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Abstract

We investigate how context granularity, i.e.001
whether fine or coarse distinctions need to be002
made, influences an emerging lexicon. We con-003
duct an agent-based simulation of a concept-004
level reference game, in which agents learn005
to communicate about concepts that are opera-006
tionalized by combining multiple objects. We007
create three experimental conditions by manip-008
ulating the context in which the instances of009
the target concept appear: In the fine context010
condition, agents must make precise distinc-011
tions between similar targets and distractors. In012
the coarse context condition, targets are easy013
to discriminate because they share no overlap-014
ping features with the distractors. In the mixed015
baseline condition, both fine and coarse dis-016
tinctions are necessary. Our results suggest017
that agents adapt their communication strate-018
gies to the granularity of the context in which019
they learned the concepts. In the fine con-020
text and baseline conditions, agents develop021
a communication protocol heavily based on022
one-to-one mappings between messages and023
concepts. Conversely, in the coarse context024
condition agents communicate more efficiently025
by vastly relying on abstract references that026
may refer to more than a single concept but are027
unambiguous in context. These results show028
that ambiguity emerges in coarse contexts and029
that ambiguous abstract terms are used for more030
efficient communication.031

1 Introduction032

Context plays a crucial role when communicating033

information. Not only does the immediate con-034

text help to constrain the meaning of an ambigu-035

ous utterance, but also recent research suggests036

that context shapes the formation of lexical conven-037

tions (see e.g. Hawkins et al., 2018; Winters et al.,038

2018). The question of how context granularity,039

i.e. whether a target needs to be discriminated in040

a fine or coarse context, influences the emergence041

of abstract and specific references has been inves- 042

tigated in a recent study with human participants 043

and a small set of hierarchically organized targets 044

(Hawkins et al., 2018). The goal of our current 045

research is to investigate the scalability of their 046

findings to larger conceptual hierarchies and larger 047

lexica by adapting their setup to a language emer- 048

gence simulation between artificial neural network 049

agents. 050

Our work is based on two previous lines of re- 051

search. On the one hand, research on the evolution 052

of artificial languages between human participants 053

has shown that lexical conventions are shaped by 054

communicative pressures, such as the communica- 055

tive environment and pragmatic demands of context 056

(Nölle et al., 2020; Hawkins et al., 2018; Winters 057

et al., 2018; Silvey et al., 2015; Winters et al., 2015; 058

Tinits et al., 2017). Specifically, Hawkins et al. 059

(2018) found that when fine-grained distinctions 060

are necessary to disambiguate a target from the 061

context, the emerging lexical systems contain more 062

one-to-one mappings between words and meanings. 063

Contrastingly, when such fine-grained distinctions 064

are not necessary, emerging lexical systems con- 065

tain more abstract references which can be used 066

to refer to more than one object (see Figure 1A, 067

Hawkins et al., 2018). This line of research makes 068

use of the artificial language learning paradigm 069

(see e.g. Smith and Wonnacott, 2010; Kirby et al., 070

2008): Two participants play a reference game. 071

The speaker’s task is to communicate a target to the 072

listener who has to select the target from a context, 073

i.e. a set of distractor objects. The speaker selects 074

their messages from a small set of artificial words 075

or syllables. After several interactions, an artifi- 076

cial lexicon has emerged. In other words, speakers 077

and listeners have converged on the meanings of 078

the artificial words in the context of the reference 079

game. 080

The task design and setup bears close resem- 081

blance to the second line of research we base our 082
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Figure 1: A: In Hawkins et al. (2018), two participants learn an artificial language in either fine, mixed or coarse
contexts. B: In Kobrock et al. (2024), two artificial agents learn a language protocol in contexts ranging from fine to
coarse (this is the mixed condition). C: In the current paper, artificial agents learn a language protocol in either fine
or coarse contexts. We give examples for target objects (in green frames) in fine and coarse contexts.

