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ABSTRACT

Sparse Principal Component Analysis (Sparse PCA) is a pivotal tool in data analy-
sis and dimensionality reduction. However, Sparse PCA is a challenging problem
in both theory and practice: it is known to be NP-hard and current exact methods
generally require exponential runtime. In this paper, we propose a novel framework
to efficiently approximate Sparse PCA by (i) approximating the general input
covariance matrix with a re-sorted block-diagonal matrix, (ii) solving the Sparse
PCA sub-problem in each block, and (iii) reconstructing the solution to the original
problem. Our framework is simple and powerful: it can leverage any off-the-shelf
Sparse PCA algorithm and achieve significant computational speedups, with a
minor additive error that is linear in the approximation error of the block-diagonal
matrix. Suppose g(k, d) is the runtime of an algorithm (approximately) solving
Sparse PCA in dimension d and with sparsity value k. Our framework, when inte-
grated with this algorithm, reduces the runtime to O

(
d
d? · g(k, d?) + d2

)
, where

d? ≤ d is the largest block size of the block-diagonal matrix. For instance, integrat-
ing our framework with the Branch-and-Bound algorithm reduces the complexity
from g(k, d) = O(k3 · dk) to O(k3 · d · (d?)k−1), demonstrating exponential
speedups if d? is small. We perform large-scale evaluations on many real-world
datasets: for exact Sparse PCA algorithm, our method achieves an average speedup
factor of 93.77, while maintaining an average approximation error of 2.15%; for
approximate Sparse PCA algorithm, our method achieves an average speedup
factor of 6.77 and an average approximation error of merely 0.37%.

1 INTRODUCTION

In this paper, we study the Sparse Principal Component Analysis (Sparse PCA) problem, a variant
of the well-known Principal Component Analysis (PCA) problem. Similar to PCA, Sparse PCA
involves finding a linear combination of d features that explains most variance. However, Sparse
PCA distinguishes itself by requiring the use of only k � d many features, thus integrating a sparsity
constraint. This constraint significantly enhances interpretability, which is essential in data analysis
when dealing with a large number of features. Sparse PCA has found widespread application across
various domains, including text data analysis (Zhang & Ghaoui, 2011), cancer research (Hsu et al.,
2014), bioinformatics (Ma & Dai, 2011), and neuroscience (Zhuang et al., 2020). For further reading,
we refer interested readers to a comprehensive survey on Sparse PCA (Zou & Xue, 2018).

While being important and useful, Sparse PCA is a challenging problem—it is known to be NP-
hard (Magdon-Ismail, 2017). Solving Sparse PCA exactly, such as through well-known Branch-and-
Bound algorithm (Berk & Bertsimas, 2019), requires worst-case exponential runtime. Moreover,
while there are near-optimal approximation algorithms that exhibit faster performance empirically,
they still require exponential runtime in the worst-case scenarios (Bertsimas et al., 2022; Li &
Xie, 2020; Cory-Wright & Pauphilet, 2022; Dey et al., 2022b; Zou et al., 2006; Dey et al., 2022a).
This complexity impedes their applicability to large-scale datasets. On the other hand, numerous
polynomial-time approximation algorithms have been proposed for Sparse PCA (Chowdhury et al.,
2020; Li & Xie, 2020; Papailiopoulos et al., 2013; Chan et al., 2015; Del Pia, 2022; Asteris et al.,
2015). These algorithms typically face trade-offs between efficiency and solution quality. Some
algorithms are fast but yield sub-optimal solutions, others provide high-quality solutions at the cost
of greater computational complexity, and a few achieve both efficiency and accuracy but only under
specific statistical assumptions.
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In this paper, we introduce a novel framework designed to efficiently approximate Sparse PCA
through matrix block-diagonalization. Our framework facilitates the use of off-the-shelf algorithms
in a plug-and-play manner. Specifically, the framework comprises three principal steps: (i) Matrix
Preparation: Given a general input covariance matrix to Sparse PCA, we generate a re-sorted block-
diagonal matrix approximation. This process includes denoising by zeroing out entries below a
specific threshold and then grouping indices that correspond to non-zero entries into blocks; (ii)
Sub-Problem Solution: Solve Sparse PCA sub-problems using any known algorithm in each block
with a smaller dimension, and find out the best solution among these sub-problems; (iii) Solution
Reconstruction: Reconstruct the best solution to the original Sparse PCA problem. We illustrate these
steps in Fig. 1. At a high level, our approach involves solving several sub-problems in smaller matrices
instead of directly addressing Sparse PCA in a large input matrix (Step (ii)), which significantly
reduces computational runtime. This is made possible by carefully constructing sub-problems (Step
(i)) and efficiently reconstructing an approximate solution to the original problem (Step (iii)).

Figure 1: Illustration of our proposed Sparse PCA approach, given a 9×9 covariance input matrix. (i)
Entries away from zero are highlighted in the upper matrix (original input matrix A). Then zero out
other entries, sort the matrix, and obtain the lower block-diagonal approximation matrix. Heatmaps
are used to present the values of matrix entries. The axes are indices of A; (ii) Extract sub-matrices
from the block-diagonal approximation, and solve sub-problems via a suitable Sparse PCA algorithm;
(iii) Select the solution with the highest objective value obtained from the sub-problems. Construct
a solution for the original Sparse PCA problem by mapping its non-zero entries to their original
locations using the inverse mapping of the sorting process, and setting all other entries to zero.

Our framework significantly speeds up the computation of Sparse PCA, with negligible approximation
error. We theoretically quantify the computational speedup and approximation error of our framework
in Sections 3 and 4, and conduct large scale empirical evaluations in Section 5. Next, we illustrate
the performance of our method via a concrete example. Suppose one is given an input covariance
matrix being a noisy sorted block-diagonal matrix with 10 blocks, each of size 100, and is asked to
solve Sparse PCA with a sparsity constant 4. The Branch-and-Bound algorithm (Berk & Bertsimas,
2019) takes over 3600 seconds and obtains a solution with objective value 13.649. Our framework
integrated with Branch-and-Bound algorithm reduces runtime to 17 seconds, a speedup by a factor of
211, and obtains a solution with objective value 13.637, with an approximation error of 0.09%.

