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Abstract— Existing methods for remote-sensing image dehaz-
ing and thin cloud removal treat this image restoration task as a
clear pixel estimation problem, yielding a single prediction result
through a deterministic pipeline. However, image restoration is a
highly ill-posed problem, as the sharp pixel value corresponding
to the input cannot be uniquely determined solely from the
degraded image. In this article, we present a novel algorithm
for haze and thin cloud removal using conditional variational
autoencoders (CVAEs) to generate multiple realistic restored
images for each input. By sampling from the latent space to
capture the pixel diversity, the proposed method mitigates the
limitations arising from inaccuracies in a single estimation.
In this uncertainty pipeline, we can generate a more accurate
restored image based on these multiple predictions. Furthermore,
we have developed a dynamic fusion network (DFN) for com-
bining multiple plausible outcomes to obtain a more accurate
result. DFN dynamically predicts the kernels used for restored
result generation conditioned on inputs, improving haze and thin
cloud thanks to its adaptive nature. Quantitative and qualitative
experiments demonstrate that the proposed method outperforms
existing state-of-the-art techniques by a significant margin on
dehazing and thin cloud removal benchmarks.

Index Terms— Conditional variational autoencoders (CVAEs),
remote-sensing image dehazing, thin cloud removal.

I. INTRODUCTION

MAGES captured by remote-sensing satellites often suffer

from absorption and scattering effects caused by haze and
thin clouds, which ultimately leads to image degradation.
The low quality of these images hampers their usefulness for
subsequent high-level computer vision tasks, such as object
detection [1], [2], [3], segmentation [4], [5], [6], image super-
resolution [7], [8], [9], [10], and environmental protection [11],
[12], [13]. Therefore, it is crucial to develop an effective
method for removing haze and thin clouds from single remote-
sensing images. During the imaging process, clouds may
obscure ground scenes, affecting image quality, and the accu-
racy of analysis results. Cloud removal processing endeavors
to detect and eliminate clouds within images, enhancing the
visibility of ground-level information. Haze in the atmosphere
causes blur and distortion of scenes in images. Dehazing
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technology aims to eliminate image blurring and low-contrast
issues, making images more realistic.

To address this issue, numerous experts have proposed
various methods. These methods can generally be classified
into two categories: prior-based and data-driven approaches.
Prior-based cloud removal models [14], [15], [16], [17], [18]
are primarily based on the atmospheric scattering model,
incorporating different physical priors from image statistics.
However, these prior-based methods may not perform effec-
tively when the statistical prior does not hold in real-world
images.

To address the accuracy limitations of prior-based methods,
data-driven approaches employ deep learning techniques to
train networks using a supervised learning paradigm. Several
techniques [19], [20], [21], [22], [23] utilize the strong data
fitting capabilities of neural networks to directly generate
clear images from their corresponding degraded counter-
parts in an end-to-end fashion. These algorithms [24], [25]
are trained on extensive datasets and can yield satisfactory
outcomes. However, directly learning the mapping relation-
ship from low-quality images to clear images will result
in limited interpretability. To mitigate this problem, other
approaches [26], [27], [28] integrate convolutional neural
networks (CNNs) with the imaging model. These approaches
primarily concentrate on constructing a neural network with
trainable parameters to substitute a portion of the physi-
cal model used in conventional methods. Data-driven-based
methods leverage the robust representation capabilities of
neural networks and depend on substantial amounts of training
data, enabling them to consistently outperform prior-based
methods. Consequently, they have emerged as the dominant
approach for remote-sensing image restoration. Despite the
remarkable results achieved by numerous outstanding studies,
the task of haze and thin cloud removal from single image
still presents various challenges and misconceptions. Hence,
it is imperative to approach this problem from a broader
perspective, including a reevaluation of its ill-posed nature.
When a remote-sensing image becomes degraded, it loses
crucial scene radiance information, and attempting to restore
a fully clear image from such limited information renders
the problem highly ill-posed [29], [30], [31]. Consequently,
this low-level computer vision problem inherently involves
uncertainty. Obtaining the exact pixel values in the clear
image solely from the degraded image, without additional
auxiliary information, is not feasible. To the best of our
knowledge, none of the existing methods consider this aspect;
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instead, they all rely on establishing a direct mapping from a
degraded image to a restored image. Hence, incorporating the
notion of uncertainty holds significant potential to enhance the
performance of thin cloud removal algorithms.

Following this idea, we propose an uncertainty frame-
work via conditional variational autoencoders (CVAEs) for
remote-sensing image haze and thin cloud removal. Based
on the above analysis of uncertainty, we tackle this problem
from the perspective of multisolution. Each time the output
from the proposed method is a sample of possible solutions.
Overall, we develop a simple, yet effective multi-input multi-
output (MIMO) U-shaped architecture, consisting of a stack of
residual blocks (ResBlocks). For more efficient feature fusion,
we introduce a selective feature fusion module (SFFM), which
works among the channel dimension and leverage a selective
mechanism to fuse intermediate features generated by the
encoder and decoder. Furthermore, we propose a scheme to
fuse multiple reasonable solutions to obtain a more accurate
solution. We design a dynamic fusion network (DFN) to
establish the mapping relationship between multiple reason-
able solutions and final restored result. The DFN conducts
convolution operations in a dynamic manner: the kernels
are predicted dynamically and conditioned on the input. The
diverse output and the proposed dynamic fusion strategy can
ultimately enhance the generalization ability of the proposed
thin cloud removal network.

This article presents an expanded version of our previous
conference paper [32]. We extend our approach by introducing
a dynamic fusion network that combines multiple plausible
solutions to achieve a more refined restoration result. Further-
more, we broaden the scope of our method by applying it
to remote-sensing image dehazing, allowing us to thoroughly
validate the superior performance of our proposed algorithm
beyond thin cloud removal, which was the focus of our
conference paper.

The main contributions of the proposed method can be
summarized as follows.

1) To address the inherent uncertainty in haze and thin
cloud removal, we present a probabilistic model based
on CVAE for restoring remote-sensing images. This
approach tackles the challenge of multiple possible solu-
tions by considering the problem from a probabilistic
standpoint. The network generates multiple interpretable
results, accommodating the inherent variations in poten-
tial solutions to the problem.

We propose an MIMO U-shaped architecture to restore
the degraded images and introduce an SFFM to fusion
the intermediate features based on a selective mecha-
nism.

