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ABSTRACT

Diffusion models accomplish remarkable success in data generation tasks across
various domains. However, the iterative sampling process is computationally ex-
pensive. Consistency models are proposed to learn consistency functions to map
from noise to data directly, which allows one-step fast data generation and multi-
step sampling to improve sample quality. In this paper, we study the convergence
of consistency models when the self-consistency property holds approximately
under the training distribution. Our analysis requires only mild data assumption
and applies to a family of forward processes. When the target data distribution has
bounded support or has tails that decay sufficiently fast, we show that the samples
generated by the consistency model are close to the target distribution in Wasser-
stein distance; when the target distribution satisfies some smoothness assumption,
we show that with an additional perturbation step for smoothing, the generated
samples are close to the target distribution in total variation distance. We pro-
vide two case studies with commonly chosen forward processes to demonstrate
the benefit of multistep sampling.

1 INTRODUCTION

Diffusion models have been widely acknowledged for their high performance across various do-
mains, such as material and drug design (Xu et al., 2022; Yang et al., 2023; Xu et al., 2023), con-
trol (Janner et al., 2022), and text-to-image generation (Black et al., 2023; Oertell et al., 2024).
The key idea of diffusion models is to transform noise into approximate samples from the target
data distribution by iterative denoising. This iterative sampling process typically involves numerical
solutions of SDE or ODE, which is computationally expensive especially when generating high-
resolution images (Song & Dhariwal, 2024; Ho et al., 2020; Song et al., 2021; Zhang & Chen, 2023;
Lu et al., 2022).

Consistency model (CM) (Song et al., 2023) is proposed to accelerate sample generation by learning
a consistency function that maps from noise to data directly. It allows both one-step fast data gen-
eration and multistep sampling to trade computation for sample quality. Consistency model can be
trained with consistency distillation or consistency training (Song et al., 2023), which enforce that
any points on the same trajectory specified by the probability-flow ODE are mapped to the same
origin, i.e. the self-consistency property. Despite the empirical success of consistency models, little
is understood from a theoretical perspective. In particular, recent studies (Luo et al., 2023; Song
& Dhariwal, 2024; Kim et al., 2024) observe diminishing improvements in sample quality when
increasing the number of steps in multistep sampling. In particular, they find that two-step gener-
ation enhances the sample quality considerably while additional sampling steps provide minimal
improvements. Such phenomenon motivates the theoretical understanding on consistency models,
especially on multistep sampling.

The analysis of consistency models can be challenging for the following reasons:

Mismatch on the initial starting distributions: Consistency models generate samples from
Gaussian noise (Song et al., 2023) while the ground truth reverse processes (i.e., the denoising pro-
cess) start from the marginal distribution of the forward process, which is unknown in practice. As

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a consequence, we need to analyze the error caused by the mismatch in starting distributions. This
difficulty shows up even if we have access to the ground truth consistency function: the consistency
function is not Lipschitz even for distributions as simple as Bernoulli, which makes it challenging to
analyze this error pointwise. Because the consistency function is the solution to the probability flow
ODE, it is natural to consider the stability of the initial value problem. However, without a strong
assumption on the consistency function, this approach results in an upper bound with exponential
dependency in problem parameters.

Approximate self-consistency: While the training process enforces the self-consistency property,
it is impractical to obtain a consistency function estimate with the point-wise exact self-consistency
due to various error sources during training (e.g., optimization errors, statistical errors from finite
training examples). It is thus natural to focus on the case where the consistency estimator only has
approximate self-consistency under the training distribution. The key challenge is how to trans-
fer the approximate self-consistency measured under the training distribution to the quality of the
generated samples (e.g., Wasserstein distance between the learned distribution and the ground truth
distribution).

Complexity of multistep sampling: We still have a limited understanding of the theoretical bene-
fit of performing multistep sampling in the inference procedure of CM. When performing multistep
inference, we need to apply the consistency estimator to the distributions that are different from its
original training distribution. Since we can only guarantee approximate self-consistency under the
training distribution, analyzing the benefit of multistep sampling requires us to carefully bound the
divergence between the training distributions and the test distributions where consistency estimator
will be applied during inference time.

1.1 OUR CONTRIBUTIONS

We summarize our contribution as follows:

• Our sets of main theorems establish guarantees for multistep sampling with a general set of for-
ward processes and an approximate self-consistent consistency function estimator. Our results
apply to data distribution with mild assumptions;

• We provide sample quality guarantees in Wasserstein distance for a general set of forward pro-
cesses when the data distribution has bounded support or has light tail. This result naturally ap-
plies to multimodal distributions like Bernoulli. Our result in Wasserstein distance is dimension-
free due to a more careful convergence analysis for the forward process;

• Sample quality guarantee in total variation distance is established for a general set of forward pro-
cesses when the data distribution satisfies some smoothness assumption. In this setting, we utilize
an additional smoothing step to translate from Wasserstein distance to total variation distance;

• We conduct two case studies to illustrate the implication of our main results on multistep sampling.
We demonstrate that when using the Ornstein-Uhlenbeck (OU) process as the forward process,
two-step sampling can significantly improve the quality of the generated samples in terms of
Wasserstein distance to the data distribution under certain conditions. On the other hand, our
results indicate that increasing the number of sampling steps beyond two has a limited gain, which
is consistent with the empirical findings of CM.

1.2 RELATED WORK

The theory of diffusion models has been widely studied. Chen et al. (2023b), Lee et al. (2023), and
Chen et al. (2023a) study the convergence of score-based generative model and provide polynomial
guarantees without assuming log-concavity or a functional inequality on the data. Our data assump-
tion is similar to that of Lee et al. (2023), which is quite minimal. Recently, deterministic samplers
with probability-flow ODE have been explored from the theoretical perspective (Chen et al., 2024;
Li et al., 2024a; 2023).

Consistency model, which learns a direct mapping from noise to data via trajectory of probability-
flow ODE, is proposed to accelerate the sampling step (Song et al., 2023). Song et al. (2023)
provides asymptotic theoretical results on consistency models. At a high level, they show that if
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the consistency distillation objective is minimized, then the consistency function estimate is close
to the ground truth. However, they assume the consistency function estimator achieves exact self-
consistency in a point-wise manner. Such a point-wise accurate assumption is not realistic and
cannot even be achieved in a standard supervised learning setting.

Lyu et al. (2023), Li et al. (2024b), and Dou et al. (2024) provide the first set of theoretical results
towards understanding consistency models. Lyu et al. (2023) shows that with small consistency loss,
consistency model generates samples that are close to the target data distribution in Wasserstein
distance or in total variation distance after modification. Li et al. (2024b) focuses on consistency
training. Dou et al. (2024) provides the first set of statistical theory for consistency models. However,
we notice that all of these works require a strong assumption on the data distribution. Specifically,
they assume that the ground truth consistency function is Lipschitz. While the Lipschitz condition
allows a direct approach to control the error of mismatch on the initial starting distribution, it’s
unclear how large the Lipschitz coefficient is. A direct application of Gronwall’s inequality typically
results in a Lipschitz constant with exponential dependency on problem parameters. To overcome
this, we use the data-processing inequality, which only requires approximate self-consistency and
minor assumptions on target data distribution. Moreover, our upper bound is polynomial in problem
parameters.

2 PRELIMINARIES

Score-based generative models (Song et al., 2021) and consistency models (Song et al., 2023) aim
to sample from an unknown data distribution Pdata in Rd. We review some basic concepts and
introduce relevant notations in this section.