Our contributions. We summarize our contributions in the following:

• We propose a novel framework for approximately solving Sparse PCA via matrix block-
diagonalization. This framework allows users to reuse any known algorithm designed for Sparse
PCA in the literature in a very easy way, i.e., simply applying the known algorithm to the blocks of
the approximate matrix, and accelerates the computation. To the best of our knowledge, our work
is the first to apply block-diagonalization to solving Sparse PCA problem.

• We provide approximation guarantees for our framework, showing that we can obtain a solution
with an additive error that is linear in the approximation error of the block-diagonal approximate
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matrix. We show that when integrated with an approximation algorithm, we can generally obtain a
better multiplicative factor, with an additional cost of an additive error. Under certain assumptions,
the additive error can also be improved.

• We also perform a time complexity analysis showing that for an (approximation) algorithm with
runtime g(k, d), our framework could reduce the runtime to O( dd? · g(k, d?) + d2), where d is the
dimension of Sparse PCA input covariance matrix, k is the sparsity constant, and d? is the largest
block size in the block-diagonal approximate matrix.

• We show that for a statistical model that is widely studied in robust statistics, there exists an
efficient way to find a block-diagonal approximation matrix. Moreover, we provide a very simple
way to extend to the setting where the statistical assumptions are dropped and where computational
resources are taken into consideration.

• We conduct extensive experiments to evaluate our framework, and our empirical study shows
that (i) when integrated with Branch-and-Bound algorithm, our framework achieves an average
speedup factor of 93.77, while maintaining an average approximation error of 2.15%, and (ii) when
integrated with Chan’s algorithm (Chan et al., 2015), our framework achieves an average speedup
factor of 6.77 and an average approximation error of 0.37%.

Our techniques. In this paper, we also introduce several novel techniques that may be of independent
interest. We characterize a structural property of an optimal solution to Sparse PCA, when given a
block-diagonal input matrix. We establish that solving Sparse PCA for a block-diagonal matrix input
is equivalent to addressing individual Sparse PCA sub-problems within blocks, which consequently
provides significant computational speedups. This result is non-trivial: while the support of optimal
solutions might span multiple blocks, we prove that there always exists an optimal solution whose
support is contained within a single block, ensuring the efficiency of our framework. Additionally,
leveraging the defined structure, we propose a novel binary-search based method to identify the best
block-diagonal approximation, particularly when computational resources are limited.

Paper organization. This paper is organized as follows. In Section 2, we introduce Sparse PCA
problem formally, and provide motivation of our proposed framework. In Section 3, we provide details
of operational procedures of our proposed framework, and develop guarantees of approximation
errors as well as runtime complexity. In Section 4 we further extend our algorithms to learning
problems either under (i) a statistical model, or under (ii) a model-free setting, and provide theoretical
guarantees respectively. In Section 5, we run large-scale empirical evaluations and demonstrate the
efficacy of our proposed framework when integrated with both exact and approximate Sparse PCA
algorithms. We defer discussion of additional related work, including existing block-diagonalization
methods in the literature, detailed proofs across the sections, and additional empirical results to the
appendix.

2 PROBLEM SETTING AND MOTIVATION

In this section, we define formally the problem of interest in this paper, and then we explain the
motivation behind our framework. We first define the Sparse PCA problem as follows:

OPT := max x>Ax s.t. ‖x‖2 = 1, ‖x‖0 ≤ k. (SPCA)

In SPCA, one is given a symmetric input matrix A ∈ Rd×d, and a positive integer k ≤ d denoting
the sparsity constant, i.e., the upper bound on the number of non-zero entries in the solution vector x.

Motivating idea in this paper. The motivation for our method is illustrated through the following
example, which demonstrates the efficiency of solving sub-problems: Suppose that a user is given
an input block-diagonal covariance matrix A of size d, comprising d/d? many d? × d? blocks
(assume that d is divisible by d?), and is asked to solve SPCA with sparsity constant k. The user
can simply apply an exact algorithm (e.g., Branch-and-Bound algorithm) to solve the large problem
in time O(k3 ·

(
d
k

)
) = O(k3 · dk). The user could also solve d/d? many sub-problems in each

block, potentially obtaining an optimal solution (a fact we rigidly prove in Section 3.2.1), in time
O((d/d?) ·k3 ·(d?)k). This segmented approach yields a significant speedup factor ofO((d/d?)k−1).

However, not all input matrices A are of the block-diagonal structure, even after permuting its
rows and columns. One goal of our work is to develop a reasonable way to construct a (sorted)
block-diagonal matrix approximation Ã to A such that they are close enough. In this paper, we are
interested in finding the following ε-matrix approximation to A:
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Definition 1 (ε-matrix approximation). Given a matrix A ∈ Rd×d, denote Aij to be the (i, j)-th
entry of A. An ε-matrix approximation of A is defined as a d× d matrix Ã such that

max
i,j∈[d]

∣∣∣Aij − Ãij∣∣∣ ≤ ε.
Moreover, we define the set of all ε-matrix approximations of A to be B(A, ε).

In other words, Ã ∈ B(A, ε) if and only if Ã belongs to an `∞-ball centered at A with radius ε. Our
overarching strategy is that if the input matrix is not block-diagonal, we find a matrix approximation
in the ball so that it could be resorted to be block-diagonal. We then solve the Sparse PCA problem
using this resorted matrix and reconstruct the approximate solution to the original problem, taking
advantage of the computational speedups via addressing smaller sub-problems.

Additional notation. We adopt non-asymptotic big-oh notation: For functions f, g : Z → R+, we
write f = O(g) (resp. f = Ω(g)) if there exists a constant C > 0 such that f(z) ≤ Cg(z) (resp.
f(z) ≥ Cg(z)) for all z ∈ Z . For an integer n ∈ N, we let [n] denote the set {1, 2, . . . , n}. For
a vector z ∈ Rd, we use zi to denote its i-th entry. We denote supp(z) := {i ∈ [d] : zi 6= 0}
the support of z. For 1 ≤ q ≤ ∞, we denote ‖z‖q the q-norm of z, i.e., ‖z‖q := (

∑d
i=1 |zi|

q
)1/q,

and ‖z‖∞ := maxi∈[d] |zi|. For a matrix A ∈ Rn×m, we use Aij to denote its (i, j)-th entry. We
define ‖A‖∞ := maxi,j |Aij |. For index sets S ⊆ [n], T ⊆ [m], we denote AS,T the |S| × |T |
sub-matrix ofA with row index S and column index T . For matricesAi ∈ Rdi×di for i = 1, 2, . . . , p,
we denote diag(A1, A2, . . . , Ap) the (

∑p
i=1 di) × (

∑p
i=1 di) block-diagonal matrix with blocks

A1, A2, . . . , Ap. For a square matrix B ∈ Rd×d, we define the size of B to be d.