work on: In language emergence research, two neu-083

ral network agents play a similar reference game084

and the emerging message-meaning mappings can085

be investigated for their language-like properties086

(e.g. Lazaridou et al., 2018). The rapid advance-087

ment of artificial intelligence and deep learning088

techniques has created new opportunities for ex-089

ploring emergent communication - now between ar-090

tificial agents instead of human participants. Agent-091

based simulations provide valuable insights into092

language’s intrinsic properties and evolution by093

enabling researchers to observe the emergence of094

communication in a controlled environment, where095

variables can be precisely manipulated and no prior096

knowledge exists. Numerous studies have used097

neural network models to investigate the develop-098

ment of artificial communication protocols through099

reference games similar to those employed in ar-100

tificial language learning studies (see e.g. Ohmer101

et al., 2022; Mu and Goodman, 2021; Lazaridou102

et al., 2018; Dagan et al., 2021; Bernard et al.,103

2024). In the reference games employed in these104

simulations, a sender agent describes a target object105

to help a receiver agent identify it among distrac-106

tors. Going beyond the communication of single107

objects, in Mu and Goodman (2021) and Kobrock108

et al. (2024), the sender describes groups of objects109

with shared features, forming a concept that guides110

the receiver’s selection (see also Akkerman et al.,111

2024, for a different approach to communication112

about multiple targets). We build on the simula-113

tions by Kobrock et al. (2024) where agents learned114

to communicate about concepts at various levels115

of abstraction (see Figure 1B). Their main finding116

suggests that when agents are provided with contex-117

tual information, they take this context information 118

into account when communicating. This leads to 119

the development of a more efficient and natural 120

communication protocol. In contrast to that study, 121

here we manipulate in which contexts agents see 122

the concepts during training. 123

The research gap that our study addresses is 124

the successful synthesis between the findings of 125

Hawkins et al. (2018) on the influence of different 126

context granularities (fine vs. coarse distinctions) 127

on human language and the modeling approach by 128

Kobrock et al. (2024) which allows us to investi- 129

gate whether the results from Hawkins et al. (2018) 130

scale to larger conceptual hierarchies and to larger 131

lexica (see Figure 1). Scalability is important to 132

provide further evidence on mechanisms of natu- 133

ral languages because natural languages typically 134

consist of very large lexica and can be used to re- 135

fer to basically any object or concept. The aim of 136

our study is to investigate how the simple context 137

manipulation as in Hawkins et al. (2018) scales 138

to larger conceptual hierarchies and to a larger set 139

of possible messages. We do this by building on 140

the concept-level reference game simulations from 141

Kobrock et al. (2024) and systematically manipu- 142

lating the context granularity, i.e. whether agents 143

have to make fine or coarse distinctions between 144

targets and distractors during training. Based on 145

Hawkins et al. (2018), we have the following expec- 146

tations: Fine-grained contexts will result in precise, 147

one-to-one mappings between messages and con- 148

cepts. Coarse-grained contexts will encourage ab- 149

stract references, with fewer one-to-one-mappings 150

but greater lexical efficiency through context-based 151

disambiguation. 152
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2 Methods153

2.1 General setup and game scenarios154

We extend the framework proposed by Kobrock155

et al. (2024) to examine the effects of context gran-156

ularity on the lexicalization of abstract and spe-157

cific references in an emerging language, i.e. the158

mapping between concepts and messages. Follow-159

ing Hawkins et al. (2018), specific references are160

used to refer to only one specific entity and ab-161

stract references are references with more than one162

meaning. In Kobrock et al. (2024), agents iter-163

atively learn to communicate about concepts at164

different levels of abstraction through a concept-165

level reference game. Drawing on this foundation,166

we design two novel game scenarios, systemati-167

cally manipulating context granularity in similar168

manner to (Hawkins et al., 2018). In a concept-169

level reference game G = (TS , DS , TR, DR) be-170

tween sender S and receiver R, target concepts171

TS = {tT1 , ..., tTg } need to be communicated in a172

given context DS = {dS1 , ..., dSg }, where g is the173

game size, i.e. the number of target and distrac-174

tor objects in the input. TR and DR are defined175

analogously for the receiver and TS ̸= TL and176

DS ̸= DR, as proposed in (Mu and Goodman,177

2021). These target concepts are operationalized178

by combining multiple target objects that share a179

specific amount of fixed attributes. The number of180

fixed attributes within a target concept determines181

how specific (all attributes fixed) or generic (one182

attribute fixed) a target concept is. The target con-183

cepts are presented in a context determined by the184

distractor objects (Kobrock et al., 2024). In each185

round of the game, sender S receives targets TS186

and distractors DS , presented in this order. Uti-187

lizing this information, S constructs a message188

m = (sj)j≤M , where sj signifies a symbol from189

the vocabulary V , and M refers to the maximum190

length of the message. The receiver R obtains the191

message m along with their own set of targets TL192

and distractors DR, which are mixed together (de-193

noted subsequently as XR = xR1 , . . . , x
R
i , where194

i = 2 · g, reflecting the fact that R is unaware195

of which items are targets and which are distrac-196

tors). From these inputs, R generates a prediction197

for each object xRi in its input, producing a label198

yRi ∈ 0, 1 (where 0 indicates a distractor and 1 in-199

dicates a target). Following Hawkins et al. (2018),200

we design two novel game scenarios, a coarse and a201

fine context condition, in which we train the agents202

in only coarse or only fine contexts. In the coarse203

context condition, the objects belonging to the tar- 204

get concept do not share any relevant features with 205

the distractors. In the fine context condition, each 206

distractor differs from the target objects by only 207

one relevant feature. We compare these conditions 208

to a baseline “mixed” condition that was introduced 209

in previous work (see Kobrock et al., 2024)1. The 210

sender’s task is to produce a message to guide the 211

receiver in the identification of the target concept. 212

The receiver agent must assign a label to each one 213

of the input objects to distinguish them between tar- 214

gets and distractors. The agents are implemented as 215

neural networks and are trained in a reinforcement 216

learning paradigm, where the agents are rewarded 217

depending on whether the receiver agent assigns 218

the correct label (target/distractor) to each one of 219

the input objects. 220

The code for the experiment is available in the 221

GitHub repository: https://anonymous.4open. 222

science/r/context-granularity-BE08 223

2.2 Datasets 224

We train the agents on six symbolic datasets with 225

varying numbers of attributes and values to ensure 226

generalizability of results (Kobrock et al., 2024). 227

They are denoted by the number of attributes n and 228

values k that objects in each dataset can take. We 229

train the agents on datasets D(3,4), D(3,8), D(3,16), 230

D(4,4), D(4,8), and D(5,4). The datasets feature hi- 231

erarchical concepts, with specificity depending on 232

the number of fixed attribute values. For instance, 233

concepts like SMALL BLUE TRIANGLE and BIG 234

RED SQUARE are specific and concepts like RED, 235

SMALL, and SQUARE are generic. Concepts de- 236

fined in this way are hierarchical: for instance, the 237

object small blue triangle: belongs to the concept 238

SMALL BLUE TRIANGLE, but also to the concepts 239

that fix only one or two of those attributes values, 240

such as small, blue, small blue, and blue triangle. 241

The concepts are presented in context. We call 242

objects which are part of the target concept targets 243

and objects which are part of the context distractors. 244

The context for each input is defined by the number 245

of concept-defining attributes (the attributes whose 246

value is fixed in the target concept) that are shared 247

between targets and distractors. For example, the 248

target concept SMALL BLUE CIRCLE might be pre- 249

sented in a fine context, e.g. large blue circles or 250

small red circles, or in a coarse context, e.g. squares 251

or objects which are not blue. Previous work has 252

1The condition we refer to was called “context-aware” in
Kobrock et al. (2024).
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presented concepts in all possible context condi-253

