

DISCRETE DIFFUSION FOR REFLECTIVE VISION-LANGUAGE-ACTION MODELS IN AUTONOMOUS DRIVING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 End-to-End (E2E) solutions have emerged as a mainstream approach for au-
 014 tonomous driving systems, with Vision-Language-Action (VLA) models repre-
 015 senting a new paradigm that leverages pre-trained multimodal knowledge from
 016 Vision-Language Models (VLMs) to interpret and interact with complex real-
 017 world environments. However, these methods remain constrained by the limita-
 018 tions of imitation learning, which struggles to inherently encode physical rules
 019 during training. Existing approaches often rely on complex rule-based post-
 020 refinement, employ reinforcement learning that remains largely limited to sim-
 021 ulation, or utilize diffusion guidance that requires computationally expensive gra-
 022 dient calculations. To address these challenges, we introduce *ReflectDrive*, a novel
 023 learning-based framework that integrates a reflection mechanism for safe trajec-
 024 tory generation via discrete diffusion. We first discretize the two-dimensional
 025 driving space to construct an action codebook, enabling the use of pre-trained
 026 Diffusion Language Models for planning tasks through fine-tuning. Central
 027 to our approach is a safety-aware reflection mechanism that performs iterative
 028 self-correction without gradient computation. Our method begins with goal-
 029 conditioned trajectory generation to model multi-modal driving behaviors. Based
 030 on this, we apply local search methods to identify unsafe tokens and determine
 031 feasible solutions, which then serve as safe anchors for inpainting-based regen-
 032 eration. Evaluated on the NAVSIM benchmark, *ReflectDrive* demonstrates sig-
 033 nificant advantages in safety-critical trajectory generation, offering a scalable and
 034 reliable solution for autonomous driving systems.

1 INTRODUCTION

037 Autonomous driving (AD) is guiding the transportation industry toward a safer and more efficient
 038 future (Tampuu et al., 2020). Within this trend, End-to-End (E2E) systems (Hu et al., 2023; Chen
 039 et al., 2023) have emerged as the mainstream alternative to traditional modular designs (Bansal
 040 et al., 2018), which are prone to error accumulation between interdependent modules. They have
 041 also largely replaced rule-based methods (Fan et al., 2018; Treiber et al., 2000) that demand ex-
 042 tensive human engineering effort. Meanwhile, Vision-Language-Action (VLA) models (Kim et al.,
 043 2024; Hwang et al., 2024) offer a new solution by incorporating pre-trained knowledge from Vision-
 044 Language Models (VLMs) (Hurst et al., 2024; Bai et al., 2025). Equipped with enhanced general-
 045 ization capabilities, VLA models can interpret visual scenes and understand human instructions to
 046 directly output planning trajectories, thereby improving adaptability in challenging situations.

047 However, existing learning-based methods do not resolve the core challenge in imitation learning-
 048 based driving systems. Specifically, behavior cloning fails to inherently encode inviolable physical
 049 rules, such as collision avoidance or adherence to drivable areas (Lu et al., 2023). As a result, a
 050 generated trajectory may be highly probable under the model’s distribution yet still violate critical
 051 safety constraints. Consequently, existing deployed solutions often rely on significant human pri-
 052 ors, such as trajectory anchors (Li et al., 2024) or rule-based generated paths (Dauner et al., 2023).
 053 These priors offer a reliable initial solution for the learning system, but they also necessitate sub-
 054 stantial post-processing, particularly in complex scenarios. Concurrently, more advanced solutions
 055 are emerging. Some methods integrate reinforcement learning (Kaelbling et al., 1996; Kendall et al.,

054 2019; Jaeger et al., 2025; Cusumano-Towner et al., 2025) with human-designed reward functions to
 055 enhance causal reasoning. However, most existing studies remain confined to the simulation level.
 056 From a deployment perspective, these approaches typically require unsafe online rollouts and suffer
 057 from training instability, especially in large-scale models (Zheng et al., 2024). Although guidance
 058 mechanisms in diffusion models provide a promising alternative by enabling controllable generation
 059 during inference (Zheng et al., 2025; Jiang et al., 2023; Zhong et al., 2023), they often experience
 060 slow sampling speeds due to gradient computations and are highly sensitive to parameter tuning,
 061 which can lead to numerical instability.

062 To address these challenges, we pioneer the use of discrete diffusion (Austin et al., 2021) for planning
 063 to meet the demand for verifiable and controllable E2E driving systems. A key advantage of
 064 this approach is its operation in a discrete action space, which facilitates the seamless incorporation
 065 of critical safety constraints through search, masking, and sampling techniques during trajectory
 066 generation. This results in a hybrid framework in which learned behaviors can be rigorously guided
 067 by prior knowledge, shifting away from black-box planning toward trustworthy and interpretable
 068 decision-making. Inspired by these insights, we propose *ReflectDrive*, a novel learning-based frame-
 069 work that integrates a reflection mechanism for safe trajectory generation via discrete diffusion.
 070 Specifically, we first discretize the two-dimensional driving space to construct a action codebook,
 071 enabling the representation of vehicle trajectories through discrete codebook embeddings. This rep-
 072 resentation allows us to leverage a pre-trained Diffusion Language Models (DLMs) (You et al.,
 073 2025; Nie et al., 2025) for planning tasks via fine-tuning. The approach facilitates parallel decoding
 074 and bidirectional feature fusion within a unified architecture that supports scalable training. Based
 075 on this fine-tuned model, our reflection mechanism begins with goal-conditioned generation, where
 076 the goal point guides the generation process to capture diverse multi-modal driving behaviors. Fur-
 077 thermore, the framework integrates safety metrics to evaluate the generated multi-modal trajectories.
 078 For unsafe waypoints, we perform a local search to identify a feasible solution, which then serves as
 079 a safe anchor token for trajectory inpainting. The entire process operates without gradient computa-
 080 tion, enabling parallel generation and the injection of safety constraints during trajectory regenera-
 081 tion. Evaluations on the real-world autonomous driving benchmark NAVSIM (Dauner et al., 2024)
 082 demonstrate the feasibility of employing discrete diffusion for trajectory generation. Equipped with
 083 our reflection mechanism, *ReflectDrive* achieves near human-level closed-loop performance. Our
 084 contributions are summarized as follows:
 085

- We pioneer the application of discrete diffusion for E2E autonomous driving trajectory generation and integrate it into a VLA model for scalable training.
- We introduce reflection mechanism, a novel inference-time guidance framework specifically designed for the denoising process in discrete diffusion, integrating external safety validation with efficient discrete token optimization.
- We evaluate our method on real-world driving benchmarks, proving that the framework can enforce hard safety constraints without compromising behavioral coherence.

092 2 RELATED WORK

093 **End-to-End Autonomous Driving.** E2E methods (Hu et al., 2023; Chen et al., 2023) have
 094 emerged as a promising solution to largely replace rule-based approaches due to their superior scal-
 095 ability. Recently, VLA models (Hwang et al., 2024; Renz et al., 2025; Zhou et al., 2025) have arisen
 096 as a new paradigm, incorporating world knowledge from pre-trained VLMs to enhance performance
 097 in long-tail scenarios. Additionally, VLA architectures can accept human instructions to support
 098 human-preferred driving behaviors (Kim et al., 2024), while language serves as an interpretable
 099 intermediate representation for improved explainability (Tian et al., 2024; Wang et al., 2025).

100 **Beyond Imitation Learning.** Current mainstream pipelines still operate within imitation learning-
 101 based frameworks, which suffer from causal confusion and lack verifiable safety guarantees. Many
 102 studies have attempted to address this issue, which can be broadly categorized as follows: 1) The
 103 model uses trajectory anchors, which are derived from clustered trajectory data or rule-based
 104 proposals, as conditioning inputs and is designed to predict offsets for further trajectory refine-
 105 ment (Dauner et al., 2023). Hydra-MDP (Li et al., 2024) utilizes trajectory anchors as candidates
 106 for post-selection, while DiffusionDrive (Liao et al., 2024) employs anchors as starting points and

uses a pseudo-diffusion process for refinement. Although these methods exhibit improved reliability, they rely heavily on rule-based design. 2) Reinforcement learning methods enhance model capabilities through exploration (Shalev-Shwartz et al., 2016; Kiran et al., 2021; Cao et al., 2023; Lu et al., 2023); for instance, GIGAFLLOW (Cusumano-Towner et al., 2025) significantly improves performance via self-play in simulation. However, online rollouts are infeasible for real-world vehicle deployment, and simulation training faces the sim-to-real gap. Although recent advances in world models (Guan et al., 2024) offer a potential solution, they still struggle with out-of-distribution simulation. 3) Other methods, such as guidance mechanisms for diffusion models, enable the injection of reward signals during the denoising process (Jiang et al., 2023; Zhong et al., 2023). Diffusion Planner (Zheng et al., 2025) represents a pioneering effort in applying diffusion models to closed-loop planning tasks. Although it utilizes guidance to adjust behavior during inference, the method relies on additional gradient computations, resulting in high computational cost. In this paper, we propose a novel reflection mechanism based on discrete diffusion that naturally incorporates safety constraints through search, masking, and inpainting during trajectory generation.

3 PRELIMINARIES

3.1 AUTONOMOUS DRIVING PLANNING

We formulate the autonomous driving planning task as learning a conditional distribution $p(\tau | c)$, where the goal is to generate a future trajectory τ . Each waypoint is expressed in the ego-vehicle frame, conditioned on a scene context c that includes multi-view images, instructions, and ego-vehicle state. The primary challenge in planning is that trajectories must adhere to traffic rules and safety constraints, which is difficult for imitation learning-based methods due to the absence of explicit signals to ensure strict compliance with these requirements.