Score-based generative model: A score-based generative model, or diffusion model (Ho et al.,
2020; Song et al., 2021) defines a forward process {xt}t∈[0,T ] by injecting Gaussian noise into the
data distribution Pdata in d-dimensional space Rd, where x0 ∼ Pdata and T > 0. In this paper, we
focus on a general family of forward processes characterized by stochastic differential equations
(SDEs) with the following form:

dxt = h(t)xtdt+ g(t)dwt, x0 ∼ Pdata, (1)
where wt is the standard Wiener process. It is known that the marginal distribution of xt in (1) is
Gaussian conditioning on x0 (Kingma et al., 2021; Lu et al., 2022):

xt|x0 ∼ N
(
αtx0, σ

2
t I

)
, ∀t ∈ [0, T ],

where αt, σt ∈ R+ is specified by h(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t with proper ini-

tial conditions. αt and σ2
t specifiy the noise schedule of the forward process. The noise schedule{

(αt, σ
2
t )
}
t∈[0,T ]

and initial data distribution determine the marginal distribution of the forward
process {Pt} ∈ [0, T ], where xt ∼ Pt and P0 = Pdata. We use {pt}t∈[0,T ] to denote the prob-
ability density functions (PDFs) of {Pt}t∈[0,T ]. For simplicity, we use D

(
·;αt, σ

2
t

)
to denote the

operator on distributions defined by a noise schedule (αt, σ
2
t ). Specifically, given any distribution

P , D
(
P ;αt, σ

2
t

)
is the marginal distribution of x′, where x′|x ∼ N (αtx, σ

2
t ) and x ∼ P . When it

is clear from the context, we use D (·, t) as a shorthand. With this notation, marginal distribution is
expressed as Pt = D (Pdata, t).

The forward process specified by (1) converges to Gaussian distribution N (0, σ2
t I) for some prop-

erly chosen h(·) and g(·) (Bakry et al., 2014; Song et al., 2021) (interested readers may refer to
Lemma 3 for an explicit dependency on the noise schedule). The convergence of the forward pro-
cess facilitates a procedure to generate samples from Pdata, approximately: generate a sample from
N (0, σ2

T I) and feed it to an approximate reversal of (1). However, the reverse-time SDE of (Equa-
tion 1) is usually computationally expensive.

It is known that the following probability flow ordinary differential equation (PF-ODE) generates
the same distributions as the marginals distribution of (1) Song et al. (2021):

dxt

dt
= h(t)xt −

1

2
g2(t)∇ log pt(xt), x0 ∼ Pdata. (2)

The time-reversal of (2) defines a deterministic mapping from noise to data, which facilitates con-
sistency model (Song et al., 2023) as a computationally efficient one-step sample generation.
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Consistency models: A consistency model (Song et al., 2023) is an alternative approach to gen-
erate samples from Pdata: instead of solving the reversal of the SDE in (1), one could directly learn
a consistency function that maps a point on a trajectory of (2) to its origin. For any x and t0 ≥ 0,
let {φ(t;x, t0)}t∈[0,T ] be the trajectory specified by (2) and initial condition xt0 = x.1 The (ground
truth) consistency function of (2) is defined to be:2

f⋆(x, t) := φ(0;x, t), ∀x ∈ Rd, t ≥ 0. (3)
A consistency function enjoys the self-consistency property: if (x, t) and (x′, t′) are on the same
trajectory of (2), they are mapped to the same origin, i.e. f⋆(x, t) = f⋆(x′, t′).3

The self-consistency property of the ground truth consistency function f⋆(·, ·) enlightens the training
for consistency function via enforcing the self-consistency property instead of learning the mapping
from noise to data directly. At a high level, in the training stage, we first discretize the interval [0, T ]
with the following partition:

T : 0 = τ0 < τ1 < τ2 < · · · < τM = T.

For simplicity, we assume the partition is equal, i.e. there exists ∆τ > 0, s.t. τi = ∆τ · i, for
i = 1, . . . ,M . We then enforce the self-consistency property on each partition point by finding
some f̂(·, ·), s.t.

Exτi
∼Pτi

[∥∥∥f̂(xτi , τi)− f̂(φ(τi+1;xτi , τi), τi+1)
∥∥∥2
2

]
(4)

is small for all i = 0, 1, . . . ,M − 1. This strategy is justified by our theoretical results in Section 3:
even if the self-consistency property is violated slightly, the consistency function estimation will
produce high-quality samples. In practice, the trajectories of the PF-ODE (2) are unknown, so the
self-consistency objective cannot be optimized directly. With this regard, consistency distillation,
which utilizes a pre-trained score function estimate, and consistency training, which builds an un-
biased estimate for the score function, are proposed to approximate the transition on the trajectories
of the PF-ODE. Interested readers can find the details in Song et al. (2023).

Given a consistency model estimate f̂(·, ·), we could generate approximate samples by feeding
Gaussian noise into f̂(·, ·) using single-step or multistep sampling. Given x̂T ∼ N (0, σ2

T I), one
can generate sample in a single step by calculating f̂(x̂T , T ). Furthermore, one can also design a
sequence of time steps by selecting N ≥ 1 steps in the training partition T :

T = t1 > t2 > · · · > tN > 0, (5)
We refer to the sequence {ti}i=1:N ⊆ T \ {0} as sampling time schedule. Given this sampling time
schedule, one can alternatingly denoise by calculating x̂

(i)
0 = f̂(x̂

(i)
ti , ti) and inject noise by drawing

x̂
(i+1)
ti+1

∼ N (αti+1
x̂
(i)
0 , σ2

ti+1
I), where x̂

(1)
t1 = x̂T ∼ N (0, σ2

T I) and i = 1, . . . , N . The x̂
(N)
0 in the

last step is the output of the sampling process. We highlight this procedure as follows:

x̂
(1)
t1

f̂(·,t1)−−−−→ x̂
(1)
0

∼N (αt2
x̂
(1)
0 ,σ2

t2
I)

−−−−−−−−−−−−→ x̂
(2)
t2

f̂(·,t2)−−−−→ x̂
(2)
0 → · · · → x̂

(N)
tN

f̂(·,tN )−−−−→ x̂
(N)
0 .

When N = 1, this degenerates to single-step sampling. For completeness, we summarize this
process in Algorithm 1 in Section A. For a concise presentation, we defines

{
P̂ti

}
i=1:N

to be

the sequence of marginal distributions of {x̂(i)
ti }i=1:N and define

{
P̂

(i)
0

}
i=1:N

to be the sequence of

marginal distributions of
{
x̂
(i)
0

}
i=1:N

. By the definition of multistep sampling, these two sequences

of distributions evolve according to the following recursion and output P̂tN at the end:

P̂t1 = N (0, σ2
t1); P̂

(i)
0 = f̂(P̂ti , ti), P̂ti+1

= D
(
P̂

(i)
0 , ti+1

)
, i = 1, . . . , N, (6)

1Specifically, φ(·;x, t0) is the solution to the ODE initial value problem specified by (2) and xt0 = x
2Song et al. (2023) stops at time t = δ for some small δ > 0 and accepts f̂(x, t) = φ̂(δ;x, t), an estimate

for φ(δ;x, t) as the approximate samples to avoid numerical instability. In this paper, we ignore this numerical
issue to obtain a cleaner theoretical analysis.