tions ranging from fine, where all but one concept-254

defining attributes are shared between targets and255

distractors,2 to coarse, where no concept-defining256

attribute is shared between targets and distractors257

(Kobrock et al., 2024). We will call this the ‘mixed’258

context condition and use it as a baseline. To build259

our novel game scenarios, we generate datasets260

where target concepts are presented only in fine261

or only in coarse contexts. This way, consistently262

with (Hawkins et al., 2018), we create two condi-263

tions that differ by the granularity of the context,264

i.e. the number of concept-defining attributes that265

must be specified to correctly identify the target266

objects among the distractors.3 Figures 4 and 5 in267

Appendix A present examples for items in coarse268

and fine context conditions.269

For comparison, the dataset used in Hawkins270

et al. (2018) uses three hierarchical features (shape,271

color/texture and frequency/intensity) which could272

take two values at each hierarchy level. However,273

unlike their dataset, we do not use a fixed hierarchy274

of stimuli. Rather, all possible combinations of275

attributes are included in our datasets, and instead276

of a fixed hierarchy of objects we use concepts.277

2.3 Architectures and training278

The implementation of the concept-level reference279

game is based on Kobrock et al. (2024) and makes280

use of the EGG framework (Kharitonov et al., 2019,281

MIT license). The sender and receiver are imple-282

mented as GRUs (Gated Recurrent Units) with a283

single layer of size 128 and are trained in a re-284

inforcement learning paradigm with the Gumbel-285

softmax relaxation4 which ensures differentiability286

for backpropagation (Jang et al., 2017). To ensure287

comparability of our novel fine and coarse context288

granularity conditions to the mixed baseline from289

previous work, we adopt the same settings and hy-290

perparameters as in the context-aware condition291

from Kobrock et al. (2024). The inputs for both292

the sender and receiver consist of 10 target objects293

T and 10 distractors D, i.e. game size g is 10.294

2The concept-defining attribute which is not shared be-
tween targets and distractors can vary among distractors. For
example, in Figure 5 one distractor differs by shape and the
other by color.

3Hawkins et al. (2018) present a single-target reference
game where the coarse context condition presents a target that
differs by two attributes from the closest distractor. Differently,
we decided to implement the coarse context condition as the
coarsest condition possible, i.e. targets differ by all concept-
defining attributes from the distractors.

4We use temperature τ = 2 and a decay rate of 0.99.

For each item, the sender can produce a message 295

in the form of a vector, with a maximum length 296

M = n+ 1. Agents use a zero as the End Of Se- 297

quence (EOS) symbol. The vocabulary size V , i.e. 298

the number of symbols that sender can use in their 299

messages, is set to V = 3 · (k + 1) (as in Ohmer 300

et al., 2022; Kobrock et al., 2024). The receiver 301

predicts a label yi ∈ {0, 1} for each object xi in its 302

input based on whether it believes it to be a target 303

(1) or a distractor (0). We use binary cross-entropy 304

loss for training: 305

LBCE(S,L,G) = −
∑
i

log pL(yLi |xLi , m̂), (1) 306

where m̂ ∼ pS(m|TS , DS) and pL(yLi |xLi , m̂) = 307

σ(GRUL(m̂) · embed(xLi )). Following (Kobrock 308

et al., 2024), we use 60% of each dataset for train- 309

ing, 20% for validation, and 20% for testing. Each 310

split contains different concepts presented in the 311

relevant novel context condition (coarse or fine). 312

We run the training process five times to account 313

for the random initialization of the parameters of 314

the neural networks and train for 300 epochs with a 315

batch size of 32. The testing split is used only once 316

at the end of the training to evaluate the agents’ gen- 317

eralization capabilities on unseen concepts, while 318

the validation split is used to measure performance 319

after every training epoch. 320

2.4 Metrics 321

We first measure the training, validation, and test ac- 322

curacies for all context conditions. We then evalu- 323

ate the emerging languages based on three entropy- 324

based scores calculated on the set of messages M 325

and the set of concepts C (Ohmer et al., 2022) and 326

take the means over five runs. These are: 327

• Normalized Mutual Information (NMI), 328

which measures how closely messages and 329

concepts correspond to each other in a one-to- 330

one relationship. Therefore, if the NMI score 331

takes its maximal value 1.0, it is possible to 332

construct a bijective map between the set of 333

messages produced by the agents and the set 334

of target concepts presented to them in the 335

game. The NMI can take values ∈ [0, 1] and 336

is calculated as follows: 337

NMI(C,M) =
H(M)−H(M |C)

0.5 · (H(C) +H(M))
(2) 338

• Effectiveness, which quantifies the usage of 339

messages that uniquely identify a concept, in 340
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other words messages are non-polysemous or341

not abstract. Effectiveness can take values342

∈ [0, 1] and is calculated as:343

effectiveness(C,M) = 1− H(C|M)

H(C)
(3)344

• Consistency, which measures whether agents345

are consistent in choosing always the same346

message to communicate the same concept, in347

other words messages are non-synonymous.348

Consistency can take values ∈ [0, 1] and is349

calculated as:350

consistency(C,M) = 1− H(M |C)