3 OUR APPROACH

In this section, we introduce our framework for solving SPCA approximately via block-
diagonalization technique. We explain in detail the operational procedures of our framework in
Section 3.1. In Section 3.2, we characterize the approximation guarantees and computational speedups
of our framework. Note that, in this section, our proposed procedures require a predefined threshold
ε > 0. In Section 4, we extend our algorithms to learning the threshold in a statistical model, as well
as in a model-free setting.

3.1 ALGORITHMS

In this section, we outline the operational procedure of our proposed framework for solving SPCA
approximately. The procedure commences with the input matrix A ∈ Rd×d and a predefined
threshold value ε > 0. Initially, a denoised matrix Aε is derived through thresholding as described in
Algorithm 1. Subsequently, several sub-matrices and their corresponding sets of indices are extracted
from Aε by employing Algorithm 2, which groups index pair (i, j) if Aεij 6= 0. This grouping
mechanism can be efficiently implemented using a Depth-First Search approach, which iterates over
each unvisited index i and examines all non-zero Aεij , and then visit each corresponding index j
that is unvisited. The computational complexity of Algorithm 2 is bounded by O(d2). Finally, an
approximate solution to SPCA is obtained by solving several Sparse PCA sub-problems in each block
using a certain (approximation) algorithm A, mapping the solution back to the original problem, and
finding out the best solution. The operational details are further elaborated in Algorithm 31.

Algorithm 1 Denoising procedure via thresholding

1: Input: Matrix A ∈ Rd×d, threshold ε > 0
2: Output: Denoised matrix Aε ∈ Rd×d
3: for (i, j) = (1, 1) to (d, d) do
4: If |Aij | > ε, set Aεij ← Aij , otherwise set Aεij ← 0

5: Return Aε

1We note that on line 6 in Algorithm 3, if k is larger than the size of Ãi, a PCA problem is solved instead.
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Algorithm 2 Matrix block-diagonlization

1: Input: Matrix Aε ∈ Rd×d
2: Output: Sub-matrices and their corresponding lists of indices
3: for each pair of indices (i, j) ∈ [d]× [d] do
4: Group i and j together if

∣∣Aεij∣∣ > 0

5: Obtain sets of indices {Si}pi=1 that are grouped together
6: Return sub-matrices AεSi,Si and the corresponding Si, for i ∈ [p]

Algorithm 3 Efficient Sparse PCA via block-diagonalization

1: Input: Matrix A ∈ Rd×d, positive integer k ≤ d, threshold ε > 0, algorithm A for (approxi-
mately) solving SPCA

2: Output: Approximate solution to SPCA
3: Obtain denoised matrix Aε using Algorithm 1 with input (A, ε)

4: Obtain sub-matrices {Ãi}pi=1 and corresponding index sets {Si}pi=1 using Algorithm 2 with Aε
5: for i = 1 to p do
6: Solve SPCA approximately with input (Ãi, k) using algorithm A and obtain solution xi
7: Construct yi ∈ Rd by placing (xi)j at (yi)Si(j) for j in block indices and zero elsewhere
8: Return the best solution among {yi}pi=1 that gives the largest y>i A

εyi

3.2 APPROXIMATION GUARANTEES AND COMPUTATIONAL SPEEDUPS

In this section, we provide analysis of approximation guarantees and speedups of our framework Al-
gorithm 3. Before showing approximation guarantees, we first define the ε-intrinsic dimension of A:

Definition 2 (ε-intrinsic dimension). Let A ∈ Rd×d. The ε-intrinsic dimension of A, denoted by
int dim(A, ε), is defined as:

int dim(A, ε) := min
B∈B(A,ε)

lbs(B),

where lbs(B) denotes the largest size of sub-matrices outputted by Algorithm 2 given B as input.

As we will see later in this section, this concept plays a crucial role in characterizing both the quality
of the approximate solution obtained through our framework Algorithm 3, and the computational
speedup achieved by our framework. Moreover, a matrix Ã can be efficiently identified such that
lbs(Ã) = int dim(A, ε) using Algorithm 1, as shown in Lemma 1.
Lemma 1. Let A ∈ Rd×d and ε > 0. Given input (A, ε), Algorithm 1 outputs an ε-approximation
of A, denoted as Ã, such that lbs(Ã) = int dim(A, ε) in time O(d2).

3.2.1 APPROXIMATION GUARANTEES

In this section, we provide approximation guarantees for our framework Algorithm 3. We first show
that in Theorem 1 that, an optimal solution to SPCA with input (A, k) and an optimal solution to
(Aε, k) are close to each other in terms of objective value:
Theorem 1. Let A ∈ Rd×d, k ≤ d, and ε > 0. Denote by Aε the output of Algorithm 1 with input
(A, ε), x̃ the optimal solution to SPCA with input (Aε, k), and x? the optimal solution to SPCA with
input (A, k). Then, it follows that ∣∣(x?)>Ax? − x̃>Ax̃∣∣ ≤ 2k · ε

Then, in Theorem 2, we show that solving SPCA exactly with input (Ã, k) is equivalent to addressing
SPCA sub-problems in blocks within Ã:

Theorem 2. Let Ã = diag(Ã1, Ã2, . . . , Ãp) be a symmetric matrix. Denote OPT to be the optimal
value to SPCA with input pair (Ã, k). Let OPTi to be the optimal value to SPCA with input pair
(Ãi, k), for i ∈ [p]. Then, one has OPT = maxi∈[p] OPTi.

