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ABSTRACT

End-to-End (E2E) solutions have emerged as a mainstream approach for au-
tonomous driving systems, with Vision-Language-Action (VLA) models repre-
senting a new paradigm that leverages pre-trained multimodal knowledge from
Vision-Language Models (VLMs) to interpret and interact with complex real-
world environments. However, these methods remain constrained by the limita-
tions of imitation learning, which struggles to inherently encode physical rules
during training. Existing approaches often rely on complex rule-based post-
refinement, employ reinforcement learning that remains largely limited to sim-
ulation, or utilize diffusion guidance that requires computationally expensive gra-
dient calculations. To address these challenges, we introduce ReflectDrive, a novel
learning-based framework that integrates a reflection mechanism for safe trajec-
tory generation via discrete diffusion. We first discretize the two-dimensional
driving space to construct an action codebook, enabling the use of pre-trained
Diffusion Language Models for planning tasks through fine-tuning. Central
to our approach is a safety-aware reflection mechanism that performs iterative
self-correction without gradient computation. Our method begins with goal-
conditioned trajectory generation to model multi-modal driving behaviors. Based
on this, we apply local search methods to identify unsafe tokens and determine
feasible solutions, which then serve as safe anchors for inpainting-based regen-
eration. Evaluated on the NAVSIM benchmark, ReflectDrive demonstrates sig-
nificant advantages in safety-critical trajectory generation, offering a scalable and
reliable solution for autonomous driving systems.

1 INTRODUCTION

Autonomous driving (AD) is guiding the transportation industry toward a safer and more efficient
future (Tampuu et al., 2020). Within this trend, End-to-End (E2E) systems (Hu et al., 2023; Chen
et al., 2023) have emerged as the mainstream alternative to traditional modular designs (Bansal
et al., 2018), which are prone to error accumulation between interdependent modules. They have
also largely replaced rule-based methods (Fan et al., 2018; Treiber et al., 2000) that demand ex-
tensive human engineering effort. Meanwhile, Vision-Language-Action (VLA) models (Kim et al.,
2024; Hwang et al., 2024) offer a new solution by incorporating pre-trained knowledge from Vision-
Language Models (VLMs) (Hurst et al., 2024; Bai et al., 2025). Equipped with enhanced general-
ization capabilities, VLA models can interpret visual scenes and understand human instructions to
directly output planning trajectories, thereby improving adaptability in challenging situations.

However, eixsting learning-based methods does not resolve the core challenge in imitation learning-
based driving systems. Specifically, behavior cloning fails to inherently encode inviolable physical
rules, such as collision avoidance or adherence to drivable areas (Lu et al., 2023). As a result, a
generated trajectory may be highly probable under the model’s distribution yet still violate critical
safety constraints. Consequently, existing deployed solutions often rely on significant human pri-
ors, such as trajectory anchors (Li et al., 2024) or rule-based generated paths (Dauner et al., 2023).
These priors offer a reliable initial solution for the learning system, but they also necessitate sub-
stantial post-processing, particularly in complex scenarios. Concurrently, more advanced solutions
are emerging. Some methods integrate reinforcement learning (Kaelbling et al., 1996; Kendall et al.,
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2019; Jaeger et al., 2025; Cusumano-Towner et al., 2025) with human-designed reward functions to
enhance causal reasoning. However, most existing studies remain confined to the simulation level.
From a deployment perspective, these approaches typically require unsafe online rollouts and suffer
from training instability, especially in large-scale models (Zheng et al., 2024). Although guidance
mechanisms in diffusion models provide a promising alternative by enabling controllable generation
during inference (Zheng et al., 2025; Jiang et al., 2023; Zhong et al., 2023), they often experience
slow sampling speeds due to gradient computations and are highly sensitive to parameter tuning,
which can lead to numerical instability.

To address these challenges, we pioneer the use of discrete diffusion (Austin et al., 2021) for plan-
ning to meet the demand for verifiable and controllable E2E driving systems. A key advantage of
this approach is its operation in a discrete action space, which facilitates the seamless incorporation
of critical safety constraints through search, masking, and sampling techniques during trajectory
generation. This results in a hybrid framework in which learned behaviors can be rigorously guided
by prior knowledge, shifting away from black-box planning toward trustworthy and interpretable
decision-making. Inspired by these insights, we propose ReflectDrive, a novel learning-based frame-
work that integrates a reflection mechanism for safe trajectory generation via discrete diffusion.
Specifically, we first discretize the two-dimensional driving space to construct a action codebook,
enabling the representation of vehicle trajectories through discrete codebook embeddings. This rep-
resentation allows us to leverage a pre-trained Diffusion Language Models (DLMs) (You et al.,
2025; Nie et al., 2025) for planning tasks via fine-tuning. The approach facilitates parallel decoding
and bidirectional feature fusion within a unified architecture that supports scalable training. Based
on this fine-tuned model, our reflection mechanism begins with goal-conditioned generation, where
the goal point guides the generation process to capture diverse multi-modal driving behaviors. Fur-
thermore, the framework integrates safety metrics to evaluate the generated multi-modal trajectories.
For unsafe waypoints, we perform a local search to identify a feasible solution, which then serves as
a safe anchor token for trajectory inpainting. The entire process operates without gradient computa-
tion, enabling parallel generation and the injection of safety constraints during trajectory regenera-
tion. Evaluations on the real-world autonomous driving benchmark NAVSIM (Dauner et al., 2024)
demonstrate the feasibility of employing discrete diffusion for trajectory generation. Equipped with
our reflection mechanism, ReflectDrive achieves near human-level closed-loop performance. Our
contributions are summarized as follows:

• We pioneer the application of discrete diffusion for E2E autonomous driving trajectory
generation and integrate it into a VLA model for scalable training.