H(M)
(4)351

To quantify differences in scores between the352

different conditions, we use Bayesian estimation353

following Kruschke (2013). We report estimated354

means and 95% Credible Intervals (CrIs) over five355

runs as well as mean differences and their CrIs.356

We then perform a more qualitative analysis357

of the communication protocols by mapping each358

message to the concept(s) it was used to refer to.359

2.5 Hypotheses360

We hypothesize that the communication protocol361

developed by the agents is influenced by the con-362

text condition in which it is learned. We expect363

that in the fine context condition, agents will de-364

velop more one-to-one mappings (i.e., higher NMI)365

between messages and concepts than in the mixed366

baseline. In other words, we expect only specific367

references to be lexicalized, since the context con-368

dition requires fine-grained distinctions between369

concepts. In the coarse context condition, on the370

other hand, we expect agents to develop fewer one-371

to-one mappings (i.e., lower NMI) between mes-372

sages and concepts than in the mixed baseline. In373

other words, we expect agents to include more ab-374

stract references in their communication, as the375

contextual information can be leveraged by agents376

to identify the target concept. Following this, we377

expect higher effectiveness in the fine context con-378

dition than in the baseline and lower effectiveness379

in the coarse context condition than in the baseline.380

Lower effectiveness in the coarse context condi-381

tion with the same accuracy would indicate that382

agents use words with many meanings, or abstract383

references in the terminology used in Hawkins et al.384

(2018). These predictions are in line with the re-385

sults obtained in Hawkins et al. (2018), who found386

that abstract references were lexicalized only in 387

the coarse context condition. We expect high over- 388

all consistency across context conditions, reflecting 389

minimal use of synonymous references. This aligns 390

with Kobrock et al. (2024), who noted that agents 391

use synonyms for the same concept in varying con- 392

texts—a scenario not applicable here since context 393

conditions remain constant across trials. 394

3 Results 395

3.1 Performance and generalization 396

Agents achieve very good performance on training 397

and validation sets in both fine and coarse context 398

conditions. Mean train and validation accuracies 399

across runs are ≥ 0.94 for the fine context condi- 400

tion and ≥ 0.99 for the coarse context condition 401

for all datasets. These results are comparable to 402

the ones obtained in (Kobrock et al., 2024) for the 403

baseline mixed condition (mean train and valida- 404

tion accuracies across runs for all datasets ≥ 0.96). 405

These results are an indication that agents are able 406

to learn to communicate about concepts in the set- 407

ting of the concept-level reference game also when 408

trained only in fine or coarse contexts. 409

Accuracies on the test split differ more across 410

context conditions. The mean test accuracies across 411

runs are 0.98 (SD=0.02) for the coarse context con- 412

dition, and 0.75 (SD=0.14) for the fine context 413

condition indicating that while agents can also rea- 414

sonably well generalize in the fine context condi- 415

tion, they are much better at generalizing when 416

they have been trained in the coarse context condi- 417

tion. The mean test accuracy in the baseline con- 418

dition is 0.87 (SD=0.11) which is in the middle 419

between the fine and coarse condition. This shows 420

that the generalization abilities of the agents de- 421

pends on the context condition in which they have 422

been trained: When being trained to make fine dis- 423

tinctions, agents come up with a mapping that does 424

not generalize well. On the other and, when be- 425

ing trained to make coarse distinctions only (or a 426

mix), then agents come up with a mapping that 427

generalizes better. 428

3.2 Contextual pressures shape the emerging 429

language 430

To obtain information on the emerging language 431

at its final stage of development, information- 432

theoretic scores are calculated on the interactions 433

of the last training epoch (see Kobrock et al., 2024; 434

Ohmer et al., 2022). First, we look at the NMI 435
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scores. The NMI scores averaged across runs for436

all datasets and context conditions are summarized437

in Figure 2.5 For the mixed context condition, the438

mean NMI is estimated at M=0.87 [0.85, 0.89].439

For the fine context condition, the mean NMI is440

M=0.92 [0.90, 0.93]. There seems to be a small441

difference between the fine and mixed context con-442

dition, where the NMI scores are higher for the fine443

context condition. To quantify this difference statis-444

tically, we used Bayesian estimation following Kr-445

uschke (2013). We find a substantial, though very446

small, difference in NMI between the fine condition447

and our mixed baseline (M=0.05, CrI6=[0.02, 0.07],448

pd=100%, 1% in ROPE). For the coarse context449

condition, the mean NMI is M=0.59 [0.58, 0.61].450

The difference between the coarse context condi-451

tion and our mixed baseline is quite large and sub-452

stantial (M=-0.28, CrI=[-0.30, -0.25], pd=100%,453

0% in ROPE). In summary, we find that NMI scores454

in the fine and coarse context condition differ sig-455

nificantly from the mixed condition baseline with456

NMIs in the fine context condition being slightly457

higher than the baseline and NMIs in the coarse458

context condition being much lower than the base-459

line. This suggests that agents tend to create one-460

to-one mappings between concepts and messages,461

assigning to each concept its own message in the462

fine context condition. Agents likely adopt this463

communication strategy because they are required464

to draw very fine-grained distinctions to correctly465

discriminate the targets from the distractors in the466

fine context condition. In the coarse context con-467

dition, on the other hand, the low NMI scores in-468

dicate that the communication protocol emerging469

from the coarse context condition is not based on a470

strict one-to-one correspondence between concepts471

and messages.472

Second, we look at the effectiveness score. For473

the mixed context baseline, the estimated mean ef-474

fectiveness is M=0.88 [0.85, 0.91]. For the fine con-475

text condition, the mean effectiveness is M=0.90476

[0.87, 0.94]. The difference in effectiveness be-477

tween the fine and mixed context conditions is not478

substantial (M=0.02, CrI=[-0.02, 0.07], pd=85%,479

46% in ROPE). For the coarse context condition,480

the mean effectiveness is M=0.44 [0.42, 0.46]. The481

difference between the coarse and the mixed con-482

text condition is large and substantial (M=-0.44,483

5Plots for effectiveness and consistency scores can be
found in Appendix C.