3At a high level, this can be shown by contradiction: suppose (x′, t′) lies on the trajectory of (x, t), meaning
φ(·;x, t), the trajectory of (x, t) and φ(·;x′, t′), the trajectory of (x′, t′) intersect at (x′, t′). Then both
trajectories satisfy the initial condition that takes value x′ at time t′. By Picard’s existence and uniqueness
theorem, the trajectories of φ(·;x, t) and φ(·;x′, t′) are identical and have the same origin.
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where we reuse f̂(·, ·) for operation on distributions. Specifically, for any distribution P and t ≥
0,we use f̂(P, t) to denote the distribution of f̂(x, t) when x ∼ P . In Section 3, we study how
multistep sampling influences the sample quality from the theoretical perspective.

Performance metric: In this paper, we study the sample quality generated by a consistency func-
tion estimate f̂(·, ·) and the multistep sampling procedure introduced above. To quantify the sample
quality, we establish upper bounds on 2-Wasserstein distance (W2) in Euclidean norm, and upper
bounds on Total Variation (TV) distance. The 2-Wasserstein distance between two distributions P
and Q is defined to be:

W2(P,Q) := inf
γ∈Γ(P,Q)

√
E(x,y)∼γ

[
∥x− y∥22

]
,

where Γ(P,Q) is the set of all joint distributions such that the marginal distribution over the first
random variable is P and the marginal distribution over the second random variable is Q.

Total Variation distance between two distributions P and Q is defined to be:

TV(P,Q) :=
1

2
∥p(x)− q(x)∥1 ,

where p(·) is the PDF of P and q(·) is the PDF of Q.

3 MAIN RESULTS

In this section, we present theoretical guarantees on sample quality for consistency models with
multistep sampling. We first present two sets of results for the general forward process in (1) with
arbitrary sampling time schedule: in Section 3.1, we demonstrate that the generated samples are
close to the target data distribution Pdata in W2 when Pdata has bounded support or satisfies some
tail condition; with an additional smoothing step, we show guarantee in TV distance for Pdata with
smoothness condition in Section 3.2. To illustrate the general results and gain better understanding
on the multistep sampling, we choose two special SDEs as forward processes and design sampling
time schedules in Section 3.3.

The natural central assumption in our theoretical results is a good consistency function estimate:

Assumption 1 (A proper consistency model). Suppose f̂(x, 0) = x for all x ∈ Rd and there exists
ϵcm > 0, s.t. (4) ≤ ϵ2cm for all i = 0, 1, . . . ,M − 1.

Firstly, the condition related to the accuracy of the consistency function estimate is necessary: we
cannot generate good samples with an arbitrary function. Instead of assuming the output of f̂(·, ·)
and f⋆(·, ·) to be close directly, we only require the self-consistency property to hold approximately
under its training distribution, which aligns with the objective function when training for f̂(·, ·).
Note that our assumption does not imply f̂ will be self-consistent in a point-wise manner.

The self-consistency objective (4) can be approximated via consistency distillation or consistency
training (Song et al., 2023). Consistency distillation uses a pre-trained score function (an estimation
for∇ log pt(·)) to approximate φ(·; ·, ·) and train for f̂(·, ·) with target network and online network.
In Section E, we incorporate consistency distillation with minor modifications into our framework
without additional data assumptions. On the other hand, consistency training constructs an unbiased
estimator for ∇ log pt(xt) to approximate (4). Theorem 2 of Song et al. (2023) shows that the self-
consistency loss (4) can be approximated by consistency training under proper conditions when ∆τ
is small.

In (4), we use ∥·∥22 as an error metric, which agrees with the choice in practice Luo et al. (2023);
Song et al. (2023). The metric ∥·∥22 aligns better with the theoretical analysis: on the one hand,
Lemma 2 demonstrates that this metric translates naturally to the 2-Wasserstein metric W2; on the
other hand, ∥·∥22 is more suitable for the multi-step sampling because the squared error contracts
nicely in the forward process with Gaussian noise as shown by Lemma 1 and 3.

Finally, we remark that Assumption 1 only requires an L2-accurate self-consistenct f̂(·, ·), instead
of requiring

∥∥∥f̂(xτi , τi)− f̂(φ(τi+1;xτi , τi), τi+1)
∥∥∥
2

to be small uniformly for all xτi . On the

5
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empirical side, conditions in L2 norm are more realistic because it allows the approximation to the
expectation in (4) with finite data.

3.1 GUARANTEES IN WASSERSTEIN METRIC

We now provide upper bounds on the sampling error in W2 distance. We start by considering Pdata
with bounded support:

Theorem 1 (W2 error for distributions with bounded support). Suppose Assumption 1 holds. Sup-
pose there exists R > 0, s.t. supx∈supp(Pdata) ∥x∥2 ≤ R and

∥∥∥f̂(x, t)∥∥∥
2
≤ R for all (x, t) ∈

Rd×[0, T ], Let P̂ (N)
0 be the output of (6). Then we have:

W2(P̂
(N)
0 , Pdata) ≤ 2R

(
α2
t1

4σ2
t1

R2 +

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

)1/4

+ tN
ϵcm
∆τ

(7)

Compared to Pdata = f⋆(PtN , tN ), the sampling error of P̂
(N)
0 = f̂(P̂tN , tN ) comes from: (i).

starting from a different marginal distribution P̂tN instead of PtN ; (ii). using an inaccurate con-
sistency function estimate f̂(·, ·) instead of f⋆(·, ·). The term α2

t

σ2
t

characterizes the convergence of NEW
the forward process as demonstrated by Lemma 3. It converges to 0 quickly for reasonable forward
SDE (1). Asymptotically, the right hand side of (7) goes to 0 as t1 →∞ and ϵcm → 0.

(7) implies a trade-off when sampling with multiple steps. When using more sampling steps: on

one hand,
α2

t1

4σ2
t1

R2 +
∑N

j=2

α2
ti

4σ2
ti

t2i−1
ϵ2cm
∆τ2 , an upper bound on KL(PtN ∥ P̂tN ),4 accumulates; on the

other hand, tN ϵcm
∆τ , the error from an inaccurate consistency function decreases due to a shorter tN .

The design of sampling time schedule {ti}i=1:N , which depends on the noise schedule
{
(αt, σ

2
t )
}
t
,

is crucial in achieving good sample quality. We defer design choices for some specific forward
processes and simplified upper bounds to Section 3.3.

When ∆τ decreases, on the one hand, there would be more intermediate steps in the error decom-
position of the consistency function estimate given a fix t (see Lemma 2); on the other hand, using
a smaller ∆τ allows a smaller tN and may potentially decrease ϵcm as well. It is challenging to
analyze the effect of ∆τ quantitatively without further assumption.

The technique in Theorem 1 can be extended to distributions without finite support. When Pdata
satisfies some tail condition, it is sufficient to sample only from a bounded region:

Theorem 2 (W2 error for distributions with tail condition). Suppose there exists c, C > 0 and R ≥
C, s.t. Prx∼Pdata(∥x∥2 ≥ t) ≤ ce−t/C for all t ≥ R. Let Pdata∩B(0,R) be the distribution truncated
from Pdata, i.e. the conditional distribution of x given ∥x∥2 ≤ R where x ∼ Pdata. Let φR(·; ·, ·) be
the solution to the corresponding PF-ODE and f⋆

R(·, ·) be the corresponding consistency function.
Let

{
PR
t

}
t∈[0,T ]

be the marginal distribution of the forward process starting from Pdata∩B(0,R).

