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ABSTRACT

Code translation is the task of converting source code from one programming lan-
guage to another. Sufficient parallel code data is essential for neural code translation
models to learn the correct alignment across different languages. However, existing
parallel code data is limited in quantity and supported languages. In this paper,
we propose a semi-supervised code translation method, SPACoder, that leverages
snippet training, static analysis, and compilation to generate synthetic parallel
code with enhanced alignment in a scalable way, and improves code translation by
curriculum learning based on the alignment level of training instances. SPACoder
can be generalized to multiple languages and various models with little overhead.
Extensive experiments show that SPACoder significantly improves code translation
performance on C++, Java, Python, and C, outperforming state-of-the-art baselines
by wide margins in execution-based evaluation (CA@1). Notably, we improve C
translation by up to 43% with less than 150 annotated training instances.

1 INTRODUCTION

Code translation is the task of converting source code written in one programming language (PL) to
another. This process is valuable for migrating existing code to other languages, and can significantly
reduce legacy code maintenance costs and new platform development. Traditional methods for code
translation are usually rule-based, which require high expertise in multiple programming languages
and considerable manual effort. Benefiting from recent machine learning advances, data-driven
methods have shown promising results in automated code translation (Chen et al.,[2018;[Roziere et al.|
2020; 2021b; Zhu et al.,2022). Similar to neural machine translation, neural code translation usually
relies on parallel code data for sequence-to-sequence (seq2seq) training. Parallel code data refers to
pairs of code snippets from different programming languages that are functionally equivalent and
bug-free. Sufficient parallel code data is essential for training models to learn the correct alignment
of data structures, APIs, and grammatical rules across different languages. However, existing parallel
code data is limited in quantity and supported languages (Nguyen et al., 2013} 2015} [Karaivanov
et al.l[2014; |Lu et al.l 2021} (Chen et al., [2018;|Ahmad et al., |2021b; |Zhu et al., [2022).

To reduce the dependence on parallel code data, one line of work follows the “pre-training - fine-
tuning” approach (Ahmad et al.| 2021aj; Wang et al.|[2021; [Roziere et al.,2021a} [Fried et al., [2022).
Large-scale online code repositories such as GitHub, introduce a vast amount of open source code data.
These methods pre-train large language models (LLMs) on open source code with self-supervised
learning techniques to gain general knowledge about programming languages, and then fine-tune
them on small specialized datasets to perform downstream tasks. Nevertheless, pre-training tasks
such as masked language modeling (MLM) (Devlin et al.l 2019} [Feng et al., 2020; Guo et al., 2020)
are usually quite different from the downstream tasks such as code translation, and the performance
on the latter is limited by the discrepancy. Another line of work takes an unsupervised learning
approach for code translation. Established techniques from unsupervised neural machine translation
(NMT) (Lample et al.l 2017} |Artetxe et al., 2017} [Lample et al., [2018; |Artetxe et al.| [2019), such
as back-translation and denoising auto-encoding, can be applied to code data effectively, achieving
good performance on code translation without relying on any parallel data (Edunov et al., 2018}
Roziere et al., [2020; |Agarwal et al.}[2021;|/Ahmad et al., [2022} [Szafraniec et al.| 2022; [Kusum et al.,
2022). However, unsupervised learning introduces significant noise in the training process, which is



Under review as a conference paper at ICLR 2024

\ Input (Java) Transcoder-ST (C++) SPACoder (C++)

Boolean areElementsContiguous(int arr[], int Boolean areElementsContiguous (intarr [ ] , bool areElementsContiguous (int arr [ ] , int

n) { intn){ ’
HashSet<Integer> us = new HashSet < int>us ; )

unordered_set < int > us ;

HashSet<Integer>(); for (inti=0:i<n;i++){ PR i T

for (int i = 0; 1 < n: i++) us . add (arr [i]) i
us.add(arr[i]); P —1. ’

int count = 1; intcount=1; ig: gﬁgnteiel_,m [07-1:

int curr_ele = arrf0] - 1; intcurr ele=arr[01-1; h - Ao

while (us.contains(curr_ele) == true) { while (us . contains ( curr_ele ) == true ) { Wcholllfngl_]‘i flnd (G al) = s Gl )
count++; count ++ ; curr _ele .
curr_ele--; curr_ele - ; - ’

le=arr[01+1;

curr ele = arr[0] + 1: curr ele=arr[01+1: oo e =

while (us.contains(curr_ele) == true) { while (us . contains ( curr_ele ) == true ) { “ggllxen?-lii ﬁ ndi(cumrfelenishsend (@D
count++; count ++ ; curr ele 44 :
curr_ele++; curr_ele ++ ; - ’