5
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Remark 1. Theorem 2 is particularly non-trivial: without this result, one might think the support of
any optimal solution to SPCA may span different blocks. Solving SPCA with a block-diagonal input
would consequently involve iterating over all possible sparsity constants (that sum up to k) for each
block-diagonal sub-matrix, making our framework proposed in Section 3.1 nearly impractical.

With these two theorems established, we now extend Theorem 1 to incorporate the use of various
approximation algorithms. We note that the established approximation guarantee follows from subrou-
tines as described in Theorem 1. Furthermore, Theorem 3 suggests that our framework Algorithm 3,
can also be highly effective when combined with other approximation algorithms. Specifically, it has
the potential to find a better solution, particularly when the value of ε is small.
Theorem 3. Let A ∈ Rd×d be symmetric and let k be a positive integer, and denote by x? ∈ Rd an
optimal solution to SPCA with input (A, k). Suppose that an algorithm A for SPCA with input (A, k)
finds an approximate solution x ∈ Rd to SPCA such that has multiplicative factor m(k, d) ≥ 1 and
additive error a(k, d) ≥ 0, i.e., one has x>Ax ≥ (x?)>Ax?/m(k, d)− a(k, d). Furthermore, we
assume that m(k, d) and a(k, d) is non-decreasing with respect to d. For ε > 0, denote by y ∈ Rd
be the output of Algorithm 3 with input tuple (A, k, ε,A). Then, one has

y>Ay ≥ (x?)>Ax?

m (k, int dim(A, ε))
− a (k, int dim(A, ε))−

(
1 +

1

m (k, int dim(A, ε))

)
· kε.

Remark 2. Theorem 3 implies that our framework, Algorithm 3, when inputted with (A, k, ε,A),
could find an approximate solution with a better multiplicative factor of m (k, int dim(A, ε)), and
an additive error of a (k, int dim(A, ε)) + kε. Note that the additive error is also improved if

a(k, d) ≥ a (k, int dim(A, ε)) +

(
1 +

1

m (k, int dim(A, ε))

)
kε.

In addition, we have found instances where our framework can indeed obtain better solutions when
integrated with some approximation algorithm, as shown in Table 10 in Appendix C. Finally, we
summarized in Table 1 the change of multiplicative factor and additive error when integrated our
framework to some existing (approximation) algorithms for SPCA.

Table 1: Comparison of multiplicative factors (MF) and additive errors (AE) when integrating our
framework with different algorithms. The MISDP and Greedy algorithms are both studied in Li &
Xie (2020). Note that our MF is always no larger than the original MF.

Algorithm MF AE Our MF Our AE

Chan et al. (2015) min(
√
k, d1/3) 0 min(

√
k, int dim(A, ε)1/3) (1 + 1/Our MF) · kε

MISDP min(k, d/k) 0 min(k, int dim(A, ε)/k) (1 + 1/Our MF) · kε
Greedy k 0 k (1 + 1/k) · kε
Exact algorithms 1 0 1 2kε
Asteris et al. (2015) 1 δ 1 2kε+ δ

3.2.2 COMPUTATIONAL SPEEDUPS

In this section, we characterize the runtime complexity of Algorithm 3. We will see that the ε-intrinsic
dimension also plays an important role in this section.
Proposition 1. Let A ∈ Rd×d, and let k be a positive integer. Suppose that for a specific algorithm
A, the time complexity of using A for (approximately) solving SPCA with input (A, k) is a function
g(k, d) which is convex and non-decreasing with respect to d. We assume that g(k, 1) = 1. Then, for
a given threshold ε > 0, the runtime of Algorithm 3 with input tuples (A, k, ε,A) is at most

O
(⌈

d

int dim(A, ε)

⌉
· g (k, int dim(A, ε)) + d2

)
Remark 3. We remark that the assumption g(k, d) is convex and non-decreasing with respect to d in
Proposition 1 is a very weak assumption. Common examples include dα and dα log d with α ≥ 1.
Remark 4. In this remark, we explore the computational speedups provided by Algorithm 3 by
modeling int dim(A, ε) as a function of A and ε. We assume without loss of generality that ‖A‖∞ =
1, thereby setting int dim(A, 1) = 0. It is important to note that while int dim(A, ε) is discontinuous,
for the purpose of illustration in Table 2, it is treated as a continuous function of ε.
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int dim(A, ε) Runtime Our Runtime Speedup factor
d(1− e−c(1−ε)) O(dα) O(dα(1− e−c(1−ε))α−1) O((1− e−c(1−ε))1−α)

d(1− ε) O(dα) O(dα(1− ε)α−1) O((1− ε)1−α)

d(1− ε)m O(dα) O(dα(1− ε)(α−1)m) O((1− ε)(1−α)m)

Table 2: Comparison of original runtimes and current runtimes in our framework. We assume that the
algorithm has runtime O(dα), for some α ≥ 2.

4 EXTENSIONS

Our algorithm presented in Section 3.1 takes a known threshold as an input. In this section, we
remove this constraint by extending our algorithm to various settings. Specifically, in Section 4.1, we
consider learning under a statistical model, where one can do the denoising of a matrix easily. In
Section 4.2, we propose a practical learning approach without any assumption.

4.1 LEARNING UNDER A STATISTICAL MODEL

A crucial aspect of our proposed framework involves determining an appropriate threshold, ε, as
required by Algorithm 3. While specifying such a threshold is generally necessary, there are many
instances where it can be effectively estimated from the data. In this section, we discuss a model
commonly employed in robust statistics (Comminges et al., 2021; Kotekal & Gao, 2023; 2024). This
model finds broad applications across various fields, including clustering (Chen & Witten, 2022) and
sparse linear regression (Minsker et al., 2022).

Before presenting the formal definition, we first establish some foundational intuition about the model.
Conceptually, if the input data matrix A is viewed as an empirical covariance matrix, and based on
the intuition that, a feature is expected to exhibit strong correlations with only a few other features, it
follows that A should be, or at least be close to, a block-diagonal matrix. This observation motivates
us for considering Model 1:

Model 1. The input matrix A ∈ Rd×d is close to a block-diagonal symmetric matrix Ã ∈ Rd×d, i.e.,
A = Ã+ E for some symmetric matrix E ∈ Rd×d such that

(i) for i ≤ j, each entry Eij is drawn from an i.i.d. %-sub-Gaussian distribution, with mean zero,
and variance σ2, where % > 0 and σ2 being unknown, but an upper bound u ≥%2/σ2 is given;

(ii) write Ã = diag
(
Ã1, Ã2, . . . , Ãp

)
, the size of each diagonal block Ãi is upper bounded by d?,

where d? ≤ Cdα for some known constant C > 0 and α ∈ (0, 1), but d? is unknown.