• We introduce reflection mechanism, a novel inference-time guidance framework specifi-
cally designed for the denoising process in discrete diffusion, integrating external safety
validation with efficient discrete token optimization.

• We evaluate our method on real-world driving benchmarks, proving that the framework can
enforce hard safety constraints without compromising behavioral coherence.

2 RELATED WORK

End-to-End Autonomous Driving. E2E methods (Hu et al., 2023; Chen et al., 2023) have
emerged as a promising solution to largely replace rule-based approaches due to their superior scal-
ability. Recently, VLA models (Hwang et al., 2024; Renz et al., 2025; Zhou et al., 2025) have arisen
as a new paradigm, incorporating world knowledge from pre-trained VLMs to enhance performance
in long-tail scenarios. Additionally, VLA architectures can accept human instructions to support
human-preferred driving behaviors (Kim et al., 2024), while language serves as an interpretable
intermediate representation for improved explainability (Tian et al., 2024; Wang et al., 2025).

Beyond Imitation Learning. Current mainstream pipelines still operate within imitation learning-
based frameworks, which suffer from causal confusion and lack verifiable safety guarantees. Many
studies have attempted to address this issue, which can be broadly categorized as follows: 1)
The model uses trajectory anchors, which are derived from clustered trajectory data or rule-based
proposals, as conditioning inputs and is designed to predict offsets for further trajectory refine-
ment (Dauner et al., 2023). Hydra-MDP (Li et al., 2024) utilizes trajectory anchors as candidates
for post-selection, while DiffusionDrive (Liao et al., 2024) employs anchors as starting points and
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uses a pseudo-diffusion process for refinement. Although these methods exhibit improved relia-
bility, they rely heavily on rule-based design. 2) Reinforcement learning methods enhance model
capabilities through exploration (Shalev-Shwartz et al., 2016; Kiran et al., 2021; Cao et al., 2023; Lu
et al., 2023); for instance, GIGAFLOW (Cusumano-Towner et al., 2025) significantly improves per-
formance via self-play in simulation. However, online rollouts are infeasible for real-world vehicle
deployment, and simulation training faces the sim-to-real gap. Although recent advances in world
models (Guan et al., 2024) offer a potential solution, they still struggle with out-of-distribution sim-
ulation. 3) Other methods, such as guidance mechanisms for diffusion models, enable the injection
of reward signals during the denoising process (Jiang et al., 2023; Zhong et al., 2023). Diffusion
Planner (Zheng et al., 2025) represents a pioneering effort in applying diffusion models to closed-
loop planning tasks. Although it utilizes guidance to adjust behavior during inference, the method
relies on additional gradient computations, resulting in high computational cost. In this paper, we
propose a novel reflection mechanism based on discrete diffusion that naturally incorporates safety
constraints through search, masking, and inpainting during trajectory generation.

3 PRELIMINARIES

3.1 AUTONOMOUS DRIVING PLANNING

We formulate the autonomous driving planning task as learning a conditional distribution p(τ | c),
where the goal is to generate a future trajectory τ . Each waypoint is expressed in the ego-vehicle
frame, conditioned on a scene context c that includes multi-view images, instructions, and ego-
vehicle state. The primary challenge in planning is that trajectories must adhere to traffic rules
and safety constraints, which is difficult for imitation learning-based methods due to the absence of
explicit signals to ensure strict compliance with these requirements.

3.2 DISCRETE DIFFUSION

Discrete diffusion models (Austin et al., 2021; Meng et al., 2022; Lou et al., 2023) have emerged as a
powerful non-autoregressive paradigm for generating structured sequences. This process is defined
by a forward corruption process and a learned reverse denoising process.

Forward and Reverse Process. The forward process degrades a clean sequence of discrete tokens
y = (y1, . . . ,yi, . . . ,yL) over a series of S timesteps. At each step s ∈ {1, . . . , S}, a noisy version
of the sequence, ỹ(s), is created by masking a subset of the tokens in y. Specifically, a binary
mask m(s) = (m

(s)
1 , . . . ,m

(s)
i , . . . ,m

(s)
L ) ∈ {0, 1}L is sampled, and each token yi is replaced with

a special [MASK] token if m
(s)
i = 1. The number of masked tokens is determined by a noise

schedule, such as a cosine schedule, which typically increases the masking ratio as s approaches S.
The core learning task is to train a model pθ to reverse this corruption. This model learns to predict
the original tokens at the masked positions, conditioned on the unmasked tokens, the timestep s, and
any external context c. The model is trained by minimizing the negative log-likelihood objective:

L(θ) = Ey,c,s,m(s)

− ∑
i:m

(s)
i =1

log pθ
(
yi

∣∣ ỹ(s), c, s
) . (1)

Here, s ∈ [0, 1] represents the masking ratio determined by the noise schedule, and c encompasses
the scene context including multi-view images, ego-status, and instructions.

Model Inference. To generate a new sequence, the process starts with a fully masked sequence,
ỹ(S). The model then iteratively refines this sequence for S steps. In each step, the model predicts
a probability distribution for the tokens at the masked positions. A subset of these predictions is
then sampled and fixed, while the rest are re-masked for the next refinement step. Specifically, we
utilize a linear noise schedule. During inference, we adopt a parallel decoding strategy where, at
each step, we select and fix a subset of tokens with the highest predicted confidence scores, allowing
multiple tokens to be decoded simultaneously until the sequence is complete. A central advantage
of this framework, and one especially critical to our work, is its capacity for inpainting, defined as
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Figure 1: ReflectDrive Framework Overview.

the ability to reconstruct masked segments of a sequence while maintaining consistency with the
context from unmasked tokens. Additionally, the discrete token structure supports efficient search
and constraint integration, making it possible to guide trajectories using safety constraints.