If f̂(·, ·) satisfies: (a)
∥∥∥f̂(x, t)∥∥∥

2
≤ R, for all (x, t) ∈ Rd×[0, T ]; (b) f̂(x, 0) = x, for all x;

(c) Ext∼PR
τi

[∥∥∥f̂(xt, τi)− f̂(φR(τi+1;xt, τi), τi+1)
∥∥∥2
2

]
≤ ϵ2cm, for all i = 0, . . . ,M − 1 for some

ϵcm > 0. Then W2(P̂
(N)
0 , Pdata) ≤ 2R

(
α2

t1

4σ2
t1

R2+
∑N

j=2

α2
tj

4σ2
tj

t2j−1
ϵ2cm
∆τ2

)1/4

+ tN
ϵcm
∆τ +O(Re−

R
2C ).

By restricting the output of f̂(·, ·) to be B(0, R), the Euclidean ball with radius R, we focus on
learning the portion of Pdata inside the Euclidean ball. This truncation step reduces the problem of
sampling from unbounded distribution to sampling from a distribution with finite support, at the cost
of introducing the additional term O(Re−

R
2C ).

4We use KL(P ∥ Q) to denote the Kullback–Leibler (KL) divergence of distribution P from distribution
Q, which is defined by: KL(P ∥ Q) :=

∫
x∈Rd p(x) log

p(x)
q(x)

dx.

6
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P̂
(N)
0

Pdata

x0

(a) TV distance between P̂
(N)
0 and

Pdata.

P̂
(N)
0 ∗ N (0, σ2

ϵ )

Pdata ∗ N (0, σ2
ϵ )

x0

(b) TV distance between P̂
(N)
0 ∗

N (0, σ2
ϵ I) and Pdata ∗ N (0, σ2

ϵ I)).

P̂
(N)
0 ∗ N (0, σ2

ϵ )

Pdata ∗ N (0, σ2
ϵ )

x0

(c) TV distance between Pdata ∗
N (0, σ2

ϵ I) and Pdata.

Figure 1: Smoothing by additional perturbation

3.2 GUARANTEE IN TOTAL VARIATION DISTANCE

In the sampling process of consistency models, it is non-trivial to control the error in TV distance.
This difficulty arises even when we sample with a single step and can draw samples for the marginal
distribution PT directly. Assumption 1 ensures that f̂(PT , T ) is close to f⋆(PT , T ) in W2. However,
W2 and TV have very different structures: W2 controls the pointwise distance between distributions
while TV only focuses on the density of the distribution. Even if W2(P̂

(N)
0 , Pdata) is small, the densi-

ties of f̂(PT , T ) and f⋆(PT , T ) may not overlap well (see Figure 1a) and TV(f̂(PT , T ), f
⋆(PT , T ))

can be as large as 1 if f̂(PT , T ) is nearly deterministic while f⋆(PT , T ) has large variance. As a
result, it’s not possible to control TV distance only with conditions on W2 distance in general.

One solution is to perturb P̂
(N)
0 slightly with Gaussian noise N (0, σ2

ϵ ). With this perturbation,
P̂

(N)
0 ∗N (0, σ2

ϵ ) and Pdata ∗N (0, σ2
ϵ ) could have better overlap and be closer in TV (see Figure 1b),

where we use P ∗Q to denote the convolution of distribution P and Q. When Pdata satisfies smooth-
ness assumption, the perturbation will not change Pdata too much so TV(Pdata ∗ N (0, σ2

ϵ ), Pdata) is
small (See Figure 1c). One could choose a small σϵ and use P̂

(N)
0 ∗ N (0, σ2

ϵ I) as the output.
Theorem 3 (TV error for distributions under smoothness assumption). Suppose Assumption 1 holds.
Let pdata(·) be the PDF of Pdata. If log pdata(·) is L-smooth, then for all σϵ > 0, we have:

TV(P̂
(N)
0 ∗N (0, σ2

ϵ I), Pdata) ≤

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

+
1

2σϵ
tN

ϵcm
∆τ

+2dLσϵ.

Compared to Theorem 1, the upper bound in Theorem 3 has an additional term 2dLσϵ. This is the
“bias” induced by the additional perturbation N (0, σ2

ϵ I). To get a tighter bound, we may choose

σϵ =
√

tN ϵcm
4dL∆τ , and the upper bound becomes:

√
α2

t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

∑N
j=2

α2
tj

4σ2
tj

t2j−1
ϵ2cm
∆τ2 +

2
√
tNdL ϵcm

∆τ .

3.3 CASE STUDIES ON MULTISTEP SAMPLING

To illustrate the theoretical guarantee and understand the benefits of multistep sampling, we conduct
case studies with two common forward processes. For simplicity, we assume Pdata to have bounded
support and ignore the rounding issues when selecting sampling time schedule {ti}i=1:N from the
training time partition T .

Case study 1: we consider the Variance Preserving SDE in Song et al. (2021) with β(t) = 2 as
the forward process:

dxt = −xtdt+
√
2dwt, x0 ∼ Pdata. (8)

This is also known as the Ornstein-Uhlenbeck (OU) process and is studied by Chen et al. (2023b)
in the context of score-based generative models. The forward process defined by (8) has noise

7
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schedule αt = e−t and σ2
t = 1 − e−2t and its marginal distribution is xt ∼ N (e−tx0, (1 −

e−2t)I)conditioning on x0. Theorem 1 guarantees:

W2(P̂tN , Pdata) ≤ 2R

(
e−2t1

4(1− e−2t1)
R2 +

N∑
j=2

e−2tj

4(1− e−2tj )
t2j−1

ϵ2cm
∆τ2

)1/4

+ tN
ϵcm
∆τ

. (9)

In this case study, we focus on the design of the sampling time schedule based on upper bound (9)/
Surprisingly, we demonstrate that an ultra-small tN is not beneficial. We assume τ1 = ∆τ ≪ 1 and
ϵcm
∆τ < R.5

One strategy for designing {ti}i=1:N is to minimize the upper bound (9). We first establish a lower
bound on (9) as a baseline. Without loss of generality, we assume t1 ≥ 2. (9) can be lower bounded
as:

(9) ≥ R

√
ϵcm
∆τ

 N∑
j=2

tj
e2tj − 1

(tj−1 − tj)

1/4

+ tN
ϵcm
∆τ
≥ R

√
ϵcm
∆τ

(∫ 2

tN

xdx

e2x − 1

)1/4

+ tN
ϵcm
∆τ

,

where the first step is because 0 < tj ≤ tj−1 and the second step is because x
e2x−1 monotonically

decreases. Let c1, c2 > 0 be absolute constants, s.t.
(∫ 2

c1
xdx

e2x−1

)1/4

= c2. Then if tN ≥ c1,

(9) ≥ c1
ϵcm
∆τ = Ω

(
ϵcm
∆τ

)
; if tN < c1, (9) ≥ c2R

√
ϵcm
∆τ = Ω

(
R
√

ϵcm
∆τ

)
. In either case, (9) =

Ω
(
min

{
ϵcm
∆τ , R

√
ϵcm
∆τ

})
. The condition ϵcm

∆τ < R further implies (9) = Ω
(
ϵcm
∆τ

)
. Given this lower

bound, one heuristic is to set every term in (9) to Θ̃
(
ϵcm
∆τ

)
) to match this baseline approximately,

which requires:

ti ≥ log
R3∆τ2

ϵ2cm
, if i = 1; ti ≥ log

R2∆τ

ϵcm
, o.w.. (10)

With this heuristic, a two-step sampling procedure shows an improvement on sample quality:

Corollary 1 (Two-step sampling with OU process). Suppose the conditions in Theorem 1 are satis-
fied. Suppose αt = e−t, σ2

t = 1− e−2t. Then for t1 = log R3∆τ2

ϵ2cm
, t2 = log R2∆τ

ϵcm
, we have:W2(P̂

(1)
0 , Pdata) ≤ ϵcm

∆τ

(
log R3∆τ2

ϵ2cm
+O(1)

)
,

W2(P̂
(2)
0 , Pdata) ≤ ϵcm

∆τ

(
log R2∆τ

ϵcm
+O

(√
log R2∆τ

ϵcm

))
.