} } = : .

return (count == (us.size())); return (count == (us .size ())); }return (count==(us.size ()));

Figure 1: An example of the “Shallow Translation” problem, with the Java function shown in the
first column as input, the C++ translations from baseline method TransCoder-ST and our proposed
method SPACoder (with CodeTS5 as generator). The highlighted parts show that TransCoder-ST’s
translation directly copied types, data structures and statements from the input Java code, which are
non-existent or grammatically incorrect in the target language C++, while SPACoder was able to
correctly convert them in the corresponding C++ grammar.

particularly harmful to code generation tasks that require precision. Moreover, without training on
sufficient parallel code, the self-supervised and unsupervised models can potentially learn incorrect
mappings of syntax and data structures from one language to another. For example, they might
directly copy tokens and statements from the source language when generating in the target language,
or translate the input code token by token and ignore the grammatical rules of the target language.
We refer to this issue as “shallow translation”. Figure I]illustrates an example of shallow translation.

Considering the limitations of existing methods, we argue that it is crucial to efficiently generate high-
quality and well-aligned parallel code data and effectively learn the cross-lingual alignment. However,
programming languages follow rigorous grammatical rules, while neural code generation relies on
probabilistic decoding, which is prone to variance and noise. Moreover, it is challenging to generate
parallel code for different languages and types of programs in a cost-efficient way, which hurdles
parallel code generation at scale. In this paper, we propose a novel Semi-supervised code translation
method leveraging Parallel code generation with enhanced cross-lingual Alignment (SPACoder).
We first generate synthetic parallel code with varying levels of alignment and quality by leveraging
snippet training, static code analysis, and compilation. We then train the code translation model on the
synthetic and annotated parallel code through alignment-ascending curriculum learning. Compared
to existing methods, SPACoder has several advantages. First, the compilation and static analysis
secure the syntactical correctness and alignment of the synthetic parallel code in a cost-efficient way;
Second, the alignment-ascending curriculum learning is robust to noise in the data, which effectively
reduces the shallow translation problem. Moreover, our method can be applied to different languages
and types of programs with little overhead, which enables parallel code synthesis at scale. Extensive
experiments show that the synthetic parallel code significantly improves the performance of code
translation for multiple languages, and is particularly effective for low-resource language.

Our contributions can be summarized as follows: (1) We propose a novel semi-supervised code
translation method, SPACoder, that leverages snippet training, static analysis, and compilation
to generate synthetic parallel code with enhanced alignment in a scalable way. SPACoder can
be generalized to multiple languages and various models with little overhead. (2) We introduce
alignment-ascending curriculum learning, where the code translation model is trained on both
synthetic parallel code and annotated parallel code, considering the alignment level, noise level, and
quantity of each type of data. We demonstrate that curriculum learning improves the code translation
model’s performance and enhances alignment across different languages, resulting in more precise
translations. (3) We evaluate SPACoder with two different underlying models and over 1 million
synthetic parallel code pairs across 4 languages, split into different datasets by the level of quality
and alignment. Extensive experiments show that SPACoder successfully improves code translation
performance by up to 30% on C++, Java, and Python, outperforming state-of-the-art baselines on
translation between Python and C++ by 5.7%, C++ and Python by 6%, and Python and Java by 8%
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Figure 2: Overview of SPACoder for Code Translation. SPACoder utilizes a two-step process to
generate high-quality translation hypotheses from monolingual code inputs. First, the generator
produces multiple translation hypotheses using tempered sampling. Next, the selector applies static
analysis and compilation techniques to select the most promising hypotheses. By employing various
selection criteria, SPACoder generates synthetic parallel code datasets with varying alignment levels
and quality. These synthetic datasets, along with annotated parallel code datasets, are organized into
a curriculum, where the alignment and quality gradually improve. The proposed curriculum-based
approach enhances code translation performance.

in execution-based evaluation (CA@1). Notably, our method improves C translations by up to 43%
with less than 150 annotated training instances.

2 METHOD

The lack of parallel code data poses a challenge for training code translation models, which rely on
large amounts of parallel data to achieve good performance. Semi-supervised methods can leverage
monolingual data to generate synthetic parallel data but often struggle to maintain alignment quality
between the source and target languages. In this paper, we focus on function-level code translation, as
functions are the building blocks of programs. Figure [2] shows an overview of the proposed method.