In assumption (i) of Model 1, the sub-Gaussian distribution is particularly favored as this class of
distributions is sufficiently broad to encompass not only the Gaussian distribution but also distributions
of bounded variables, which are commonly observed in noise components of real-world datasets.
Assumption (ii) of Model 1 uses the constant α to quantify the extent to which features are clustered.

The procedure for estimating ‖E‖∞ in Model 1 involves an estimation of the variance σ2, which is
adapted from Comminges et al. (2021), and then multiply a constant multiple of

√
log d. We present

the details in Algorithm 4:

In the next theorem, we provide a high probability approximation bound, as well as runtime analysis,
for Algorithm 3 using the threshold ε̄ found via Algorithm 4, suggesting that in Model 1 one can
efficiently solve SPCA by exploiting the hidden sparse structure.

Proposition 2. Consider Model 1, and denote by ε̄ the output of Algorithm 4 with input tuple
(A,C, α, u). Let k ≤ d be a positive integer, and assume that d satisfies that d1−α > C0 · (C + 1) ·
u log(8C + 8) for some large enough absolute constant C0 > 0. Then, the following holds with
probability at least 1− 2d−1 − exp{2 log d− d1+α/(4C + 4)}:

(i) Denote by x̃? the optimal solution to SPCA with input (Ã, k). For an (approximation) algorithm
A with multiplicative factor m(k, d) ≥ 1 and additive error a(k, d) ≥ 0, where the functions
m and a is non-deceasing with respect to d, the output y of Algorithm 3 with input tuple
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Algorithm 4 Estimation of ‖E‖∞ in Model 1

1: Input: Matrix A ∈ Rd×d, parameters C > 0, α ∈ (0, 1), and u in Model 1
2: Output: A number ε̄ > 0 as an estimate of ‖E‖∞
3: Divide the set of indices {(i, j) ∈ [d]× [d] : i ≤ j} into m = b(2C + 2)d1+αc disjoint subsets
B1, B2, . . . , Bm randomly, ensuring each subset Bi has cardinality lower bounded by

⌊
d2+d
2m

⌋
4: Initialize an array S to store subset variances
5: for i = 1 to m do
6: Si ← 1

|Bi|
∑

(i,j)∈Bi A
2
ij

7: σ̄2 ← median(S)
8: Return ε̄← 2uσ̄

√
3 log d

(A, k, ε̄,A) satisfies that

y>Ãy ≥ (x̃?)>Ãx̃?

m (k, d?)
− a (k, d?)−

(
1 +

1

m (k, d?)

)
· 2kε̄.

(ii) If, in addition, the time complexity of using A for (approximately) solving SPCA with input
(A, k) is a function g(k, d) which is convex and non-decreasing with respect to d, and satisfies
g(k, 1) = 1. Then, the runtime of Algorithm 3 with input tuples (A, k, ε,A) is at most

O
(⌈

d

d?

⌉
· g (k, d?) + d2

)
We remark that, the assumption d1−α > C0 · (C + 1) · u log(8C + 8) is true when d is large enough,
as C0, C, and u are usually some constants not changing with respect to the dimension d.

4.2 A PRACTICAL LEARNING APPROACH

In this section, we describe a practical algorithm to estimate ε without prior statistical assumptions
while simultaneously providing an approximate solution to SPCA.

Recall from Algorithm 3 that for a given threshold ε, a thresholded matrix Aε is generated via
Algorithm 1 from the original matrix A. This matrix Aε is then utilized to approximate SPCA using
a specified algorithm A. Our proposed approach in this section involves initially selecting an ε value
within a predefined range, executing Algorithm 3 with this ε, and subsequently adjusting ε in the
following iterations through a binary search process. Since efficiency is of our major interest; thus, we
ask users to provide a parameter d0 that indicates the maximum dimension they are willing to compute
due to computational resource limit. We defer the detailed description of this binary-search based
algorithm to Algorithm 5. For clarity, let us denote by OPT(ε) the objective value of (xε)>Axε,
where xε is the output of Algorithm 3 with inputs (A, k, ε,A).

Algorithm 5 A practical version of Algorithm 3 without a given threshold

1: Input: MatrixA ∈ Rd×d, positive integer k ≤ d, tolerance parameter δ, (approximate) algorithm
A for SPCA, and integer d0

2: Result: Approximate solution to Problem SPCA
3: L← 0, U ← ‖A‖∞, find OPT(U) via A
4: while U − L > δ do
5: ε← (L+ U)/2
6: Find Aε via Algorithm 1, and the largest block size d? := lbs(Aε)
7: if problems with largest block size ≥ d? has been solved before then U ← ε; continue
8: if d? > d0 then L← ε; continue
9: Find OPT(ε) via Algorithm 3 with algorithm A

10: if OPT(ε) does not improve then U ← ε

11: return best OPT(ε) found and the corresponding xε

We have the characterization of approximation error and runtime complexity of Algorithm 5:

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 4. LetA ∈ Rd×d be symmetric and let k be a positive integer. Suppose that an algorithmA
for SPCA with input (A, k) finds an approximate solution x ∈ Rd to SPCA such that has multiplicative
factor m(k, d) ≥ 1 and additive error a(k, d) ≥ 0, with m(k, d) and a(k, d) being non-decreasing
with respect to d. Suppose that Algorithm 5 with input (A, k, δ,A, d0) terminates with OPT(ε?)≥ 0.
Then one has

OPT(ε?) ≥ 1

m(k, d0)
· OPT(0)− a(k, d0)−

(
1 +

1

m(k, d0)

)
· kε?.

