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Abstract

We investigate how context granularity, i.e.
whether fine or coarse distinctions need to be
made, influences an emerging lexicon. We con-
duct an agent-based simulation of a concept-
level reference game, in which agents learn
to communicate about concepts that are opera-
tionalized by combining multiple objects. We
create three experimental conditions by manip-
ulating the context in which the instances of
the target concept appear: In the fine context
condition, agents must make precise distinc-
tions between similar targets and distractors. In
the coarse context condition, targets are easy
to discriminate because they share no overlap-
ping features with the distractors. In the mixed
baseline condition, both fine and coarse dis-
tinctions are necessary. Our results suggest
that agents adapt their communication strate-
gies to the granularity of the context in which
they learned the concepts. In the fine con-
text and baseline conditions, agents develop
a communication protocol heavily based on
one-to-one mappings between messages and
concepts. Conversely, in the coarse context
condition agents communicate more efficiently
by vastly relying on abstract references that
may refer to more than a single concept but are
unambiguous in context. These results show
that ambiguity emerges in coarse contexts and
that ambiguous abstract terms are used for more
efficient communication.

1 Introduction

Context plays a crucial role when communicating
information. Not only does the immediate con-
text help to constrain the meaning of an ambigu-
ous utterance, but also recent research suggests
that context shapes the formation of lexical conven-
tions (see e.g. Hawkins et al., 2018; Winters et al.,
2018). The question of how context granularity,
i.e. whether a target needs to be discriminated in
a fine or coarse context, influences the emergence

of abstract and specific references has been inves-
tigated in a recent study with human participants
and a small set of hierarchically organized targets
(Hawkins et al., 2018). The goal of our current
research is to investigate the scalability of their
findings to larger conceptual hierarchies and larger
lexica by adapting their setup to a language emer-
gence simulation between artificial neural network
agents.

Our work is based on two previous lines of re-
search. On the one hand, research on the evolution
of artificial languages between human participants
has shown that lexical conventions are shaped by
communicative pressures, such as the communica-
tive environment and pragmatic demands of context
(Nolle et al., 2020; Hawkins et al., 2018; Winters
et al., 2018; Silvey et al., 2015; Winters et al., 2015;
Tinits et al., 2017). Specifically, Hawkins et al.
(2018) found that when fine-grained distinctions
are necessary to disambiguate a target from the
context, the emerging lexical systems contain more
one-to-one mappings between words and meanings.
Contrastingly, when such fine-grained distinctions
are not necessary, emerging lexical systems con-
tain more abstract references which can be used
to refer to more than one object (see Figure 1A,
Hawkins et al., 2018). This line of research makes
use of the artificial language learning paradigm
(see e.g. Smith and Wonnacott, 2010; Kirby et al.,
2008): Two participants play a reference game.
The speaker’s task is to communicate a target to the
listener who has to select the target from a context,
i.e. a set of distractor objects. The speaker selects
their messages from a small set of artificial words
or syllables. After several interactions, an artifi-
cial lexicon has emerged. In other words, speakers
and listeners have converged on the meanings of
the artificial words in the context of the reference
game.

The task design and setup bears close resem-
blance to the second line of research we base our
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Figure 1: A: In Hawkins et al. (2018), two participants learn an artificial language in either fine, mixed or coarse
contexts. B: In Kobrock et al. (2024), two artificial agents learn a language protocol in contexts ranging from fine to
coarse (this is the mixed condition). C: In the current paper, artificial agents learn a language protocol in either fine
or coarse contexts. We give examples for target objects (in green frames) in fine and coarse contexts.

work on: In language emergence research, two neu-
ral network agents play a similar reference game
and the emerging message-meaning mappings can
be investigated for their language-like properties
(e.g. Lazaridou et al., 2018). The rapid advance-
ment of artificial intelligence and deep learning
techniques has created new opportunities for ex-
ploring emergent communication - now between ar-
tificial agents instead of human participants. Agent-
based simulations provide valuable insights into
language’s intrinsic properties and evolution by
enabling researchers to observe the emergence of
communication in a controlled environment, where
variables can be precisely manipulated and no prior
knowledge exists. Numerous studies have used
neural network models to investigate the develop-
ment of artificial communication protocols through
reference games similar to those employed in ar-
tificial language learning studies (see e.g. Ohmer
et al., 2022; Mu and Goodman, 2021; Lazaridou
et al., 2018; Dagan et al., 2021; Bernard et al.,
2024). In the reference games employed in these
simulations, a sender agent describes a target object
to help a receiver agent identify it among distrac-
tors. Going beyond the communication of single
objects, in Mu and Goodman (2021) and Kobrock
et al. (2024), the sender describes groups of objects
with shared features, forming a concept that guides
the receiver’s selection (see also Akkerman et al.,
2024, for a different approach to communication
about multiple targets). We build on the simula-
tions by Kobrock et al. (2024) where agents learned
to communicate about concepts at various levels
of abstraction (see Figure 1B). Their main finding
suggests that when agents are provided with contex-

tual information, they take this context information
into account when communicating. This leads to
the development of a more efficient and natural
communication protocol. In contrast to that study,
here we manipulate in which contexts agents see
the concepts during training.