3.2 DISCRETE DIFFUSION

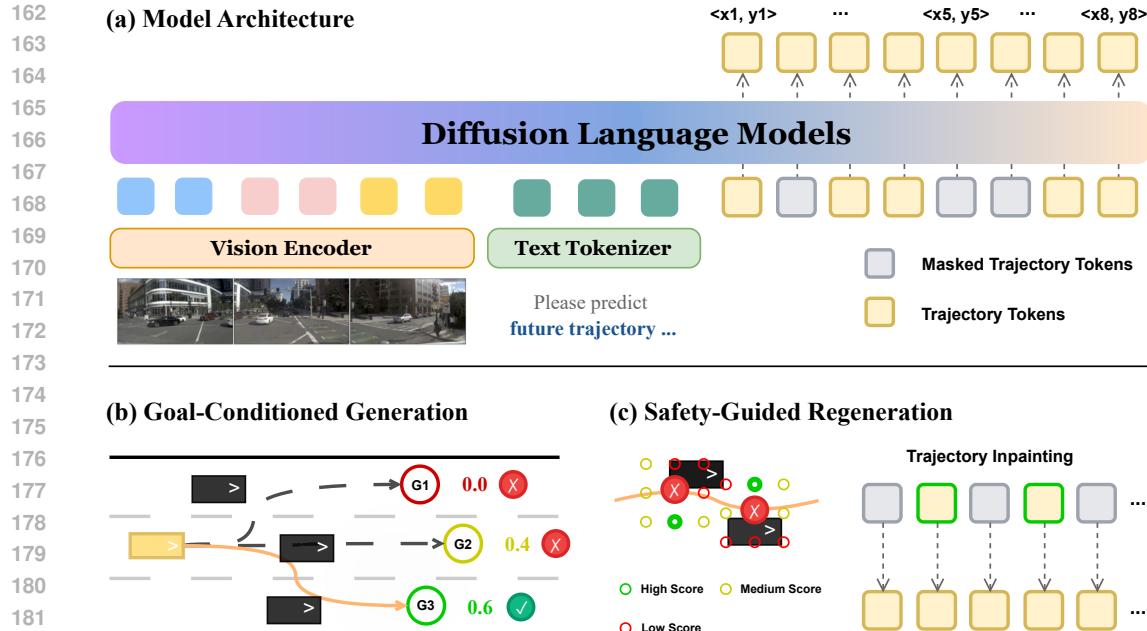
Discrete diffusion models (Austin et al., 2021; Meng et al., 2022; Lou et al., 2023) have emerged as a powerful non-autoregressive paradigm for generating structured sequences. This process is defined by a forward corruption process and a learned reverse denoising process.

Forward and Reverse Process. The forward process degrades a clean sequence of discrete tokens $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_i, \dots, \mathbf{y}_L)$ over a series of S timesteps. At each step $s \in \{1, \dots, S\}$, a noisy version of the sequence, $\tilde{\mathbf{y}}^{(s)}$, is created by masking a subset of the tokens in \mathbf{y} . Specifically, a binary mask $\mathbf{m}^{(s)} = (m_1^{(s)}, \dots, m_i^{(s)}, \dots, m_L^{(s)}) \in \{0, 1\}^L$ is sampled, and each token \mathbf{y}_i is replaced with a special [MASK] token if $m_i^{(s)} = 1$. The number of masked tokens is determined by a noise schedule, such as a cosine schedule, which typically increases the masking ratio as s approaches S . The core learning task is to train a model p_θ to reverse this corruption. This model learns to predict the original tokens at the masked positions, conditioned on the unmasked tokens, the timestep s , and any external context c . The model is trained by minimizing the negative log-likelihood objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{y}, c, s, \mathbf{m}^{(s)}} \left[- \sum_{i: m_i^{(s)}=1} \log p_\theta(\mathbf{y}_i | \tilde{\mathbf{y}}^{(s)}, c, s) \right]. \quad (1)$$

Here, $s \in [0, 1]$ represents the masking ratio determined by the noise schedule, and c encompasses the scene context including multi-view images, ego-status, and instructions.

Model Inference. To generate a new sequence, the process starts with a fully masked sequence, $\tilde{\mathbf{y}}^{(S)}$. The model then iteratively refines this sequence for S steps. In each step, the model predicts a probability distribution for the tokens at the masked positions. A subset of these predictions is then sampled and fixed, while the rest are re-masked for the next refinement step. Specifically, we utilize a linear noise schedule. During inference, we adopt a parallel decoding strategy where, at each step, we select and fix a subset of tokens with the highest predicted confidence scores, allowing multiple tokens to be decoded simultaneously until the sequence is complete. A central advantage of this framework, and one especially critical to our work, is its capacity for inpainting, defined as

Figure 1: *ReflectDrive* Framework Overview.

186 the ability to reconstruct masked segments of a sequence while maintaining consistency with the
 187 context from unmasked tokens. Additionally, the discrete token structure supports efficient search
 188 and constraint integration, making it possible to guide trajectories using safety constraints.

4 METHOD

193 In this section, we present *ReflectDrive*, a novel learning-based framework that integrates a reflection
 194 mechanism to facilitate safe trajectory generation via discrete diffusion, as illustrated in Figure 1.
 195 We first introduce a trajectory discretization method tailored for integration into a masked diffusion
 196 process. A pre-trained diffusion language model is then employed for trajectory generation. Finally,
 197 we propose a reflection mechanism specifically designed to ensure safety during the trajectory
 198 generation process. This mechanism leverages diffusion inpainting and capitalizes on the advantages
 199 of discrete token spaces for efficient constraint-based search.

4.1 DISCRETE DIFFUSION FOR AUTONOMOUS DRIVING PLANNING

204 **Trajectory Discretization.** To represent continuous waypoints in a discrete format, we quantize
 205 each 2D coordinate (x, y) by mapping its x and y values independently to the closest tokens in their
 206 respective 1D codebooks. We define a uniform 1D codebook $\mathcal{A} = \{a_1, a_2, \dots\}$ by discretizing a
 207 spatial range $[-M, M]$ with resolution Δ_g . A quantizer \mathcal{Q} maps a real value to its nearest token, and
 208 its inverse recovers the coordinate. Each 2D waypoint is thus represented by a token pair $(y_{j,x}, y_{j,y})$,
 209 and the full trajectory becomes a flattened sequence $\mathbf{y} = \mathcal{Q}(\tau) = (y_{1,x}, y_{1,y}, \dots, y_{N,x}, y_{N,y}) \in$
 \mathcal{A}^{2N} . At first glance, discretization may appear to cause some loss in trajectory precision. However,
 210 in practical deployment, the resolution can be adjusted to control accuracy, or different codebook
 211 partitioning strategies can be employed. Specifically, we utilize a grid resolution of $\Delta_g = 0.3$ meters.
 212 Given the spatial range of $[-100, 100]$ meters, this results in a codebook size of $|\mathcal{A}| \approx 667$
 213 tokens per dimension. Most importantly, discretization facilitates efficient search for feasible
 214 solutions in the Bird’s-Eye View (BEV) space. Experimental results in Section 5.2 and Figure 3 further
 215 demonstrate that, with discrete representations, our reflection mechanism significantly enhances the
 safety of the generated trajectories.

216 **Discrete Diffusion Model.** Based on our discretized trajectory representation, we instantiate the
 217 trajectory planner using the discrete diffusion framework described in Section 3. In practice, we
 218 employ a VLA model as the planner, initialized from a pre-trained Diffusion Language Model (You
 219 et al., 2025; Nie et al., 2025) that exhibits strong pre-training performance in understanding driving
 220 scenarios. The model can generate a tokenized trajectory \mathbf{y} conditioned on a scene context c (multi-
 221 view images, language instruction, ego state). The model is trained via the denoising objective in
 222 Eq. 1 using autonomous driving planning datasets for supervised fine-tuning. This provides the
 223 inherent capability for bidirectional inpainting, which serves as the foundation of our method. It
 224 enables the model to perform holistic parallel refinement and elegantly repair trajectories around
 225 externally guided safety edits during the reflective inference process.

226 **4.2 REFLECTIVE INFERENCE**

227 With the discrete diffusion-based VLA model as our foundation, we introduce a reflective inference
 228 framework to bridge the gap between imitation learning and safety-critical deployment. This frame-
 229 work operates in two stages: goal-conditioned trajectory generation and safety-guided regeneration.
 230 The entire process is guided by a set of specialized scoring functions.

231 **Scoring Function Definitions.** To systematically evaluate trajectories, our framework incorpo-
 232 rates three distinct scoring functions. The detailed composition of these functions, which are de-
 233 signed based on established autonomous driving evaluation principles, is provided in Appendix E.

- 234 • *Global Scorer* ($S_{\text{global}}(\tau)$): This scorer evaluates the overall quality of a complete trajectory, con-
 235 sidering both safety and coherence, and returns a value of zero if any critical rule is violated.
- 236 • *Safety Scorer* ($S_{\text{safe}}(\tau)$): This scorer acts as a safety oracle to identify specific points of failure.
- 237 • *Local Scorer* ($S_{\text{local}}(a_x, a_y)$): This scorer evaluates each candidate token pair (a_x, a_y) using a
 238 comprehensive function that assesses its impact on the trajectory’s safety and coherence.