(11)

Because ϵcm
∆τ < R, the leading term is strictly reduced in the second sampling step. Further-

more, if ϵcm ≈ ∆τ , W2(P̂
(2)
0 , Pdata) ≈ 2

3W2(P̂
(1)
0 , Pdata); if ϵcm ≪ ∆τ , W2(P̂

(2)
0 , Pdata) ≈

1
2W2(P̂

(1)
0 , Pdata). Due to the constraint in (10), further improvement with this heuristic is chal-

lenging. This intuition aligns with the empirical result in Luo et al. (2023).

Case study 2: In the second case study, we consider the following Variance Exploding SDE (Song
et al., 2021; Karras et al., 2022):

dxt =
√
2tdwt, (12)

which is used in Song et al. (2023) and Song & Dhariwal (2024) as the forward process for consis-
tency models. The noise schedule is (αt, σ

2
t ) = (1, t2) and the marginal distribution of xt condi-

tioning on x0 is: xt ∼ N (x0, t
2I).The upper bound in (7) is simplified to:

W2(P̂tN , Pdata) ≤ 2R

(
1

4t21
R2 +

N∑
j=2

1

4t2j
t2j−1

ϵ2cm
∆τ2

)1/4

︸ ︷︷ ︸
(i)

+ tN
ϵcm
∆τ︸ ︷︷ ︸

(ii)

. (13)

5When ϵcm
∆τ

≥ R, (9) = Ω(R), which is meaningless because the support of Pdata is bounded by R already.
This trivial situation is not the focus of this case study.
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This implies a trade-off in multi-step sampling with this particular forward process (12) when in-
creasing the number of steps. Roughly speaking, (i) in (13) increases due to more terms with more
steps while tN becomes smaller and (ii) will decrease. One consideration is to decrease ti by half in
each sampling step until tN = ∆τ (ignore the rounding issue):

ti = T21−i, i = 1, 2, . . . , log2

(
2T

∆τ

)
, (14)

where T > 0 is to be determined. With this choice, (i) increases at a linear rate while (ii) decreases
exponentially when using more sampling steps:
Corollary 2 (Multistep sampling with the variance exploding SDE). Suppose the conditions in
Theorem 1 are satisfied. Suppose αt = 1, σ2

t = t2. Let N = log2(2T ). Then for {ti}i=1:N defined

in (14), we have: W2(P̂
(N)
0 , Pdata) ≤ O

(
R
√
RT−1/2 +R

√
ϵcm
∆τ

(
log T

∆τ

)1/4)
.

When T = R∆τ
ϵcm

, we have W2(P̂
(N)
0 , Pdata) ≤ O

(
R
√

ϵcm
∆τ

(
log R

ϵcm

)1/4
)

. In this case study and

the halving strategy for choosing sample time schedule {ti}i=1:N , reducing the partition size ∆τ is
beneficial only when the consistency loss ϵcm decreases at a faster rate.

In general, the convergence of a forward process in (1) is characterized by α2
tσ

−2
t (according to

Lemma 3). The forward process (12) has a polynomial convergence rate α2
tσ

2
t
−2

= t−2 while (8)
enjoys a much faster exponential rate α2

tσ
−2
t ≈ e−2t. The exponential convergence results in a

shorter training step T , fewer sampling steps N , and better sample quality if Assumption 1 holds
with the same ϵcm in both cases.

4 TECHNICAL OVERVIEW

In this section, we present the high-level ideas in the proof for our main result Theorem 1 since
proofs for Theorem 2 and 3 share the same main building blocks. The proof for Theorem 1 consists
of three main components:

Error decomposition: intuitively, the error comes from: (i) inaccurate consistency function f̂(·, ·)
and (ii) sampling from Gaussian distributionN (0, σ2

t1) instead of perturbed data distribution Pt1 . (i)
is controlled by the consistency loss Assumption 1 and (ii) is controlled by the convergence of the
forward process Lemma 3. However, the error (i) and (ii) interact with each other in the multi-step
sampling. We handle this complication progressively, starting with the error decomposition in the
final sampling step:

W2(P̂
(N)
0 , Pdata) ≤W2(f̂(P̂tN , tN ), f̂(PtN , tN )) +W2(f̂(PtN , tN ), f⋆(PtN , tN )).

Since the output of f̂(·, ·) is bounded, we could simplify the first term with the TV distance, which
is further upper bounded by KL(PtN ∥ P̂tN ) by Pinsker’s inequality and data processing inequality.
The second term is solely controlled by the consistency loss ϵcm.

Recursion on KL(Pti ∥ P̂ti): we analyze KL(PtN ∥ P̂tN ) via induction. First of all, the base
case KL(Pt1 ∥ P̂t1) is upper bounded using the convergence of the forward process; the induction
step connects KL(Pti ∥ P̂ti) and KL(Pti+1 ∥ P̂ti+1). According to the multi-step sampling, P̂ti and

P̂ti+1
is connected by f̂(·, ti) and D

(
·;αti+1

, σ2
ti+1

)
as

P̂ti

f̂(·,ti)−−−−→ P̂
(i)
0

D
(
·;αti+1

,σ2
ti+1

)
−−−−−−−−−−−→ P̂ti+1 .

In this process, f̂(·, ·) induced additional error while the forward processD
(
·;αti+1

, σ2
ti+1

)
reduces

it with convergence α2
ti+1

σ−2
ti+1

. This intuition is formalized by the error decomposition via chain
rule of KL divergence:

KL(Pti+1
∥ P̂ti+1

) ≤KL(Pti ∥ P̂ti) +
α2
ti+1

2σ2
ti+1

Ex∼Pti

[∥∥∥f⋆(x, ti)− f̂(x, ti)
∥∥∥2
2

]
.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Another possibility is to construct the recursive formula for W2(P̂
(i)
0 , P0). However, recursion on

W2 requires the translation from KL to W2 that induces an R factor in each induction step. When
{ti}i is not carefully designed, the R in each induction step results in an exploding upper bound
easily. Meanwhile, this translation requires the data distribution to be bounded and hampers the
application to more general data distributions.

Error of consistency function evaluation: another importance building block in our proof is the
evaluation error of consistency function, i.e.

∥∥∥f̂(x, τk)− f⋆(x, τk)
∥∥∥
2

for τk ∈ T . Assumption 1

controls the difference in f̂(·, ·) and f⋆(·, ·) indirectly by enforcing the consistency property. We
connect the evaluation error and consistency loss via a stepwise decomposition. Conditioning on
xτk ∼ Pτk , the PF-ODE (2) defines a deterministic trajectory:

xτk

φ(τk−1;·,τk)−−−−−−−−→ xτk−1

φ(τk−2;·,τk−1)−−−−−−−−−→ xτk−2

φ(τk−3;·,τk−2)−−−−−−−−−→ · · · φ(τ1;·,τ2)−−−−−−→ xτ1

φ(τ0;·,τ1)−−−−−−→ xτ0 .