4 METHOD

In this section, we present ReflectDrive, a novel learning-based framework that integrates a reflection
mechanism to facilitate safe trajectory generation via discrete diffusion, as illustrated in Figure 1.
We first introduce a trajectory discretization method tailored for integration into a masked diffusion
process. A pre-trained diffusion language model is then employed for trajectory generation. Finally,
we propose a reflection mechanism specifically designed to ensure safety during the trajectory gen-
eration process. This mechanism leverages diffusion inpainting and capitalizes on the advantages of
discrete token spaces for efficient constraint-based search.

4.1 DISCRETE DIFFUSION FOR AUTONOMOUS DRIVING PLANNING

Trajectory Discretization. To represent continuous waypoints in a discrete format, we quantize
each 2D coordinate (x, y) by mapping its x and y values independently to the closest tokens in their
respective 1D codebooks. We define a uniform 1D codebook A = {a1, a2, . . . } by discretizing a
spatial range [−M,M ] with resolution ∆g . A quantizer Q maps a real value to its nearest token, and
its inverse recovers the coordinate. Each 2D waypoint is thus represented by a token pair (yj,x,yj,y),
and the full trajectory becomes a flattened sequence y = Q(τ) = (y1,x,y1,y, . . . ,yN,x,yN,y) ∈
A2N . At first glance, discretization may appear to cause some loss in trajectory precision. However,
in practical deployment, the resolution can be adjusted to control accuracy, or different codebook
partitioning strategies can be employed. Specifically, we utilize a grid resolution of ∆g = 0.3 me-
ters. Given the spatial range of [−100, 100] meters, this results in a codebook size of |A| ≈ 667
tokens per dimension. Most importantly, discretization facilitates efficient search for feasible solu-
tions in the Bird’s-Eye View (BEV) space. Experimental results in Section 5.2 and Figure 3 further
demonstrate that, with discrete representations, our reflection mechanism significantly enhances the
safety of the generated trajectories.
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Discrete Diffusion Model. Based on our discretized trajectory representation, we instantiate the
trajectory planner using the discrete diffusion framework described in Section 3. In practice, we
employ a VLA model as the planner, initialized from a pre-trained Diffusion Language Model (You
et al., 2025; Nie et al., 2025) that exhibits strong pre-training performance in understanding driving
scenarios. The model can generate a tokenized trajectory y conditioned on a scene context c (multi-
view images, language instruction, ego state). The model is trained via the denoising objective in
Eq. 1 using autonomous driving planning datasets for supervised fine-tuning. This provides the
inherent capability for bidirectional inpainting, which serves as the foundation of our method. It
enables the model to perform holistic parallel refinement and elegantly repair trajectories around
externally guided safety edits during the reflective inference process.

4.2 REFLECTIVE INFERENCE

With the discrete diffusion-based VLA model as our foundation, we introduce a reflective inference
framework to bridge the gap between imitation learning and safety-critical deployment. This frame-
work operates in two stages: goal-conditioned trajectory generation and safety-guided regeneration.
The entire process is guided by a set of specialized scoring functions.

Scoring Function Definitions. To systematically evaluate trajectories, our framework incorpo-
rates three distinct scoring functions. The detailed composition of these functions, which are de-
signed based on established autonomous driving evaluation principles, is provided in Appendix E.

• Global Scorer (Sglobal(τ)): This scorer evaluates the overall quality of a complete trajectory, con-
sidering both safety and coherence, and returns a value of zero if any critical rule is violated.

• Safety Scorer (Ssafe(τ)): This scorer acts as a safety oracle to identify specific points of failure.

• Local Scorer (Slocal(ax, ay)): This scorer evaluates each candidate token pair (ax, ay) using a
comprehensive function that assesses its impact on the trajectory’s safety and coherence.

Goal-Conditioned Generation. To ensure our planner can reason about high-level, global intents
that go beyond simple local adjustments, the process begins with generating a diverse set of trajec-
tory proposals. This procedure is essential for multi-modal driving behavior modeling and serves
as a necessary step for subsequent regeneration. Since the local search in our safety-aware regen-
eration stage is intentionally constrained for efficiency, it cannot accommodate large-scale changes,
such as taking a different turn at an intersection, which require broader exploration. We first use the
model to produce a probability distribution for the terminal waypoint tokens, pθ(yN | c, s), where
yN = (yN,x,yN,y). From this distribution, we sample a set of high-probability goal candidates.
We then apply Non-Maximum Suppression (NMS) (Ren et al., 2015) to obtain a spatially diverse
set of K candidate goals, G = {G1, . . . , GK}:

G = NMS
(
TopKK′

(
pθ(yN | c, s)

)
, dNMS, K

)
(2)

where TopKK′(·) is an operator that selects the K ′ most probable goal candidates from the model’s
output distribution. The NMS(·) function then filters this set using a distance threshold dNMS to
produce the final, spatially diverse set G of size K. For practical deployment, a dedicated goal
generation model could be used to improve the accuracy and quality of goal points. However, for
simplicity, we employ the same model for both goal generation and trajectory planning. Then,
for each goal Gk ∈ G, we generate a full trajectory τk by sampling from the conditional distri-
bution pθ(y1:2N−2 | Gk, c, s) via inpainting. The resulting K trajectories are evaluated using the
Global Scorer Sglobal(·), which assesses each plan based on a combination of metrics including goal
progress. The top-scoring trajectory τ∗ is then selected for further refinement.