239 **Goal-Conditioned Generation.** To ensure our planner can reason about high-level, global intents
 240 that go beyond simple local adjustments, the process begins with generating a diverse set of trajec-
 241 tory proposals. This procedure is essential for multi-modal driving behavior modeling and serves
 242 as a necessary step for subsequent regeneration. Since the local search in our safety-aware regen-
 243 eration stage is intentionally constrained for efficiency, it cannot accommodate large-scale changes,
 244 such as taking a different turn at an intersection, which require broader exploration. We first use the
 245 model to produce a probability distribution for the terminal waypoint tokens, $p_{\theta}(\mathbf{y}_N \mid c, s)$, where
 246 $\mathbf{y}_N = (\mathbf{y}_{N,x}, \mathbf{y}_{N,y})$. From this distribution, we sample a set of high-probability goal candidates.
 247 We then apply Non-Maximum Suppression (NMS) (Ren et al., 2015) to obtain a spatially diverse
 248 set of K candidate goals, $\mathcal{G} = \{G_1, \dots, G_K\}$:

$$249 \mathcal{G} = \text{NMS}(\text{TopK}_{K'}(p_{\theta}(\mathbf{y}_N \mid c, s)), d_{\text{NMS}}, K) \quad (2)$$

250 where $\text{TopK}_{K'}(\cdot)$ is an operator that selects the K' most probable goal candidates from the model’s
 251 output distribution. The $\text{NMS}(\cdot)$ function then filters this set using a distance threshold d_{NMS} to
 252 produce the final, spatially diverse set \mathcal{G} of size K . For practical deployment, a dedicated goal
 253 generation model could be used to improve the accuracy and quality of goal points. However, for
 254 simplicity, we employ the same model for both goal generation and trajectory planning. Then,
 255 for each goal $G_k \in \mathcal{G}$, we generate a full trajectory τ_k by sampling from the conditional distri-
 256 bution $p_{\theta}(\mathbf{y}_{1:2N-2} \mid G_k, c, s)$ via inpainting. The resulting K trajectories are evaluated using the
 257 **Global Scorer** $S_{\text{global}}(\cdot)$, which assesses each plan based on a combination of metrics including goal
 258 progress. The top-scoring trajectory τ^* is then selected for further refinement.

$$259 \tau^* = \arg \max_{\tau_k, k=1, \dots, K} S(\tau_k). \quad (3)$$

260 **Safety-Guided Regeneration.** The selected trajectory τ^* , while coherent, may still violate physi-
 261 cal constraints. We address this with an iterative, gradient-free refinement loop that forms a dialogue
 262 between the generative model and an external safety oracle, as shown in Figure 2.

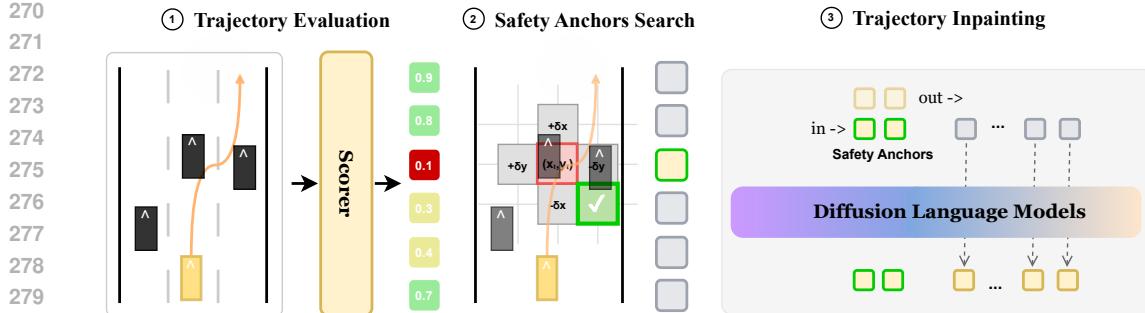


Figure 2: Safety-Guided Regeneration Pipeline.

- *Trajectory Evaluation.* The process begins when the **Safety Scorer** $S_{\text{safe}}(\cdot)$ evaluates the de-quantized trajectory and identifies the specific waypoints that are unsafe. The oracle assigns a safety score to each original waypoint based on the worst violation (e.g., drivable area infraction) within a local time window. This allows it to precisely pinpoint unsafe waypoints.
- *Safety Anchors Search.* For the earliest waypoint that violates a safety threshold, we perform a highly efficient local search within a small Manhattan neighborhood \mathcal{N}_δ of the original tokens to identify an improved token pair, rather than resorting to complex continuous optimization. The corrected token pair that maximizes the local safety score is then designated as a safety anchor.
- *Trajectory Inpainting.* We then leverage the diffusion model’s powerful inpainting capability to regenerate the surrounding trajectory segments conditioned on safety anchors. This single-pass regeneration allows the model to naturally re-establish global coherence around the safety-driven edit. This cycle of identifying violations, performing discrete corrections, and re-inpainting continues until the plan is fully safe or a computational budget is met. Specifically, we set a maximum budget of 10 iterations to ensure real-time feasibility. If the algorithm reaches this limit without finding a fully safe trajectory, it outputs the candidate with the highest safety score found during the search as a fallback strategy.

This refinement process operates as an iterative loop. In each iteration, The top-scoring trajectory τ^* is evaluated by the **Safety Scorer** at each waypoint t . The algorithm proceeds sequentially through the waypoints to find the first index t^* for which the score $S_{\text{safe}}(\tau^*)$ falls below a predefined safety threshold. If no such waypoint exists, the trajectory is deemed safe and the process terminates. If a violation is found at index t^* , the **Local Scorer** is then employed to find an improved token pair within a local neighborhood \mathcal{N}_δ by solving:

$$(\mathbf{y}'_{t^*,x}, \mathbf{y}'_{t^*,y}) = \arg \max_{(a_x, a_y) \in \mathcal{N}_\delta(\mathbf{y}_{t^*,x}, \mathbf{y}_{t^*,y})} S_{\text{local}}(a_x, a_y). \quad (4)$$

The original token at t^* is replaced by this new, optimized pair, which serves as a fixed safety anchor for the subsequent inpainting step. The refinement cycle then continues with this updated trajectory. In practice, the reflective inference process is designed for real-time performance. The local search for corrective tokens is efficient, as it operates over a small, discrete neighborhood (e.g., a Manhattan distance $\delta \leq 10$) rather than requiring expensive gradient-based optimization. In practice, we find that most safety violations are resolved within 1–3 iterations of reflection, resulting in a manageable inference overhead.

5 EXPERIMENTS

5.1 BENCHMARK AND BASELINES

Evaluation Setups. In our implementation, the VLA model backbone is initialized from a publicly available pre-trained Vision-Language Model (LLaDA-V [You et al. \(2025\)](#)) and utilizes classifier-free guidance for trajectory generation. Input images are obtained from the front, front-left, and front-right cameras. The language instruction provides a high-level navigational command, such as “turn left” or “go straight,” along with textual descriptions of the ego vehicle’s status. We evaluate our model on the large-scale real-world autonomous driving benchmark NAVSIM ([Dauner](#)

324 **Table 1: NAVSIM Closed-Loop Results.** Methods are grouped by their core architectural paradigm.
 325 The \dagger symbol denotes our method using a privileged ground-truth oracle for reflection, serving as an
 326 analytical upper bound. Best result per column is in **bold** (higher is better).

328 Method	329 Paradigm	330 Input	331 NC\uparrow	332 DAC\uparrow	333 TTC\uparrow	334 Comf.\uparrow	335 EP\uparrow	336 PDMS\uparrow
<i>Base End-to-End Planners</i>								
337 UniAD	338 -	339 Cam	340 97.8	341 91.9	342 92.9	343 100.0	344 78.8	345 83.4
337 PARA-Drive	338 -	339 Cam	340 97.9	341 92.4	342 93.0	343 99.8	344 79.3	345 84.0
337 Transfuser	338 -	339 C & L	340 97.7	341 92.8	342 92.8	343 100.0	344 79.2	345 84.0
<i>Augmented End-to-End Planners</i>								
337 Hydra-MDP	338 -	339 C & L	340 98.3	341 96.0	342 94.6	343 100.0	344 78.7	345 86.5
337 DiffusionDrive	338 Diffusion	339 C & L	340 98.2	341 96.2	342 94.7	343 100.0	344 82.2	345 88.1
337 GoalFlow	338 Diffusion	339 C & L	340 98.4	341 98.3	342 94.6	343 100.0	344 85.0	345 90.3
<i>VLA Planners</i>								
339 AutoVLA (Post-RFT)	340 Autoregressive	341 Cam	342 98.4	343 95.6	344 98.0	345 99.9	346 81.9	347 89.1
339 ReflectDrive (w/o R.I.)	340 Discrete Diffusion	341 Cam	342 96.9	343 95.4	344 92.2	345 100.0	346 79.0	347 84.8
339 ReflectDrive (Ours)	340 Discrete Diffusion	341 Cam	342 97.7	343 99.3	344 93.5	345 100.0	346 86.9	347 91.1
342 ReflectDrive \dagger	343 Discrete Diffusion	344 Cam	345 99.7	346 99.5	347 99.1	348 99.9	349 88.9	350 94.7
<i>Human</i>								

346 [et al., 2024](#) for closed-loop performance assessment. Following the official protocol, performance
 347 is reported with the PDMS score (higher is better), aggregated from five metrics: *NC* (no-collision
 348 rate), *DAC* (drivable area compliance), *TTC* (time-to-collision safety), *Comfort* (bounded accelera-
 349 tion/jerk) and *EP* (ego progress). We run all the methods under the official closed-loop simulator
 350 and report averages on the public test split. Our planner uses camera-only inputs unless otherwise
 351 stated; we also include Camera+LiDAR baselines to provide a more comprehensive comparison.