Assumption 1 guarantees that
∥∥∥f̂(xτj , τj)− f̂(xτj−1

, τj−1)
∥∥∥
2

is small in the sense of L2 error for
each intermediate step j. We could make the following decomposition:∥∥∥f̂(xτk , τk)− f⋆(xτk , τk)

∥∥∥
2
=

∥∥∥f̂(xτk , τk)− x0

∥∥∥
2
≤

k∑
j=1

∥∥∥f̂(xτj , τj)− f̂(xτj−1
, τj−1)

∥∥∥
2

The right-hand side is, roughly speaking≤ τk
ϵcm
∆τ , We formalize this idea with Minkowski inequality

in Lemma 2.

5 CONCLUSION

In this paper, we study the convergence of the consistency model multistep sampling procedure. We
establish guarantees on the distance between the sample distribution and data distribution in terms
of both Wasserstein distance and total variation distribution. Our upper bound requires only mild
assumptions on the data distribution.

Future research directions include providing lower bounds on multistep sampling and establishing
end-to-end results on consistency models.
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A MULTISTEP SAMPLING

We present the multistep sampling procedure in Algorithm 1. Compared to Algorithm 1 of Song
et al. (2023), we allow different choices of noise schedule in Algorithm 1.

Algorithm 1 Multistep Consistency Sampling

1: Input: a trained consistency model f̂(·, ·), noise schedule
{
(αt, σ

2
t )
}
t∈[0,T ]

, sampling time
schedule {ti}i=1:N , where tN = T .

2: x̂
(1)
t1 ∼ N (0, σ2

t1I)
3: for i = 1 to N − 1 do
4: x̂

(i)
0 ← f̂(x̂

(i)
ti , ti)

5: x̂
(i+1)
ti+1

∼ N (αti+1
x̂
(i)
0 , σ2

ti+1
I)

6: end for
7: Output: x̂(N)

0 .

B PROOF OF THEOREM 1

At a high level, we could decompose the W2 error W2(P̂
(N)
0 , Pdata) into:

W2(P̂
(N)
0 , Pdata) ≤W2(P̂

(N)
0 , f̂(PtN , tN )) +W2(f̂(PtN , tN ), Pdata)

=W2(f̂(P̂tN , tN ), f̂(PtN , tN ))︸ ︷︷ ︸
=:A1

+W2(f̂(PtN , tN ), f⋆(PtN , tN ))︸ ︷︷ ︸
=:A2

. (15)

In the error decomposition (15): the first term A1 is caused by an inaccurate noise distribution P̂tN

and is controlled by the KL divergence of PtN from P̂tN . We use the chain rule of KL divergence to
derive a recursive formula for KL(Pti ∥ P̂ti), where the initial term KL(Pt1 ∥ P̂t1) is bounded by
the convergence of the forward diffusion process:

Lemma 1 (Decomposition of KL). Suppose f̂(·, ·) satisfies Assumption 1, then for all i = 1, . . . , N ,
we have:

KL(Pti ∥ P̂ti) ≤
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

i∑
j=2

α2
tj

2σ2
tj

t2j−1

ϵ2cm
∆τ2

.

We defer the proof of Lemma 1 to Section B.1. Given this result, we can bound A1 as:

A1 ≤2R
√
TV(f̂(P̂tN , tN ), f̂(PtN , tN ))

(
By Section 2.2.4 of Rolland (2022) and

∥∥∥f̂(x, t)∥∥∥
2
≤ R

)
≤2R

(
1

2
KL(f̂(PtN , tN ) ∥ f̂(P̂tN , tN ))

)1/4

(By Pinsker’s inequality)

≤2R
(
1

2
KL(PtN ∥ P̂tN )

)1/4

(By data processing inequality)

12
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≤2R

 α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

1/4

(By Lemma 1 with i = N)

≤2R

 α2
t1

4σ2
t1

R2 +

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

1/4 (
Because supx∈supp(Pdata) ∥x∥2 ≤ R

)
. (16)

The second term A2 is caused by the difference between the pre-trained consistency function f̂(·, ·)
and the ground truth f⋆(·, ·), which is controlled by the consistency loss ϵcm.

Lemma 2. Suppose f̂(·, ·) satisfies Assumption 1 holds, then for all i = 0, 1, . . . ,M , we have:

(i) Ex∼Pτi

[∥∥∥f̂(x, τi)− f⋆(x, τi)
∥∥∥2
2

]
≤ τ2i

ϵ2cm
∆τ2 ;

(ii) W2(f̂(Pτi , τi), f
⋆(Pτi , τi)) ≤ τi

ϵcm
∆τ .

We defer the proof of Lemma 2 to Section B.1. Part (ii) of Lemma 2 shows that:

A2 ≤ tN
ϵcm
∆τ

. (17)

We finish the proof of Theorem 1 by combining (16) and (17).

B.1 PROOF OF AUXILIARY LEMMAS

Proof of Lemma 1. We prove this statement via induction. At a high level, the base is proved by the
convergence of the forward process Lemma 3. We show the induction step by the chain rule of KL.

When i = 1, we have can write P̂t1 = N (0, σ2
t1) with the diffusion operator and a the dirac

distribution:
P̂t1 = D

(
δ0;αt1 , σ

2
t1

)
,

where δ0 is the delta distribution at 0. By definition, Pt1 = D
(
P0;αt1 , σ

2
t1

)
. By Lemma 3,

KL(Pt1 ∥ P̂t1) =KL(D
(
P0;αt1 , σ

2
t1

)
∥ D

(
δ0;αt1 , σ

2
t1

)
)

≤
α2
t1

2σ2
t1

W 2
2 (P0, δ0) =

α2
t1

2σ2
t1

Ex∈Pdata

[
∥x∥22

]
.

Thus the statement holds for i = 1. Suppose the statement holds for i = k, i.e.

KL(Ptk ∥ P̂tk) ≤
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

k∑
j=2

α2
tj

2σ2
tj

t2j−1

ϵ2cm
∆τ2

. (18)

We first explicitly write the sequence of random variables in the multistep inference:

x̂
(1)
t1 → x̂

(1)
0 → x̂

(2)
t2 → x̂

(2)
0 → · · · → x̂

(N)
tN → x̂

(N)
0 ,

where x̂
(1)
t1 ∼ N (0, σ2

t1I), x̂
(i)
0 = f̂(x̂

(i)
0 , ti), x̂

(i+1)
ti+1

∼ N (αti+1
x̂
(i+1)
0 , σ2

ti+1
I). Similarly, we also

define the following process that starts at the ground truth noise distribution Pt1 and evolves using
the ground truth consistency function f⋆(·, ·) :

x
(1)
t1 → x

(1)
0 → x

(2)
t2 → x

(2)
0 → · · · → x

(N)
tN → x

(N)
0 ,

where x
(1)
t1 ∼ Pt1 , x(i)

0 = f⋆(x
(i)
0 , ti), x

(i+1)
ti+1

∼ N (αti+1x
(i)
0 , σ2

ti+1
I).