τ∗ = argmax
τk,k=1,...,K

S(τk). (3)

Safety-Guided Regeneration. The selected trajectory τ∗, while coherent, may still violate physi-
cal constraints. We address this with an iterative, gradient-free refinement loop that forms a dialogue
between the generative model and an external safety oracle, as shown in Figure 2.
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Figure 2: Safety-Guided Regeneration Pipeline.

• Trajectory Evaluation. The process begins when the Safety Scorer Ssafe(·) evaluates the de-
quantized trajectory and identifies the specific waypoints that are unsafe. The oracle assigns a
safety score to each original waypoint based on the worst violation (e.g., drivable area infraction)
within a local time window. This allows it to precisely pinpoint unsafe waypoints.

• Safety Anchors Search. For the earliest waypoint that violates a safety threshold, we perform a
highly efficient local search within a small Manhattan neighborhood Nδ of the original tokens to
identify an improved token pair, rather than resorting to complex continuous optimization. The
corrected token pair that maximizes the local safety score is then designated as a safety anchor.

• Trajectory Inpainting. We then leverage the diffusion model’s powerful inpainting capability to
regenerate the surrounding trajectory segments conditioned on safety anchors. This single-pass
regeneration allows the model to naturally re-establish global coherence around the safety-driven
edit. This cycle of identifying violations, performing discrete corrections, and re-inpainting con-
tinues until the plan is fully safe or a computational budget is met. Specifically, we set a maximum
budget of 10 iterations to ensure real-time feasibility. If the algorithm reaches this limit without
finding a fully safe trajectory, it outputs the candidate with the highest safety score found during
the search as a fallback strategy.

This refinement process operates as an iterative loop. In each iteration, The top-scoring trajectory τ∗

is evaluated by the Safety Scorer at each waypoint t. The algorithm proceeds sequentially through
the waypoints to find the first index t∗ for which the score Ssafe(τ

∗) falls below a predefined safety
threshold. If no such waypoint exists, the trajectory is deemed safe and the process terminates. If
a violation is found at index t∗, the Local Scorer is then employed to find an improved token pair
within a local neighborhood Nδ by solving:

(y′
t∗,x,y

′
t∗,y) = argmax

(ax,ay)∈Nδ(yt∗,x,yt∗,y)

Slocal(ax, ay). (4)

The original token at t∗ is replaced by this new, optimized pair, which serves as a fixed safety anchor
for the subsequent inpainting step. The refinement cycle then continues with this updated trajectory.
In practice, the reflective inference process is designed for real-time performance. The local search
for corrective tokens is efficient, as it operates over a small, discrete neighborhood (e.g., a Manhattan
distance δ ≤ 10) rather than requiring expensive gradient-based optimization. In practice, we find
that most safety violations are resolved within 1–3 iterations of reflection, resulting in a manageable
inference overhead.

5 EXPERIMENTS

5.1 BENCHMARK AND BASELINES

Evaluation Setups. In our implementation, the VLA model backbone is initialized from a publicly
available pre-trained Vision-Language Model (LLaDA-V You et al. (2025)) and utilizes classifier-
free guidance for trajectory generation. Input images are obtained from the front, front-left, and
front-right cameras. The language instruction provides a high-level navigational command, such
as “turn left” or “go straight,” along with textual descriptions of the ego vehicle’s status. We eval-
uate our model on the large-scale real-world autonomous driving benchmark NAVSIM (Dauner
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Table 1: NAVSIM Closed-Loop Results. Methods are grouped by their core architectural paradigm.
The † symbol denotes our method using a privileged ground-truth oracle for reflection, serving as an
analytical upper bound. Best result per column is in bold (higher is better).

Method Paradigm Input NC↑ DAC↑ TTC↑ Comf.↑ EP↑ PDMS↑

Base End-to-End Planners
UniAD - Cam 97.8 91.9 92.9 100.0 78.8 83.4

PARA-Drive - Cam 97.9 92.4 93.0 99.8 79.3 84.0

Transfuser - C & L 97.7 92.8 92.8 100.0 79.2 84.0

Augmented End-to-End Planners
Hydra-MDP - C & L 98.3 96.0 94.6 100.0 78.7 86.5

DiffusionDrive Diffusion C & L 98.2 96.2 94.7 100.0 82.2 88.1

GoalFlow Diffusion C & L 98.4 98.3 94.6 100.0 85.0 90.3

VLA Planners
AutoVLA (Post-RFT) Autoregressive Cam 98.4 95.6 98.0 99.9 81.9 89.1

ReflectDrive (w/o R.I.) Discrete Diffusion Cam 96.9 95.4 92.2 100.0 79.0 84.8

ReflectDrive (Ours) Discrete Diffusion Cam 97.7 99.3 93.5 100.0 86.9 91.1

ReflectDrive† Discrete Diffusion Cam 99.7 99.5 99.1 99.9 88.9 94.7

Human – – 100.0 100.0 100.0 99.9 87.5 94.8

et al., 2024) for closed-loop performance assessment. Following the official protocol, performance
is reported with the PDMS score (higher is better), aggregated from five metrics: NC (no-collision
rate), DAC (drivable area compliance), TTC (time-to-collision safety), Comfort (bounded accelera-
tion/jerk) and EP (ego progress). We run all the methods under the official closed-loop simulator
and report averages on the public test split. Our planner uses camera-only inputs unless otherwise
stated; we also include Camera+LiDAR baselines to provide a more comprehensive comparison.