352 **Baselines.** We compare *ReflectDrive* to other autonomous driving systems. For example, vanilla
 353 E2E planners that purely use sensor information as input and output trajectories, such as UniAD ([Hu](#)
 354 [et al., 2023](#)), Para-Drive ([Weng et al., 2024](#)), Transfuser ([Chitta et al., 2023](#)). As well as augmented
 355 E2E planners that incorporate clustering results as auxiliary information like Hydra-MDP ([Li et al.,](#)
 356 [2024](#)), DiffusionDrive ([Liao et al., 2024](#)), and GoalFlow ([Xing et al., 2025](#)), the PDMS scores
 357 will be higher than vanilla E2E planners due to additional information. We also include recent
 358 AutoVLA ([Zhou et al., 2025](#)) model that unifies reasoning and action generation within a single
 359 autoregressive generation model, the PMDS score is the highest among VLA planners. For
 360 our model family, the table lists: *ReflectDrive* (w/o R.I.) trained with discrete masked diffusion
 361 adding classifier-free guidance at inference without reflective inference; *ReflectDrive* adding goal-
 362 conditioned generation and safety-guided regeneration, where the safety-guided regeneration relies
 363 on the reward model where surrounding obstacles are moving at constant speeds; *ReflectDrive* \dagger
 364 adding goal-conditioned generation and safety-guided regeneration, where the safety-guided regen-
 365 eration relies on the reward model where surrounding obstacles are ground-truth agents.

366 5.2 MAIN RESULTS

368 Evaluation results on the NAVSIM benchmark are presented in Table 1.

370 **Base Model Validation.** *ReflectDrive* base model achieves the PDMS score 84.8 comparable to
 371 the base end-to-end models, such as UniAD, PARA-Drive, and Hydra-MDP, and slightly lower than
 372 the score of Augmented End-to-End Planners. However, it has not yet demonstrated significant per-
 373 formance advantages. We identify two potential limiting factors: first, the limited scale of training
 374 data, and second, room for improvement in the base VLM model’s capabilities.

375 **Significant Improvements from Reflective Inference.** The introduction of safety-guided regen-
 376 eration mechanism yields substantial improvements in safety metrics such as *DAC*, *TTC* and *NC*.
 377 This is primarily due to our reward function design that fully considers safety-related factors. For *EP*

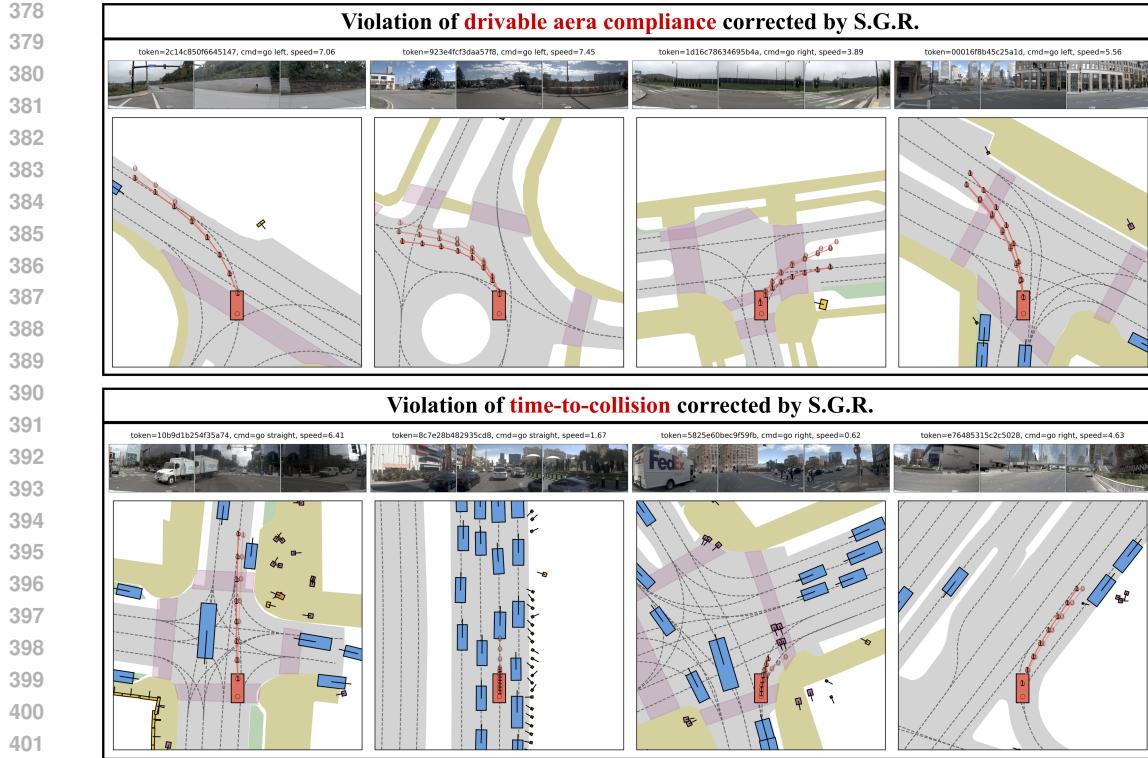


Figure 3: **Safety-Guided Regeneration (S.G.R.) Visualization.** The first row illustrates three scenarios where large-angle turns are prone to boundary violations. The initial trajectories (lightest color) carry the risk of exceeding the boundaries. Using S.G.R., the trajectory is gradually optimized toward the safe region (with its color darkening progressively), ultimately resulting in a feasible trajectory. The second row depicts three scenarios involving intense interactions. Initial trajectories may pose collision risks with other vehicles or pedestrians. Through the iterative optimization of S.G.R., the trajectories learn to avoid conflicts or decelerate to yield, achieving much higher safety.

metrics, we employ a goal-conditioned generation strategy for optimization. Compared to *Reflect-Drive* (w/o R.I.), *DAC* gets **+3.9-point** improvement, *TTC* gets **+1.3-point** improvement, *NC* gets **+0.8-point** improvement and *EP* gets **+7.9-point** improvement. while ensuring trajectory safety without compromising progress. Compared to other end-to-end planners, *DAC* significantly outperforms others and approaches human-level performance, while *TTC* and *NC* underperform expectations due to the use of constant-velocity agents, which can lead to inaccurate safety estimations in safety-critical scenarios. To explore the upper bound of *ReflectDrive*, we therefore employ ground-truth agent states in our evaluation.

Approaching Human Driving Performance. When using ground truth agents information (i.e., with complete environmental information), the performance of the system already matches human driving trajectories, such as *NC* **99.7**, *DAC* **99.5**, *TTC* **99.1**, even *EP* **88.9** which is higher than human to demonstrate the potential powerful capabilities of *ReflectDrive*. Compared to ReflectDrive based on constant velocity agents, *DAC* gets **+0.2-point** improvement, *TTC* gets **+5.6-point** improvement, *NC* gets **+2.0-point** improvement and *EP* gets **+2.0-point** improvement, which meet the expectations. This implies that further performance improvements can be achieved with more accurate detection and prediction results—a concern that is mitigated in practical deployment, as specialized models are dedicated to these tasks. And through failure case analysis in Figure 6, we identified optimization opportunities in the search algorithm. With further optimization of the search algorithm, we expect to comprehensively surpass human driving performance.

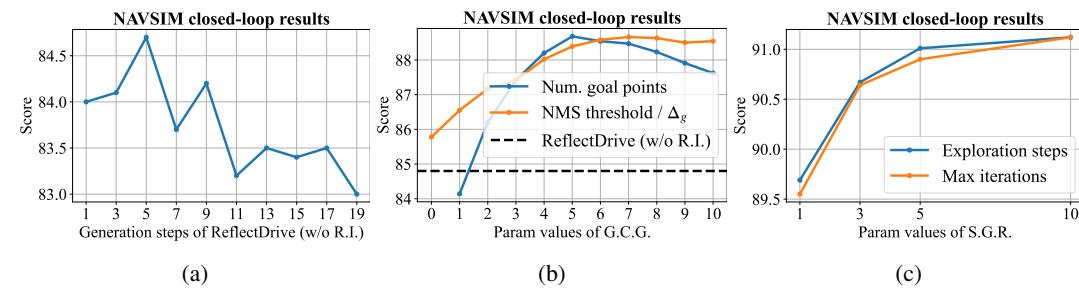


Figure 4: Ablation on (a) the number of generation steps for *ReflectDrive* (w/o R.I.), (b) the number of goal points and range of NMS for Goal-Conditioned Generation (G.C.G.), and (c) the numbers of exploration steps as well as max iterations for Safety-Guided Regeneration (S.G.R.).

Table 2: **Ablation for Reflective Inference.** The ablation study results of goal-conditioned generation and safety-guided regeneration to demonstrate the effectiveness of reflective inference.

Method	Goal-Cond.	Safety-Guided	NC↑	DAC↑	TTC↑	Comf.↑	EP.↑	PDMS↑
W/o Both	✗	✗	96.9	95.4	92.2	100.0	79.0	84.8
W/ Goal-Cond.	✓	✗	96.6	96.5	91.5	100.0	83.8	87.4
W/ Safety-Guided	✗	✓	98.1	98.9	94.8	99.9	84.1	90.3
Full Model	✓	✓	97.7	99.3	93.5	99.9	86.9	91.1

5.3 QUALITATIVE RESULTS

To further demonstrate the capabilities of *ReflectDrive*, we show the trajectory generation results of representative scenarios, as shown in Figure 3. *ReflectDrive* shows high-security trajectory generation, where the initial trajectory has the risk of going out of bounds, but with reflective inference as guidance, the trajectory gradually iterates and optimizes toward the safe region, ultimately producing a feasible trajectory. It is noteworthy that the generated trajectories remain kinematically feasible and smooth even after discretization, further demonstrating the viability of using discrete diffusion for autonomous driving planning. We also provide additional good examples in Figure 5.