By the chain rule of KL divergence, we have:

KL(P
(
x
(k+1)
tk+1

)
∥ P

(
x̂
(k+1)
tk+1

)
)

13
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+ E
x∼P

(
x
(k+1)
tk+1

)[KL(P
(
x
(k)
tk
|x(k+1)

tk+1
= x

)
∥ P

(
x̂
(k)
tk
|x̂(k+1)

tk+1
= x

)
)
]

︸ ︷︷ ︸
≥0

=KL(P
(
x
(k)
tk

,x
(k+1)
tk+1

)
∥ P

(
x̂
(k)
tk

, x̂
(k+1)
tk+1

)
)

=KL(P
(
x
(k)
tk

)
∥ P

(
x̂
(k)
tk

)
) + E

x∼P
(
x
(k)
tk

)[KL(P
(
x
(k+1)
tk+1

|x(k)
tk

= x
)
∥ P

(
x̂
(k+1)
tk+1

|x̂(k)
tk

= x
)
)
]

where we use P(x) to denote the distribution of random variable x. Because KL is non-negative,
we have:

KL(P
(
x
(k+1)
tk+1

)
∥ P

(
x̂
(k+1)
tk+1

)
)

≤KL(P
(
x
(k)
tk

)
∥ P

(
x̂
(k)
tk

)
) + E

x∼P
(
x
(k)
tk

)[KL(P
(
x
(k+1)
tk+1

|x(k)
tk

= x
)
∥ P

(
x̂
(k+1)
tk+1

|x̂(k)
tk

= x
)
)
]

By definition, this means:

KL(Ptk+1
∥ P̂tk+1

)

≤KL(Ptk ∥ P̂tk) + Ex∼Ptk

[
KL(N (αtk+1

f⋆(x, tk), σ
2
tk+1

I) ∥ N (αtk+1
f̂(x, tk), σ

2
tk+1

I))
]

=KL(Ptk ∥ P̂tk) +
α2
tk+1

2σ2
tk+1

Ex∼Ptk

[∥∥∥f⋆(x, tk)− f̂(x, tk)
∥∥∥2
2

]
≤KL(Ptk ∥ P̂tk) +

α2
tk+1

2σ2
tk+1

t2k
ϵ2cm
∆τ2

(By part (i) of Lemma 2)

≤
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

k+1∑
j=2

α2
tj

2σ2
tj

t2j−1

ϵ2cm
∆τ2

. (By (18))

Proof of Lemma 2. We first prove part (i) with induction on t. By the definition of f⋆(·, ·) in (3),

f⋆(x, 0) = φ(0;x, 0) = x, ∀x ∈ Rd.

By Assumption 1, f̂(x, 0) = x for all x. Thus

Ex∼P0

[∥∥∥f̂(x, 0)− f⋆(x, 0)
∥∥∥2
2

]
= Ex∼P0

[
∥x− x∥22

]
= 0,

which means (i) holds for i = 0.

Suppose (i) holds for i = s, i.e.√
Ex∼Pτs

[∥∥∥f̂(x, τs)− f⋆(x, τs)
∥∥∥2
2

]
≤ τsϵcm/∆τ. (19)

By the property of the PF-ODE (2),

φ(τs+1;x, τs) ∼ Pτs+1 , if x ∼ Pτs . (20)

When i = s+ 1, we have:√
Ex′∼Pτs+1

[∥∥∥f̂(x′, τs+1)− f⋆(x′, τs+1)
∥∥∥2
2

]

=

√
Ex∼Pτs

[∥∥∥f̂(φ(τs+1;x, τs), τs+1)− f⋆(φ(τs+1;x, τs), τs+1)
∥∥∥2
2

]
(By (20))

=

√
Ex∼Pτs

[∥∥∥f̂(φ(τs+1;x, τs), τs+1)− f⋆(x, τs)
∥∥∥2
2

]
(By the definition of f⋆(·, ·))

14
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≤

√
Ex∼Pτs

[∥∥∥f̂(φ(τs+1;x, τs), τs+1)− f̂(x, τs)
∥∥∥2
2

]
+

√
Ex∼Pτs

[∥∥∥f̂(x, τs)− f⋆(x, τs)
∥∥∥2
2

]
(By Lemma 5)
≤ϵcm + τsϵcm/∆τ (By Assumption 1 and (19))
=ϵcm(1 + τs/∆τ) = τs+1ϵcm/∆τ.

We complete the proof for part (i).

f̂(·, t) and f⋆(·, t) induce a joint distribution Γx′
0,x0

:

Pr(x′
0,x0)∼Γx′

0,x0
[(x′

0,x0) ∈ A] := Prxt∼Pt

[
xt ∈

{
x : (f̂(x, t), f⋆(x, t)) ∈ A

}]
,

for any event A. With this joint distribution Γx′
0,x0

, the marginal distribution of x′
0 is f̂(Pt, t) and

the marginal distribution of x0 is f⋆(Pt, t). This means:√
Ext∼Pt

[∥∥∥f̂(xt, t)− f⋆(xt, t)
∥∥∥2
2

]
=

√
E(x′

0,x0)∼Γx′
0,x0

[
∥x′

0 − x0∥22
]
≥W2(f̂(Pt, t), f

⋆(Pt, t)).

By applying part (i), we have

W2(f̂(Pτi , τi), f
⋆(Pτi , τi)) ≤ τiϵcm/∆τ.

We complete the proof for part (ii).

C PROOF OF THEOREM 2

The error term can be decomposed as:

W2(P̂
(tN )
0 , Pdata) ≤W2(P̂

(tN )
0 , Pdata∩B(0,R)) +W2(Pdata∩B(0,R), Pdata) (21)

By Theorem 1,

W2(P̂
(tN )
0 , Pdata∩B(0,R)) ≤ 2R

(
α2
t1

4σ2
t1

R2 +

N∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm

)1/4

+ tN ϵcm.

For the second term, we first note that

TV(Pdata∩B(0,R), Pdata) = Prx∼Pdata [∥x∥2 > R] ≤ O(e−
R
C ).

By Lemma 9 of Rolland (2022),

W2(Pdata∩B(0,R), Pdata) ≤ O(Re−
R
2C ).

We finish the proof by combining these two bounds.

D PROOF OF THEOREM 3

At a high level, we can decompose the TV distance as follows:

TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata)

≤TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata ∗ N (0, σ2
ϵ I)) + TV(Pdata ∗ N (0, σ2

ϵ I), Pdata) (22)

The first term can be bounded by Lemma 1 and Pinsker’s inequality, which shows that the TV
distance between P̂

(N)
0 and Pdata is controlled after the Gaussian perturbation. While the second

term is bounded when Pdata satisfies the smoothness assumption, which shows that the perturbation
will change Pdata only slightly. We now illustrate these ideas in detail. We first define αtN+1

:= 1,
σtN+1

:= σϵ, then by Pinsker’s inequality and Lemma 1:

TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata ∗ N (0, σ2
ϵ I))

15
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≤
√

1

2
KL(Pdata ∗ N (0, σ2

ϵ I) ∥ P̂
(N)
0 ∗ N (0, σ2

ϵ I))

=

√
1

2
KL(PtN+1

∥ P̂tN+1
)

≤

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N+1∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm

=

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm +

1

4σ2
ϵ

t2N ϵ2cm

≤

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm +

1

2σϵ
tN ϵcm.

On the other hand, by Lemma 4,

TV(Pdata ∗ N (0, σ2
ϵ I), Pdata) ≤ 2dLσϵ.

We complete the proof by combining these two bounds into the decomposition in (22).