Suppose that for A, the time complexity of using A for (approximately) solving SPCA with input
(A, k) is a function g(k, d) which is convex and non-decreasing with respect to d, g(k, 1) = 1, and
g(k, 0) = 0. The runtime for Algorithm 5 is at most

O
(

log

(
‖A‖∞
δ

)
·
(⌈

d

d0

⌉
· g (k, d0) + d2

))
Remark 5. In this remark, we discuss the practical advantages of Algorithm 5:

• The first direct advantage is that Algorithm 5 does not rely on any assumptions, enabling users to
apply the framework to any dataset. Moreover, the framework can be applied to scenarios where
an improved estimation of the binary search range is known. For instance, if users possess prior
knowledge about an appropriate threshold ε̄ for binary search, they can refine the search interval
in Algorithm 5 by setting the lower and upper bounds to L := aε̄ and U := bε̄ for some proper
0 ≤ a < b to improve the efficiency by a speedup factor of O(log(‖A‖∞ /δ)/ log((b− a)ε̄/δ)).

• Secondly, as detailed in Theorem 4, is that Algorithm 5 achieves a similar trade-off between
computational efficiency and approximation error as Algorithm 1, which are proposed in Theorem 3
and Proposition 1. The time complexity of Algorithm 5, compared to Algorithm 3, increases only
by a logarithmic factor due to the binary search step, thus preserving its efficiency.

• The third advantage is that this algorithm considers computational resources, ensuring that each
invocation of Algorithm 3 remains efficient.

5 EMPIRICAL RESULTS

In this section, we report the numerical performance of our proposed framework.

Datasets. We perform numerical tests in datasets widely studied in feature selection, including
datasets CovColon from Alon et al. (1999), LymphomaCov1 from Alizadeh et al. (1998), Red-
dit1500 and Reddit2000 from Dey et al. (2022b), LeukemiaCov, LymphomaCov2, and ProstateCov
from Dettling (2004), ArceneCov and DorotheaCov from Guyon et al. (2007), and GLI85Cov and
GLABRA180Cov from Li (2020). We take the sample covariance matrices of features in these
datasets as our input matrices A. The dimensions of A range from 500 to 100000. Most of the
matrices A are dense and hence are not block-diagonal matrices, as discussed in Appendix C.1.

Baselines. We use the state-of-the-art exact algorithm Branch-and-Bound (Berk & Bertsimas, 2019)
and the state-of-the-art polynomial-time approximation algorithm (in terms of multiplicative factor)
Chan’s algorithm (Chan et al., 2015) as our baselines.

Notation. We calculate the approximation error between two methods using the formula (objBase −
objOurs)/objBase × 100%, where objBase is the objective value obtained by a baseline algorithm, while
objOurs is the objective value obtained by our framework integrated with the baseline algorithm.
We calculate the speedup factor by dividing the runtime of a baseline algorithm by the runtime of
Algorithm 5 integrated with the baseline algorithm.

Results. In Table 3, we report the performance of Algorithm 5 when integrated with Branch-and-
Bound algorithm. We summarized the performance results for k = 2, 5, 10, 15 across various
datasets. For each dataset, we report the average approximation error, average speedup factors, and
their corresponding standard deviations. Notably, the average speedup factor across all datasets is
93.77, demonstrating significant computational efficiency. Our theoretical analysis anticipates a
trade-off between speedups and approximation errors; however, the empirical performance of our
framework in terms of approximation accuracy is remarkably strong, with an average error of just
2.15% across all datasets.

In Table 4 we report the performance of Algorithm 5, in larger datasets with larger k’s, when
integrated with Chan’s algorithm (Chan et al., 2015). We summarized the performance results for

9
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k = 200, 500, 1000, 2000 across various datasets. Chan’s algorithm terminates in time O(d3) and
returns an approximate solution to SPCA with a multiplicative factor min{

√
k, d1/3}. The average

speedup factor is 6.77, and grows up to 14.70 as the dimension of the dataset grows, while the average
error across all four datasets remains below 1.35%. Remarkably, for the DorotheaCov dataset, our
framework integrated with Chan’s algorithm achieves negative approximation errors, meaning that
our framework finds better solutions than the standalone algorithm.

These findings affirm the ability of our framework to handle diverse datasets and various problem
sizes both efficiently and accurately. While generally successful, there are rare instances where
our framework may underperform. However, we have found that fine-tuning Algorithm 5 readily
enhances performance in these instances. For a more detailed discussion, additional information on
settings, and further empirical results, we refer readers to Appendix C.

Table 3: Summary of average approximation errors and average speedup factors for each dataset,
compared to Branch-and-Bound. Standard deviations are reported in the parentheses.

Dataset Avg. Error (Std. Dev) Avg. Speedup (Std. Dev)

CovColonCov 0.00 (0.00) 158.15 (179.88)
LymphomaCov1 0.53 (0.77) 239.14 (336.83)
Reddit1500 0.05 (0.05) 59.95 (94.12)
Reddit2000 0.21 (0.28) 90.37 (51.84)
LeukemiaCov 1.50 (2.28) 117.84 (70.87)
LymphomaCov2 11.99 (16.50) 41.52 (46.43)
ProstateCov 0.39 (0.78) 38.41 (24.77)
ArceneCov 2.55 (4.68) 4.77 (5.02)
Overall 2.15 (6.64) 93.77 (145.74)

Table 4: Summary of average approximation errors and average speedup factors for each dataset,
compared to Chan’s algorithm. Standard deviations are reported in the parentheses. Datasets are
sorted in ascending order according to their dimensions.

Dataset Avg. Error (Std. Dev) Avg. Speedup (Std. Dev)

ArceneCov 1.35 (1.24) 1.30 (0.08)
GLI85Cov 0.25 (1.85) 2.97 (0.28)
GLABRA180Cov 0.76 (0.33) 8.12 (0.87)
DorotheaCov -0.87 (0.68) 14.70 (0.66)
Overall 0.37 (1.35) 6.77 (5.42)

6 DISCUSSION

In this paper, we address the Sparse PCA problem by introducing an efficient framework that
accommodates any off-the-shelf algorithm designed for Sparse PCA in a plug-and-play fashion.
Our approach leverages matrix block-diagonalization, thereby facilitating significant speedups when
integrated with existing algorithms. The implementation of our framework is very easy, enhancing its
practical applicability. We have conducted a thorough theoretical analysis of both the approximation
error and the time complexity associated with our method. Moreover, extensive empirical evaluations
on large-scale datasets demonstrate the efficacy of our framework, which achieves considerable
improvements in runtime with only minor trade-offs in approximation error.