The research gap that our study addresses is
the successful synthesis between the findings of
Hawkins et al. (2018) on the influence of different
context granularities (fine vs. coarse distinctions)
on human language and the modeling approach by
Kobrock et al. (2024) which allows us to investi-
gate whether the results from Hawkins et al. (2018)
scale to larger conceptual hierarchies and to larger
lexica (see Figure 1). Scalability is important to
provide further evidence on mechanisms of natu-
ral languages because natural languages typically
consist of very large lexica and can be used to re-
fer to basically any object or concept. The aim of
our study is to investigate how the simple context
manipulation as in Hawkins et al. (2018) scales
to larger conceptual hierarchies and to a larger set
of possible messages. We do this by building on
the concept-level reference game simulations from
Kobrock et al. (2024) and systematically manipu-
lating the context granularity, i.e. whether agents
have to make fine or coarse distinctions between
targets and distractors during training. Based on
Hawkins et al. (2018), we have the following expec-
tations: Fine-grained contexts will result in precise,
one-to-one mappings between messages and con-
cepts. Coarse-grained contexts will encourage ab-
stract references, with fewer one-to-one-mappings
but greater lexical efficiency through context-based
disambiguation.



2 Methods

2.1 General setup and game scenarios

We extend the framework proposed by Kobrock
et al. (2024) to examine the effects of context gran-
ularity on the lexicalization of abstract and spe-
cific references in an emerging language, i.e. the
mapping between concepts and messages. Follow-
ing Hawkins et al. (2018), specific references are
used to refer to only one specific entity and ab-
stract references are references with more than one
meaning. In Kobrock et al. (2024), agents iter-
atively learn to communicate about concepts at
different levels of abstraction through a concept-
level reference game. Drawing on this foundation,
we design two novel game scenarios, systemati-
cally manipulating context granularity in similar
manner to (Hawkins et al., 2018). In a concept-
level reference game G' = (T, D, TR, DF) be-
tween sender S and receiver R, target concepts
75 = {17, ..., tz;} need to be communicated in a
given context D° = {df, ..., dg}’ where ¢ is the
game size, i.e. the number of target and distrac-
tor objects in the input. 77 and D¥ are defined
analogously for the receiver and 7% # T and
DS # D®, as proposed in (Mu and Goodman,
2021). These target concepts are operationalized
by combining multiple target objects that share a
specific amount of fixed attributes. The number of
fixed attributes within a target concept determines
how specific (all attributes fixed) or generic (one
attribute fixed) a target concept is. The target con-
cepts are presented in a context determined by the
distractor objects (Kobrock et al., 2024). In each
round of the game, sender S receives targets 75
and distractors D, presented in this order. Uti-
lizing this information, S constructs a message
m = (s;)j<m, Where s; signifies a symbol from
the vocabulary V', and M refers to the maximum
length of the message. The receiver R obtains the
message m along with their own set of targets 7"
and distractors D, which are mixed together (de-
noted subsequently as X7 = zft ... & where
it = 2 - g, reflecting the fact that R is unaware
of which items are targets and which are distrac-
tors). From these inputs, R generates a prediction
for each object ¥ in its input, producing a label
y € 0,1 (where 0 indicates a distractor and 1 in-
dicates a target). Following Hawkins et al. (2018),
we design two novel game scenarios, a coarse and a
fine context condition, in which we train the agents
in only coarse or only fine contexts. In the coarse

context condition, the objects belonging to the tar-
get concept do not share any relevant features with
the distractors. In the fine context condition, each
distractor differs from the target objects by only
one relevant feature. We compare these conditions
to a baseline “mixed” condition that was introduced
in previous work (see Kobrock et al., 2024)!. The
sender’s task is to produce a message to guide the
receiver in the identification of the target concept.
The receiver agent must assign a label to each one
of the input objects to distinguish them between tar-
gets and distractors. The agents are implemented as
neural networks and are trained in a reinforcement
learning paradigm, where the agents are rewarded
depending on whether the receiver agent assigns
the correct label (target/distractor) to each one of
the input objects.

The code for the experiment is available in the
GitHub repository: https://anonymous.4open.
science/r/context-granularity-BE@8

2.2 Datasets

We train the agents on six symbolic datasets with
varying numbers of attributes and values to ensure
generalizability of results (Kobrock et al., 2024).
They are denoted by the number of attributes n and
values k that objects in each dataset can take. We
train the agents on datasets D(3,4), D(3,8), D(3,16),
D(4.,4), D(4,8), and D(5,4). The datasets feature hi-
erarchical concepts, with specificity depending on
the number of fixed attribute values. For instance,
concepts like SMALL BLUE TRIANGLE and BIG
RED SQUARE are specific and concepts like RED,
SMALL, and SQUARE are generic. Concepts de-
fined in this way are hierarchical: for instance, the
object small blue triangle: belongs to the concept
SMALL BLUE TRIANGLE, but also to the concepts
that fix only one or two of those attributes values,
such as small, blue, small blue, and blue triangle.
The concepts are presented in context. We call
objects which are part of the target concept targets
and objects which are part of the context distractors.
The context for each input is defined by the number
of concept-defining attributes (the attributes whose
value is fixed in the target concept) that are shared
between targets and distractors. For example, the
target concept SMALL BLUE CIRCLE might be pre-
sented in a fine context, e.g. large blue circles or
small red circles, or in a coarse context, e.g. squares
or objects which are not blue. Previous work has