2.1 PARALLEL CODE DATA GENERATION

To address the data scarcity challenge, we propose a parallel code generation method using semi-
supervised learning. The method consists of two modules, a hypotheses generator f, and a selector
fp. The hypotheses generator fg is sequence-to-sequence model that takes as input a code snippet
from the source language s and generates a set of hypothetical translations )}, = {y,(Ll), y,(f), . y,(IM)}
in the target language ¢t. Here, )}, consists of M translations (hypotheses) for the same input code
snippet . The generator fs is trained on a limited amount of parallel code data (Dy, L is for
labeled), and will be used to generated a large amount of hypotheses for monolingual code data (Dy,
U is for unlabeled). The selector fp comprises a set of K filtering criteria 7 = {F;}5_, where

JNJh, x = Fi(Y),) takes Y, as input and outputs the subset of hypotheses Y, , C V), that passes the
criterion Fy.

2.1.1 HYPOTHESES GENERATION

The hypotheses generator f is initialized by training on a limited amount of parallel code data. This
is to enable f¢ with the ability of translating code from the source language s to the target language
t. To further improve f¢’s translation capability, we leverage the snippet training method from Zhu
et al.| (2022), which matches code comments in parallel programs to get snippet-level parallel training
data. A snippet usually consists of several lines of code and is not necessarily a complete function.
We then use the trained f to generate hypotheses for a large amount of monolingual code.
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Snippet Training. We use two small annotated parallel code datasets, Dy, and Dy, with different
levels of alignment to train f. The parallel code data aligned at snippet-level is denoted as Dy, =

{(z,y) }}?:LI |, and the function-level parallel data is denoted as Dy, = {(x, y)(l)}yif . Dy, can
be constructed from D;, by matching code comments from the parallel programs (Zhu et al.| 2022).
We first train fe on Dy, and then continue the training on Dz,. We refer to this step as snippet
training, which helps the generator to learn fine-grained alignment between different languages and
substantially improves f¢’s ability to generate hypotheses with better alignment to the input code.

This step enables f¢ to generate valid hypotheses with sufficient initial quality.

Tempered Sampling. Let Dy = {x(i)}izlfl be a monolingual dataset in the source language
s, where each z(¥ is a function-level code block. With Dy as input, we can generate a set of
translation hypotheses in the target language ¢ with the trained f. To increase the diversity of the
hypotheses and improve coverage for different possible translations, we use tempered sampling to
acquire M (M is the sample size) different hypotheses for each input code. Tempered sampling
makes use of a tuned scaled softmax to control the degree of randomness (temperature) in the
sampling process (Ackley et al.| (1985 Hinton et al. 2015). We denote the hypotheses set as
H = {yh(1)7 yh(2)7 s 7yh(i)a s 7yh‘DU|}? where yh(Z) = {yh(1)7 yh(2)7 .oy yh(M)} is a set of
different translations for x; in the target language ¢.

2.1.2 HYPOTHESES SELECTION

The selector fp takes H as input and outputs ’H = {)722)}‘2’1’ | , in which )N),(f) is the subset of y}(j’)
that passes the selection criteria F, i.e., 37,(;) =F (y}j)). If 37}51) contains more than one hypothesis,
only one is kept, as our preliminary experiments confirm that keeping more than one hypothesis for
each input does not yield improved performanceﬂ We pair all the y,(f) with the input corresponding
input code 2 to acquire pseudo parallel dataset Dg = {(z, yh)(l) y:)f | In practice, we rely on
cross-lingual static code analysis and compilation as selection criteria F for the hypotheses.

Cross-Lingual Static Analysis. To ensure that the selected hypotheses have high alignment quality
with the input code, we use cross-lingual static analysis to compare the key information of both the
input code and all the hypotheses. Static code analysis is a technique used to analyze source code
without executing the program. One way to perform static code analysis is through the use of an
abstract syntax tree (AST). An AST is a tree-like data structure that represents the structure of a
program’s source code. It captures the high-level structure of the code and the relationships between
its elements, enabling a deeper understanding of the code beyond the sequence-level. Figure 2] shows
an example AST generated from a Java function.

Specifically, we compare the number of functions, and after matching each pair of functions from
output with the input, we check whether the return types are equivalent, and if the parameter lists
match in terms of the number of parameters and the type of each parameter. For non-typed languages
such as Python, we skip the type part and only compare the number of functions and the parameter
list of each function. Passing the cross-lingual static analysis is a strong indicator of the alignment
quality of the hypotheses to the input, which helps in selecting the best hypotheses.

Compilation Filtering. We also leverage compilation to filter out hypotheses that contain errors.
Specifically, we compile the generated code using the target compiler and check for any compilation
errors. If a hypothesis fails to compile, it is discarded. This step further improves the quality of the
selected hypotheses by ensuring that they are syntactically correct and can be compiled successfully.