5.4 ABLATION STUDIES

Ablation on Inference Parameters. We conducted ablation experiments on key adjustable parameters involved in the generation and reflection process, with results presented in Figure 4. These parameters include: **Generation steps**, which governs the number of steps for impainting trajectories in our discrete diffusion model; **Num. goal points**, indicating the number of selected goal points (i.e., the number of multi-modal candidates); **Exploration steps**, controlling the search range for candidate points (with larger values providing more correction space); and **Max iterations**, denoting the maximum number of regeneration iterations. For diffusion generation steps, the results reveal a non-monotonic relationship between performance and the number of steps: model performance improves during the initial steps, peaks at 5 steps, and subsequently declines with additional steps. Furthermore, we demonstrate that multi-modal behavior modeling can further improve model performance and offer a wider range of options for selection. Lastly, we observe the presence of inference scaling: as computational resources allocated to exploration and regeneration steps increase, model inference performance improves accordingly. The upper bound of this scaling may also depend on the strategy employed, indicating potential for further optimization in future work.

Design Choices for Reflective Inference. Based on the optimal parameter configuration, we conducted ablation experiments on goal-conditioned generation and safety-guided regeneration methods. As shown in Table 2, the results indicate that goal-conditioned generation enhances ego progress, while safety-guided regeneration improves both safety metrics and progress performance. These findings validate the complementary nature of our *ReflectDrive* approach, where goal-conditioned generation focuses on progress optimization while safety-guided regeneration ensures safety constraints are met without compromising driving efficiency.

486 **6 CONCLUSION**

487

488 We propose *ReflectDrive*, a novel learning-based framework that integrates a reflection mechanism
 489 for safe trajectory generation via discrete diffusion. The two-dimensional driving space is dis-
 490 cretized into an action codebook, enabling fine-tuning of pre-trained Diffusion Language Models
 491 for planning tasks. Our reflection mechanism begins with goal-conditioned generation to capture
 492 diverse multi-modal behaviors, followed by safety-guided regeneration that identifies feasible so-
 493 lutions through gradient-free inpainting. Evaluations on the NAVSIM benchmark demonstrate the
 494 effectiveness and safety advantages of our approach. Due to space limitations, further discussions
 495 on limitations and future directions are provided in Appendix G.

496

497 **REFERENCES**

498

499 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 500 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
 501 *systems*, 34:17981–17993, 2021.

502 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 503 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 504 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 505 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
 506 *preprint arXiv:2502.13923*, 2025.

507 Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating
 508 the best and synthesizing the worst. *arXiv preprint arXiv:1812.03079*, 2018.

510 Zhong Cao, Kun Jiang, Weitao Zhou, Shaobing Xu, Huei Peng, and Diange Yang. Continuous
 511 improvement of self-driving cars using dynamic confidence-aware reinforcement learning. *Nature*
 512 *Machine Intelligence*, 5(2):145–158, 2023.

514 Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-
 515 to-end autonomous driving: Challenges and frontiers. *arXiv preprint arXiv:2306.16927*, 2023.

516 Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
 517 Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. *Pattern Anal-*
 518 *ysis and Machine Intelligence (PAMI)*, 2023.

520 Marco Cusumano-Towner, David Hafner, Alex Hertzberg, Brody Huval, Aleksei Petrenko, Eugene
 521 Vinitsky, Erik Wijmans, Taylor Killian, Stuart Bowers, Ozan Sener, et al. Robust autonomy
 522 emerges from self-play. *arXiv preprint arXiv:2502.03349*, 2025.

523 Daniel Dauner, Marcel Hallgarten, Andreas Geiger, and Kashyap Chitta. Parting with miscon-
 524 ceptions about learning-based vehicle motion planning. In *Conference on Robot Learning*, pp.
 525 1268–1281. PMLR, 2023.

527 Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang,
 528 Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, and Kashyap
 529 Chitta. Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking. In
 530 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

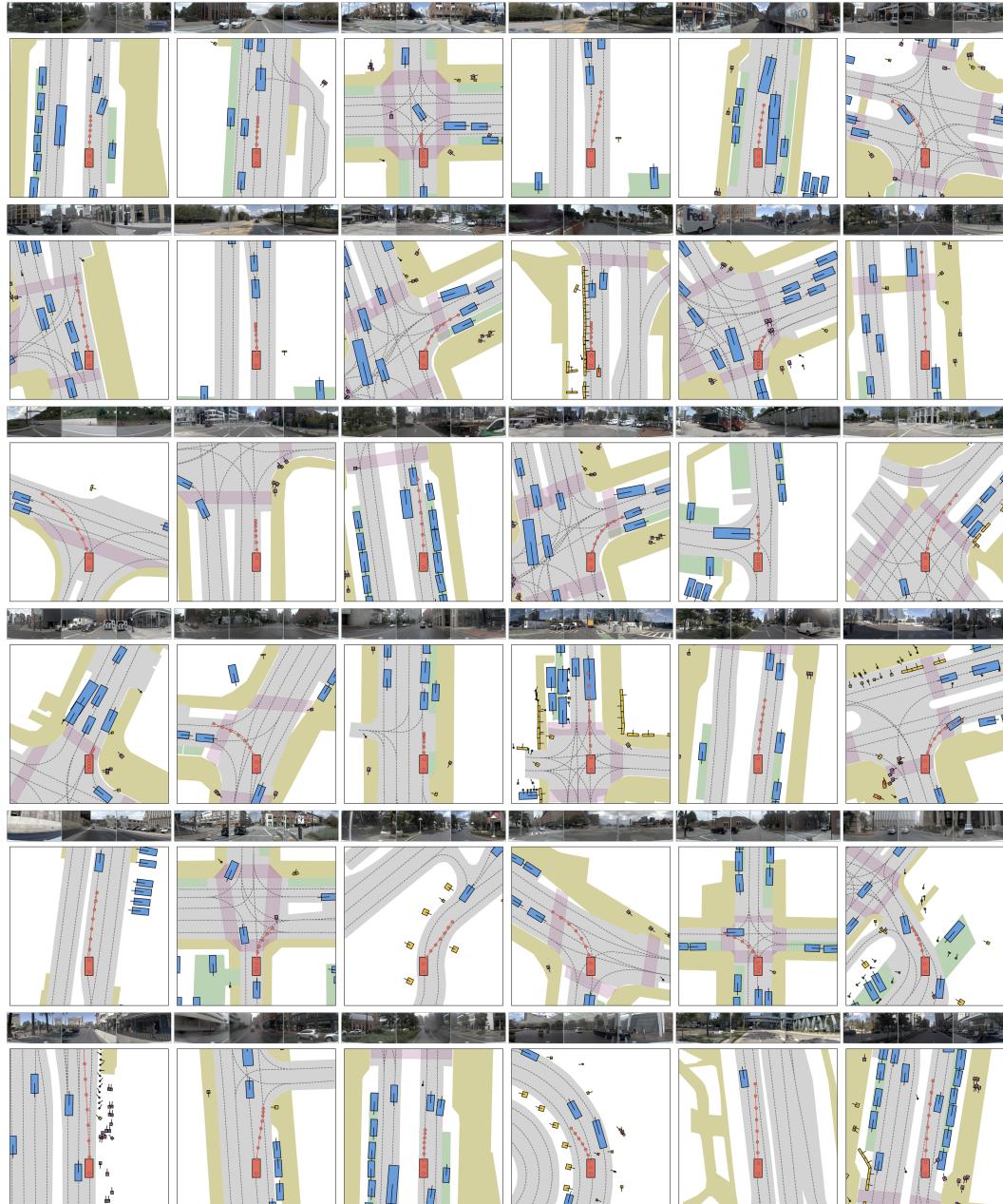
531 Haoyang Fan, Fan Zhu, Changchun Liu, Liangliang Zhang, Li Zhuang, Dong Li, Weicheng Zhu,
 532 Jiangtao Hu, Hongye Li, and Qi Kong. Baidu apollo em motion planner, 2018.

534 Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Guohui Zhang, and Chengzhong
 535 Xu. World models for autonomous driving: An initial survey. *IEEE Transactions on Intelligent*
 536 *Vehicles*, 2024.