'The condition we refer to was called “context-aware” in
Kobrock et al. (2024).
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presented concepts in all possible context condi-
tions ranging from fine, where all but one concept-
defining attributes are shared between targets and
distractors,? to coarse, where no concept-defining
attribute is shared between targets and distractors
(Kobrock et al., 2024). We will call this the ‘mixed’
context condition and use it as a baseline. To build
our novel game scenarios, we generate datasets
where target concepts are presented only in fine
or only in coarse contexts. This way, consistently
with (Hawkins et al., 2018), we create two condi-
tions that differ by the granularity of the context,
i.e. the number of concept-defining attributes that
must be specified to correctly identify the target
objects among the distractors.> Figures 4 and 5 in
Appendix A present examples for items in coarse
and fine context conditions.

For comparison, the dataset used in Hawkins
et al. (2018) uses three hierarchical features (shape,
color/texture and frequency/intensity) which could
take two values at each hierarchy level. However,
unlike their dataset, we do not use a fixed hierarchy
of stimuli. Rather, all possible combinations of
attributes are included in our datasets, and instead
of a fixed hierarchy of objects we use concepts.

2.3 Architectures and training

The implementation of the concept-level reference
game is based on Kobrock et al. (2024) and makes
use of the EGG framework (Kharitonov et al., 2019,
MIT license). The sender and receiver are imple-
mented as GRUs (Gated Recurrent Units) with a
single layer of size 128 and are trained in a re-
inforcement learning paradigm with the Gumbel-
softmax relaxation* which ensures differentiability
for backpropagation (Jang et al., 2017). To ensure
comparability of our novel fine and coarse context
granularity conditions to the mixed baseline from
previous work, we adopt the same settings and hy-
perparameters as in the context-aware condition
from Kobrock et al. (2024). The inputs for both
the sender and receiver consist of 10 target objects
T and 10 distractors D, i.e. game size g is 10.

>The concept-defining attribute which is not shared be-
tween targets and distractors can vary among distractors. For
example, in Figure 5 one distractor differs by shape and the
other by color.

SHawkins et al. (2018) present a single-target reference
game where the coarse context condition presents a target that
differs by two attributes from the closest distractor. Differently,
we decided to implement the coarse context condition as the
coarsest condition possible, i.e. targets differ by all concept-
defining attributes from the distractors.

*We use temperature 7 = 2 and a decay rate of 0.99.

For each item, the sender can produce a message
in the form of a vector, with a maximum length
M = n + 1. Agents use a zero as the End Of Se-
quence (EOS) symbol. The vocabulary size V, i.e.
the number of symbols that sender can use in their
messages, is setto V' = 3 - (k + 1) (as in Ohmer
et al., 2022; Kobrock et al., 2024). The receiver
predicts a label y; € {0, 1} for each object z; in its
input based on whether it believes it to be a target
(1) or a distractor (0). We use binary cross-entropy
loss for training:

LBCE(S’LvG) = _ZlogpL(yzL‘szam)a (1)

where 11 ~ p¥(m|T?, DY) and p*(y*|zF,m) =
o(GRUL (1) - embed(z})). Following (Kobrock
et al., 2024), we use 60% of each dataset for train-
ing, 20% for validation, and 20% for testing. Each
split contains different concepts presented in the
relevant novel context condition (coarse or fine).
We run the training process five times to account
for the random initialization of the parameters of
the neural networks and train for 300 epochs with a
batch size of 32. The testing split is used only once
at the end of the training to evaluate the agents’ gen-
eralization capabilities on unseen concepts, while
the validation split is used to measure performance
after every training epoch.

2.4 Metrics

We first measure the training, validation, and test ac-
curacies for all context conditions. We then evalu-
ate the emerging languages based on three entropy-
based scores calculated on the set of messages M
and the set of concepts C' (Ohmer et al., 2022) and
take the means over five runs. These are:

e Normalized Mutual Information (NMI),
which measures how closely messages and
concepts correspond to each other in a one-to-
one relationship. Therefore, if the NMI score
takes its maximal value 1.0, it is possible to
construct a bijective map between the set of
messages produced by the agents and the set
of target concepts presented to them in the
game. The NMI can take values € [0, 1] and
is calculated as follows:

H(M)—- H(M|C)

NMUC M) = 55 (o) + #@n) P

 Effectiveness, which quantifies the usage of
messages that uniquely identify a concept, in



other words messages are non-polysemous or
not abstract. Effectiveness can take values
€ [0, 1] and is calculated as:

H(C|M)

effectiveness(C, M) =1 — THO) 3)

* Consistency, which measures whether agents
are consistent in choosing always the same
message to communicate the same concept, in
other words messages are non-synonymous.
Consistency can take values € [0, 1] and is
calculated as:

 HMI|C)

consistency(C, M) =1 HM)

“

To quantify differences in scores between the
different conditions, we use Bayesian estimation
following Kruschke (2013). We report estimated
means and 95% Credible Intervals (Crls) over five
runs as well as mean differences and their CrIs.