Baselines. We compare ReflectDrive to other autonomous driving systems. For example, vanilla
E2E planners that purely use sensor information as input and output trajectories, such as UniAD (Hu
et al., 2023), Para-Drive (Weng et al., 2024), Transfuser (Chitta et al., 2023). As well as augmented
E2E planners that incorporate clustering results as auxiliary information like Hydra-MDP (Li et al.,
2024), DiffusionDrive (Liao et al., 2024), and GoalFlow (Xing et al., 2025), the PDMS scores
will be higher than vanilla E2E planners due to additional information. We also include recent
AutoVLA (Zhou et al., 2025) model that unifies reasoning and action generation within a sin-
gle autoregressive generation model, the PMDS score is the highest among VLA planners. For
our model family, the table lists: ReflectDrive (w/o R.I.) trained with discrete masked diffusion
adding classifier-free guidance at inference without reflective inference; ReflectDrive adding goal-
conditioned generation and safety-guided regeneration, where the safety-guided regeneration relies
on the reward model where surrounding obstacles are moving at constant speeds; ReflectDrive†
adding goal-conditioned generation and safety-guided regeneration, where the safety-guided regen-
eration relies on the reward model where surrounding obstacles are ground-truth agents.

5.2 MAIN RESULTS

Evaluation results on the NAVSIM benchmark are presented in Table 1.

Base Model Validation. ReflectDrive base model achieves the PDMS score 84.8 comparable to
the base end-to-end models, such as UniAD, PARA-Drive, and Hydra-MDP, and slightly lower than
the score of Augmented End-to-End Planners. However, it has not yet demonstrated significant per-
formance advantages. We identify two potential limiting factors: first, the limited scale of training
data, and second, room for improvement in the base VLM model’s capabilities.

Significant Improvements from Reflective Inference. The introduction of safety-guided regen-
eration mechanism yields substantial improvements in safety metrics such as DAC, TTC and NC.
This is primarily due to our reward function design that fully considers safety-related factors. For EP
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Figure 3: Safety-Guided Regeneration (S.G.R) Visualization. The first row illustrates three sce-
narios where large-angle turns are prone to boundary violations. The initial trajectories (lightest
color) carry the risk of exceeding the boundaries. Using S.G.R, the trajectory is gradually optimized
toward the safe region (with its color darkening progressively), ultimately resulting in a feasible
trajectory. The second row depicts three scenarios involving intense interactions. Initial trajectories
may pose collision risks with other vehicles or pedestrians. Through the iterative optimization of
S.G.R., the trajectories learn to avoid conflicts or decelerate to yield, achieving much higher safety.

metrics, we employ a goal-conditioned generation strategy for optimization. Compared to Reflect-
Drive (w/o R.I.), DAC gets +3.9-point improvement,TTC gets +1.3-point improvement, NC gets
+0.8-point improvement and EP gets +7.9-point improvement. while ensuring trajectory safety
without compromising progress. Compared to other end-to-end planners, DAC significantly outper-
forms others and approaches human-level performance, while TTC and NC underperform expecta-
tions due to the use of constant-velocity agents, which can lead to inaccurate safety estimations in
safety-critical scenarios.To explore the upper bound of ReflectDrive, we therefore employ ground-
truth agent states in our evaluation.

Approaching Human Driving Performance. When using ground truth agents information (i.e.,
with complete environmental information), the performance of the system already matches human
driving trajectories, such as NC 99.7, DAC 99.5, TTC 99.1, even EP 88.9 which is higher than hu-
man to demonstrate the potential powerful capabilities of ReflectDrive. Compared to ReflectDrive
based on constant velocity agents, DAC gets +0.2-point improvement, TTC gets +5.6-point im-
provement, NC gets +2.0-point improvement and EP gets +2.0-point improvement, which meet
the expectations. This implies that further performance improvements can be achieved with more
accurate detection and prediction results—a concern that is mitigated in practical deployment, as
specialized models are dedicated to these tasks. And through failure case analysis in Figure 6, we
identified optimization opportunities in the search algorithm. With further optimization of the search
algorithm, we expect to comprehensively surpass human driving performance.
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Figure 4: Ablation on (a) the number of generation steps for ReflectDrive (w/o R.I.), (b) the number
of goal points and range of NMS for Goal-Conditioned Generation (G.C.G.), and (c) the numbers
of exploration steps as well as max iterations for Safety-Guided Regeneration (S.G.R.).

Table 2: Ablation for Reflective Inference. The ablation study results of goal-conditioned genera-
tion and safety-guided regeneration to demonstrate the effectiveness of reflective inference.

Method Goal-Cond. Safety-Guided NC↑ DAC↑ TTC↑ Comf.↑ EP.↑ PDMS↑

W/o Both × × 96.9 95.4 92.2 100.0 79.0 84.8
W/ Goal-Cond. ✓ × 96.6 96.5 91.5 100.0 83.8 87.4
W/ Safety-Guided × ✓ 98.1 98.9 94.8 99.9 84.1 90.3
Full Model ✓ ✓ 97.7 99.3 93.5 99.9 86.9 91.1

5.3 QUALITATIVE RESULTS

To further demonstrate the capabilities of ReflectDrive, we show the trajectory generation results of
representative scenarios, as shown in Figure 3. ReflectDrive shows high-security trajectory gener-
ation, where the initial trajectory has the risk of going out of bounds, but with reflective inference
as guidance, the trajectory gradually iterates and optimizes toward the safe region, ultimately pro-
ducing a feasible trajectory. It is noteworthy that the generated trajectories remain kinematically
feasible and smooth even after discretization, further demonstrating the viability of using discrete
diffusion for autonomous driving planning. We also provide additional good examples in Figure 5.