We propose an DFN to fuse multiple solutions resulting
from the proposed uncertainty framework in a dynamic
manner. It dynamically predicts convolution kernels to
process different inputs, resulting in improved flexibility
and robustness.

We introduce a new benchmark dataset specifically
designed for single image thin cloud removal. The
dataset consists of pairs of cloud and clear images
captured at different instances of the same real scene.

2)

3)

4)
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II. RELATED WORK

A. Haze and Thin Cloud Removal

The existing haze and thin cloud removal algorithms can be
broadly classified into two categories: prior-based approaches
and data-driven approaches.

1) Prior-Based Methods: Most conventional methods are
based on the physical prior. They estimate some important
quantities in the imaging model (e.g., the transmission map)
and then recover a clear image from its degraded counterpart.
Chavez Jr. [33] proposed an additive model to describe the
generation principle of low-quality images under the assump-
tion that the distance between the sensor and the ground is
fixed. He et al. [16] proposed a dark channel prior based on
statistical laws, showing that the pixel value of one or more
color channels tends to zero in the nonsky area of the image,
which is used to estimate the transmission map. Fattal [34]
proposed a color-lines prior to estimate the transmission map
based on the distribution of images in the RGB color space.
Berman et al. [30] assumed that the color of a clear image can
be approximated by hundreds of distinct colors and proposed
a dehazing algorithm based on this novel nonlocal prior.
Xu et al. [35] proposed a method based on signal transmission
and airspace hybrid analysis, combined with atmospheric scat-
tering theory to remove clouds. While prior knowledge-based
methods demonstrate superior statistical properties in specific
scenarios, they are prone to failure in real-world images where
physical assumptions are not applicable.

2) Data-Driven-Based Methods: 1In recent years, the
establishment of large-scale datasets and advancements in
deep-learning techniques have led to the emergence of numer-
ous data-driven supervised methods for haze thin cloud
removal, aiming to address the limitations of traditional
approaches. Mao et al. [36] proposed a deep encoder—decoder
framework, which uses the multilayer convolution and decon-
volution operators, and adds skip connections to improve the
efficiency of image restoration. Singh and Komodakis [37]
proposed an adversarial training-based network named cloud
removal using a cyclic consistent generative adversarial net-
work (Cloud-GAN) to directly learn the mapping relationship
between cloudy and clear images. Qin et al. [38] described thin
clouds as haze coverings for each band and used a multiscale
deblurring CNN with the residual structure to remove the
clouds. Li et al. [20] proposed RSC-Net, using an end-to-
end residual symmetric connection network for thin cloud
removal, which estimates cloud-free results directly from
cloud images. Xu et al. [19] introduced a generative adversarial
network based on the attention mechanism, using an adaptively
generated attention map of the recurrent network to guide
the network focus on more valuable matters. Ding et al. [39]
introduced a compact thin cloud removal network utilizing a
feedback mechanism that enables gradual improvement of the
restoration outcome. Zi et al. [40] proposed a novel wavelet-
integrated CNN, named WaveCNN-CR, designed specifically
for thin cloud removal in remote-sensing images. This network
achieves a larger receptive field, ensuring no information loss
during the process.
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Building upon traditional methods, some researchers inte-
grate deep-learning technology with physical models to
enhance the accuracy of the networks and achieve more precise
results. Cai et al. [27] showed that medium transmission esti-
mation can be reformulated as a learnable end-to-end system.
Ren et al. [41] used deep learning to learn the transmission
map and solve atmospheric scattering models. Zhang and
Patel [42] proposed the densely connected pyramid dehazing
network (DCPDN), a model that can estimate the transmission
map and atmospheric light simultaneously. Moreover, they
introduced a joint-discriminator to enhance the details in the
resulting images. Zheng et al. [43] combined the atmospheric
scattering model with UNet, learned the necessary cloud
thickness distribution map and directly used UNet to remove
thin clouds. According to the additive model of cloud images,
Zi et al. [26] utilized deep neural networks combined with the
imaging model to achieve thin cloud removal.

Despite the significant progress that data-driven methods
have made in enhancing haze and thin cloud removal perfor-
mance, their results are limited to a one-to-one mapping with
respect to the input image. This indicates that they have iden-
tified a single reasonable solution from the multiple potential
solutions to the multisolution problem. Differing from existing
methods, we approach this restoration task as an indetermi-
nate solution problem. To address this challenge effectively,
we integrate haze and thin cloud removal with CVAE to
provide a more robust solution to this ill-posed problem.

B. Conditional Variational Autoencoders

Following the pioneering contributions of Kingma and
Welling [44] and Rezende et al. [45], VAEs and CVAEs have
gained widespread usage across a range of computer vision
tasks, such as image generation [46], data augmentation [47],
and modeling inherent ambiguities of the image [48], [49],
[50]. Since the framework analyzes problems from the view
of probabilistic, several works introduce CVAE to deal with
uncertainty in vision problems. In the image saliency detec-
tion, Zhang et al. [50] proposed a network structure based
on the CVAE framework to generate probabilistic saliency
maps according to the uncertainty of human perception of
natural scenes. Our proposed algorithm utilizes the CVAE
framework to infer the latent variable from the low-quality
input images, combining the intermediate features to generate
multiple plausible results.

C. Dynamic Neural Network

In traditional convolutional layers, the learned kernels are
static after training and do not adapt to different inputs.
Consequently, the uniform parameters across various input
images constrain the representation capability of deep net-
works. Therefore, recent work [51] has explored the idea
of introducing more flexibility into network architectures.
Li et al. [1] introduced a seminal method known as the spa-
tial transformer (ST), which enables adaptive feature map
transformations based on the input data. ST incorporates a
localization network to generate transformation parameters
that are applied to the feature maps, resulting in the recovery

5604616

of the input through corresponding variations. Importantly,
ST can be seamlessly incorporated into existing convolutional
architectures without the need for additional supervision dur-
ing optimization. Jia et al. [52] proposed the DFNs which
utilize a filter generation network to predict the parameters
of a convolution layer. This approach enhances flexibility and
adaptability by allowing the network to dynamically adjust the
parameters of the filters based on the input data. Deformable
convolutional networks (DCNs) [53] have been proposed to
address the limitations of shape-fixed convolutions. DCNs
dynamically adapt the sampling locations by predicting offsets
for each location, enabling a more accurate capture of complex
spatial patterns in the input features. For vision tasks, the
application areas of dynamic networks have been further
expanded, including image recognition [54], [55], [56], [57],
[58], image segmentation [59], [60], [61], [62], [63], [64],
objection detection [65], [66], [67], [68], super resolution [69],
[70], [71], image restoration [24], [72], and more.