We then perform a more qualitative analysis
of the communication protocols by mapping each
message to the concept(s) it was used to refer to.

2.5 Hypotheses

We hypothesize that the communication protocol
developed by the agents is influenced by the con-
text condition in which it is learned. We expect
that in the fine context condition, agents will de-
velop more one-to-one mappings (i.e., higher NMI)
between messages and concepts than in the mixed
baseline. In other words, we expect only specific
references to be lexicalized, since the context con-
dition requires fine-grained distinctions between
concepts. In the coarse context condition, on the
other hand, we expect agents to develop fewer one-
to-one mappings (i.e., lower NMI) between mes-
sages and concepts than in the mixed baseline. In
other words, we expect agents to include more ab-
stract references in their communication, as the
contextual information can be leveraged by agents
to identify the target concept. Following this, we
expect higher effectiveness in the fine context con-
dition than in the baseline and lower effectiveness
in the coarse context condition than in the baseline.
Lower effectiveness in the coarse context condi-
tion with the same accuracy would indicate that
agents use words with many meanings, or abstract
references in the terminology used in Hawkins et al.
(2018). These predictions are in line with the re-
sults obtained in Hawkins et al. (2018), who found

that abstract references were lexicalized only in
the coarse context condition. We expect high over-
all consistency across context conditions, reflecting
minimal use of synonymous references. This aligns
with Kobrock et al. (2024), who noted that agents
use synonyms for the same concept in varying con-
texts—a scenario not applicable here since context
conditions remain constant across trials.

3 Results

3.1 Performance and generalization

Agents achieve very good performance on training
and validation sets in both fine and coarse context
conditions. Mean train and validation accuracies
across runs are > 0.94 for the fine context condi-
tion and > 0.99 for the coarse context condition
for all datasets. These results are comparable to
the ones obtained in (Kobrock et al., 2024) for the
baseline mixed condition (mean train and valida-
tion accuracies across runs for all datasets > 0.96).
These results are an indication that agents are able
to learn to communicate about concepts in the set-
ting of the concept-level reference game also when
trained only in fine or coarse contexts.

Accuracies on the test split differ more across
context conditions. The mean test accuracies across
runs are 0.98 (SD=0.02) for the coarse context con-
dition, and 0.75 (SD=0.14) for the fine context
condition indicating that while agents can also rea-
sonably well generalize in the fine context condi-
tion, they are much better at generalizing when
they have been trained in the coarse context condi-
tion. The mean test accuracy in the baseline con-
dition is 0.87 (SD=0.11) which is in the middle
between the fine and coarse condition. This shows
that the generalization abilities of the agents de-
pends on the context condition in which they have
been trained: When being trained to make fine dis-
tinctions, agents come up with a mapping that does
not generalize well. On the other and, when be-
ing trained to make coarse distinctions only (or a
mix), then agents come up with a mapping that
generalizes better.

3.2 Contextual pressures shape the emerging
language

To obtain information on the emerging language
at its final stage of development, information-
theoretic scores are calculated on the interactions
of the last training epoch (see Kobrock et al., 2024;
Ohmer et al., 2022). First, we look at the NMI



scores. The NMI scores averaged across runs for
all datasets and context conditions are summarized
in Figure 2.° For the mixed context condition, the
mean NMI is estimated at M=0.87 [0.85, 0.89].
For the fine context condition, the mean NMI is
M=0.92 [0.90, 0.93]. There seems to be a small
difference between the fine and mixed context con-
dition, where the NMI scores are higher for the fine
context condition. To quantify this difference statis-
tically, we used Bayesian estimation following Kr-
uschke (2013). We find a substantial, though very
small, difference in NMI between the fine condition
and our mixed baseline (M=0.05, CrI°=[0.02, 0.07],
pd=100%, 1% in ROPE). For the coarse context
condition, the mean NMI is M=0.59 [0.58, 0.61].
The difference between the coarse context condi-
tion and our mixed baseline is quite large and sub-
stantial (M=-0.28, Crl=[-0.30, -0.25], pd=100%,
0% in ROPE). In summary, we find that NMI scores
in the fine and coarse context condition differ sig-
nificantly from the mixed condition baseline with
NMIs in the fine context condition being slightly
higher than the baseline and NMIs in the coarse
context condition being much lower than the base-
line. This suggests that agents tend to create one-
to-one mappings between concepts and messages,
assigning to each concept its own message in the
fine context condition. Agents likely adopt this
communication strategy because they are required
to draw very fine-grained distinctions to correctly
discriminate the targets from the distractors in the
fine context condition. In the coarse context con-
dition, on the other hand, the low NMI scores in-
dicate that the communication protocol emerging
from the coarse context condition is not based on a
strict one-to-one correspondence between concepts
and messages.