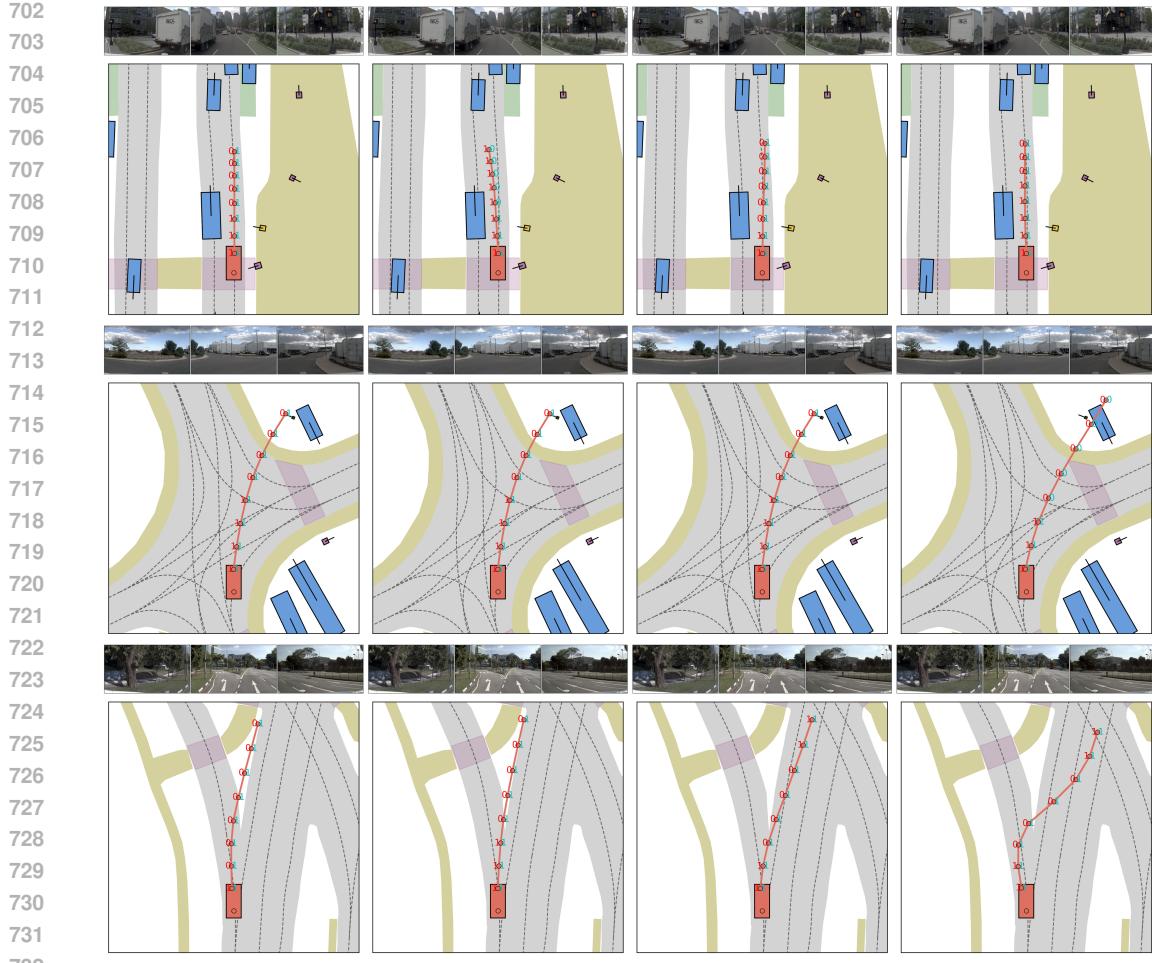
538 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
 539 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the*
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862, 2023.

- 540 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 541 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 542 *arXiv:2410.21276*, 2024.
- 543 Jyh-Jing Hwang, Runsheng Xu, Hubert Lin, Wei-Chih Hung, Jingwei Ji, Kristy Choi, Di Huang,
 544 Tong He, Paul Covington, Benjamin Sapp, et al. Emma: End-to-end multimodal model for au-
 545 tonomous driving. *arXiv preprint arXiv:2410.23262*, 2024.
- 546 Bernhard Jaeger, Daniel Dauner, Jens Beißwenger, Simon Gerstenecker, Kashyap Chitta, and An-
 547 dreas Geiger. Carl: Learning scalable planning policies with simple rewards. *arXiv preprint*
 548 *arXiv:2504.17838*, 2025.
- 549 Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, Dragomir Anguelov, et al.
 550 Motiondiffuser: Controllable multi-agent motion prediction using diffusion. In *Proceedings of*
 551 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9644–9653, 2023.
- 552 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
 553 survey. *Journal of artificial intelligence research*, 4:237–285, 1996.
- 554 Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
 555 Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In *2019 international*
 556 *conference on robotics and automation (ICRA)*, pp. 8248–8254. IEEE, 2019.
- 557 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 558 Rafael Rafailev, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 559 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.
- 560 B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
 561 mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. *IEEE*
 562 *transactions on intelligent transportation systems*, 23(6):4909–4926, 2021.
- 563 Zhenxin Li, Kailin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Yishen Ji, Zhiqi Li, Ziyue Zhu, Jan
 564 Kautz, Zuxuan Wu, et al. Hydra-mdp: End-to-end multimodal planning with multi-target hydra-
 565 distillation. *arXiv preprint arXiv:2406.06978*, 2024.
- 566 Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinpang Zhang,
 567 Xiangyu Li, Ying Zhang, Qian Zhang, and Xinggang Wang. Diffusiondrive: Truncated diffusion
 568 model for end-to-end autonomous driving. *arXiv preprint arXiv:2411.15139*, 2024.
- 569 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 570 of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023.
- 571 Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,
 572 Brandyn White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robustify-
 573 ing imitation with reinforcement learning for challenging driving scenarios. In *2023 IEEE/RSJ*
 574 *International Conference on Intelligent Robots and Systems (IROS)*, pp. 7553–7560. IEEE, 2023.
- 575 Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: General-
 576 ized score matching for discrete data. *Advances in Neural Information Processing Systems*, 35:
 577 34532–34545, 2022.
- 578 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 579 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint*
 580 *arXiv:2502.09992*, 2025.
- 581 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 582 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 583 2015.
- 584 Katrin Renz, Long Chen, Elahe Arani, and Oleg Sinavski. Simlingo: Vision-only closed-loop au-
 585 tonomous driving with language-action alignment. In *Proceedings of the Computer Vision and*
 586 *Pattern Recognition Conference*, pp. 11993–12003, 2025.

- 594 Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
 595 learning for autonomous driving, 2016.
- 596
- 597 Ardi Tampuu, Tambet Matiisen, Maksym Semikin, Dmytro Fishman, and Naveed Muhammad. A
 598 survey of end-to-end driving: Architectures and training methods. *IEEE Transactions on Neural
 599 Networks and Learning Systems*, 33(4):1364–1384, 2020.
- 600 Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Yang Wang, Zhiyong Zhao, Kun Zhan, Peng Jia,
 601 Xianpeng Lang, and Hang Zhao. Drivevlm: The convergence of autonomous driving and large
 602 vision-language models. *arXiv preprint arXiv:2402.12289*, 2024.
- 603
- 604 Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical observa-
 605 tions and microscopic simulations. *Physical review E*, 62(2):1805, 2000.
- 606
- 607 Shihao Wang, Zhiding Yu, Xiaohui Jiang, Shiyi Lan, Min Shi, Nadine Chang, Jan Kautz, Ying
 608 Li, and Jose M Alvarez. Omnidrive: A holistic vision-language dataset for autonomous driving
 609 with counterfactual reasoning. In *Proceedings of the Computer Vision and Pattern Recognition
 Conference*, pp. 22442–22452, 2025.
- 610
- 611 Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized
 612 architecture for real-time autonomous driving. In *Proceedings of the IEEE/CVF Conference on
 613 Computer Vision and Pattern Recognition*, pp. 15449–15458, 2024.
- 614
- 615 Zebin Xing, Xingyu Zhang, Yang Hu, Bo Jiang, Tong He, Qian Zhang, Xiaoxiao Long, and Wei
 616 Yin. Goalflow: Goal-driven flow matching for multimodal trajectories generation in end-to-end
 617 autonomous driving. *arXiv preprint arXiv:2503.05689*, 2025.
- 618
- 619 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
 620 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint
 621 arXiv:2505.16933*, 2025.
- 622
- 623 Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
 624 Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. In *The Twelfth
 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=j5JvZCaDM0>.
- 625
- 626 Yinan Zheng, Ruiming Liang, Kexin ZHENG, Jinliang Zheng, Liyuan Mao, Jianxiong Li, Weihao
 627 Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, and Jingjing Liu. Diffusion-based planning for au-
 628 tonomous driving with flexible guidance. In *The Thirteenth International Conference on Learning
 629 Representations*, 2025. URL <https://openreview.net/forum?id=wM2sfVgMDH>.
- 630
- 631 Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che, Baishakhi Ray,
 632 and Marco Pavone. Guided conditional diffusion for controllable traffic simulation. In *2023 IEEE
 International Conference on Robotics and Automation (ICRA)*, pp. 3560–3566. IEEE, 2023.
- 633
- 634 Zewei Zhou, Tianhui Cai, Seth Z Zhao, Yun Zhang, Zhiyu Huang, Bolei Zhou, and Jiaqi Ma. Au-
 635 tovla: A vision-language-action model for end-to-end autonomous driving with adaptive reason-
 636 ing and reinforcement fine-tuning. *arXiv preprint arXiv:2506.13757*, 2025.
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648
649 APPENDIX650
651 A VISUALIZATION OF PLANNING RESULTS
652693
694 Figure 5: Planning results that meet the PDM evaluation criteria.
695
696697 B SUPERVISED FINE-TUNING (SFT) DETAILS
698

699 Table 3 shows the parameters used in our inference stage. We fixed the length of the output be-
 700 cause the number of trajectory points is always the same, and we perform parallel decoding for all
 701 trajectory points. We generate 3 diverse goal proposals to ensure good coverage of potential driv-
 ing intents. A threshold of 0.9 meters is used during non-maximum suppression to ensure that the



733 Figure 6: Planning results of bad cases. Row 1 shows the oscillation between boundaries and needs
 734 to improve the reward, such as adding the distance from the centerline in the future. Row 2 shows
 735 goal point selection deviation. Row 3 shows navigation deviation.

736
 737
 738 selected goal points are spatially distinct. The safety loop is capped at 10 iterations to guarantee
 739 a fixed upper bound on inference time. In practice, most trajectories converge to a safe state in
 740 1-3 iterations. Tab 4 shows the key hyperparameters in our training stage. Specifically, our model
 741 was initialized from the pre-trained LLaDA-V checkpoint and fine-tuned on the navtrain split of
 742 NAVSIM, which contains 80k annotated samples.

743
 744 Table 3: Inference Configuration for ReflectDrive.
 745

746 Parameter	747 Value
748 Steps	5
749 Answer length	32
750 Block length	32
751 Remask	low-confidence
752 Number of goal candidates (K)	3
753 NMS distance threshold (d_{NMS})	0.9
754 Max refinement iterations	10

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Table 4: Key Hyperparameters for Training

Parameter	Value
Spatial Range (M)	[-100, 100]
Batch Size	16
Gradient Accumulation Steps	1
Learning Rate	1×10^{-5}
Training Epochs	3
Max Context Length	8192
Learning Rate Scheduler	Cosine
Warmup Ratio	0.03
Weight Decay	0.0
Precision	bfloat16

C INFERENCE LATENCY AND SYSTEM PROFILE

We evaluate the latency and memory profile using a single NVIDIA H20 GPU. Our current implementation is a research prototype based on the LLaDA-V backbone without engineering optimizations such as KV-caching, quantization, or C++ deployment. Table 5 details the inference time breakdown.