5.4 ABLATION STUDIES

Ablation on Inference Parameters. We conducted ablation experiments on key adjustable pa-
rameters involved in the generation and reflection process, with results presented in Figure 4. These
parameters include: Generation steps, which governs the number of steps for impainting trajec-
tories in our discrete diffusion model; Num. goal points, indicating the number of selected goal
points (i.e., the number of multi-modal candidates); Exploration steps, controlling the search range
for candidate points (with larger values providing more correction space); and Max iterations, de-
noting the maximum number of regeneration iterations. For diffusion generation steps, the results
reveal a non-monotonic relationship between performance and the number of steps: model perfor-
mance improves during the initial steps, peaks at 5 steps, and subsequently declines with additional
steps. Furthermore, we demonstrate that multi-modal behavior modeling can further improve model
performance and offer a wider range of options for selection. Lastly, we observe the presence of
inference scaling: as computational resources allocated to exploration and regeneration steps in-
crease, model inference performance improves accordingly. The upper bound of this scaling may
also depend on the strategy employed, indicating potential for further optimization in future work.

Design Choices for Reflective Inference. Based on the optimal parameter configuration, we
conducted ablation experiments on goal-conditioned generation and safety-guided regeneration
methods. As shown in Table 2, the results indicate that goal-conditioned generation enhances
ego progress, while safety-guided regeneration improves both safety metrics and progress perfor-
mance. These findings validate the complementary nature of our ReflectDrive approach, where
goal-conditioned generation focuses on progress optimization while safety-guided regeneration en-
sures safety constraints are met without compromising driving efficiency.

9
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6 CONCLUSION

We propose ReflectDrive, a novel learning-based framework that integrates a reflection mechanism
for safe trajectory generation via discrete diffusion. The two-dimensional driving space is dis-
cretized into an action codebook, enabling fine-tuning of pre-trained Diffusion Language Models
for planning tasks. Our reflection mechanism begins with goal-conditioned generation to capture
diverse multi-modal behaviors, followed by safety-guided regeneration that identifies feasible so-
lutions through gradient-free inpainting. Evaluations on the NAVSIM benchmark demonstrate the
effectiveness and safety advantages of our approach. Due to space limitations, further discussions
on limitations and future directions are provided in Appendix G.
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APPENDIX

A VISUALIZATION OF PLANNING RESULTS

Figure 5: Planning results that meet the PDM evaluation criteria.

B SUPERVISED FINE-TUNING (SFT) DETAILS

Table 3 shows the parameters used in our inference stage. We fixed the length of the output be-
cause the number of trajectory points is always the same, and we perform parallel decoding for all
trajectory points. We generate 3 diverse goal proposals to ensure good coverage of potential driv-
ing intents. A threshold of 0.9 meters is used during non-maximum suppression to ensure that the
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Figure 6: Planning results of bad cases. Row 1 shows the oscillation between boundaries and needs
to improve the reward, such as adding the distance from the centerline in the future. Row 2 shows
goal point selection deviation. Row 3 shows navigation deviation.

selected goal points are spatially distinct. The safety loop is capped at 10 iterations to guarantee
a fixed upper bound on inference time. In practice, most trajectories converge to a safe state in
1-3 iterations. Tab 4 shows the key hyperparameters in our training stage. Specifically, our model
was initialized from the pre-trained LLaDA-V checkpoint and fine-tuned on the navtrain split of
NAVSIM, which contains 80k annotated samples.

Table 3: Inference Configuration for ReflectDrive.

Parameter Value
Steps 5
Answer length 32
Block length 32
Remask low-confidence
Number of goal candidates (K) 3
NMS distance threshold (dNMS) 0.9
Max refinement iterations 10
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Table 4: Key Hyperparameters for Training

Parameter Value

Spatial Range (M ) [-100, 100]
Batch Size 16
Gradient Accumulation Steps 1
Learning Rate 1× 10−5

Training Epochs 3
Max Context Length 8192
Learning Rate Scheduler Cosine
Warmup Ratio 0.03
Weight Decay 0.0
Precision bfloat16

C INFERENCE LATENCY AND SYSTEM PROFILE

We evaluate the latency and memory profile using a single NVIDIA H20 GPU. Our current im-
plementation is a research prototype based on the LLaDA-V backbone without engineering opti-
mizations such as KV-caching, quantization, or C++ deployment. Table 5 details the inference time
breakdown.

Table 5: Inference Latency Breakdown (Single NVIDIA H20).

Component Time (s) Note
Stage 1: Goal-Conditioned Gen. 6.82 Total

- Goal Proposal 0.62 Generation
- Trajectory Inpainting 6.06 5 denoising steps
- Scoring & Selection 0.15 -

Stage 2: Safety-Guided Regen. 4.88 Per Iteration
- Safety Check 0.13 -
- Search 0.84 -
- Scoring 1.68 -
- Regeneration (Inpainting) 2.14 1 denoising step

Average Total Inference ∼8.92 -

The latency is currently dominated by the VLM backbone’s forward pass and the Python-based
search logic. The search overhead (2.52s) can be reduced to milliseconds through C++ optimization,
and model inference can be accelerated using standard techniques such as KV caching. In the worst-
case scenario (max 10 iterations), the latency would be higher, but empirical results show that safety
violations are resolved within 0.43 iterations on average.