In our algorithm, we utilize the dynamic networks to
enhance the performances of haze and thin cloud removal.
Leveraging the capability of our proposed uncertainty frame-
work to generate multiple plausible solutions, we employ a
dynamic fusion scheme to individualize each sample. This
approach aims to yield more precise restoration results and
enhance the effect of haze and thin cloud removal in remote-
sensing images.

III. METHODOLOGY
A. Overview

Fig. 1 presents the whole pipeline of the proposed method
during training and testing. Let D = {X;,Y;}, be the
training dataset, in which X; denotes the cloudy and hazy
image obtained by the satellite sensor, Y is the clear ground
scene information, and N denotes the total number of image
pairs in the dataset. Our network consists of the following
main modules: 1) prior network and posterior network, which
map input X; (for prior network) or input X; and Y; (for
posterior network) to low-dimensional latent variable z;; 2) the
restoration network that employs the latent variable z; and the
degraded input X; to restore a reasonable clear image Y;; and
3) the dynamic fusion network that fuses multiple reasonable
outputs into a more accurate solution during the test phase.

Our framework integrates a CVAE that can generate mul-
tiple clear image candidates for a degraded remote-sensing
image instead of a single prediction. Within the prior net-
work and posterior network, a low-dimensional latent space
is responsible for encoding potential latent variables z. The
restoration network then takes a random sample from this
latent space, alongside the degraded input X, to generate the
corresponding sharp image. This architecture’s main feature
lies in its capacity to implement one-to-many mapping. Unlike
previous frameworks that only produce a single clear result,
our algorithm can recover multiple reasonably clear images.
These multiple results are then fused through the dynamic
fusion network to enhance the robustness of haze and thin
cloud removal.

In the standard CVAE pipeline, the prior distribution is
modulated as a Gaussian distribution with parameters that
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intermediate features from the encoder and decoder.

are conditioned on the input data X. In our haze and thin
cloud removal framework, there are three types of variables:
conditioning variable X (the hazy and cloudy image), latent
variable z, and restored output Y. To restore a clear image,
the latent variable z is drawn from the Gaussian distribution
Py(z|X) and then the restored output Y is generated from
P,(Y|X, z). The posterior of z is formulated as Q4 (z|X,Y).
The variational lower bound of the model is as follows:

log P(Y|X) = /Q¢(Z|X, Y)log P(Y|X)dz

—Dxi(Q4 (21X, Y)|[ Po(z]X))
+Eo,cix.yllog P (Y[X, 2)] (D

v

where P,(Y|X,z) is the likelihood of P(Y) given the
latent variable z and degraded input data X. 6, ¢, and

w represent the parameter set of distribution. Our CVAE
framework is composed of a Prior Network Py(z|X),
a Posterior Network Q4(z|X,Y), and a Restoration Net-
work P,(Y|X, z). The Kullback-Leibler (KL) Divergence
Dx1.(Q¢(z1X, Y)||Py(z|X)) work as a regularization loss to
narrow the gap between the prior Py(z|X)) and posterior
0sIX. Y).

B. Prior and Posterior Network

One of the core components of our architecture is a
low-dimensional latent space RN (N = 9 in our experiments).
We define Py(z|X)) as the Prior Network that maps the
input hazy and cloudy data X to a low-dimensional latent
feature space. The Posterior Network Q4(z|X,Y) has the
same structure as the Prior Network. As shown in Fig. 2 (top
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Cloud Image(PSNR/SSIM) ~ RSC-Net(21.56/0.8204) MCRN(28.47/0.8907)

Fig. 3.

left), we use Conv3X3 and batch normalization (BN) layers
to extract the features of input data X, and then two fully
connected layers are employed to estimate the mean u and
standard deviation o of the prior latent Gaussian variable. The
prior and posterior probability distribution is modeled as an
axis-aligned Gaussian, for example, z ~ N (u, diag(c?)).

To allow the network can be trained using the gradient
descent algorithm, z is drawn with the reparameterization trick,
which is written as (4)

I=u+o0o-¢ 2)

where ¢ ~ N(0,T). This trick allows error backpropagation
through the Gaussian latent variables, which is essential in the
training process.

During training, we sample from the latent space determined
by the Posterior Network to recover a reasonably sharp image.
The KL divergence Dk (Q4(z]X, Y)||Ps(z|X)) penalizes the
difference between the posterior distribution Q4(z|X,Y) and
the prior distribution Py (z|X)), pulling the posterior and prior
distributions toward each other. In this way, we can sample
from the prior distribution and get a similar hidden variable z
to restore the image during the test. The whole pipeline of the
algorithm during training and testing is illustrated in Fig. 1.

C. Restoration Network

The restoration network comprises three encoders, each
taking the downsampled degraded image at different scales
(i.e., original scale, 1/2, and 1/4) as inputs. Additionally, there
are three decoders that utilize a 3 x 3 convolution layer to
predict the corresponding scale output. The MIMO mecha-
nism is employed to alleviate the difficulty of training [73].
Specifically, each encoder and decoder comprises multiple
ResBlocks [refer to Fig. 2(b), and N = 3 in our experiments].
To strengthen the connection between the encoder and the
decoder, we employ feature-level fusion using the SFFM [refer
to Fig. 2(c)]. Downsampling and upsampling operations are
achieved through stride and transpose convolutions, respec-
tively.

1) Residual Block: Let F € RE*">*W be the input feature
map of ResBlock, where C is the number of channels and H x
W represents the spatial resolution. Small-kernel convolutions
have been observed to play a crucial role in the performance of
UNet-like networks. As a result, we employ Conv3X3 layers
and activation functions for feature extraction. To facilitate the
propagation of more informative features, channel attention
and spatial attention mechanisms are adopted to enhance
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Ours-1(28.87/0.9511) Ours-2(29.00/0.9518) Clear Image(+o/1)

Results of the proposed algorithm. Our method can achieve a one-to-many mapping.

the representational capability of the spatial branch. Channel
attention [74] is achieved using global average pooling (GAP),
nonlinear projection (Convl1X1-ELU-Conv1X1l), and the
sigmoid activation function. Spatial attention is implemented
using Conv1X1l and sigmoid to generate an attention map
with dimensions of [1, H, W]. The final output of the spatial
branch is obtained through elementwise multiplication.