Looking ahead, an important direction for future research involves extending our framework to
handle the Sparse PCA problem with multiple principal components, while maintaining similar
approximation and runtime guarantees. This extension could further broaden the applicability of our
approach, addressing more complex scenarios in real-world applications.
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A ADDITIONAL RELATED WORK

In this section, we discuss additional related work. There exist many attempts in solving Sparse PCA
in the literature, and we outlined only a selective overview of mainstream methods. Algorithms require
worst-case exponential runtimes, including mixed-integer semidefinite programs (Bertsimas et al.,
2022; Li & Xie, 2020; Cory-Wright & Pauphilet, 2022), mixed-integer quadratic programs (Dey
et al., 2022b), non-convex programs (Zou et al., 2006; Dey et al., 2022a), and sub-exponential
algorithms (Ding et al., 2023). On the other hand, there also exist a number of algorithms that
take polynomial runtime to approximately solving Sparse PCA. To the best of our knowledge, the
state-of-the-art approximation algorithm is proposed by Chan et al. (2015), in which an algorithm with
multiplicative factor min{

√
k, d−1/3} is proposed. There also exists tons of other (approximation)

algorithms that have polynomial runtime, including semidefinite relaxations (Chowdhury et al.,
2020), greedy algorithms (Li & Xie, 2020), low-rank approximations (Papailiopoulos et al., 2013),
and fixed-rank Sparse PCA (Del Pia, 2022). Apart from the work we have mentioned, there also
exists a streamline of work focusing on efficient estimation of sparse vectors in some specific
statistical models. For instance, for a statistical model known as Spiked Covariance model, methods
such as semidefinite relaxations (Amini & Wainwright, 2008; d’Orsi et al., 2020) and covariance
thresholding (Deshp et al., 2016). Finally, there are also local approximation algorithms designed for
Sparse PCA, and iterative algorithms are proposed (Yuan & Zhang, 2013; Hager et al., 2016).

The idea of decomposing a large-scale optimization problem into smaller sub-problems is a widely
adopted approach in the optimization literature. For instance, Mazumder & Hastie (2012) leverages
the connection between the thresholded input matrix and the support graph of the optimal solution in
graphical lasso problem (GL), enabling significant computational speedups by solving sub-problems.
Building on this, Fattahi & Sojoudi (2019) improves the computational efficiency of these subroutines
by providing closed-form solutions under an acyclic assumption and analyzing the graph’s edge
structure. Wang et al. (2023) addresses GL in Gaussian graphical models through bridge-block
decomposition and derives closed-form solutions for these blocks. In addition, several methods in
the literature involve or are similar to matrix block-diagonalization. For instance, Feng et al. (2014)
employ block-diagonalization for subspace clustering and segmentation problems by mapping data
matrices into block-diagonal matrices through linear transformations. More recently, Han et al. (2023)
introduce the sortedLSH algorithm to sparsify the softmax matrix, thus reducing the computational
time of the attention matrix through random projection-based bucketing of “block indices”. We
remark that in all studies above, the underlying problems of interests, as well as the techniques, are
different from ours, and the techniques developed therein cannot be directly applied to SPCA. A more
related work (Devijver & Gallopin, 2018) explores block-diagonal covariance matrix estimation using
hard thresholding techniques akin to ours. However, our framework diverges in two critical aspects:
(i) They assume data is drawn from a Gaussian distribution, while we do not - we show in Section 4.2
that our method can by applied to any data inputs; and (ii) they use maximum likelihood estimation,
whereas our Algorithm 5 involves iterative binary search to determine the optimal threshold ε.

B DEFERRED PROOFS

In this section, we provide proofs that we defer in the paper.

B.1 PROOFS IN SECTION 3.2

Lemma 1. Let A ∈ Rd×d and ε > 0. Given input (A, ε), Algorithm 1 outputs an ε-approximation
of A, denoted as Ã, such that lbs(Ã) = int dim(A, ε) in time O(d2).

Proof of Lemma 1. It is clear that Algorithm 1 has time complexity O(d2), and it suffices the show
that the output Ã of Algorithm 1 with input (A, ε) satisfies lbs

(
Ã
)

= int dim(A, ε).

Suppose that A? is an ε-approximation of A, and satisfies lbs (A?) = int dim(A, ε). We intend to
show lbs

(
Ã
)
≤ lbs (A?). WLOG we assume that A? ∈ B(A, ε) is a block-diagonal matrix with
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blocks A?1, A
?
2, . . . , A

?
p, i.e., A? = diag

(
A?1, A

?
2, . . . , A

?
p

)
. Write A =


A11 A12 . . . A1p

A21 A22 . . . A2p

...
...

...
...

Ap1 Ap2 . . . App



and Ã =


Ã11 Ã12 . . . Ã1p

Ã21 Ã22 . . . Ã2p

...
...

...
...

Ãp1 Ãp2 . . . Ãpp

, where Aii, Ãii, and A?i have the same number of rows and

columns, by the definition of B(A, ε), it is clear that ‖Aij‖∞ ≤ ε, for any 1 ≤ i 6= j ≤ p. This
further implies that for any 1 ≤ i 6= j ≤ p, Ãij is a zero matrix by the procedure described in

Algorithm 1, and therefore it is clear that lbs
(
Ã
)
≤ lbs (A?). By minimality of A?, we obtain that

lbs
(
Ã
)

= lbs (A?).

B.1.1 PROOFS IN SECTION 3.2.1

Theorem 1. Let A ∈ Rd×d, k ≤ d, and ε > 0. Denote by Aε the output of Algorithm 1 with input
(A, ε), x̃ the optimal solution to SPCA with input (Aε, k), and x? the optimal solution to SPCA with
input (A, k). Then, it follows that ∣∣(x?)>Ax? − x̃>Ax̃∣∣ ≤ 2k · ε

Proof of Theorem 1. Note that∣∣(x?)>Ax? − x̃>Ax̃∣∣ ≤ ∣∣(x?)>Ax? − x̃>Aεx̃∣∣+
∣∣x̃>(Aε −A)x̃

∣∣
≤
∣∣(x?)>Ax? − x̃>Aεx̃∣∣+ k · ‖A−Aε‖∞ ,

where the last inequality follows from Holder’s inequality and the fact that ‖x̃‖1 ≤
√
k · ‖x̃‖2 =

√
k.