Second, we look at the effectiveness score. For
the mixed context baseline, the estimated mean ef-
fectiveness 1s M=0.88 [0.85, 0.91]. For the fine con-
text condition, the mean effectiveness is M=0.90
[0.87, 0.94]. The difference in effectiveness be-
tween the fine and mixed context conditions is not
substantial (M=0.02, CrI=[-0.02, 0.07], pd=85%,
46% in ROPE). For the coarse context condition,
the mean effectiveness is M=0.44 [0.42, 0.46]. The
difference between the coarse and the mixed con-
text condition is large and substantial (M=-0.44,

SPlots for effectiveness and consistency scores can be
found in Appendix C.

®The Credible Interval (Crl) was estimated as the 95%
Highest Density Interval.

Crl=[-0.47, -0.40], pd=100%, 0% in ROPE). The
low effectiveness scores in the coarse context con-
dition indicate that agents use the same message
to identify multiple target concepts, i.e. they use
abstract references. One possible cause for these
results is that agents might rely on context to clar-
ify which concept they are referring to, rather than
using one message for each concept regardless of
the context. This is possible in the coarse context
condition: As targets and distractors are very dif-
ferent from each other and share no attributes, a
message that does not encode all information about
the target concept (i.e. an abstract message) can
still be informative enough to correctly identify the
target objects.

Third, we look at the consistency scores. For the
mixed context condition, the estimated mean con-
sistency is M=0.87 [0.86, 0.88]. For the fine con-
text condition, consistency is estimated at M=0.94
[0.93, 0.95]. The difference in consistency be-
tween the fine and mixed context condition is very
small but substantial (M=0.07, CrI=[0.06, 0.09],
pd=100%, 0% in ROPE). For the coarse context
condition, mean consistency is M=0.92 [0.90, 0.94].
The difference in consistency between the coarse
and mixed context conditions is small and substan-
tial (M=0.05, CrI=[0.03, 0.08], pd=100%, 0% in
ROPE). We find high consistency scores in both
fine and coarse context conditions, suggesting that
the agents consistently use the same message to re-
fer to the same target concept (i.e. the language con-
tains only very few synonyms). Scores are slightly
lower in the mixed baseline, where agents might
be more incentivized to come up with different
words for the same concepts presented in different
contexts.’

3.3 Coarse contexts drive the emergence of
smaller and more efficient lexica

To further investigate the communicative strategy
adopted by agents in the coarse and fine context
condition, we reconstruct the emergent lexica (i.e.
the mappings between messages and concepts)
from the interactions of the last training epoch. A
description of the methodology we used, along with
some examples, can be found in Appendix E.

A comparison of the sizes of the lexica can be
found in Table 1. Across all datasets, agents con-

"The observed differences might also vary with respect
to the conceptual hierarchy. For this reason, in Appendix
D, we analyze the entropy scores depending on the level of
specificity of the concepts.
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Figure 2: Mean NMI scores for coarse, mixed and fine context condition for each dataset. The different datasets are
identified by the number for attributes and the number of possible values each of those attributes can take.

Dataset | # Concepts | Context Condition | # Messages
D(3.4) 99 Cﬁifie 13333
D(3,16) 3929 Cl(:);::e 1133038
D(4,4) 499 Cg;r:e 1200741
D(4,8) 5248 Cl(:)iagze 6768386
D(5.4) 2499 Cl(:)i?::e Eg

Table 1: Lexicon sizes for all datasets in coarse and fine
context conditions. We present the number of unique
concepts and the number of unique messages.

verge to smaller lexica in the coarse context con-
dition, where agents consistently lexicalize fewer
messages than the total number of target concepts.
By doing so, they appear to develop an efficient
communication protocol that avoids encoding each
concept into a unique message, but likely leverages
contextual information to disambiguate the target
concept. Conversely, in the fine context condition,
agents make use of a bigger set of messages. A pos-
sible explanation for this is that agents in the fine
context condition create specific messages to be
able to unambiguously identify the target concept
among similar distractors.

How do agents in the coarse context condition
achieve this efficient mapping? Figure 3 shows for
each message the number of concepts that it refers
to, normalized by the total number of concepts in
each dataset and condition. A high concept ratio
means that this message refers to many different
concepts in a dataset, and a ratio close to 0 means
that this message refers to only one concept in
the dataset. Agents in the fine context condition
use messages that refer to one or only very few

concepts, while in the coarse context condition
agents incorporate abstract messages and use them
to refer to a bigger set of concepts. Those messages
are the ones mapped to most generic concepts. This
is particularly interesting, as it indicates that agents
in the coarse context condition rely on messages
that encode minimal information (i.e. one attribute
value corresponding to a generic concept) also to
identify more specific concepts in certain contexts.