2.2 ALIGNMENT-ASCENDING CURRICULUM LEARNING

By pairing the hypotheses with their corresponding inputs, we obtain multiple synthetic parallel
code datasets at different stages of the generation process. Without the selector, the generation is
reduced to plain back-translation. We denote the unfiltered synthetic parallel data from the unfiltered
hypotheses, as BT data. Similarly, we denote the synthetic parallel data from cross-lingual static
analysis and compilation filtering as STAT and COMP, respectively. In addition, we denote the subset
of hypotheses that pass both criteria, static analysis and compilation, as AND data. We adopt a

'If )7}(;) is empty, it will be discarded.
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Figure 3: Synthetic parallel code examples from CODENET-SPACoder, with PLBART (Ahmad et al.|
2021a) as generator. The synthetic parallel data demonstrates great alignment quality, with minor
noise in some cases.

curriculum learning approach to train our code translation model, strategically leveraging the quality
of the data at different stages. Our curriculum consists of multiple training phases, progressively
incorporating different types of data. We first train with the unfiltered synthetic parallel data, allowing
the model to grasp the basic translation patterns. Next, we introduce the cross-lingual static analysis
filtered data, which helps refine the model’s understanding of language-specific code idioms and
improve translation accuracy. Subsequently, we integrate the compilation filtered data, which further
enhances the model’s ability to generate syntactically correct translations. The curriculum then
advances to utilize the intersection of both filtered datasets, combining the benefits of both data
sources. We then introduce snippet-level annotated data to enhance translation performance in
specific code segments. Finally, we conclude by training with function-level annotated data, enabling
the model to capture higher-level structural patterns and produce more coherent translations. By
following this carefully designed curriculum, SPACoder not only benefits from exposure to a diverse
range of training data but also progressively refines its translation quality and alignment, leading to
improved performance and robustness.

3 EXPERIMENTS

Datasets. We make use of the annotated COST dataset from |Zhu et al.| (2022)) to support snippet
training and execution-based evaluation. The COST dataset contains parallel code aligned at both
program and snippet levels. To support execution-based evaluation, we execute all programs in COST
and remove the ones that throw run-time errors and the ones with empty execution output. We refer to
the resulting dataset as ECOST (Execution-based COST). ECOST has approximately 1, 000 function-
level training instances for C++, Java, and Python, and 150 for C. We employ a train/validation/test
split ratio of approximately 70:5:25. To support snippet and function-level training, we extract the
functions from ECOST through AST parsinéﬂ to get both snippet-level and function-level parallel
data (Dy,, and Dy,), which we refer to as ECOST-snippet and ECOST-function.

Synthetic Parallel Code Generation. We use the CODENET dataset (Puri et al.l [2021) as the
monolingual code data (Dyy) for parallel code generation. CODENET is a large-scale dataset con-
taining 13M programs spanning 55 languages. The programs in CODENET originate from code
submissions to online judge of programming problems. We select the “Accepted” submissions (i.e.,
submissions that pass the online judge) in 4 languages, C++, Java, Python and C, from around 1, 600
problems. After some quality filtering, we get approximately 87, 000 examples. We experiment with
two different models as the generator model, PLBART (Ahmad et al.| 2021a) and CodeT5 (Wang
et al., 2021). The monolingual CODENET data are used as inputs to the generators to obtain the
hypotheses through tempered sampling with a temperature of 0.5 and sample size (M) of 10. We then
get the synthetic parallel code through selection by static analysis and compilation (F). Although we
use CODENET as a source for monolingual code, by pairing submissions for the same problem in
different languages, one can also get parallel code from CODENET. We use the parallel code from

Zhttps://tree-sitter.github.io/tree-sitter/
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PLBART Number of Pairs Selection Rate

Selector C++-Java C++-Py C++-C Java—Py Java-C Py-C | C++-Java C++-Py C++-C Java-Py Java—C Py-C
Back Translation (BT) 47540 63637 49550 37233 22919 39231 1 1 1 1 1 1
Static Analysis (STAT) 25211 58157 14945 31228 13059 33882 0.53 091 0.30 0.84 0.57 0.86
Compilation (COMP) 15258 36224 1893 13525 1562 11088 0.32 0.57 0.04 0.36 0.07 0.28
SA & Compilation (AND) 9278 34733 1200 12104 1313 10730 0.20 0.55 0.02 0.33 0.06 0.27

Table 1: Statistics of SPACoder-function, with PLBART (Ahmad et al.| [2021a) as generator. Due to
page limit, statistics for CodeT5 (Wang et al.,|2021)) generated data are included in Appendix. SA &
Compilation refers to the intersection of the Static Analysis and Compilation selections.