6The Credible Interval (CrI) was estimated as the 95%
Highest Density Interval.

CrI=[-0.47, -0.40], pd=100%, 0% in ROPE). The 484

low effectiveness scores in the coarse context con- 485

dition indicate that agents use the same message 486

to identify multiple target concepts, i.e. they use 487

abstract references. One possible cause for these 488

results is that agents might rely on context to clar- 489

ify which concept they are referring to, rather than 490

using one message for each concept regardless of 491

the context. This is possible in the coarse context 492

condition: As targets and distractors are very dif- 493

ferent from each other and share no attributes, a 494

message that does not encode all information about 495

the target concept (i.e. an abstract message) can 496

still be informative enough to correctly identify the 497

target objects. 498

Third, we look at the consistency scores. For the 499

mixed context condition, the estimated mean con- 500

sistency is M=0.87 [0.86, 0.88]. For the fine con- 501

text condition, consistency is estimated at M=0.94 502

[0.93, 0.95]. The difference in consistency be- 503

tween the fine and mixed context condition is very 504

small but substantial (M=0.07, CrI=[0.06, 0.09], 505

pd=100%, 0% in ROPE). For the coarse context 506

condition, mean consistency is M=0.92 [0.90, 0.94]. 507

The difference in consistency between the coarse 508

and mixed context conditions is small and substan- 509

tial (M=0.05, CrI=[0.03, 0.08], pd=100%, 0% in 510

ROPE). We find high consistency scores in both 511

fine and coarse context conditions, suggesting that 512

the agents consistently use the same message to re- 513

fer to the same target concept (i.e. the language con- 514

tains only very few synonyms). Scores are slightly 515

lower in the mixed baseline, where agents might 516

be more incentivized to come up with different 517

words for the same concepts presented in different 518

contexts.7 519

3.3 Coarse contexts drive the emergence of 520

smaller and more efficient lexica 521

To further investigate the communicative strategy 522

adopted by agents in the coarse and fine context 523

condition, we reconstruct the emergent lexica (i.e. 524

the mappings between messages and concepts) 525

from the interactions of the last training epoch. A 526

description of the methodology we used, along with 527

some examples, can be found in Appendix E. 528

A comparison of the sizes of the lexica can be 529

found in Table 1. Across all datasets, agents con- 530

7The observed differences might also vary with respect
to the conceptual hierarchy. For this reason, in Appendix
D, we analyze the entropy scores depending on the level of
specificity of the concepts.
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Figure 2: Mean NMI scores for coarse, mixed and fine context condition for each dataset. The different datasets are
identified by the number for attributes and the number of possible values each of those attributes can take.

Dataset # Concepts Context Condition # Messages

D(3,4) 99
Coarse 33
Fine 133

D(3,8) 582
Coarse 41
Fine 438

D(3,16) 3929
Coarse 133
Fine 1308

D(4,4) 499
Coarse 204
Fine 1071

D(4,8) 5248
Coarse 788
Fine 6636

D(5,4) 2499
Coarse 1443
Fine 4337

Table 1: Lexicon sizes for all datasets in coarse and fine
context conditions. We present the number of unique
concepts and the number of unique messages.

verge to smaller lexica in the coarse context con-531

dition, where agents consistently lexicalize fewer532

messages than the total number of target concepts.533

By doing so, they appear to develop an efficient534

communication protocol that avoids encoding each535

concept into a unique message, but likely leverages536

contextual information to disambiguate the target537

concept. Conversely, in the fine context condition,538

agents make use of a bigger set of messages. A pos-539

sible explanation for this is that agents in the fine540

context condition create specific messages to be541

able to unambiguously identify the target concept542

among similar distractors.543

How do agents in the coarse context condition544

achieve this efficient mapping? Figure 3 shows for545

each message the number of concepts that it refers546

to, normalized by the total number of concepts in547

each dataset and condition. A high concept ratio548

means that this message refers to many different549

concepts in a dataset, and a ratio close to 0 means550

that this message refers to only one concept in551

the dataset. Agents in the fine context condition552

use messages that refer to one or only very few553

concepts, while in the coarse context condition 554

agents incorporate abstract messages and use them 555

to refer to a bigger set of concepts. Those messages 556

are the ones mapped to most generic concepts. This 557

is particularly interesting, as it indicates that agents 558

in the coarse context condition rely on messages 559

that encode minimal information (i.e. one attribute 560

value corresponding to a generic concept) also to 561

identify more specific concepts in certain contexts. 562

4 Discussion 563

This work employs an agent-based simulation of 564

a concept-level reference game to investigate the 565

influence of context granularity on the emergent 566

communication protocol. We compare our findings 567

to the results obtained in the artificial language 568

learning study with human participants and compa- 569

rable context conditions (Hawkins et al., 2018). 570

First, we observe higher accuracies for the coarse 571

context condition than the fine context condition 572

with the mixed baseline in between in both perfor- 573

mance (i.e. on the train and validation sets) and 574

generalization (on the test set). The superior per- 575

formance of agents in the coarse context and their 576

lower performance in the fine context align with the 577

findings of Hawkins et al. (2018), who observed 578

more correct responses by the listeners in the coarse 579

than in the fine context condition. They explain this 580

by the fine condition being hardest and the coarse 581

condition being easiest, with the mixed condition 582

in between. Similarly, the difficulty of the task may 583

explain the differences in performance we observe 584

in the agent-based simulation. While exhibiting 585

similar performance on the train and validation 586

sets, agents trained in the coarse context condition 587

generalize better than agents trained in the fine con- 588

text condition or in the mixed baseline condition. 589

As Hawkins et al. (2018) did not test generalization, 590

7



Figure 3: Concept coverage in the messages: Number of concepts referred to by each message normalized by the
total number of concepts across datasets and conditions. Messages referring to most generic concepts (i.e. the ones
with only one fixed attribute) are identified by the star marks.