4 Discussion

This work employs an agent-based simulation of
a concept-level reference game to investigate the
influence of context granularity on the emergent
communication protocol. We compare our findings
to the results obtained in the artificial language
learning study with human participants and compa-
rable context conditions (Hawkins et al., 2018).
First, we observe higher accuracies for the coarse
context condition than the fine context condition
with the mixed baseline in between in both perfor-
mance (i.e. on the train and validation sets) and
generalization (on the test set). The superior per-
formance of agents in the coarse context and their
lower performance in the fine context align with the
findings of Hawkins et al. (2018), who observed
more correct responses by the listeners in the coarse
than in the fine context condition. They explain this
by the fine condition being hardest and the coarse
condition being easiest, with the mixed condition
in between. Similarly, the difficulty of the task may
explain the differences in performance we observe
in the agent-based simulation. While exhibiting
similar performance on the train and validation
sets, agents trained in the coarse context condition
generalize better than agents trained in the fine con-
text condition or in the mixed baseline condition.
As Hawkins et al. (2018) did not test generalization,
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with only one fixed attribute) are identified by the star marks.

this is a novel finding and suggests that languages
that have been shaped by coarse contexts serve bet-
ter for generalization. Second, the granularity of
the context plays an important role in shaping the
emerging language. In line with our hypotheses,
agents trained in the fine context condition tend to
associate each concept with a unique message, and
we do not find many synonymous or polysemous
messages in their protocols, whereas agents in the
coarse context condition exhibit fewer one-to-one
mappings and tend to reuse the same message for
multiple target concepts. Agents trained in both
conditions are, however, very consistent in their
choice of messages which is in line with Hawkins
et al. (2018) who found that participants were 98%
consistent in their word-to-objects mappings. The
use of more specific references, i.e. references
with a single meaning, in the fine context condition
and more abstract references, i.e. references with
more than one meaning or polysemous references,
is in line with the results obtained in Hawkins et al.
(2018). These abstract references seem to be the
reason for the better generalization abilities in the
coarse context condition due to the fact that poly-
semous messages foster flexibility and hence allow
for a better adaption to newly encountered concepts.
Polysemy in human language has been argued to
make human languages particularly efficient (e.g.
Piantadosi et al., 2012). Third, we have shown
that abstract references are used to refer to a very
high number of concepts in the datasets. Agents in
the coarse context condition develop a communi-
cation protocol that extensively employs abstract
messages, allowing them to correctly identify tar-
get concepts, including specific ones, by relying on

contextual information. This suggests that agents
can develop a more efficient communication strat-
egy, which goes beyond mere one-to-one mappings
between messages and concepts, when the context
allows it. Importantly, agents did not have any
external incentive such as a regularization cost or
efficiency pressure to modify their communication
based on the granularity of the context. Therefore,
the adaptation to the granularity of the context ap-
pears to be an emergent feature: The manipulation
of the context alone drives the agents to a more
efficient communication strategy.

We conclude that the granularity of the con-
text influences the development of emerging lan-
guages. Specifically, agents can leverage contex-
tual information to create more effective and effi-
cient communication protocols that utilize abstract
references. These results are in line with but go
beyond previous work on human language by scal-
ing the number of possible referents (dataset size)
and the number of possible messages (vocabulary
size and message length, Hawkins et al., 2018).
The effectiveness of abstract references increases
with scaling: In our setup, agents use abstract refer-
ences to refer to up to one fifth of the entire dataset.
Viewed through the lens of pragmatic inference
and cost-efficiency, our results reveal how context-
driven conventions can balance communicative pre-
cision with pressures for lexical economy. Our
findings also connect to ongoing theoretical discus-
sions in emergent communication research about
efficiency principles and information bottlenecks,
highlighting the role of context-based conventions
on efficient lexical choices (e.g. Gualdoni et al.,
2024; Tucker et al., 2022; Zaslavsky et al., 2018).



5 Limitations

This work has been carried out on symbolic
datasets with hierarchical concepts. This decision
is a potential limitation of this work and we will
quickly discuss the advantages and disadvantages
of this decision. The datasets we constructed for
training the agents consist of symbolic vectors (e.g.
(0,2,1)) that adhere to a specific structure and can
thus be interpreted as concepts presented in certain
contexts. We have specifically constructed these
datasets for the purpose of our research question
and we believe that they are the ideal testbed for our
research. Systematically manipulating attributes in
a symbolic concept vector has the huge advantage
over more natural data that we have total control
over the manipulation and get rid of noise which
is usually present in natural data. This is espe-
cially important because our research question aims
to tackle under which circumstances (i.e. fine or
coarse context) do agents (which are not equipped
with a predefined language-like system) come up
with a language-like system to communicate con-
cepts? Which properties of natural language (e.g.
ambiguity, efficiency) does the emerging language
share with natural language? However, simplify-
ing the data for the sake of modeling comes at a
cost: We cannot know how well our simplified
model generalizes to other, and especially more
natural, data. Therefore, we deem it an important
endeavour for future work to train our model on
more naturalistic datasets, for example on images
of objects belonging to certain concepts, and test
the generalizability of our results to such data. An-
other limitation of this work is that we investigate
a symbolic proto-language, namely the emerging
language, where a message is a vector consisting of
integer symbols (e.g. [11,3,5,0]) instead of natural
language. Again, we believe that this decision has
advantages and disadvantages: On the one hand,
the methodology of emergent communication al-
lows us to study the emergence of a communica-
tion system in a very controlled setting and link
general properties of language (or language-like
systems) to external factors such as context. There
are two alternatives to our approach: Either study
the emergence of a language system in an artificial
language learning study as done by Hawkins et al.
(2018), or investigate properties of existing natural
languages. The first approach has the disadvantage
that we cannot scale these findings. The second
approach has the disadvantage that we cannot link