PLBART CodeBLEU Computation Accuracy

Dataset Java—C++ Py-C++ C++-Java Py-Java C++-Py Java-Py | Java—C++ Py—-C++ C++-Java Py-Java C++-Py Java—Py
CODENET-parallel 21.61 21.70 22.14 19.16 20.31 18.92 0 3.13 0.64 1.57 3.37 0
ECOST-function 38.87 53.60 41.42 46.24 53.94 50.50 0.81 4.52 1.88 3.63 16.87 16.62
ECOST-snippet&function 71.39 66.62 71.27 64.76 62.05 60.62 25.54 24.40 27.15 23.87 32.23 32.33
SPACoder-function 69.02 65.92 70.96 63.54 61.77 61.52 38.44 27.71 28.49 24.17 35.54 37.76

Table 2: Performance comparison of the same model trained on existing parallel code data versus
on SPACoder-function. The model used here is PLBART. The results from training on SPACoder-
function demonstrate superior Computation Accuracy over existing parallel code data, indicating
its high quality and effectiveness in improving code translation. Py is short for Python. ECOST-
snippet&function means the combination of ECOST-snippet and ECOST-function.

CODENET, denoted as CODENET-parallel, in Table [2]as a dataset baseline to compare the quality of
the generated parallel code.

Baselines and Evaluation Metrics. We compare against five advanced code translation models.
CodeBERT (Feng et al.,[2020), PLBART (Ahmad et al., 2021a)), and CodeT5 (Wang et al., [2021)
are programming language models pre-trained with self-supervised learning techniques on large-
scale open-source code datasets. These models can perform code translation as a downstream task
after fine-tuning on parallel code data. TransCoder (Roziere et al., 2020) is an unsupervised code
translation model that relied on back-translation for data augmentation. TransCoder-ST (Roziere
et al.}2021b)) improves TransCoder by leveraging unit testing to generate parallel code data. After
generating the synthetic parallel code, we train code translation models using the generated data and
evaluate their performances. CodeBERT, PLBART and CodeT5 need fine-tuning to perform code
translation, therefore they are fine-tuned on ECOST with both snippet-level and function-level data.
On the other hand, TransCoder and TransCoder-ST do not need fine-tuning as they are unsupervised
methods. All models are evaluated on ECOST test set. CodeBLEU(Ren et al.| [2020) is a weighted
sum of n-gram matching, AST matching, and data flow matching between source and target programs.
Computation Accuracy (CA) (Roziere et al., 2020) is a new metric introduced in TransCoder that
measures if the hypothesis has the same execution output as the reference. We use CA@1 for all the
evaluations. Model training details are included in the Appendix.

4 RESULTS AND ANALYSIS

We evaluate two variations of our method, SPACoder-PLBART and SPACoder-CodeT?5, by perform-
ing parallel code generation with PLBART and CodeT5 as generators and curriculum learning with
their generated data respectively. The generated parallel code data is referred as SPACoder-function.
We focus on two aspects, generated data quality and improvements in code translation performance.

4.1 QUALITY OF THE SYNTHETIC PARALLEL CODE

Statistics of SPACoder-function. With 86,972 monolingual code as input, we manage to generate
516, 142 and 529, 108 synthetic parallel code pairs in 6 language pairs from PLBART and CodeTS5,
respectively. Table [I]shows the statistics of the synthetic parallel code data generated by PLBART.
Note that the datasets resulting from static analysis and compilation are not subsets of back-translation,
because for back-translation we randomly pick a hypothesis from the 10 sampled hypotheses, and for
static analysis and compilation we select the hypothesis from the ones that pass the selection criteria.
From the selection rate, we can observe that static analysis is the most lenient to Python, as itis a
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CodeBLEU Computation Accuracy
Model Java—-C++ Py-C++ C++-Java Py-Java C++-Py Java-Py |Java—C++ Py-C++ C++-Java Py-Java C++-Py Java—Py
CodeBERT 61.75 50.18 29.71 42.21 46.99 46.69 13.44 4.82 10.22 3.93 6.33 5.74
PLBART 71.39 66.62 71.27 64.76 62.05 60.62 25.54 24.40 27.15 23.87 32.23 32.33
CodeT5 72.76 64.99 72.13 64.26 59.16 61.25 37.63 19.28 41.13 23.87 20.78 24.77
Trancoder 72.54 66.47 70.36 63.61 56.29 55.29 49.73 25.60 40.86 22.36 41.87 46.22
Trancoder-ST 71.47 61.28 70.96 64.81 58.85 57.70 51.08 36.14 44.09 35.35 43.98 51.96
SPACoder-PLBART 74.55 68.43 72.90 67.14 63.09 63.47 41.94 35.24 40.05 33.84 38.55 41.09
SPACoder-CodeT5 74.94 69.25 74.85 69.64 65.10 65.95 51.08 41.87 49.19 43.20 50.00 49.55

Table 3: Performance comparison of two implementations of SPACoder with PLBART and CodeT5
against baseline approaches. The metrics used for comparison are CodeBLEU and Computation
Accuracy (CA@1). Across both measures, SPACoder outperforms the baseline approaches, demon-
strating its effectiveness in code translation.