2) Selective Feature Fusion Module: Feature aggregation is
a widely adopted technique that facilitates the training of deep
networks using gradient-based methods, commonly employ-
ing simple concatenation and summation operations [75],
[76]. However, this aggregation strategy may not adequately
enhance the adaptation ability of neurons [77]. Inspired by
selective kernel networks (SKNets) [77], we propose the
SFFM, which operates along the channel dimension to fuse
the intermediate features generated by both the encoder and
the decoder [refer to Fig. 2(c)].

Formally, given two intermediate feature maps, F¢ and F4,
we first perform the fuse operation as follows:

h = NL(GAP(F* + F?)) 3)

where NL represents the nonlinear projection. h € R!*¢/
is the fused feature and r is the reduction factor (with
r = 8). And then we employ two separate fully connected
layers to derive the weights for channelwise feature selection.
Afterward, the weights corresponding to the same channels are
normalized using a softmax operator, which can be formalized
as follows:

E.h D.h

e
eEh | oDch’ GEch | ,Dch

e

“)

g, wf] =
where w¢ and w¢ are channelwise attention weights for
features from the encoder and decoder, respectively. E¢, D €
R'*C/" are the parameters of fully connected layers and ¢
is the channel index. The channel weights for each feature
map can be obtained through a split operation, and the
features are recalibrated and aggregated utilizing elementwise
multiplication and summation. The final aggregated feature,
denoted as F*, is defined as follows:

F*=w' -F +w' F. 3)

D. Dynamic Fusion Network

The latent variables z enable the modeling of multiple
modes, allowing the decoder network to effectively capture
one-to-many mappings. Fig. 3 demonstrates that the clear
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a convolution operation denoted by ®, where k represents the kernel size
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images obtained from different sampling results exhibit vari-
ations in terms of the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) scores. This diversity promotes
the integration of multiple plausible solutions, resulting in a
more accurate restoration. Consequently, we propose an DFN
to establish the mapping relationship between these multiple
reasonable solutions and the final restored result.

In traditional convolution layers, the learned kernels remain
fixed and are independent of the input [52], [60]. Conse-
quently, the kernel parameters are shared across arbitrary input
images. However, since different degraded images exhibit
variations in color distribution and degree of degradation,
adhering to a fixed mode restricts the flexibility of the fusion
model. To address this limitation, we propose the DFN which
enhances feature representation and dynamically generates the
final restored result. This is illustrated in Fig. 4.

The DFN is composed of a feature branch and a ker-
nel branch. Specifically, given the concatenation (in channel
dimension) of multiple reasonable solutions Y € RC*HxW,
where n = 6 is the number of samples, the feature branch
utilizes a shallow layer and two ResBlock to generate the
refined feature Y, € RE*#*W_Next, we predict convolution
kernels using the kernel branch conditioned on Y. The kernel
branch comprises three independent fully connected layers to
predict the kernels for R, G, and B channels, respectively. The
kernel prediction can be expressed as

K; = FCi (0 (NL(GAP(Y)))). (©)
Here, K; is the predicted kernels, which are reshaped as
[C’, k, k], o denotes sigmoid function, and FC; is the fully
connected layer. The index i represents each channel (i.e., R,
G, and B), and £ is the kernel size.

To generate the final restored result, the DFN performs a
dynamic convolution operation between the predicted kernels
and refined features. This operation can be formulated as
follows:

Y =K@®Y,. (7)
Y* is the final removal result in RGB space and ® indicates
the convolution operation.
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TABLE I
COMPARISON BETWEEN VARIOUS DATASETS

Dataset Training  Testing Image Size  Cloud Type
T-CLOUD 2,351 588 256 x 256 Real-world

RICE-I 400 100 512 x 512 Real-world
WHUS2-CR 4,000 1,000 256 x 256 Real-world
SateHazelk 960 135 512 x 512 Synthetic

RS-Haze 51,300 2,700 512 x 512 Synthetic

T-CLOUD
Cloud Image

Clear Image

Cloud Image

RICE-I

Cle:

Fig. 5. Visual comparisons between our proposed T-CLOUD and RICE-I.

E. Loss Function

Fig. 1 illustrates that during the training stage, a single
sampled latent variable z and degraded input X are employed
to restore a clear image. The reconstruction loss is then cal-
culated between this output and the ground truth. The DFN is
solely used in the testing phase. To train the proposed network,
we utilize a two-stage approach. In the first stage, we only
sample a single latent variable z to train the prior network,
posterior network, and restoration network. The objective
function in this stage consists of the reconstruction loss and
KL divergence. Subsequently, in the second stage, we freeze
the network parameters of these three parts, generate training
data for DFN through multiple random sampling, and solely
utilize the reconstruction loss for DFN training. During testing,
all subnetworks are combined to merge multiple potential
solutions and achieve more precise and clear results.

For stage one, the losses are combined as a weighted sum
with a weighting parameter B, formulated as

LX,Y) = - DxL(Qy X, V)| Po(z]X))

+Eo,qx.v[—1log P,(YIX, 2)]. (8)

The first term in the loss function is the KL divergence and
we set B = 1.0.

The second term is the reconstruction loss. In supervised
training, the restoration performance can be quantified by
counting the differences between the restoration network out-
put Y with its corresponding reference clear image Y under
some proper loss L, for example, mean square error (mse).
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In our method, we choose the combination of £; loss and the
frequency loss L. as the criterion to optimize the parameters

Erec = ﬁl + )\lﬁfre~ (9)

We use A\; = 0.1 as the weighting factor. The £, loss can be
expressed as

3

L:l = Zwsn?s - Ys”l

s=1

(10)

where s denotes different scales (corresponds to multiple
output), v = [1.0, 0.3, 0.1] are the coefficients for each scale,
and Y denotes the ground truth. L. is the frequency domain
loss [73], [78], [79] that enforces high-frequency details

3
Lie =Y o] F(Y,) = F(Y)|,

s=1

(1)

where F(-) is the fast Fourier transform (FFT) operator.
For stage two, the reconstruction loss used to train the DFN
can be expressed as

Lan = ||Y* = Y|, + M| F (Y = FY),. (12)

Y* is the final fusion result, which is illustrated in (7).