manipulations of external factors such as context
to specific emerged properties because natural lan-
guages have already evolved in a complex natural
world. However, we believe that research obtained
on a symbolic language should be validated with
natural language data and this is another impor-
tant perspective for future work. Another possible
limitation of our setup is that dataset sizes vary
between conditions. Future work could use a sam-
pling approach to make sure that dataset sizes are
comparable between conditions. Future work could
explore a similar concept-level reference game and
manipulate other dynamics of context additional
to fine and coarse only. For example, our setup
could be used to investigate what happens if the
contextual complexity is not a binary of extremes
(fine vs. coarse) but rather continuously varied.
Another idea would be to look at what happens
if the training environment’s distribution of con-
text types is skewed. Additionally, constraints that
encourage the use of fewer messages or shorter
messages could be implemented to try to promote
the emergence of an even more efficient language.
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Figure 5: Fine context: The target concept (“T”") OR-

ANGE TRIANGLE shares all but one of the two concept-
defining attributes (color and shape) with distractors.

have the same sizes. They present each concept
in either a fine or coarse context condition, respec-
tively. In the mixed baseline, however, the concepts
were presented in each possible context condition,
leading to larger datasets (Kobrock et al., 2024).
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C Effectiveness and consistency heatmaps

For purposes of visualization, Figures 6 and 7 dis-
play the effectiveness and consistency scores for
different context conditions and datasets. They vi-
sually support the main findings reported in section
3.2.



Dataset | # Concepts | Context Condition | # Train | # Validation | # Test
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Table 2: Dataset sizes for all datasets in coarse and fine context conditions. We present the number of unique
concepts and the number of samples in the train, validation and test splits.
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Figure 6: Mean effectiveness scores for coarse, mixed and fine context condition for each dataset. The different
datasets are identified by the number for attributes and the number of possible values each of those attributes can

take.
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Figure 7: Mean consistency scores for coarse, mixed and fine context condition for each dataset. The different
datasets are identified by the number for attributes and the number of possible values each of those attributes can

take.

D Analysis of entropy scores by concept plotted against concept specificity.

level In the mixed baseline, we have not enough ev-
We investigate how the specificity of the target con-  idence for a substantial difference in NMI scores
cept influences the entropy-based scores. Figure  between specific and generic concepts (M=-0.03,
8 reports mean entropy scores across all datasets ~ Crl=[-0.07, 0.02], pd=91.5%, 19% in ROPE).
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Figure 8: Mean entropy scores across all datasets for different concept levels in coarse and fine context conditions.
The specificity of the concepts is indicated by the number of fixed attributes. The more attributes are fixed, the more
specific are the concepts. Error bars indicate bootstrapped 95% confidence intervals.

Rather, the NMI score seems to be relatively con-
stant throughout the different levels of concept
specificity (see Figure 8, in line with Kobrock
et al., 2024). In the fine context condition, we
observe that the NMI increases with increasing
concept specificity. The mean NMI score for the
most general concepts is 0.89 [0.88, 0.91], while
the mean NMI for the most specific concepts rises
to 0.95 [0.92, 0.96] for concepts with five fixed
attributes. The difference in NMI between spe-
cific and generic concepts is small but substan-
tial (M=0.05, CrI=[0.01, 0.09], pd=97.6%, 3% in
ROPE). This indicates that high concept specificity
enforces the tendency of agents to build one-to-one
mappings between concepts and messages when
the context is fine. In the coarse context condition,
we observe the opposite trend: With increasing con-
cept specificity, NMI drops and we find a substan-
tial difference in NMI between specific and generic
concepts (M=-0.23, CrI=[-0.29, -0.18], pd=100%,
0% in ROPE). The lowest mean NMI score is ob-
served for concepts with three fixed attributes, at
0.61 [0.59, 0.63]. A possible explanation for these
fluctuations in entropy scores in the coarse context
condition is that agents might initially create a sin-
gle message for each of the most general concepts
(with only one fixed attribute value). Subsequently,
they may reuse these messages to refer to more
specific concepts and rely on contextual cues to
disambiguate the targets. The slight drop in con-
sistency for concepts with four and five attribute
values suggests that agents utilize multiple mes-
sages to refer to the same concept. This behavior
could be attributed to the flexibility agents have in
specifying any attribute to identify a concept in the
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coarse context condition. As concepts accumulate
more fixed attribute values, agents have a broader
range of messages at their disposal to identify these
concepts.



E Example Lexica

We chose to reconstruct the lexica from the agents’
interactions of the last traning epoch for the coarse
and fine context conditions, which are the main
objects of interest in this study. We proceeded
as follows for each dataset. We began by retriev-
ing the message used by the sender in each trial
and associating it with the target concept for that
trial. For each message, this process yielded a
corresponding list of target concepts. Next, we
compared the concepts within each list (i.e., the
concepts referred to by the same message) to deter-
mine whether they satisfied a more generic concept.
If this was the case for 90% or more of the concepts
in the list, we assigned that more generic concept
as the meaning of the message. For instance, imag-
ine a message m referring to the concepts BLUE
TRIANGLE and BLUE SQUARE: in this case we
would establish m to be an ending for the concept
BLUE. Table 3 displays an example of the complete
lexicon for D(3,4) in the coarse condition, while
Table 4 presents a sample (for space reasons) of the
lexica emerged in the fine context condition for the
same dataset.