D ADDITIONAL ABLATION STUDIES

D.1 DISCRETIZATION GRANULARITY

We investigate the impact of grid resolution ∆g on performance. As shown in Table 6, using an
excessively fine granularity (∆g = 0.1m) leads to a significant performance drop (88.2). This is
likely due to the drastically increased codebook size (|A| = 2000), which complicates the classifica-
tion task for the diffusion model. Conversely, the model exhibits robust high performance (> 90.7)
across the range of 0.2m to 0.5m. We selected ∆g = 0.3m as the default because it achieves perfor-
mance comparable to the peak while maintaining a significantly smaller vocabulary size, offering a
better balance between precision and model complexity.
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Table 6: Ablation on Discretization Granularity (∆g).

Resolution ∆g (m) Codebook Size |A| PDMS
0.1 2000 88.2
0.2 1000 91.3

0.3 (Default) 667 91.1
0.4 500 90.7
0.5 400 91.2

D.2 ROBUSTNESS OF SCORING FUNCTIONS

To address concerns about reward shaping, we conducted a sensitivity analysis on the scorer weights
(wEP, wTTC, wC) and the binary TTC threshold. As shown in Table 7, our method demonstrates
strong robustness to hyperparameter variations. Removing specific weights (e.g., wEP = 0) results
in minimal performance fluctuation, confirming that the gains stem from the reflection mechanism
rather than overfitting to metric weights.

Table 7: Sensitivity Analysis of Scorer Weights and TTC Threshold.

wEP wTTC wC TTC Thresh (s) PDMS
5 (Default) 5 2 1.0 91.1

5 5 0 1.0 91.1
2 5 5 1.0 91.1
0 5 5 1.0 91.2
5 2 5 1.0 91.1
5 0 5 1.0 90.9

5 5 2 0.5 90.0
5 5 2 1.5 91.0

D.3 SENSITIVITY OF GOAL PROPOSAL PARAMETERS

In practice, we selected a smaller number of goals (K = 3) from an efficiency perspective, requiring
them to maintain a certain distance, and chose dNMS through visualization, rather than based on
actual scores. Table 8 confirms that K = 3 captures the majority of the performance gains (+3.3
PDMS over K = 1) while maintaining computational efficiency compared to higher values like
K = 5.

We further illustrate this choice through qualitative analysis. Figure 7 demonstrates that relying
solely on the Top-1 candidate (K = 1, shown in Black) often leads to failure cases, whereas
increasing K to 3 introduces valid alternatives (Top-2 and Top-3, shown in Red). Additionally,
Figure ?? visualizes the effect of the NMS threshold. While a larger threshold (2.1m) increases
spatial diversity compared to our default (0.9m), it introduces candidates with higher variance that
can be challenging for the subsequent refinement stage, reinforcing our selection of 0.9m as a robust
baseline.

E SCORING FUNCTION IMPLEMENTATION DETAILS

This appendix provides the detailed composition of the scoring functions introduced in the main
text. Our evaluation framework is designed to be comprehensive, balancing hard safety constraints
with continuous measures of driving quality and efficiency.

The final score for a trajectory, which underpins our Sglobal and Slocal scorers, is computed as a
product of a Hard Safety Compliance term (H(τ)) and a Performance Quality term (Q(τ)).
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Table 8: Ablation on Goal Proposal Parameters (GCG Stage Only).

(a) Goal Points (K)
K 1 3 (Def) 5 10

PDMS 84.1 87.4 88.7 87.6

(b) NMS Threshold (dNMS)
Thresh. (m) 0.0 0.3 0.9 (Def) 1.2

PDMS 85.8 86.5 87.4 88.0

Figure 7: Qualitative Visualization of Goal Candidates (K = 1 vs. K = 3). The Black trajec-
tories represent the Top-1 choice (equivalent to K = 1), which fails in these challenging scenarios.
The Red trajectories represent the Top-2 and Top-3 candidates introduced by setting K = 3. In
these cases, the alternative red trajectories successfully avoid obstacles or boundaries, demonstrat-
ing how multimodal proposals improve robustness.

E.1 HARD SAFETY COMPLIANCE TERM (H(τ))

This term acts as a safety gatekeeper. It is the product of several individual metric scores, each
corresponding to an inviolable driving rule. If any rule is broken, this entire term approaches zero,
effectively nullifying the trajectory’s score regardless of its performance quality.

H(τ) = mNC(τ) ·mDAC(τ) (5)
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Figure 8: Visualization of NMS Threshold Effects (dNMS = 0.9m vs. 2.1m). The top row displays
candidates generated with the default threshold (0.9m), exhibiting tighter clustering. The bottom
row shows the same scenarios with a larger threshold (2.1m), which forces greater spatial separation
between candidates.

The individual metrics are defined as follows:

• mNC (No at-fault Collision): This metric penalizes collisions for which the ego vehicle is
deemed responsible. A collision is considered ”at-fault” if the ego vehicle’s front collides
with any object, or if it collides with a static object.

– Score = 1.0: No at-fault collision occurs.
– Score = 0.5: An at-fault collision with a static object occurs.
– Score = 0.0: Any other at-fault collision occurs.

• mDAC (Drivable Area Compliance): This is a strict binary metric that ensures the vehicle
remains within the legally designated drivable area.

– Score = 1.0: The vehicle’s entire footprint remains within the drivable area.
– Score = 0.0: Any part of the vehicle’s footprint goes outside the drivable area.

Our Safety Scorer (Ssafe) uses this exact logic, evaluating these hard constraints at each waypoint to
detect failures.

E.2 PERFORMANCE QUALITY TERM (Q(τ))

This term evaluates the quality of a trajectory that has passed the hard safety checks. It is a normal-
ized weighted sum of several performance metrics.