Table 5: Inference Latency Breakdown (Single NVIDIA H20).

Component	Time (s)	Note
Stage 1: Goal-Conditioned Gen.	6.82	Total
- Goal Proposal	0.62	Generation
- Trajectory Inpainting	6.06	5 denoising steps
- Scoring & Selection	0.15	-
Stage 2: Safety-Guided Regen.	4.88	Per Iteration
- Safety Check	0.13	-
- Search	0.84	-
- Scoring	1.68	-
- Regeneration (Inpainting)	2.14	1 denoising step
Average Total Inference	~8.92	-

The latency is currently dominated by the VLM backbone’s forward pass and the Python-based search logic. The search overhead (2.52s) can be reduced to milliseconds through C++ optimization, and model inference can be accelerated using standard techniques such as KV caching. In the worst-case scenario (max 10 iterations), the latency would be higher, but empirical results show that safety violations are resolved within 0.43 iterations on average.

D ADDITIONAL ABLATION STUDIES

D.1 DISCRETIZATION GRANULARITY

We investigate the impact of grid resolution Δg on performance. As shown in Table 6, using an excessively fine granularity ($\Delta g = 0.1\text{m}$) leads to a significant performance drop (88.2). This is likely due to the drastically increased codebook size ($|A| = 2000$), which complicates the classification task for the diffusion model. Conversely, the model exhibits robust high performance (> 90.7) across the range of 0.2m to 0.5m. We selected $\Delta g = 0.3\text{m}$ as the default because it achieves performance comparable to the peak while maintaining a significantly smaller vocabulary size, offering a better balance between precision and model complexity.

810
811
812 Table 6: Ablation on Discretization Granularity (Δg).
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

Resolution Δg (m)	Codebook Size $ A $	PDMS
0.1	2000	88.2
0.2	1000	91.3
0.3 (Default)	667	91.1
0.4	500	90.7
0.5	400	91.2

D.2 ROBUSTNESS OF SCORING FUNCTIONS

To address concerns about reward shaping, we conducted a sensitivity analysis on the scorer weights (w_{EP} , w_{TTC} , w_C) and the binary TTC threshold. As shown in Table 7, our method demonstrates strong robustness to hyperparameter variations. Removing specific weights (e.g., $w_{EP} = 0$) results in minimal performance fluctuation, confirming that the gains stem from the reflection mechanism rather than overfitting to metric weights.

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

Table 7: Sensitivity Analysis of Scorer Weights and TTC Threshold.

w_{EP}	w_{TTC}	w_C	TTC Thresh (s)	PDMS
5 (Default)	5	2	1.0	91.1
5	5	0	1.0	91.1
2	5	5	1.0	91.1
0	5	5	1.0	91.2
5	2	5	1.0	91.1
5	0	5	1.0	90.9
5	5	2	0.5	90.0
5	5	2	1.5	91.0

D.3 SENSITIVITY OF GOAL PROPOSAL PARAMETERS

In practice, we selected a smaller number of goals ($K = 3$) from an efficiency perspective, requiring them to maintain a certain distance, and chose d_{NMS} through visualization, rather than based on actual scores. Table 8 confirms that $K = 3$ captures the majority of the performance gains (+3.3 PDMS over $K = 1$) while maintaining computational efficiency compared to higher values like $K = 5$.

We further illustrate this choice through qualitative analysis. Figure 7 demonstrates that relying solely on the Top-1 candidate ($K = 1$, shown in **Black**) often leads to failure cases, whereas increasing K to 3 introduces valid alternatives (Top-2 and Top-3, shown in **Red**). Additionally, Figure ?? visualizes the effect of the NMS threshold. While a larger threshold (2.1m) increases spatial diversity compared to our default (0.9m), it introduces candidates with higher variance that can be challenging for the subsequent refinement stage, reinforcing our selection of 0.9m as a robust baseline.

E SCORING FUNCTION IMPLEMENTATION DETAILS

This appendix provides the detailed composition of the scoring functions introduced in the main text. Our evaluation framework is designed to be comprehensive, balancing hard safety constraints with continuous measures of driving quality and efficiency.

The final score for a trajectory, which underpins our S_{global} and S_{local} scorers, is computed as a product of a Hard Safety Compliance term ($H(\tau)$) and a Performance Quality term ($Q(\tau)$).

Table 8: *Ablation on Goal Proposal Parameters (GCG Stage Only).*

(a) Goal Points (K)				
K	1	3 (Def)	5	10
PDMS	84.1	87.4	88.7	87.6

(b) NMS Threshold (d_{NMS})				
Thresh. (m)	0.0	0.3	0.9 (Def)	1.2
PDMS	85.8	86.5	87.4	88.0

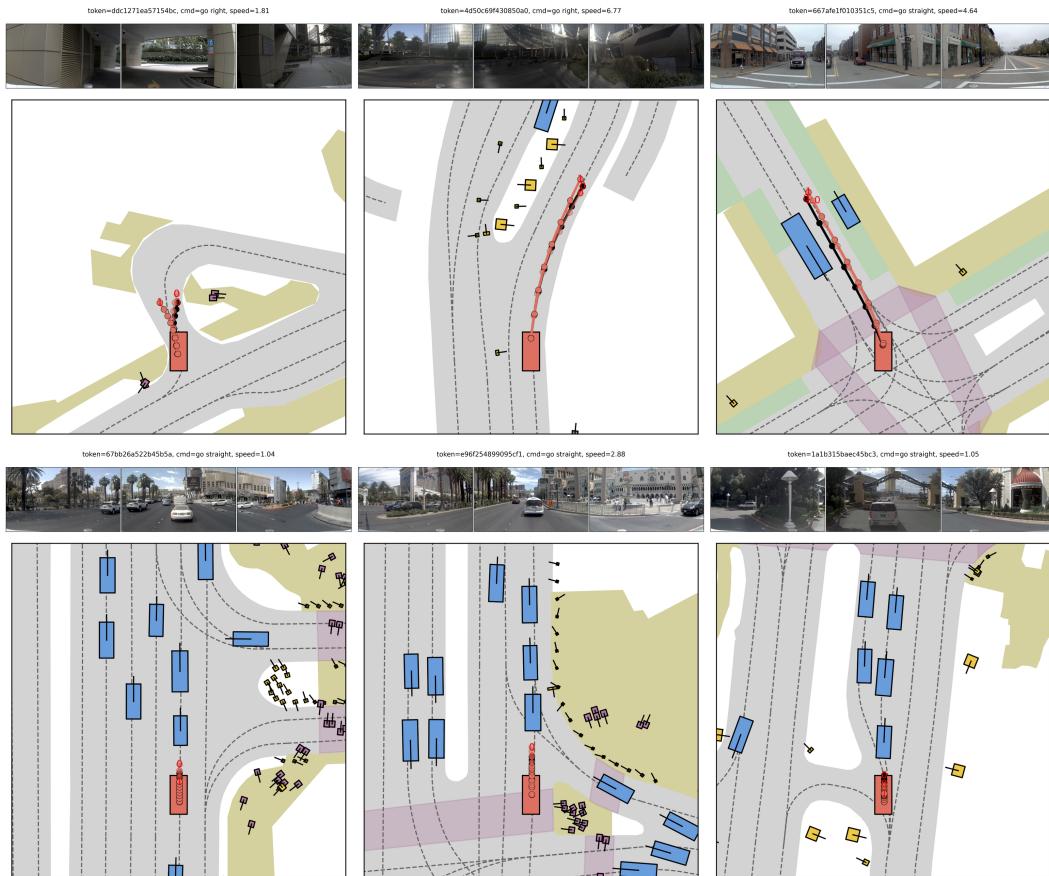


Figure 7: **Qualitative Visualization of Goal Candidates ($K = 1$ vs. $K = 3$).** The **Black** trajectories represent the Top-1 choice (equivalent to $K = 1$), which fails in these challenging scenarios. The **Red** trajectories represent the Top-2 and Top-3 candidates introduced by setting $K = 3$. In these cases, the alternative red trajectories successfully avoid obstacles or boundaries, demonstrating how multimodal proposals improve robustness.