this is a novel finding and suggests that languages591

that have been shaped by coarse contexts serve bet-592

ter for generalization. Second, the granularity of593

the context plays an important role in shaping the594

emerging language. In line with our hypotheses,595

agents trained in the fine context condition tend to596

associate each concept with a unique message, and597

we do not find many synonymous or polysemous598

messages in their protocols, whereas agents in the599

coarse context condition exhibit fewer one-to-one600

mappings and tend to reuse the same message for601

multiple target concepts. Agents trained in both602

conditions are, however, very consistent in their603

choice of messages which is in line with Hawkins604

et al. (2018) who found that participants were 98%605

consistent in their word-to-objects mappings. The606

use of more specific references, i.e. references607

with a single meaning, in the fine context condition608

and more abstract references, i.e. references with609

more than one meaning or polysemous references,610

is in line with the results obtained in Hawkins et al.611

(2018). These abstract references seem to be the612

reason for the better generalization abilities in the613

coarse context condition due to the fact that poly-614

semous messages foster flexibility and hence allow615

for a better adaption to newly encountered concepts.616

Polysemy in human language has been argued to617

make human languages particularly efficient (e.g.618

Piantadosi et al., 2012). Third, we have shown619

that abstract references are used to refer to a very620

high number of concepts in the datasets. Agents in621

the coarse context condition develop a communi-622

cation protocol that extensively employs abstract623

messages, allowing them to correctly identify tar-624

get concepts, including specific ones, by relying on625

contextual information. This suggests that agents 626

can develop a more efficient communication strat- 627

egy, which goes beyond mere one-to-one mappings 628

between messages and concepts, when the context 629

allows it. Importantly, agents did not have any 630

external incentive such as a regularization cost or 631

efficiency pressure to modify their communication 632

based on the granularity of the context. Therefore, 633

the adaptation to the granularity of the context ap- 634

pears to be an emergent feature: The manipulation 635

of the context alone drives the agents to a more 636

efficient communication strategy. 637

We conclude that the granularity of the con- 638

text influences the development of emerging lan- 639

guages. Specifically, agents can leverage contex- 640

tual information to create more effective and effi- 641

cient communication protocols that utilize abstract 642

references. These results are in line with but go 643

beyond previous work on human language by scal- 644

ing the number of possible referents (dataset size) 645

and the number of possible messages (vocabulary 646

size and message length, Hawkins et al., 2018). 647

The effectiveness of abstract references increases 648

with scaling: In our setup, agents use abstract refer- 649

ences to refer to up to one fifth of the entire dataset. 650

Viewed through the lens of pragmatic inference 651

and cost-efficiency, our results reveal how context- 652

driven conventions can balance communicative pre- 653

cision with pressures for lexical economy. Our 654

findings also connect to ongoing theoretical discus- 655

sions in emergent communication research about 656

efficiency principles and information bottlenecks, 657

highlighting the role of context-based conventions 658

on efficient lexical choices (e.g. Gualdoni et al., 659

2024; Tucker et al., 2022; Zaslavsky et al., 2018). 660
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5 Limitations661

This work has been carried out on symbolic662

datasets with hierarchical concepts. This decision663

is a potential limitation of this work and we will664

quickly discuss the advantages and disadvantages665

of this decision. The datasets we constructed for666

training the agents consist of symbolic vectors (e.g.667

(0,2,1)) that adhere to a specific structure and can668

thus be interpreted as concepts presented in certain669

contexts. We have specifically constructed these670

datasets for the purpose of our research question671

and we believe that they are the ideal testbed for our672

research. Systematically manipulating attributes in673

a symbolic concept vector has the huge advantage674

over more natural data that we have total control675

over the manipulation and get rid of noise which676

is usually present in natural data. This is espe-677

cially important because our research question aims678

to tackle under which circumstances (i.e. fine or679

coarse context) do agents (which are not equipped680

with a predefined language-like system) come up681

with a language-like system to communicate con-682

cepts? Which properties of natural language (e.g.683

ambiguity, efficiency) does the emerging language684

share with natural language? However, simplify-685

ing the data for the sake of modeling comes at a686

cost: We cannot know how well our simplified687

model generalizes to other, and especially more688

natural, data. Therefore, we deem it an important689

endeavour for future work to train our model on690

more naturalistic datasets, for example on images691

of objects belonging to certain concepts, and test692

the generalizability of our results to such data. An-693

other limitation of this work is that we investigate694

a symbolic proto-language, namely the emerging695

language, where a message is a vector consisting of696

integer symbols (e.g. [11,3,5,0]) instead of natural697

language. Again, we believe that this decision has698

advantages and disadvantages: On the one hand,699

the methodology of emergent communication al-700

lows us to study the emergence of a communica-701

tion system in a very controlled setting and link702

general properties of language (or language-like703

systems) to external factors such as context. There704

are two alternatives to our approach: Either study705

the emergence of a language system in an artificial706

language learning study as done by Hawkins et al.707

(2018), or investigate properties of existing natural708

languages. The first approach has the disadvantage709

that we cannot scale these findings. The second710

approach has the disadvantage that we cannot link711

manipulations of external factors such as context 712

to specific emerged properties because natural lan- 713

guages have already evolved in a complex natural 714

world. However, we believe that research obtained 715

on a symbolic language should be validated with 716

natural language data and this is another impor- 717

tant perspective for future work. Another possible 718

limitation of our setup is that dataset sizes vary 719

between conditions. Future work could use a sam- 720

pling approach to make sure that dataset sizes are 721

comparable between conditions. Future work could 722

explore a similar concept-level reference game and 723

manipulate other dynamics of context additional 724

to fine and coarse only. For example, our setup 725

could be used to investigate what happens if the 726

contextual complexity is not a binary of extremes 727

(fine vs. coarse) but rather continuously varied. 728

Another idea would be to look at what happens 729

if the training environment’s distribution of con- 730

text types is skewed. Additionally, constraints that 731

encourage the use of fewer messages or shorter 732

messages could be implemented to try to promote 733

the emergence of an even more efficient language. 734
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Figure 5: Fine context: The target concept (“T”) OR-
ANGE TRIANGLE shares all but one of the two concept-
defining attributes (color and shape) with distractors.