CodeBLEU Computation Accuracy
Model C++-C Java-C Python-C C-C++ C-Java C-Python | C++-C Java—C Python—-C C-C++ C-Java C-Python
PLBART 40.66 56.85 43.66 42.71 3249 52.98 2.60 0 1.56 5.19 0 14.06
SPACoder-PLBART | 79.08 72.37 61.73 80.34 68.79 61.92 33.77 28.77 17.19 48.05 23.29 28.12
CodeT5 82.06 74.16 62.25 80.04 71.25 61.06 66.23 47.95 25.00 64.94 39.73 28.12
SPACoder-CodeT5 82.26 74.59 63.87 81.24 74.21 66.65 68.83 56.16 31.25 64.94 45.21 51.56

Table 4: Performance comparison before and after applying SPACoder on low-resource language C.
The results show substantial performance improvements across all measures after the application of
our method, indicating the effectiveness of SPACoder on low-resource languages.

CodeBLEU Computation Accuracy
Model Java—-C++ Py-C++ C++-Java Py-Java C++-Py Java—Py | Java-C++ Py-C++ C++-Java Py-Java C++-Py Java—Py
Base Model 38.87 53.6 41.42 46.24 53.94 50.50 0.81 4.52 1.88 3.63 16.87 16.62
BT 67.91 66.32 70.54 65.50 61.78 62.40 19.62 23.8 32.26 27.19 35.24 37.76
BT + STAT 74.35 68.23 71.56 66.19 62.45 62.83 38.71 28.92 34.95 29.31 36.45 38.97
BT + STAT + COMP 74.22 68.12 72.26 66.20 62.13 62.11 40.59 34.34 36.02 28.10 35.54 38.97
SPACoder 74.55 68.43 72.90 67.14 63.09 63.47 41.94 35.24 40.05 33.84 38.55 41.09

Table 5: SPACoder ablation study, showing the curriculum performance improvements in code
translation as each synthetic parallel code dataset is added to the alignment-ascending curriculum.
The results demonstrate the cumulative contribution of each synthetic dataset to enhancing the
effectiveness of the training curriculum. Base model is PLBART trained on ECoST-function.

weakly-typed language. Compilation has the least selection rate on C. This is due to data scarcity as
the generator has poor performance on C due to being trained with less than 150 examples.

Quantitative Analysis. We quantitatively evaluate the quality of the synthetic parallel code data,
SPACoder-function. Specifically, we train PLBART using only the generated data from SPACoder-
PLBART and compare it with PLBART trained on other existing parallel data. Table 2] shows the
performance from training on each dataset. We observe that on Computation Accuracy, SPACoder-
function from PLBART outperforms the annotated datasets on all the language pairs, which is a
strong indicator of its high quality and good alignment. CODENET has the worst performance, with
close to zero on Computation Accuracy, which is potentially due to its poor alignment quality.

Qualitative Analysis. We further perform qualitative analysis and manually inspect samples of
the generated data. Table [3]illustrates four examples from the synthetic parallel code, with two in
Java — C++, and two in Python — C++. The Java and Python codes are the monolingual input from
CODENET, and the C++ codes are the synthetic codes. The generated code snippets are in good
alignment with their corresponding inputs, with correct mapping of types, data structures, and syntax.
Note that the synthetic codes still contain some noise, for example, there are some mistranslations of
the numbers from the input code. However, Table 3| and @ results indicate that it does not impede the
effectiveness of the synthetic code in improving code translation performance.