IV. EXPERIMENTS
A. T-CLOUD for Thin Cloud Removal

Obtaining image pairs containing both thin clouds and
cloud-free regions in real-world scenes is a challenging task.
Therefore, some previous algorithms [26], [38], [43] utilize
a synthetic approach to construct image pairs containing
cloud-contaminated and cloud-free regions for training pur-
poses. However, there is a significant difference between
simulated and real-world images, which can cause the network
to learn the laws of data synthesis rather than the essence of
image degradation during the optimization process.

To overcome the limitation of synthetic datasets for thin
cloud removal, we collect a real scene image dataset called T-
CLOUD. Both training and test sets are from Landsat 8 RGB
images. Our dataset contains 2939 doublets of cloud images
and their clear counterparts separated by one satellite reentry
period (16 days). We select the image pairs which has similar
lighting conditions and crop them into 256 x 256 patches.
We split the dataset with a ratio of 8:2, with 2351 images in
the training set and 588 images in the test set.

T-CLOUD is a novel benchmark dataset for single
remote-sensing image declouding. Our dataset is different
from the existing dataset RICE-I [80] in the following points.
First, T-CLOUD is a large-scale dataset. Our dataset contains
2939 doublets of cloud images and their clear counterpart
while RICE-I only contains 500 image pairs. The large-scale
dataset can effectively improve the performance of the thin
cloud removal algorithms. Second, the ground scenes in our
dataset have much finer texture details. T-CLOUD includes
many different ground scenarios such as cities, rivers, and
deserts while RICE-I is relatively simple. Third, the thin
clouds exhibited by T-CLOUD are nonhomogeneous which
is consistent with the characteristics of remote-sensing images
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occluded by thin clouds. Fig. 5 shows some visual compar-
isons between T-CLOUD and RICE-I, it can be observed
that our dataset is more realistic. Table I summarizes the
similarities and differences between the two datasets.

It should be noted that our constructed dataset comprised
cloudy and clear pairs captured by the same satellite sensor
but at different times. The presence of illumination noise
is inevitable due to changes in ambient light. Despite our
efforts to choose images with as similar lighting conditions as
possible, achieving substantial results on this dataset remained
a formidable task.

B. Experiment Setting

1) Datasets: We evaluate our uncertainty-based framework
on the proposed T-CLOUD, RICE-I, WHUS2-CR [81], Sate-
Hazelk [82], and RS-Haze [25]. The RICE-I dataset contains
500 image pairs from Google Earth, and each pair has hazy
and haze-free images with the sizes of 512 x 512. From
RICE-1, 400 pairs were randomly allocated for training, while
the remaining 100 pairs were reserved for testing purposes.
The WHUS2-CR dataset comprises cloudy and corresponding
cloud-free images captured by the Sentinel-2A satellite. From
the original high-resolution image pairs, we randomly cropped
5000 image patches sized at 256 x 256 pixels. For our
experiments, 4000 pairs were allocated for training purposes,
while the remaining 1000 pairs were reserved for testing.
SateHzelk contains three levels of haze, that is, thin haze,
moderate haze, and thick haze. Each of them consists of
320 pairs for training, 35 pairs for validation, and 45 pairs
for testing, respectively. RS-Haze is a larger-scale synthetic
dataset for remote-sensing image dehazing, in which the cloud
is nonhomogeneous. It contains 51 300 image pairs for training
and 2700 pairs for testing. Table I presents the summary of
these five datasets in our experiments.

2) Evaluation Metrics: To quantitatively assess the effec-
tiveness of our algorithm against other thin cloud removal
methods, we employed three full-reference metrics: PSNR,
SSIM [83], and the CIEDE2000 [84]. These metrics are
chosen for their ability to provide objective measurements of
performance. Larger PSNR and SSIM and smaller CIEDE2000
indicate better restoration performance.

3) Implementation Details: The proposed algorithm was
implemented using the PyTorch framework. The computing
platform consists of an Intel Gold 6252 CPU and an NVIDIA
A100 GPU. For optimization of the network, the Adam
optimizer [91] was utilized with the parameters ; = 0.9 and
B2 = 0.999. In the first stage, the proposed algorithm was
trained for 300 epochs on the T-CLOUD dataset, 1000 epochs
on the RICE-I and SateHzelk datasets, and 50 epochs on the
RS-Haze dataset. A batch size of 16 was used. In the second
stage, the training epochs were set to 50 on the T-CLOUD
dataset, 300 on the RICE-I and SateHzelk datasets, and 15 on
the RS-Haze dataset. During training, the image pairs were
randomly cropped into 256 x 256 patches as input. The initial
learning rate was set to 0.0001 and gradually reduced to
1 x 107° using the cosine annealing strategy.
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TABLE I

QUANTITATIVE EVALUATIONS ON THE T-CLOUD AND RICE-I DATASETS, WHERE BOLD TEXTS AND UNDERLINED TEXTS INDICATE THE BEST AND
SECOND-BEST PERFORMANCE, RESPECTIVELY. 1: THE LARGER THE BETTER. |: THE SMALLER THE BETTER

\ T-CLOUD \ RICE-I \ WHUS2-CR \
Method | PSNRT SSIM{ CIEDE2000J | PSNRT SSIMt CIEDE2000) | PSNRT SSIMt CIEDE2000}, | Param (M) \ FLOPs (G)

RSC-Net [20] 2398 07596  7.0502 2134 08150  8.3078 29.03 09056  4.6571 0.11 14.84
MCRN [85] 2660 08091  5.5816 31.09 09465  3.3767 2881 09163  4.7939 141 94.90
MSAR-DefogNet [21] | 28.84 0.8432  4.1862 3358 09534  2.7066 2989 09168  5.2028 0.80 104.90
RCA-Net [86] 2869 0.8443 43708 3249 09537 22334 2957 09128 44211 227 401.79
SPA-GAN [87] 2715 08145 49107 29.62 0.8844  4.3374 2878 0.8887  4.7904 021 33.97
Zheng et al. [43] | 2371 07630  7.6156 2392 0.8085  7.6766 2958 09008  5.1388 331 11.83
MS-GAN [88] 2404 07228  7.8543 2774 0.8796  5.6267 2759 08560  6.2101 8.08 4427
Color-GAN [89] 2401 07490  6.9769 2157 0.8065  8.5284 2924 09020 47212 051 9.95
AMGAN-CR [19] | 2785 08317  4.5691 29.05 0.8965  4.4694 2882 08672 4.9061 0.29 96.96
Cycle-SNSPGAN [90] | 22.95 0.7714  8.1552 2513 0.8229 104286 | 2852 09122  6.0930 472 134.42
Ours 3152 0.8893  3.6275 3629 09671  1.8316 3023 09303  4.1672 591 34.40

(d)

(2 (h) @@ 0 (k) M

Fig. 6. Thin cloud removal results on the T-CLOUD dataset. Zoomed-in view for the best view. (a) Input. (b) RSC-Net. (c) MCRN. (d) MSAR-DefogNet.
(e) RCA-Net. (f) SPA-GAN. (g) Zheng et al. (h) MS-GAN. (i) Color-GAN. (j) AMGAN-CR. (k) Ours. (1) Reference.

