFace framework for the high
severity corruption protocol.

IJB-C-decord
Model Name Backbone

Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord 1e-4 1e-5 1e-6

LightCNN 9L 39.83 30.92 23.88* 29.54 43.10 45.69 44.55
LightCNN 29L 29.54 25.34 26.2* 27.00 31.31 39.26 43.41
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

26.98 24.64 28.05* 25.85 29.82 43.00 41.11
CosFace R18 Glint360k 23.04 16.46 28.95 22.72 19.68 26.68 32.21
CosFace R34 Glint360k 10.64 8.60 22.44 16.67 10.40 17.08 23.54
CosFace R50 Glint360k 7.43 6.27 18.53 13.92 9.05 18.69 31.31
CosFace R100 Glint360k 6.31 5.51 17.42 13.57 9.80 20.14 39.14
ArcFace R18 MS1MV3 22.68 17.42 25.19 21.98 16.87 22.97 28.24
ArcFace R34 MS1MV3 13.05 10.31 20.56 17.36 12.10 17.74 25.58
ArcFace R50 MS1MV3 8.67 7.08 17.99 15.70 9.51 13.78 17.33
ArcFace R100 MS1MV3 6.73 5.99 15.90 12.90 8.52 12.84 18.14
MagFace iR100 MS1MV3 10.76 8.25 21.34 18.34 16.10 22.91 29.41
ElasticFace-Arc iR100 MS1MV2 10.60 9.51 21.83 18.91 14.69 21.03 27.56
ElasticFace-Cos iR100 MS1MV2 11.52 8.90 21.38 17.68 13.23 19.96 28.38
ElasticFace-Arc+ iR100 MS1MV2 10.95 8.80 19.50 17.52 12.94 18.47 25.35
ElasticFace-Cos+ iR100 MS1MV2 12.41 9.49 20.96 17.92 13.90 20.30 27.82
AdaFace iR18 VGGFace2 28.41 23.15 23.75* 22.64 24.35 31.43 35.40
AdaFace iR18 CASIA-WebFace 31.51 25.68 12.02* 27.51 25.61 1.62* 0.15*
AdaFace iR50 CASIA-WebFace 25.43 19.73 27.04* 22.03 36.11 1.22* 0.11*
AdaFace iR50 MSIMV2 9.61 6.40 19.96 16.13 17.59 25.62 32.98
AdaFace iR100 MS1MV2 7.11 5.08 15.80 13.76 12.64 19.48 26.06
AdaFace iR100 MS1MV3 5.37 3.58 13.24 10.42 5.77 9.66 14.04
AdaFace iR18 WebFace4M 23.52 14.23 21.26 17.67 14.61 21.65 28.26
AdaFace iR50 WebFace4M 8.39 5.87 13.45 9.99 4.24 7.67 12.70
AdaFace iR100 WebFace4M 5.26 3.30 10.43 8.18 2.76 4.97 8.31
AdaFace iR100 WebFace12M 4.29 2.57 10.03 7.78 2.46 5.10 10.03
CFSM-Arc iR100 Cleaned MS1MV2 23.02 7.91 17.50 16.16 10.42 14.82 19.51

Table 11: The Relative mVCE performance (%) on the DecordFace framework for the low
severity corruption protocol.

Model Name Backbone
Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C-decord
1e-4 1e-5 1e-6

LightCNN 9L 11.89 7.87 8.84 9.25 10.66 14.14 15.63
LightCNN 29L 6.82 6.16 8.95 7.15 6.15 9.42 11.88
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