have the same sizes. They present each concept858

in either a fine or coarse context condition, respec-859

tively. In the mixed baseline, however, the concepts860

were presented in each possible context condition,861

leading to larger datasets (Kobrock et al., 2024).862

C Effectiveness and consistency heatmaps 863

For purposes of visualization, Figures 6 and 7 dis- 864

play the effectiveness and consistency scores for 865

different context conditions and datasets. They vi- 866

sually support the main findings reported in section 867

3.2. 868
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Dataset # Concepts Context Condition # Train # Validation # Test

D(3,4) 99
Fine/Coarse 742 248 250

Mixed 1852 618 530

D(3,8) 582
Fine/Coarse 4364 1456 1460

Mixed 11654 3886 3900

D(3,16) 3929
Fine/Coarse 29467 9823 9830

Mixed 83294 27766 27660

D(4,4) 499
Fine/Coarse 3742 1248 1250

Mixed 11917 3973 4110

D(4,8) 5248
Fine/Coarse 39359 13121 13120

Mixed 139957 46653 46670

D(5,4) 2499
Fine/Coarse 18742 6248 6250

Mixed 74962 24988 25050

Table 2: Dataset sizes for all datasets in coarse and fine context conditions. We present the number of unique
concepts and the number of samples in the train, validation and test splits.

Figure 6: Mean effectiveness scores for coarse, mixed and fine context condition for each dataset. The different
datasets are identified by the number for attributes and the number of possible values each of those attributes can
take.

Figure 7: Mean consistency scores for coarse, mixed and fine context condition for each dataset. The different
datasets are identified by the number for attributes and the number of possible values each of those attributes can
take.

D Analysis of entropy scores by concept869

level870

We investigate how the specificity of the target con-871

cept influences the entropy-based scores. Figure872

8 reports mean entropy scores across all datasets873

plotted against concept specificity. 874

In the mixed baseline, we have not enough ev- 875

idence for a substantial difference in NMI scores 876

between specific and generic concepts (M=-0.03, 877

CrI=[-0.07, 0.02], pd=91.5%, 19% in ROPE). 878
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Figure 8: Mean entropy scores across all datasets for different concept levels in coarse and fine context conditions.
The specificity of the concepts is indicated by the number of fixed attributes. The more attributes are fixed, the more
specific are the concepts. Error bars indicate bootstrapped 95% confidence intervals.

Rather, the NMI score seems to be relatively con-879

stant throughout the different levels of concept880

specificity (see Figure 8, in line with Kobrock881

et al., 2024). In the fine context condition, we882

observe that the NMI increases with increasing883

concept specificity. The mean NMI score for the884

most general concepts is 0.89 [0.88, 0.91], while885

the mean NMI for the most specific concepts rises886

to 0.95 [0.92, 0.96] for concepts with five fixed887

attributes. The difference in NMI between spe-888

cific and generic concepts is small but substan-889

tial (M=0.05, CrI=[0.01, 0.09], pd=97.6%, 3% in890

ROPE). This indicates that high concept specificity891

enforces the tendency of agents to build one-to-one892

mappings between concepts and messages when893

the context is fine. In the coarse context condition,894

we observe the opposite trend: With increasing con-895

cept specificity, NMI drops and we find a substan-896

tial difference in NMI between specific and generic897

concepts (M=-0.23, CrI=[-0.29, -0.18], pd=100%,898

0% in ROPE). The lowest mean NMI score is ob-899

served for concepts with three fixed attributes, at900

0.61 [0.59, 0.63]. A possible explanation for these901

fluctuations in entropy scores in the coarse context902

condition is that agents might initially create a sin-903

gle message for each of the most general concepts904

(with only one fixed attribute value). Subsequently,905

they may reuse these messages to refer to more906

specific concepts and rely on contextual cues to907

disambiguate the targets. The slight drop in con-908

sistency for concepts with four and five attribute909

values suggests that agents utilize multiple mes-910

sages to refer to the same concept. This behavior911

could be attributed to the flexibility agents have in912

specifying any attribute to identify a concept in the913

coarse context condition. As concepts accumulate 914

more fixed attribute values, agents have a broader 915

range of messages at their disposal to identify these 916

concepts. 917
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E Example Lexica918

We chose to reconstruct the lexica from the agents’919

interactions of the last traning epoch for the coarse920

and fine context conditions, which are the main921

objects of interest in this study. We proceeded922

as follows for each dataset. We began by retriev-923

ing the message used by the sender in each trial924

and associating it with the target concept for that925

trial. For each message, this process yielded a926

corresponding list of target concepts. Next, we927

compared the concepts within each list (i.e., the928

concepts referred to by the same message) to deter-929

mine whether they satisfied a more generic concept.930

If this was the case for 90% or more of the concepts931

in the list, we assigned that more generic concept932

as the meaning of the message. For instance, imag-933

ine a message m referring to the concepts BLUE934

TRIANGLE and BLUE SQUARE: in this case we935

would establish m to be an ending for the concept936

BLUE. Table 3 displays an example of the complete937

lexicon for D(3, 4) in the coarse condition, while938

Table 4 presents a sample (for space reasons) of the939

lexica emerged in the fine context condition for the940

same dataset.941

The first column of each lexicon table (Tables942

3 and 4) contains the messages sent by the agents,943

while the second column lists the symbols used944

in each message (excluding the EOS symbol 0).945

The third column indicates the number of unique946

concepts referenced by the corresponding message.947

The fourth column shows the meaning of the mes-948

sage, i.e., the concept encoded by the message,949

which was reconstructed as explained above. The950

question marks represent unfixed attributes. Con-951

cepts with all but one question mark (i.e., those952

with only one fixed attribute value) are the most953

generic concepts in that dataset.954
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Message Symbols # Referred Concepts Encoded Concept
(1, 1, 1, 0) {1} 7 (?, 3, ?)
(1, 1, 8, 0) {8, 1} 1 (?, 3, 3)