E.1 HARD SAFETY COMPLIANCE TERM ($H(\tau)$)

This term acts as a safety gatekeeper. It is the product of several individual metric scores, each corresponding to an inviolable driving rule. If any rule is broken, this entire term approaches zero, effectively nullifying the trajectory's score regardless of its performance quality.

$$H(\tau) = m_{\text{NC}}(\tau) \cdot m_{\text{DAC}}(\tau) \quad (5)$$

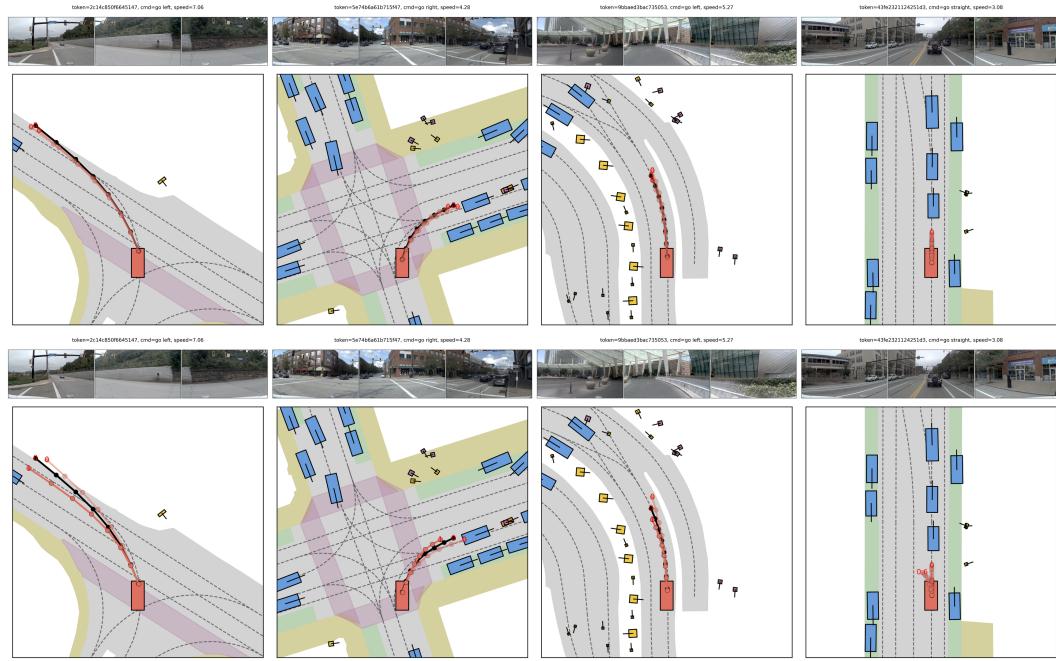


Figure 8: **Visualization of NMS Threshold Effects ($d_{\text{NMS}} = 0.9\text{m}$ vs. 2.1m).** The **top row** displays candidates generated with the default threshold (0.9m), exhibiting tighter clustering. The **bottom row** shows the same scenarios with a larger threshold (2.1m), which forces greater spatial separation between candidates.

The individual metrics are defined as follows:

- **m_{NC} (No at-fault Collision):** This metric penalizes collisions for which the ego vehicle is deemed responsible. A collision is considered "at-fault" if the ego vehicle's front collides with any object, or if it collides with a static object.
 - Score = 1.0: No at-fault collision occurs.
 - Score = 0.5: An at-fault collision with a static object occurs.
 - Score = 0.0: Any other at-fault collision occurs.
- **m_{DAC} (Driveable Area Compliance):** This is a strict binary metric that ensures the vehicle remains within the legally designated drivable area.
 - Score = 1.0: The vehicle's entire footprint remains within the drivable area.
 - Score = 0.0: Any part of the vehicle's footprint goes outside the drivable area.

Our *Safety Scorer* (S_{safe}) uses this exact logic, evaluating these hard constraints at each waypoint to detect failures.

E.2 PERFORMANCE QUALITY TERM ($Q(\tau)$)

This term evaluates the quality of a trajectory that has passed the hard safety checks. It is a normalized weighted sum of several performance metrics.

$$Q(\tau) = \frac{w_{\text{EP}} \cdot m_{\text{EP}}(\tau) + w_{\text{TTC}} \cdot m_{\text{TTC}}(\tau) + w_{\text{C}} \cdot m_{\text{C}}(\tau)}{w_{\text{EP}} + w_{\text{TTC}} + w_{\text{C}}} \quad (6)$$

The individual metrics and their weights are as follows:

- **m_{EP} (Ego Progress):** This metric measures the vehicle's progress along its intended high-level route. The value is normalized to a range of $[0, 1]$ based on a feasible upper bound for progress in the given scene.

- 972 – Weight (w_{EP}): 5
 973
 974 • m_{TTC} (**Time-to-Collision**): This metric ensures a safe temporal buffer to other agents. It
 975 is a binary score based on a predefined safety threshold.
 976 – Score = 1.0: The minimum TTC to any other agent remains above the safe threshold
 977 (e.g., 2.0 seconds).
 978 – Score = 0.0: The minimum TTC drops below the threshold.
 979 – Weight (w_{TTC}): 5
 980 • m_C (**Comfort**): This metric evaluates ride smoothness. It is a binary score based on
 981 whether the vehicle’s dynamics stay within acceptable bounds.
 982 – Score = 1.0: Longitudinal and lateral acceleration and jerk all remain within prede-
 983 fined comfort limits.
 984 – Score = 0.0: Any of the dynamic limits are exceeded.
 985 – Weight (w_C): 2
 986
 987 F SCALABILITY AND COMPARISON WITH CONTINUOUS DIFFUSION
 988
 989 To further validate the effectiveness and scalability of our discrete diffusion framework, we con-
 990 ducted a large-scale open-loop evaluation using an in-house dataset comprising approximately 1
 991 billion samples. This dataset offers comprehensive coverage of diverse and complex driving scenar-
 992 ios, far exceeding the scale of public benchmarks.
 993
 994 We compared our discrete diffusion VLA against a continuous diffusion VLA baseline trained on the
 995 same data. Both models generated 8 trajectories per sample. We report the Average Displacement
 996 Error (ADE) and Final Displacement Error (FDE) at 40m, 80m, and 120m horizons. *Top1* refers to the
 997 trajectory with the highest predicted confidence, while *Min* refers to the best trajectory among
 998 the 8 samples (oracle selection).
 999
 1000 As shown in Table 9, the discrete diffusion VLA consistently outperforms the continuous diffu-
 1001 sion baseline across most metrics, particularly in long-horizon prediction (120m FDE: 2.19 vs.
 1002 2.71). This empirical evidence suggests that discrete tokenization effectively captures complex
 1003 multi-modal distributions at scale, validating it as a robust alternative to continuous parameterization
 for autonomous driving planning.

1004 Table 9: Open-Loop Comparison on Large-Scale In-House Dataset (1B Samples).
 1005

Method	Top1 FDE			Top1 ADE			Min FDE			Min ADE		
	40m	80m	120m	40m	80m	120m	40m	80m	120m	40m	80m	120m
Continuous Diff. VLA	0.72	1.53	2.71	0.35	0.74	1.00	0.35	0.76	1.44	0.21	0.44	0.61
Discrete Diff. VLA	0.67	1.37	2.19	0.34	0.69	1.02	0.29	0.68	1.06	0.17	0.39	0.59

1010
 1011 G LIMITATIONS & FUTURE WORK
 1012
 10131014 Here, we discuss our limitaitons and interesting future works.
 1015

- 1016 • **Model Inputs.** Our method relies on three-view images of the current frame as input. Never-
 1017 theless, single-frame images fail to capture velocity information, leaving the motion directions and
 1018 speeds of surrounding vehicles unknown. Only by incorporating historical images and additional
 1019 rich information as input can the model’s interaction capabilities be fully utilized.

1020 *Solution and future work:* We can incorporate historical images to enable the model to output not
 1021 only planned trajectories but also the trajectories of key obstacles, providing a foundation for the
 1022 reward model and subsequent trajectory game-theoretic interactions.
 1023

- 1024 • **Reflection.** First, Goal-Conditioned Generation should primarily focus on high-level objectives
 1025 such as navigation compliance and traffic efficiency. In practical applications, scoring should prior-
 itize these aspects. For rapid validation in this work, we directly adopted the PDM scorer without

1026 task-specific adjustments. Second, in terms of Safety-Guided Regeneration, both the number of
 1027 iterations and online inference attempts affect the final outcomes. While achieving better results
 1028 requires sacrificing inference time, our experimental findings indicate that more inference opportu-
 1029 nities do not necessarily yield better performance. Our analysis of failure cases reveals the following
 1030 insights, as shown in Figure 6:

1031 *1. Oscillation Between Boundaries:* The model tends to oscillate between boundary violations and
 1032 collision avoidance in its final reasoning, particularly in scenarios with limited drivable space. This
 1033 likely stems from increased difficulty caused by inherent errors in discrete trajectory representation.
 1034 Future work could explore alternative methods to mitigate this issue.

1035 *2. Navigation Correctness:* The reward function does not account for navigation correctness, leading
 1036 to incorrect correction directions in certain scenarios. This can be addressed through iterative reward
 1037 function refinement.

1038 *3. Goal Point Selection:* Suboptimal goal point performance in specific scenarios limits correction
 1039 capability when the search range is constrained. This could be improved by enhancing the base
 1040 model through reinforcement learning or other advanced techniques.

1041 *Solution and future work:* We can replace the rule-based reward with a model-based reward, and the
 1042 search process can also be internalized within the model to some extent for reward-guided reflection,
 1043 though this may introduce corner cases in certain scenarios.

1044 • **Sample Efficiency.** Since the primary focus of this work is on method validation, we have not
 1045 invested significant effort in algorithm optimization and acceleration, leaving substantial room for
 1046 improvement.

1047 *Solution and future work:* Since the output token count is relatively small, more inference iterations
 1048 do not necessarily yield better results, and this could be reduced in future work. Additionally, engi-
 1049 neering optimizations such as KV cache can be implemented to improve computational efficiency.

1050 Overall, although some design choices may appear simple and certain limitations exist, we have
 1051 thoroughly demonstrated the capabilities of ReflectDrive models for closed-loop planning in au-
 1052 tonomous driving through extensive experiments. Moreover, we demonstrate the potential of Re-
 1053 flectDrive model to provide a safety driving behavior. It provides a high-performance, highly adapt-
 1054 able planner for autonomous driving systems.

1055 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1056 LLMs were used exclusively as writing assistance tools in preparing this manuscript. Specifically,
 1057 we employed LLMs for grammar checking. All research ideation, experimental design, analysis,
 1058 and scientific conclusions are entirely the work of the authors. The LLMs played no role in the
 1059 conception of research questions, methodology development, or interpretation of results. Authors
 1060 take full responsibility for all content in this paper, including any text refined with LLM assistance.

1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079