E CONNECTION TO CONSISTENCY DISTILLATION

Our Assumption1 assumes that the self-consistency property is satisfied approximately, which aligns
with both consistency distillation (Song et al., 2023). For simplicity, we consider an OU process to
be the forward process:

dxt = −xtdt+
√
2dwt, x0 ∼ Pdata.

Given the pre-trained score function s(x, t), we train a consistency model from the following ODE:

dxt

dt
= −xt − s(xt, t), xT ∼ N (0, (1− e−2T )I). (23)

We assume access to an ODE solver, which can calculate φs, the solution to (23), exactly. Even
though this solver can be computationally expensive during the training procedure, the consistency
model will still be computationally efficient during the inference time.

To avoid distribution shift, we optimize the consistency loss objective (4) using the data generated
from (23), instead of that from Pt, the marginal distribution of the forward process. When optimized
properly, we can find a f̂ , s.t.

Exτi
∼φs(τi;N (0,(1−e−2T )I),T )

[∥∥∥f̂(xτi , τi)− f̂(φ(τi+1;xτi , τi), τi+1)
∥∥∥2
2

]
(24)

is small for all i. Using the same argument in Lemma 4, we can show that f̂(N (0, (1− e−2T )I), T )
and φs(0;N (0, (1 − e−2T )I), T ) are close in W2, this can be translated into a bound in TV using
the argument in Section 3.2.

When the pre-trained score function s(x, t) has small L2 error, Huang et al. (2024) show that
φs(0;N (0, (1 − e−2T )I), T ) is close to Pdata in TV. To conclude, f̂(N (0, (1 − e−2T )I), T ) is
close to Pdata in TV.

F TECHNICAL LEMMAS

We first present the result on the convergence of SDE, which also connects KL-divergence and W2:

Lemma 3. Let P and Q be two distributions in Rd, then

KL(D
(
P ;α, σ2

)
∥ D

(
Q;α, σ2

)
) ≤ α2

2σ2
W 2

2 (P,Q)

16
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This result is comparable to Lemma C.4 of Chen et al. (2023a). However, our results is self-
contained and tighter.

Proof of Lemma 3. Let U and V be two random variables with joint distribution Γ, s.t. the marginal
distributions of U and V are P and Q respectively. Let X ∼ D

(
P ;α, σ2

)
and Y ∼ D

(
Q;α, σ2

)
.

We use P(·) to denote the distribution of a random variable. By the chain rule of KL-divergence,
we have:
KL(P(X) ∥ P(Y )) ≤KL(P(X) ∥ P(Y )) + Ex∼P(X)[KL(P((U, V )|X = x) ∥ (U, V )|Y = x)]

(By the non-negativity of KL)
=KL(P(U, V ) ∥ P(U, V ))

+ E(u,x)∼P(U,V )[KL(P(X|(U, V ) = (u,v))) ∥ P(Y |(U, V ) = (u, vb)))]

(By the chain rule of KL)
=E(u,x)∼P(U,V )[KL(P(X|U = u)) ∥ P(Y |V = v))] (25)

(X is independent of V given U and similar holds for Y )

By the definition of D (·; ·, ·), X|U = u ∼ N (αu, σ2I) and Y |V = v ∼ N (αv, σ2I). Thus,

KL(P(X|U = u)) ∥ P(Y |V = v)) =
1

2σ2
α2 ∥u− v∥22

By (25), we further have:

KL(D
(
P ;α, σ2

)
∥ D

(
Q;α, σ2

)
) ≤ α2

2σ2
E(u,v)∼Γ

[
∥u− v∥22

]
(26)

By taking inf over Γ on both sides of (26), we get:

KL(D
(
P ;α, σ2

)
∥ D

(
Q;α, σ2

)
) ≤ α2

2σ2
W 2

2 (P,Q).

Lemma 4 (Gaussian perturbation on a smooth distribution, a variant of Lemma 6.4 of Lee et al.
(2023)). Let P be a distribution in Rd with PDF p(x), if log p(x) is L-smooth, then

TV(P, P ∗ N (0, σ2I)) ≤ 2dLσ,

where we use P ∗Q to denote the convolution of distribution P and Q.

Proof. The results follows directly from Lemma 6.4 of Lee et al. (2023) with αt = 1 and σt =
σ.

Lemma 5 (Triangle inequality with both Lp norm and L2 norm). Let x be a random variable in Rd,
and f, g be mappings from Rd to Rd, then

Ex[∥f(x) + g(x)∥p2]
1/p ≤ Ex[∥f(x)∥p2]

1/p
+ Ex[∥g(x)∥p2]

1/p
.

Proof.

Ex[∥f(x) + g(x)∥p2]
1/p ≤Ex[(∥f(x)∥2 + ∥g(x)∥2)

p
]
1/p

(Triangle inequality for L2 norm)

≤Ex[∥f(x)∥p2]
1/p

+ Ex[∥g(x)∥p2]
1/p

(Minkowski inequality).

G SIMULATION NEW

Motivations: Consistency model has already demonstrated its power on large-scale image gener-
ation tasks (Luo et al., 2023; Song et al., 2023; Song & Dhariwal, 2024). To verify our theoretical
findings, we focus on a toy example that is easier to interpret.

We first refine our upper bound in Theorem 1, where we relax our result for a cleaner presentation.
We make adjustment to (16) and get:

sup
x,y∈supp(Pdata)

∥x− y∥2

(
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

)1/4

+ tN
ϵcm
∆τ

. (27)
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Simulation setting: We consider OU process as the forward process, which is our setup in
Case study 1. For simplicity, we consider a Bernoulli data distribution: Prx∼Pdata [x = 0] =
Prx∼Pdata [x = 100] = 0.5. This data distribution ensures a close-form for the ground truth con-
sistency function:

f⋆(x, t) :=

{
0 if x < 50 exp(−t)
100 o.w.

.

We construct a perturbed f̂(·, ·) accordingly:

f̂(x, t) :=

{
0 if x < at
100 o.w.

,

where the sequence at satisfies: Prx∼Pt
[x < at] = 0.5+0.0001t2, ∀t. This choice of f̂(·, ·) makes

sure:

Ex∼Pt

[∥∥∥f̂(x, t)− f⋆(x, t)
∥∥∥2
2

]
= t2.

This means f̂(·, ·) satisfies the first statement of Lemma 2 with ϵ2cm
∆τ2 = 1.

We simulate three instantiations of {ti}Ni=1 defined in (5), i.e. the sequence of time steps for our
multi-step sampling defined in (5):

• our schedule: the two-step schedule suggested by Case study 1. We also calculate the
upper bound in (27) for comparison;

• baseline 1: design the sequence of sampling time steps by evenly dividing an interval;
• baseline 2: start with some T and reduce it by half every step until reaching a small value.

In Figure 2, we plot the W2 error in multi-step sampling. We present the revolution of W2 error in a
sampling time schedule on a single curve. Specifically, we plot each curve by:(

ti,W2(P̂
(i)
0 , Pdata)

)
i = 1, . . . , N.

Because the sampling time step ti decreases in the multi-step sampling by definition. We reverse the
x-axis of the plot for presentation purposes.

Observations: This simulation result demonstrates that:

• Our upper bound is a reasonable characterization of the performance for the designed sam-
pling time schedule.

• The two-step sampling time schedule suggested by Case study 1 achieves comparable
performance to the best result in the baseline methods but with a much smaller number of
function evaluations;

• Running too many sampling time steps may degrade the sampling quality. The error in-
creases for both baseline methods in the last few sampling steps.
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Figure 2: W2 error in multi-step sampling.
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