4.2 IMPROVEMENT IN CODE TRANSLATION PERFORMANCE

Comparison with Baseline Models. Table (3| shows the CodeBLEU and Computation Accuracy
performance on C++, Java, and Python of the baseline models and SPACoder-PLBART and SPACoder-
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count = 0;

if (n and not (n & (n - 1))):
return n

while(n !=0):
n>>=1
count += 1

return 1 << count;

if(n!=0&& (n&(n-1))==0)
returnn ;

while (n!=0) {

n>>=1;

count ++ ;

return ( 1 << count ) ;

if((n!=0)&& (! (n&(n-1))
A

returnn ; }

while ((n!=0)){

n>>=1;

count ++ ;

return 1 << count ;

if(n!=0&&!(n&(n-1)))
returnn ;

while (n!=0) {

n>>=1;

count ++ ;

return ( 1 <<count ) ;

Input (C++) SPACoder (Python) Trar der-ST (Python) CodeT5 (Python) Groundtruth (Python)
int getMin(int arr{], int n) { def getMin (arr ,n): dei gztx:];a;c;c)m (. arr 4 n 46T £etMinGarra):
return *min_element(arr, arr +n); }|  return min (arr ) def getMin (arr,n): def getM: (’ ): 7 return min(arr)
int getMax(int art[], int n) { def getMax (arr,n): return * min_element (arr ,n) ©l getViax “"I 2 def getMax(arr,n):
return *max_element(arr, arr + n); }|  return max ( arr ) ) return max_element (arr, arr +n return max(arr)
Test Code (Python) Execution Output
arr =[12,1234,45,67,1]
n = len(arr) - <
getMin(arr, n); getMax(arr, n) ed expressio ot defined
Input (Python) SPACoder (Java) Transcoder-ST (Java) CodeT5 (Java) Groundtruth (Java)
public static int nextPowerOf2 (int n
static int nextPowerOf2 (intn ) { ){ static int nextPowerOf2 (intn) { |static int nextPowerOf2(int n) {
def nextPowerOf2(n): int count=0; intcount=0; int count=0; int count = 0;

if (0> 0 && (n & (n - 1) ==0)
return n;

while(n !=0) {
n>>=1;
count += 1;

return 1 << count;

Test Code (Java)

public static void main(String args[]) {
intn=0;
System.out.println(nextPowerOf2(n));

Execution Output

print("Count of trailing 0s " +

Count of trailing Os in 100! is
24

variable 'i' referenced before

ZeroDivisionError: integer

division or modulo by zero

Input (Java) SPACoder (Python) Transcoder-ST (Python) CodeT5 (Python) Groundtruth (Python)
o . . def findTrailingZeros (n ) : . o .
static int findTrailingZeros(int n) { count=0 def findTrailingZeros (n) : def findTrailingZeros (n ) : def findTrailingZeros(n):
intcount=0; . i=5 count =0 count=0 count =0
fooro(&':ft',ri‘r’r‘;?i./'):“' =95) while n /i>=1: foriinrange (5.n//i+1,5): foriinrange(5): Wr:"/'/e_(”sxs)‘
return c;unr’ count+=n//i count+=n//i count +=n//i -
5 h count +=n
i*=5 return count return count return count
return count
Test Code (Python) Execution Output
n=100 UnboundLocalError: local

Count of trailing Os in 100!
is 24

"in 100! is", findTrailingZeros(n)) assignment

Figure 4: Qualitative translation results from SPACoder and the baseline methods given the same
input. In all three examples, the baselines’ results exhibit the ”Shallow Translation” problem, where
code snippets are directly copied or translated token by token from the source language, causing
compilation and run-time errors in the target language. SPACoder’s translation shows its strong
ability in correctly aligning the syntax and APIs across different languages.

CodeT5. In terms of CodeBLEU, both SPACoder models outperform all baselines, with SPACoder-
CodeT5 surpassing the best baseline performance by 8% on Python — C++ and Java — Python
translation. In terms of Computation Accuracy, SPACoder-CodeT5 outperforms the best baseline
performance by 5% on Python — C++ and C++ — Java, 6% on C++-Python, and 8% on Python-Java.
Moreover, both SPACoder models outperform their respective generator models on all the language
pairs and both metrics by a wide margin. Compared to CodeT5, SPACoder-CodeT5’s Computation
Accuracy on Python — C++ and Python — Java improves by 20%, and on Java — Python and C++ —
Python the improvements are 25% and 30%, respectively.

Performance on Low-resource Languages. In ECOST, C only has less than 150 parallel code pairs
with each language, making it suitable for evaluating in more challenging low-resource language
settings. As shown in Table[T] the compilation rate is the lowest when C is involved, as the generator
is not able to generate high-quality data when the training data of C is significantly less. Table 4]
shows the performance of the two implementations of SPACoder and their respective generators.
For PLBART, SPACoder improves the CodeBLEU by up to 40% and improves the Computation
Accuracy by up to 43%. This shows that the augmentation of parallel code generation works well
in low-resource language settings, where the generator’s performance is weak. For CodeT5, the
improvement in Computation Accuracy is up to 23%.