@

® ‘ (i)
Fig. 7. Thin cloud removal results on the RICE-I dataset. Zoomed-in view for the best view. (a) Input. (b) RSC-Net. (¢) MCRN. (d) MSAR-DefogNet.
(e) RCA-Net. (f) SPA-GAN. (g) Zheng et al. (h) MS-GAN. (i) Color-GAN. (j) AMGAN-CR. (k) Ours. (1) Reference.

C. Thin Cloud Removal Results networks (MCRNs) [85], spatial attention generative adver-
sarial network (SPA-GAN) [87], RSC-Net [20], multiple

To evaluate the performance of the proposed method, scale attention residual network using for cloud remove
we compare it with several CNN-based thin cloud (MSAR-DefogNet) [21], residual channel attention network
removal techniques, including multiscale distortion-aware (RCA-Net) [86], Zheng et al. [43], multiscale generative
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adversarial net (MS-GAN) [88], Color-GAN [89], atten-
tion mechanism-based generative adversarial networks for
cloud removal (AMGAN-CR) [19], and cycle spectral
normalized soft likelihood estimation patch GAN (Cycle-
SNSPGAN) [90].

The first three columns of Table II present a quantitative
comparison between the proposed algorithm and existing
restoration methods on the T-CLOUD dataset. Our algorithm
outperforms all other methods in terms of all metrics. Specif-
ically, compared to the previously top-performing model
MSAR-DefogNet [21], our method achieves gains of 2.68 dB
in PSNR and 0.0461 in SSIM. Visual comparisons of the eval-
uated models on T-CLOUD can be seen in Fig. 6. It is evident
that some CNN-based models exhibit poor visual quality. For
example, MCRN [85] and Color-GAN [89] fail to preserve
much of the detailed information, while RSC-Net [20] and
AMGAN-CR [19] struggle to remove the clouds. Additionally,
Zheng et al. [43] displays noticeable grid artifacts and color
distortion.

In addition, we performed a comparison of our proposed
uncertainty framework with existing cloud removal algorithms
using the widely used benchmark dataset RICE-I. The results,
displayed in the middle three columns of Table II, demonstrate
that our model outperforms previous methods across all met-
rics. Notably, our method achieves the lowest color difference
score of 1.1836 on the CIEDE2000 metric, indicating that
our results closely match the patterns of the reference image.
Visualization results of the cloud removal process for each
algorithm on the RICE-I dataset are presented in Fig. 7. It can
be observed that certain algorithms, including RSC-Net [20],
Zheng et al. [43], SPA-GAN [87], and Color-GAN [89], suffer
from significant cloud residues. Likewise, MCRN [85] and
AMGAN-CR [19] exhibit noticeable color distortion.

Table II and Fig. 8 present the comparison on the WHUS2-
CR dataset. In comparison to the previous best method,
MSAR-DefogNet, our algorithm showcased enhancements of
0.34 dB in PSNR and 0.0135 in SSIM. Notably, our method
demonstrated the most superior performance in CIEDE2000,
indicating significant potential for improving thin cloud
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Fig. 8. Thin cloud removal results on the WHUS2-CR dataset. Zoomed-in view for the best view. (a) Input. (b) RSC-Net. (c) MCRN. (d) MSAR-DefogNet.
(e) RCA-Net. (f) SPA-GAN. (g) Zheng et al. (h) MS-GAN. (i) Color-GAN. (j) AMGAN-CR. (k) Ours. (1) Reference.

TABLE III

QUANTITATIVE EVALUATIONS ON THE COASTAL BAND AND NEAR
INFRARED BAND, WHERE BOLD TEXTS AND UNDERLINED TEXTS
INDICATE THE BEST AND SECOND-BEST PERFORMANCE, RESPEC-
TIVELY. 1: THE LARGER THE BETTER. |: THE SMALLER THE
BETTER

| Coastal Band | Near Infrared Band

Method

| PSNRT SSIM? | PSNRT  SSIMt

RSC-Net [20] 25.14  0.7523 18.73 0.6572
MCRN [85] 2729  0.7940 | 20.48 0.7138
MSAR-DefogNet [21] | 3049  0.8550 | 22.73 0.7579
RCA-Net [86] 30.27  0.8505 22.32 0.7554
SPA-GAN [87] 2933  0.8477 | 21.84 0.7497
Zheng et al. [43] 27.67  0.8199 | 20.46 0.7242
MS-GAN [88] 2481  0.7819 18.03 0.6619
Color-GAN [89] 28.06  0.8282 | 20.67 0.7398
AMGAN-CR [19] 2597  0.7902 18.33 0.5979
Ours 32.04 0.8798 | 23.08 0.7744

removal techniques. The visual comparison in Fig. 8 highlights
the enhanced quality of the clear images recovered by our
method. Compared with other algorithms, the clear images
recovered by our method have the most similar patterns to
the reference image, exhibiting superior accuracy in detail
and consistent color rendition. In summary, our proposed
algorithm outperforms in thin cloud removal, image detail
restoration, and preserving color fidelity, demonstrating its
overall superiority.

In the last two columns of Table II, we conduct a com-
parison of the model’s parameter count and floating-point
operations (FLOPs). The results indicate that RSC-Net, SPA-
GAN, and AMGAN-CR possess relatively fewer parameters
and computational demands; however, their performance is
comparatively inferior. Despite the relatively higher computa-
tional cost of our method, it delivers outstanding performance.
A comprehensive analysis underscores that our algorithm
strikes a superior balance between computational overhead and
performance compared to other methods.