Q(τ) =
wEP ·mEP(τ) + wTTC ·mTTC(τ) + wC ·mC(τ)

wEP + wTTC + wC
(6)

The individual metrics and their weights are as follows:

• mEP (Ego Progress): This metric measures the vehicle’s progress along its intended high-
level route. The value is normalized to a range of [0, 1] based on a feasible upper bound
for progress in the given scene.
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– Weight (wEP): 5
• mTTC (Time-to-Collision): This metric ensures a safe temporal buffer to other agents. It

is a binary score based on a predefined safety threshold.
– Score = 1.0: The minimum TTC to any other agent remains above the safe threshold

(e.g., 2.0 seconds).
– Score = 0.0: The minimum TTC drops below the threshold.
– Weight (wTTC): 5

• mC (Comfort): This metric evaluates ride smoothness. It is a binary score based on
whether the vehicle’s dynamics stay within acceptable bounds.

– Score = 1.0: Longitudinal and lateral acceleration and jerk all remain within prede-
fined comfort limits.

– Score = 0.0: Any of the dynamic limits are exceeded.
– Weight (wC): 2

F SCALABILITY AND COMPARISON WITH CONTINUOUS DIFFUSION

To further validate the effectiveness and scalability of our discrete diffusion framework, we con-
ducted a large-scale open-loop evaluation using an in-house dataset comprising approximately 1
billion samples. This dataset offers comprehensive coverage of diverse and complex driving scenar-
ios, far exceeding the scale of public benchmarks.

We compared our discrete diffusion VLA against a continuous diffusion VLA baseline trained on the
same data. Both models generated 8 trajectories per sample. We report the Average Displacement
Error (ADE) and Final Displacement Error (FDE) at 40m, 80m, and 120m horizons. Top1 refers to
the trajectory with the highest predicted confidence, while Min refers to the best trajectory among
the 8 samples (oracle selection).

As shown in Table 9, the discrete diffusion VLA consistently outperforms the continuous diffu-
sion baseline across most metrics, particularly in long-horizon prediction (120m FDE: 2.19 vs.
2.71). This empirical evidence suggests that discrete tokenization effectively captures complex
multi-modal distributions at scale, validating it as a robust alternative to continuous parameterization
for autonomous driving planning.

Table 9: Open-Loop Comparison on Large-Scale In-House Dataset (1B Samples).

Method Top1 FDE Top1 ADE Min FDE Min ADE
40m 80m 120m 40m 80m 120m 40m 80m 120m 40m 80m 120m

Continuous Diff. VLA 0.72 1.53 2.71 0.35 0.74 1.00 0.35 0.76 1.44 0.21 0.44 0.61
Discrete Diff. VLA 0.67 1.37 2.19 0.34 0.69 1.02 0.29 0.68 1.06 0.17 0.39 0.59

G LIMITATIONS & FUTURE WORK

Here, we discuss our limitaitons and interesting future works.

• Model Inputs. Our method relies on three-view images of the current frame as input. Never-
theless, single-frame images fail to capture velocity information, leaving the motion directions and
speeds of surrounding vehicles unknown. Only by incorporating historical images and additional
rich information as input can the model’s interaction capabilities be fully utilized.

Solution and future work: We can incorporate historical images to enable the model to output not
only planned trajectories but also the trajectories of key obstacles, providing a foundation for the
reward model and subsequent trajectory game-theoretic interactions.

• Reflection. First, Goal-Conditioned Generation should primarily focus on high-level objectives
such as navigation compliance and traffic efficiency. In practical applications, scoring should prior-
itize these aspects. For rapid validation in this work, we directly adopted the PDM scorer without
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task-specific adjustments. Second, in terms of Safety-Guided Regeneration, both the number of
iterations and online inference attempts affect the final outcomes. While achieving better results
requires sacrificing inference time, our experimental findings indicate that more inference opportu-
nities do not necessarily yield better performance. Our analysis of failure cases reveals the following
insights, as shown in Figure 6:

1. Oscillation Between Boundaries: The model tends to oscillate between boundary violations and
collision avoidance in its final reasoning, particularly in scenarios with limited drivable space. This
likely stems from increased difficulty caused by inherent errors in discrete trajectory representation.
Future work could explore alternative methods to mitigate this issue.

2. Navigation Correctness: The reward function does not account for navigation correctness, leading
to incorrect correction directions in certain scenarios. This can be addressed through iterative reward
function refinement.

3. Goal Point Selection: Suboptimal goal point performance in specific scenarios limits correction
capability when the search range is constrained. This could be improved by enhancing the base
model through reinforcement learning or other advanced techniques.

Solution and future work: We can replace the rule-based reward with a model-based reward, and the
search process can also be internalized within the model to some extent for reward-guided reflection,
though this may introduce corner cases in certain scenarios.

• Sample Efficiency. Since the primary focus of this work is on method validation, we have not
invested significant effort in algorithm optimization and acceleration, leaving substantial room for
improvement.

Solution and future work: Since the output token count is relatively small, more inference iterations
do not necessarily yield better results, and this could be reduced in future work. Additionally, engi-
neering optimizations such as KV cache can be implemented to improve computational efficiency.

Overall, although some design choices may appear simple and certain limitations exist, we have
thoroughly demonstrated the capabilities of ReflectDrive models for closed-loop planning in au-
tonomous driving through extensive experiments. Moreover, we demonstrate the potential of Re-
flectDrive model to provide a safety driving behavior. It provides a high-performance, highly adapt-
able planner for autonomous driving systems.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively as writing assistance tools in preparing this manuscript. Specifically,
we employed LLMs for grammar checking. All research ideation, experimental design, analysis,
and scientific conclusions are entirely the work of the authors. The LLMs played no role in the
conception of research questions, methodology development, or interpretation of results. Authors
take full responsibility for all content in this paper, including any text refined with LLM assistance.
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