(1, 1, 12, 0) {1, 12} 1 (3, 3, 1)
(1, 2, 2, 0) {1, 2} 1 (3, 3, 0)
(1, 7, 1, 0) {1, 7} 1 (3, 3, 2)

(1, 12, 1, 0) {1, 12} 1 (3, 3, 1)
(1, 12, 12, 0) {1, 12} 1 (?, 3, 1)

(2, 1, 2, 0) {1, 2} 1 (?, 3, 0)
(2, 2, 2, 0) {2} 5 (?, ?, 0)
(3, 3, 3, 0) {3} 8 (?, 1, ?)
(3, 6, 6, 0) {3, 6} 1 (2, 1, ?)
(3, 9, 9, 0) {9, 3} 1 (0, 1, 3)
(4, 4, 4, 0) {4} 17 (1, ?, ?)
(6, 6, 6, 0) {6} 14 (2, ?, ?)

(6, 6, 15, 0) {6, 15} 2 (2, 0, ?)
(6, 15, 6, 0) {6, 15} 3 (2, 0, ?)
(6, 15, 15, 0) {6, 15} 1 (2, 0, 2)

(7, 1, 1, 0) {1, 7} 1 (3, 3, 2)
(7, 7, 7, 0) {7} 2 (3, ?, ?)
(8, 1, 8, 0) {8, 1} 1 (?, 3, 3)
(8, 8, 1, 0) {8, 1} 1 (?, 3, 3)
(8, 8, 8, 0) {8} 2 (?, ?, 3)
(9, 9, 3, 0) {9, 3} 1 (0, 1, 1)
(9, 9, 9, 0) {9} 20 (0, ?, ?)

(9, 9, 15, 0) {9, 15} 1 (0, 0, 2)
(9, 15, 9, 0) {9, 15} 1 (0, 0, 2)
(12, 1, 12, 0) {1, 12} 1 (?, 3, 1)
(12, 12, 12, 0) {12} 2 (?, ?, 1)
(14, 14, 14, 0) {14} 20 (?, 2, ?)
(15, 6, 6, 0) {6, 15} 3 (2, 0, ?)
(15, 9, 9, 0) {9, 15} 2 (0, 0, ?)
(15, 9, 15, 0) {9, 15} 1 (0, 0, ?)
(15, 15, 15, 0) {15} 6 (?, 0, ?)

Table 3: Example lexicon for the language emerging from the concept-level reference game in the coarse context
condition with the D(3, 4) dataset.
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Message Symbols # Referred Concepts Encoded Concept
(1, 1, 1, 0) {1} 1 (2, 0, ?)
(1, 1, 2, 0) {1, 2} 1 (2, 0, 2)
(1, 1, 4, 0) {1, 4} 1 (2, 0, 3)
(1, 1, 11, 0) {1, 11} 1 (2, 0, 3)
(1, 1, 13, 0) {1, 13} 1 (2, 0, 2)
(1, 1, 14, 0) {1, 14} 1 (2, 0, ?)
(1, 2, 13, 0) {1, 2, 13} 1 (1, 0, 2)
(1, 13, 2, 0) {1, 2, 13} 1 (1, 0, 2)
(1, 13, 13, 0) {1, 13} 1 (1, 0, 2)
(1, 14, 14, 0) {1, 14} 2 (1, 0, ?)
(1, 15, 1, 0) {1, 15} 1 (2, 0, 1)
(1, 15, 14, 0) {1, 14, 15} 1 (1, 0, 1)
(2, 2, 1, 0) {1, 2} 1 (1, ?, 2)
(2, 2, 2, 0) {2} 2 (1, ?, 2)
(2, 2, 10, 0) {2, 10} 1 (1, ?, 2)
(2, 2, 13, 0) {2, 13} 1 (1, 1, 2)
(2, 4, 4, 0) {2, 4} 1 (2, ?, 3)
(2, 10, 4, 0) {2, 10, 4} 1 (1, ?, 3)
(3, 3, 8, 0) {8, 3} 1 (3, 1, ?)
(3, 3, 11, 0) {11, 3} 1 (3, 1, 2)
(3, 3, 12, 0) {3, 12} 1 (3, 1, 1)
(3, 3, 13, 0) {3, 13} 1 (3, 1, 2)
(3, 5, 3, 0) {3, 5} 1 (0, 1, ?)
(3, 5, 5, 0) {3, 5} 1 (0, 1, ?)
(3, 5, 12, 0) {3, 12, 5} 1 (0, 1, 1)
(3, 12, 12, 0) {3, 12} 1 (3, 1, 0)
(3, 13, 4, 0) {3, 4, 13} 1 (0, 1, 3)
(3, 13, 5, 0) {5, 3, 13} 1 (0, 1, 2)
(4, 3, 4, 0) {3, 4} 1 (?, ?, 3)

Table 4: Sample from an example lexicon for the language emerging from the concept-level reference game in the
fine context condition with the D(3, 4) dataset.
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