Impact of Curriculum on Translation Performance. Table [5]shows the results of an ablation study
designed to incrementally add each synthetic and annotated parallel code dataset to the alignment-
ascending curriculum used for training the code translation model. Starting with a base model trained
solely on the annotated dataset ECOST (function-level), we progressively add each dataset one by one
into the curriculum. The results demonstrate that each added synthetic dataset enhances the model’s
performance on both metrics. Notably, the best performance is achieved when all synthetic and
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annotated datasets are included in the curriculum (SPACoder), underlining the cumulative contribution
of each dataset in the curriculum.

Qualitative Analysis. Figure ] shows examples of various model translations and their execution
outputs given the same input code. The first column corresponds to the code used as input in the
source language, and the last column corresponds to the ground truth translation in the target language.
All examples are from the ECOST test set. We compare SPACoder-CodeT5 with two other baselines,
TransCoder-ST and CodeTS5. In the first two examples, we observe that both baselines demonstrate
the “shallow translation” problem. In the C++ — Python example, both TransCoder-ST and CodeT5
directly copy from the input code. While min_element is a valid built-in function defined in header
<algorithm> in C++, it does not exist in Python, resulting in compilation errors for both baselines.
TransCoder-ST also exhibits inability in translating multiple functions at once. In the Python — Java
example, both TransCoder-ST and CodeTS5 translate the keyword "not " in Pythonto " ! " in Java.
However, operator " ! " cannot be used when the operand is an integer. By translating at token level,
these baselines fail in taking the context into consideration, causing run-time errors. In both cases,
SPACoder-CodeTS5 is able to translate the function calls and statements from the source language
to the target language correctly. In the Java — Python example, both baselines fail at translating a
complex for loop, while SPACoder correctly translates this in a different way from the ground truth,
showing a strong capability of understanding the input code and mapping it into a different language.

5 RELATED WORK

Recent advances in machine learning, especially in self-supervised learning techniques, have benefited
a wide range of tasks (Vaswani et al., 2017} |Liu et al., 2019; |[Lample & Conneau, [2019; [Liu et al.}
2020; Sehwag et al.). Some techniques from NLP were transferred to programming languages and
have achieved great success. Similar to BERT (Devlin et al.,2019), CodeBERT (Feng et al., 2020) is
a code language model pre-trained on CodeSearchNet (Husain et al.,[2019) with Masked Language
Modeling (MLM). PLBART (Ahmad et al.| 2021a) is pre-trained the same way as BART (Lewis
et al., [2020), with Denoising Auto-Encoding (DAE) (Lample et al.|[2018)) on GitHub data. Although
CodeBERT and PLBART are pre-trained on code, they model code the same way as natural language
sequences without taking code-specific features into consideration. Inspired by T5 (Raffel et al.,
2020), CodeT5 (Wang et al., [2021)) is pre-trained on CodeSearchNet but with an identifier-aware
objective to align more with programming language distributions. All three models use general
pre-training to gain programming language intelligence, without optimizing for any specific tasks.
They require fine-tuning on task-specific data to perform downstream tasks. TransCoder (Roziere
et al., [2020) is an unsupervised code translation model that relies on back-translation to generate
pseudo-parallel code data during training. However, back-translation introduces noisy code into the
training process, compromising the model’s ability to generate high-quality translations. TransCoder-
ST (Roziere et al., [2021b) improves TransCoder by adding automated unit tests to filter out invalid
translations and reduce noise from the back-translation process. However, obtaining unit tests for
different languages is expensive, and running unit tests is unscalable for a large amount of code data.
MuST-PT (Zhu et al., [2022)) leverages snippet-level DAE and translations for pre-training before
fine-tuning on program-level data, which improves code translation performance. However, MuST-PT
relies solely on limited amount of finely aligned parallel code for training without utilizing widely
available non-parallel code, which makes this method less scalable.

6 CONCLUSION

In this paper, we introduce SPACoder, addressing the limitations of existing methods for code
translation. By leveraging semi-supervised parallel code generation with enhanced cross-lingual
alignment, SPACoder overcomes the challenges of generating high-quality and well-aligned parallel
code data in a scalable manner. We demonstrate the effectiveness of SPACoder through extensive
experiments conducted on multiple languages and models. The synthetic parallel code generated by
SPACoder significantly improves the performance of code translation, outperforming state-of-the-art
baselines by a significant margin. Notably, our method achieves remarkable gains in C translations
even with a limited number of annotated training instances. Our work showcases the importance of
generating parallel code data with good quality and alignment in order to enhance code translation
capabilities. Future work can extend to more tasks that benefit from large amount of parallel data.
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