These single-solution algorithms only manage to recover
relatively clear images, which affects their performance and
robustness, particularly on challenging examples. In contrast,
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Thin cloud removal results on the coastal band. Zoomed-in view for the best view. (a) Input. (b) RSC-Net. (c) MCRN. (d) MSAR-DefogNet.

(e) RCA-Net. (f) SPA-GAN. (g) Zheng et al. (h) MS-GAN. (i) Color-GAN. (j) AMGAN-CR. (k) Ours. (1) Reference.

@ ) | )

Fig. 10. Thin cloud removal results on the near infrared band. Zoomed-in view for the best view. (a) Input. (b) RSC-Net. (c) MCRN. (d) MSAR-DefogNet.
(e) RCA-Net. (f) SPA-GAN. (g) Zheng et al. (h) MS-GAN. (i) Color-GAN. (j) AMGAN-CR. (k) Ours. (1) Reference.

our approach leverages multisolution fusion to enhance clarity
and preserve intricate details. This highlights the potential of
the multisolution fusion approach in enhancing the robustness
of cloud removal algorithms.

D. Thin Cloud Removal on Other Bands

The multispectral configuration of satellite imagery is a fun-
damental feature different from common photographs. When
we made T-CLOUD, we only used red band, green band,
and blue band to synthesize RGB images. To verify the
effectiveness of our algorithm on other bands, we selected the
data of coastal band and near infrared band for experiments.
Table III shows the quantitative comparison results. It suggests
that our method still achieves the best results in these two
bands. Figs. 9 and 10 show the visual comparison results.
The results show that RSC-Net and MCRN have blur artifacts.
SPA-GAN, UNet-GAN, and AMGAN-CR fail to remove the
clouds completely. In contrast, our method achieves better
visual results on both coastal band and near infrared band.

0 ' W M

E. Dehazing Results

To further validate the effectiveness of our algorithm,
we conducted experiments on two benchmark datasets for
remote-sensing image dehazing: SateHazelk and RS-Haze.
The dehazing effect was quantitatively evaluated using the
metrics of PSNR and SSIM. The comparison between our
algorithm and existing methods on the SateHazelk and
RS-Haze test sets are presented in Table IV. The results clearly
indicate that our algorithm achieves the highest scores in terms
of PSNR and SSIM for both datasets. This suggests that the
clear images generated by our method exhibit more similar
patterns to the reference clear images, having richer texture
details.

The visual comparisons on these two datasets are depicted
in Figs. 11 and 12. All-in-one dehazing network (AOD-
Net) [28] exhibits prominent residual haze and significant
color distortion, which can be attributed to its simplis-
tic network architecture. While GridDehazeNet [95] and
multi-scale boosted dehazing network (MSBDN) [96] man-
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TABLE IV

QUANTITATIVE EVALUATIONS ON THE SATEHAZE1K AND RS-HAZE DATASET, WHERE BOLD TEXTS AND UNDERLINED TEXTS INDICATE THE BEST AND
SECOND-BEST PERFORMANCE, RESPECTIVELY. 1: THE LARGER THE BETTER. |: THE SMALLER THE BETTER

| SateHazelk-Thin | SateHazelk-Moderate | SateHazelk-Thick | SateHazelk-Average || RS-Haze
Method | PSNRt  SSIMf | PSNRf  SSIMf | PSNRT  SSIMf | PSNRT  SSIM{ || PSNRt  SSIMf
DCP [16] 13.15 0.7246 9.78 0.5735 10.25 0.5850 11.06 0.6477 17.86 0.7340
AOD-Net [28] 19.54 0.8543 20.10 0.8854 15.92 0.7313 18.52 0.8234 27.09 0.8476
FCFT-Net [92] 23.59 0.9127 22.88 0.9272 20.03 0.8156 22.17 0.8852 33.28 0.9417
H2RL-Net [93] 20.91 0.8797 22.34 0.9061 17.41 0.7684 20.22 0.8514 31.18 0.9212
M2SCN [94] 25.21 0.9175 26.11 0.9416 21.33 0.8289 24.22 0.8960 37.75 0.9497
GridDehazeNet [95] 24.67 0.9075 25.62 0.9367 20.80 0.8414 23.71 0.8952 36.40 0.9600
MSBDN [96] 25.63 0.9195 26.62 0.9450 20.59 0.8350 24.28 0.8998 38.57 0.9650
Trinity-Net [97] 21.55 0.8842 23.35 0.8952 20.97 0.8226 21.96 0.8673 32.17 0.9186
Uformer [98] 22.82 0.9070 24.47 0.9393 20.36 0.8148 22.55 0.8864 38.89 0.9573
Restormer [99] 23.08 0.9116 24.73 0.9334 18.58 0.7616 22.13 0.8689 39.24 0.9576
UMWTransformer [100] 24.29 0.9190 26.65 0.9455 20.07 0.8252 23.67 0.8966 36.11 0.9464
FocalNet [101] 24.16 0.9162 25.99 0.9469 21.69 0.8474 23.95 0.9035 38.39 0.9539
C?PNet [102] 19.62 0.8802 24.79 0.9399 16.83 0.7895 20.41 0.8699 34.78 0.9419
Ours 27.36 0.9293 28.37 0.9566 22.83 0.8518 26.19 0.9126 39.52 0.9706

@ (b) ©

Fig. 11. Visual comparisons on the SateHazelk dataset. The first row, the second row, and the third row show the visualization results in the SateHaze1k-Thin,
SateHazelk-Moderate, and SateHaze1k-Thick test sets, respectively. Zoomed-in view for the best view. (a) Input. (b) AOD-Net. (c) GridDehazeNet. (d) MSBDN.
(e) Ours. (f) Reference.

age to produce competitive outputs, some traces of haze
residue still persist. These supervised algorithms employ
diverse network structures to obtain a single solution that
closely aligns with the reference image. However, this
approach compromises their robustness and constrains their
effectiveness in restoring degraded images in challenging
scenarios. In contrast, with a multiple solutions fusion strat-
egy, our algorithm significantly improves the performance of
image restoration, leading to visually pleasing and realistic
outcomes.

FE. Ablation Study

Here, we present ablation experiments to demonstrate the
effectiveness of the proposed uncertainty-based algorithms.

(d) (© (®

All evaluation is performed on the proposed T-CLOUD
dataset. To streamline the experiments and align with prior
research [40], we reduce the number of training rounds in the
ablation experiment stage by half compared to the training
stage.