5.91 5.58 8.21 6.30 5.10 9.77 12.60
CosFace R18 Glint360k 3.00 2.01 8.10 4.25 2.32 4.05 5.41
CosFace R34 Glint360k 0.86 0.63 5.19 3.03 1.09 2.16 3.48
CosFace R50 Glint360k 0.70 0.53 3.68 2.67 1.01 2.67 6.77
CosFace R100 Glint360k 0.49 0.39 3.46 2.64 1.35 3.68 11.95
ArcFace R18 MS1MV3 2.94 2.42 7.96 4.83 2.31 3.57 4.92
ArcFace R34 MS1MV3 1.27 0.88 5.50 3.74 1.48 2.63 5.02
ArcFace R50 MS1MV3 0.84 0.55 4.71 3.50 1.22 2.05 2.40
ArcFace R100 MS1MV3 0.68 0.36 3.45 2.73 1.01 1.94 2.64
MagFace iR100 MS1MV3 1.03 0.50 4.46 3.97 1.73 3.10 4.93
ElasticFace-Arc iR100 MS1MV2 0.78 0.50 5.06 3.63 1.48 2.44 4.06
ElasticFace-Cos iR100 MS1MV2 1.03 0.42 5.32 3.48 1.34 2.27 3.78
ElasticFace-Arc+ iR100 MS1MV2 0.71 0.45 4.23 3.47 1.38 2.43 3.41
ElasticFace-Cos+ iR100 MS1MV2 0.83 0.43 4.54 3.55 1.43 2.34 3.83
AdaFace iR18 VGGFace2 6.77 3.96 6.49 5.04 3.93 6.08 7.63
AdaFace iR18 CASIA-WebFace 8.44 6.96 10.56 7.35 17.59 1.36 0.14
AdaFace iR50 CASIA-WebFace 6.51 4.01 9.30 4.91 21.90 1.01 0.10
AdaFace iR50 MSIMV2 1.01 0.52 5.10 3.64 2.15 4.53 7.91
AdaFace iR100 MS1MV2 0.74 0.38 3.75 2.81 1.43 2.61 3.87
AdaFace iR100 MS1MV3 0.56 0.31 2.91 2.10 0.82 1.59 2.45
AdaFace iR18 WebFace4M 7.15 2.24 5.58 4.21 2.31 3.78 5.47
AdaFace iR50 WebFace4M 1.12 0.80 3.50 2.41 0.80 1.34 2.18
AdaFace iR100 WebFace4M 0.54 0.34 2.44 1.90 0.53 1.00 1.32
AdaFace iR100 WebFace12M 0.51 0.27 2.65 1.94 0.42 0.98 1.30
CFSM-Arc iR100 Cleaned MS1MV2 2.55 0.61 3.81 3.15 1.21 2.05 3.30
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Table 12: The Relative mVCE performance (%) on the DecordFace framework over all
corruption severities.

Model Name Backbone
Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C-decord
1e-4 1e-5 1e-6

LightCNN 9L 23.06 17.09 14.86 17.36 23.64 26.76 27.20
LightCNN 29L 15.91 13.83 15.85 15.09 16.21 21.36 24.49
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

14.34 13.20 16.15 14.12 14.99 23.06 24.00
CosFace R18 Glint360k 11.01 7.79 16.44 11.64 9.27 13.10 16.13
CosFace R34 Glint360k 4.77 3.82 12.09 8.48 4.81 8.13 11.50
CosFace R50 Glint360k 3.39 2.83 9.62 7.17 4.23 9.08 16.59
CosFace R100 Glint360k 2.82 2.44 9.05 7.01 4.73 10.27 22.83
ArcFace R18 MS1MV3 10.84 8.42 14.85 11.69 8.13 11.33 14.25
ArcFace R34 MS1MV3 5.98 4.65 11.52 9.19 5.72 8.67 13.24
ArcFace R50 MS1MV3 3.97 3.16 10.02 8.38 4.53 6.74 8.37
ArcFace R100 MS1MV3 3.10 2.61 8.43 6.80 4.01 6.30 8.84
MagFace iR100 MS1MV3 4.92 3.60 11.21 9.72 7.48 11.03 14.72
ElasticFace-Arc iR100 MS1MV2 4.71 4.11 11.77 9.74 6.76 9.88 13.46
ElasticFace-Cos iR100 MS1MV2 5.22 3.81 11.74 9.16 6.09 9.35 13.62
ElasticFace-Arc+ iR100 MS1MV2 4.81 3.79 10.34 9.09 6.00 8.85 12.19
ElasticFace-Cos+ iR100 MS1MV2 5.47 4.05 11.11 9.30 6.42 9.52 13.42
AdaFace iR18 VGGFace2 15.43 11.64 13.39 12.08 12.10 16.22 18.74
AdaFace iR18 CASIA-WebFace 17.67 14.45 11.15 15.41 20.80 1.47 0.15
AdaFace iR50 CASIA-WebFace 14.08 10.30 16.40 11.76 27.58 1.10 0.11
AdaFace iR50 MSIMV2 4.45 2.87 11.04 8.64 8.33 12.97 17.94
AdaFace iR100 MS1MV2 3.29 2.26 8.57 7.19 5.91 9.36 12.75
AdaFace iR100 MS1MV3 2.49 1.62 7.04 5.42 2.80 4.81 7.08
AdaFace iR18 WebFace4M 13.65 7.04 11.85 9.59 7.23 10.93 14.59
AdaFace iR50 WebFace4M 4.03 2.83 7.48 5.44 2.18 3.87 6.39
AdaFace iR100 WebFace4M 2.43 1.52 5.64 4.41 1.42 2.59 4.11
AdaFace iR100 WebFace12M 2.02 1.19 5.60 4.28 1.24 2.63 4.79
CFSM-Arc iR100 Cleaned MS1MV2 10.73 3.53 9.29 8.35 4.89 7.16 9.79

Table 13: The mCEI performance (%) on the low severity corruption protocol.
Model Name Backbone

Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C
-decord

LightCNN 9L 86.15 85.99 84.23 84.17 86.59
LightCNN 29L 90.36 89.78 88.02 87.59 90.62
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