The first column of each lexicon table (Tables
3 and 4) contains the messages sent by the agents,
while the second column lists the symbols used
in each message (excluding the EOS symbol 0).
The third column indicates the number of unique
concepts referenced by the corresponding message.
The fourth column shows the meaning of the mes-
sage, i.e., the concept encoded by the message,
which was reconstructed as explained above. The
question marks represent unfixed attributes. Con-
cepts with all but one question mark (i.e., those
with only one fixed attribute value) are the most
generic concepts in that dataset.
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Message Symbols | # Referred Concepts | Encoded Concept
(1,1,1,0) {1} 7 (2,3,
(1,1,8,0) {8, 1} 1 (2,3,3)
(1,1,12,0) {1, 12} 1 (3,3,
(1,2,2,0) {1,2} 1 (3,3,0
1,7,1,0) {1,7} 1 (3,3,2)
(1,12,1,0) {1, 12} 1 (3,3, 1
(1,12,12,0) {1,12} 1 (7,3,1)
2,1,2,0) {1, 2} 1 (7,3,0)
2,2,2,0) {2} 5 (?,?2,0)
(3,3,3,0) {3} 8 2, 1,7
(3,6,6,0) (3,6} 1 2, 1,7
(3,9,9,0) {9, 3} 1 ©,1,3)
4,4,4,0) {4} 17 1,2,7
(6, 06,6,0) {6} 14 2,72,
(6,6, 15,0) {6, 15} 2 2,0,
(6, 15,6,0) {6, 15} 3 2,0,
(6, 15, 15, 0) {6, 15} 1 (2,0,2)
(7,1,1,0) {1,7} 1 (3,3,2)
(7,7,7,0) {7} 2 (3,2,
8,1,8,0) {8, 1} 1 (2,3,3)
8,8,1,0) {8,1} 1 (7,3,3)
(8,8,8,0) {8} 2 ?,?,3)
9,9,3,0) {9, 3} 1 0,1,1)
9,9,9,0) {9} 20 0,2,
9,9,15,0) {9, 15} 1 0,0,2)
9,15,9,0) {9, 15} 1 0,0,2)
(12,1, 12,0) {1,12} 1 (7,3,1)
(12,12, 12,0) {12} 2 2,21
(14, 14, 14, 0) {14} 20 2,2,
(15,6, 6,0) {6, 15} 3 2,0,7
(15,9,9,0) {9, 15} 2 0,0,
(15,9, 15, 0) {9, 15} 1 0,0,7
(15, 15,15, 0) {15} 6 (7,0,7

Table 3: Example lexicon for the language emerging from the concept-level reference game in the coarse context
condition with the D(3,4) dataset.
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Message Symbols | # Referred Concepts | Encoded Concept
1,1,1,0) {1} 1 (2,0,7
1,1,2,0) {1, 2} 1 (2,0,2)
(1,1,4,0) {1, 4} 1 (2,0,3)
(1,1,11,0) {1, 11} 1 (2,0,3)
(1,1,13,0) {1, 13} 1 (2,0,2)
(1,1,14,0) {1, 14} 1 2,0,7
1,2,13,0) | {1,2,13} 1 (1,0,2)
(1,13,2,0) | {1,2,13} 1 (1,0,2)
(1, 13,13, 0) {1, 13} 1 (1,0,2)
(1, 14, 14, 0) {1, 14} 2 (1,0, 7
(1,15,1,0) {1, 15} 1 (2,0,1)
(1,15,14,0) | {1, 14, 15} 1 (1,0, 1)
2,2,1,0) {1, 2} 1 1,2,2)
2,2,2,0) {2} 2 1,2,2)
(2,2,10,0) {2, 10} 1 1,?2,2)
(2,2,13,0) {2, 13} 1 (1,1,2)
(2,4,4,0) {2,4} 1 2,72,3)
(2,10,4,0) | {2,10,4} 1 1,2,3)
3,3,8,0) {8, 3} 1 (3,1,?7
(3,3,11,0) {11, 3} 1 (3,1,2)
(3,3,12,0) {3, 12} 1 (3,1,1)
(3,3,13,0) {3, 13} 1 (3,1,2)
(3,5,3,0) {3, 5} 1 ©,1,7
(3,5,5,0) {3, 5} 1 ©,1,7
(3,5,12,0) | {3,12,5} 1 O, 1,1)
(3,12,12,0) {3, 12} 1 (3,1,0)
(3,13,4,0) | {3,4,13} 1 0, 1,3)
(3,13,5,0) | {5,3,13} 1 0, 1,2)
4,3,4,0) {3, 4} 1 ,7,3)

Table 4: Sample from an example lexicon for the language emerging from the concept-level reference game in the
fine context condition with the D(3,4) dataset.
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