1) Scale of Latent Variable z: First, we investigate the
impact of the dimensionality of the latent variable z. We set
z sizes to 3, 6, 9, and 12, respectively, and compare the
quantitative indicators of these variant models on the test
set. The quantitative results are shown in Table V. Different
dimensions of z exhibit varying defogging performances. The
performance of z is relatively poor at low dimensions, but it
also diminishes if the dimension is too high. Based on our

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 10,2025 at 10:51:57 UTC from IEEE Xplore. Restrictions apply.



5604616

@ | b)

TABLE V

ABLATION STUDY RESULTS ON T-CLOUD DATASET FOR DIFFERENT
DIMENSION OF z IN THE UNCERTAINTY FRAMEWORK

z 3 6 9 12
PSNR 28.72 29.20 29.63 29.07
SSIM 0.8512 0.8538 0.8579 0.8532

TABLE VI

ABLATION STUDY RESULTS ON T-CLOUD DATASET FOR DIFFERENT
FUSION STRATEGY

Method Average Restoration SEN DFN
PSNR 28.12 28.96 29.63
SSIM 0.8501 0.8526 0.8579

experimental findings, we set the dimension of z to 9 in our
uncertainty framework.

2) Effect of DFN: Our proposed uncertainty framework
has the advantage of generating multiple plausible solutions.
Therefore, we design DFN to merge these solutions and
achieve a more accurate overall solution. To assess the effec-
tiveness of this fusion scheme, we introduce two additional
fusion strategies. The first strategy, termed Average Restora-
tion, computes the expectation of multiple reasonable solutions
as the final fusion result [i.e., Y* = (1/n) Z;’zl Y;]. The
second strategy is a static fusion network (SFN), which
employs convolution and activation layers to construct a fusion
network. After training, all inputs are processed using the same
parameters.

The quantitative comparison results of these three fusion
strategies are presented in Table VI. Although the method
of directly obtaining expectations is simple and efficient,
it performs poorly in all quantitative indicators. The other
two fusion strategies, which employ learnable parameters,
exhibit significantly superior performance. In contrast, our
proposed dynamic fusion strategy attains the highest PSNR
and SSIM scores, highlighting its superiority in handling
diverse samples. This dynamic fusion scheme can generate

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024
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Fig. 12.  Visual comparisons on the RS-Haze dataset. Zoomed-in view for the best view. (a) Input. (b) AOD-Net. (c) GridDehazeNet. (d) MSBDN. (e) Ours.
(f) Reference.

TABLE VII
RESULTS OF EACH LoOSS ITEM

L1 Lmse Ljre | PSNR  MSSIM

v 2937  0.8551

v 2873 0.8516

v v 29.63  0.8579
TABLE VIII

ABLATION STUDY RESULTS ON T-CLOUD DATASET FOR DIFFERENT
AGGREGATION STRATEGY

Method Concatenation Summation SFFM
PSNR 27.76 27.94 29.63
SSIM 0.8303 0.8298 0.8579

varying parameters for individual samples and align them for
personalized processing. The Dynamic fusion strategy offers
higher flexibility and greater robustness compared to static
fusion.

3) Evaluation on Loss Function: Furthermore, we investi-
gate the influence of the objective function on the network’s
final recovery performance during training. As a point of com-
parison, we select the mse loss function, and the corresponding
experimental results are displayed in Table VII. L1 loss
yields superior PSNR and SSIM scores, potentially because
minimizing mse suppresses high-frequency details, leading to
image blurring and excessive smoothing. Therefore, we adopt
L1 loss as the primary reconstruction loss term. Additionally,
Table VI demonstrates that utilizing the frequency domain loss
as an auxiliary term resulted in PSNR and SSIM improvements
of 0.26 and 0.0028, respectively. Based on these experiments,
we ultimately select the combination of L1 loss and frequency
domain loss as the objective function for optimizing the
network parameters.

4) Effect of SFFM: To demonstrate the effectiveness of this
feature aggregation strategy, we compare it with concatenation
and summation. Table VIII shows that SFFM achieves a PSNR
gain of 1.87 and 1.69 dB over concatenation and summation,
respectively. This demonstrates that the selective mechanism
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TABLE IX

ABLATION STUDY RESULTS ON T-CLOUD DATASET FOR THE ATTENTION
MECHANISM AND THE MIMO STRATEGY

Method w/o Attentino w/o MIMO Ours
PSNR 25.03 27.51 29.63
SSIM 0.7750 0.8128 0.8579

utilized in SFFM can integrate more informative features,
resulting in improved performance.

5) Effect of Attention and MIMO Mechanism: The influ-
ence of the attention mechanism is evaluated in Table IX.
The results suggest that the attention mechanism significantly
improves performance. After introducing the channel attention
and spatial attention mechanisms, the model achieved a gain
of 4.60-dB PSNR and 0.0829 SSIM. The attention mechanism
makes the network invest more learning effort in valuable
patterns, achieving better performance. To demonstrate the
effectiveness of the MIMO mechanism, we built a single-input
single-output (SISO) variant. The MIMO mechanism eases the
difficulty of training and leads to an additional 2.12-dB PSNR
and 0.0451 SSIM gains.

V. CONCLUSION

In this article, we propose an algorithm for removing haze
and thin clouds in remote-sensing images based on a prob-
abilistic approach. Unlike previous deterministic restoration
algorithms, our method is capable of recovering multiple
clear images from a single degraded input. Our algorithm
is built upon the CVAE framework and employs an MIMO
U-shaped architecture for the restoration network. The restora-
tion process involves feeding the sampled latent variable
and degraded image into the network to obtain a reasonable
solution. To enhance the performance, we introduce an SFFM
that merges the intermediate features from the encoder and
decoder. Furthermore, we design a dynamic fusion network
utilizing dynamic convolution to combine multiple reasonable
solutions and generate a more accurate restoration result.
Through our experiments on multiple datasets, our algorithm
has achieved state-of-the-art results in remote-sensing image
dehazing and cloud removal tasks, demonstrating the sub-
stantial potential of incorporating uncertainties to enhance the
quality of remote-sensing image restoration.

Our proposed CVAE-based uncertainty restoration frame-
work holds the potential for extension to various image
restoration tasks, including image super-resolution reconstruc-
tion, denoising, and rain removal. However, an inherent
drawback lies in the increased computational load due to
multiple samplings. Enhancing the model’s efficiency stands
as a focal point in our forthcoming research endeavors.
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