91.07 90.63 88.54 89.01 91.65
CosFace R18 Glint360k 87.53 88.87 87.12 86.43 90.89
CosFace R34 Glint360k 89.11 90.63 89.21 88.74 92.40
CosFace R50 Glint360k 89.64 91.15 90.01 89.42 92.75
CosFace R100 Glint360k 89.64 91.80 90.77 90.09 92.07
ArcFace R18 MS1MV3 88.81 88.29 85.96 85.50 90.42
ArcFace R34 MS1MV3 90.06 89.77 87.33 87.09 91.74
ArcFace R50 MS1MV3 90.57 90.27 88.03 87.51 92.28
ArcFace R100 MS1MV3 90.97 90.68 88.20 87.92 92.72
MagFace iR100 MS1MV3 91.53 91.40 88.93 89.28 92.92
ElasticFace-Arc iR100 MS1MV2 90.65 90.51 87.40 87.90 91.99
ElasticFace-Cos iR100 MS1MV2 89.67 89.34 86.91 87.02 91.22
ElasticFace-Arc+ iR100 MS1MV2 90.47 90.28 87.33 87.73 91.92
ElasticFace-Cos+ iR100 MS1MV2 89.27 88.90 86.83 86.71 91.05
AdaFace iR18 VGGFace2 89.29 89.21 86.43 86.72 90.09
AdaFace iR18 CASIA-WebFace 87.88 87.14 84.65 85.31 88.66
AdaFace iR50 CASIA-WebFace 89.24 88.52 86.33 87.04 None
AdaFace iR50 MSIMV2 91.05 90.49 88.31 88.39 91.72
AdaFace iR100 MS1MV2 91.47 90.93 88.66 88.94 92.24
AdaFace iR100 MS1MV3 91.39 90.96 89.20 88.66 92.79
AdaFace iR18 WebFace4M 90.22 89.56 88.47 87.64 91.06
AdaFace iR50 WebFace4M 91.92 91.48 90.79 89.70 93.61
AdaFace iR100 WebFace4M 92.51 92.03 91.36 90.37 94.28
AdaFace iR100 WebFace12M 92.30 91.74 91.07 90.01 94.04
CFSM-Arc iR100 Cleaned MS1MV2 88.19 90.76 88.03 88.38 92.41
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Table 14: The mCEI performance (%) over all corruption severities.
Model Name Backbone

Pretraining
Dataset

AgeDB
-decord

CALFW
-decord

CPLFW
-decord

CFP-FP
-decord

IJB-C
-decord

LightCNN 9L 74.39 74.31 72.94 72.77 75.91
LightCNN 29L 80.85 80.22 78.24 77.69 82.17
LightCNN 29Lv2

MS-Celeb-1M +
CASIA-WebFace

81.81 81.37 78.80 79.42 83.42
CosFace R18 Glint360k 77.85 79.55 77.55 77.18 82.80
CosFace R34 Glint360k 81.13 82.82 80.56 80.45 85.92
CosFace R50 Glint360k 82.29 83.93 82.05 81.73 86.87
CosFace R100 Glint360k 82.55 84.83 83.09 82.66 86.48
ArcFace R18 MS1MV3 79.09 78.63 76.04 75.63 81.96
ArcFace R34 MS1MV3 81.28 81.29 77.93 78.05 84.18
ArcFace R50 MS1MV3 82.46 82.43 79.29 78.98 85.37
ArcFace R100 MS1MV3 83.25 83.14 79.66 79.75 86.20
MagFace iR100 MS1MV3 83.06 83.06 79.55 80.31 85.38
ElasticFace-Arc iR100 MS1MV2 81.41 81.40 77.17 78.17 83.62
ElasticFace-Cos iR100 MS1MV2 80.09 79.80 76.62 77.05 82.68
ElasticFace-Arc+ iR100 MS1MV2 81.35 81.28 77.40 78.19 83.85
ElasticFace-Cos+ iR100 MS1MV2 79.50 79.16 76.42 76.65 82.47
AdaFace iR18 VGGFace2 79.95 79.46 75.91 76.57 81.23
AdaFace iR18 CASIA-WebFace 77.53 76.31 73.43 74.66 79.02
AdaFace iR50 CASIA-WebFace 80.65 79.68 76.59 78.01 82.68
AdaFace iR50 MSIMV2 82.76 82.15 79.00 79.38 84.09
AdaFace iR100 MS1MV2 83.44 82.77 79.56 80.15 84.84
AdaFace iR100 MS1MV3 84.17 83.76 81.11 80.80 86.63
AdaFace iR18 WebFace4M 81.25 81.05 79.77 78.91 83.53
AdaFace iR50 WebFace4M 85.36 84.82 83.80 82.51 88.39
AdaFace iR100 WebFace4M 86.39 85.84 84.82 83.69 89.62
AdaFace iR100 WebFace12M 86.06 85.36 84.28 83.09 89.17
CFSM-Arc iR100 Cleaned MS1MV2 77.46 82.81 79.02 79.71 85.31
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