Therefore, it suffices to show that∣∣(x?)>Ax? − x̃>Aεx̃∣∣ ≤ k · ‖A−Aε‖∞ .

Observe that

∣∣(x?)>Ax? − x̃>Aεx̃∣∣ =

∣∣∣∣∣∣∣ max
‖x‖2=1,
‖x‖0≤k

x>Ax− max
‖x‖2=1,
‖x‖0≤k

x>Aεx

∣∣∣∣∣∣∣
≤ max
‖x‖2=1,
‖x‖0≤k

∣∣x>(Aε −A)x
∣∣

≤ k · ‖A−Aε‖∞ ,

where the first inequality follows from the following facts:

max
‖x‖2=1,
‖x‖0≤k

x>Ax− max
‖x‖2=1,
‖x‖0≤k

x>Aεx ≤ max
‖x‖2=1,
‖x‖0≤k

x>(A−Aε)x

max
‖x‖2=1,
‖x‖0≤k

x>Aεx− max
‖x‖2=1,
‖x‖0≤k

x>Ax ≤ max
‖x‖2=1,
‖x‖0≤k

x>(Aε −A)x

Finally, combining the fact that ‖A−Aε‖∞ ≤ ε, we are done.

Theorem 2. Let Ã = diag(Ã1, Ã2, . . . , Ãp) be a symmetric matrix. Denote OPT to be the optimal
value to SPCA with input pair (Ã, k). Let OPTi to be the optimal value to SPCA with input pair
(Ãi, k), for i ∈ [p]. Then, one has OPT = maxi∈[p] OPTi.
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Proof of Theorem 2. It is clear that OPT ≥ maxi∈[p] OPTi. It remains to show the reverse, i.e.,
OPT ≤ maxi∈[p] OPTi.

Suppose not, we have OPT > maxi∈[p] OPTi. Then, there must exist principal submatrices
Ã′1, Ã

′
2, . . . , Ã

′
p contained in Ã1, Ã2, . . . , Ãp such that diag(Ã′1, Ã

′
2, . . . , Ã

′
p) is a k × k matrix,

and
OPT = max

‖x‖2=1
x>diag(Ã′1, Ã

′
2, . . . , Ã

′
p)x > max

i∈[p]
OPTi.

This gives a contradiction, as

max
i∈[p]

OPTi = max
i∈[p]

max
‖x‖2=1,
‖x‖0≤k

x>Ãix ≥ max
‖x‖2=1

x>diag(Ã′1, Ã
′
2, . . . , Ã

′
p)x,

where the inequality follows from the fact that

max
‖x‖2=1

x>diag(Ã′1, Ã
′
2, . . . , Ã

′
p)x = max

i∈[p]
max
‖x‖2=1

x>Ã′ix = max
i∈[p]

max
‖x‖2=1
‖x‖0≤k

x>Ã′ix= max
i∈[p]

OPTi.

Theorem 3. Let A ∈ Rd×d be symmetric and let k be a positive integer, and denote by x? ∈ Rd an
optimal solution to SPCA with input (A, k). Suppose that an algorithm A for SPCA with input (A, k)
finds an approximate solution x ∈ Rd to SPCA such that has multiplicative factor m(k, d) ≥ 1 and
additive error a(k, d) ≥ 0, i.e., one has x>Ax ≥ (x?)>Ax?/m(k, d)− a(k, d). Furthermore, we
assume that m(k, d) and a(k, d) is non-decreasing with respect to d. For ε > 0, denote by y ∈ Rd
be the output of Algorithm 3 with input tuple (A, k, ε,A). Then, one has

y>Ay ≥ (x?)>Ax?

m (k, int dim(A, ε))
− a (k, int dim(A, ε))−

(
1 +

1

m (k, int dim(A, ε))

)
· kε.

Proof of Theorem 3. In the proof, we use the same notation as in Algorithm 3. We assume WLOG
that the thresholded matrix Aε is a block-diagonal matrix, i.e., Aε = diag

(
Ã1, Ã2, . . . , Ãp

)
. Denote

x̃? ∈ Rd to be an optimal solution to SPCA with input (Aε, k). By Theorem 2, one can assume
WLOG that x̃? has zero entries for indices greater than d1. In other words, x̃? is “found” in the block
A1. Recall that we denote xi the solution found by A with input

(
Ãi, k

)
. Then, it is clear that

max
i∈[p]

x>i Ãixi = x>1 Ã1x1

≥ 1

m(k, d1)
· (x̃?)>Aεx̃? − a(k, d1)

≥ 1

m(k, int dim(A, ε))
· (x̃?)>Aεx̃? − a(k, int dim(A, ε)).

Recall that yi is the reconstructed solution. By the proof of Theorem 1, one obtains that

max
i∈[p]

y>i A
εyi

= max
i∈[p]

x>i Ãixi

≥ 1

m(k, int dim(A, ε))
· (x̃?)>Aεx̃? − a(k, int dim(A, ε))

≥ 1

m(k, int dim(A, ε))
·
(
(x?)>Ax? − k ‖A−Aε‖∞

)
− a(k, int dim(A, ε))

(1)

Finally, since ∣∣y>i Aεyi − y>i Ayi∣∣ ≤ k ‖A−Aε‖∞ ≤ k · ε,
combining with (1), one obtains the desired result

max
i∈[p]

y>i Ayi ≥
1

m(k, int dim(A, ε))
·
(
(x?)>Ax? − kε

)
− a(k, int dim(A, ε))− kε.
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B.1.2 PROOFS IN SECTION 3.2.2

Proposition 1. Let A ∈ Rd×d, and let k be a positive integer. Suppose that for a specific algorithm
A, the time complexity of using A for (approximately) solving SPCA with input (A, k) is a function
g(k, d) which is convex and non-decreasing with respect to d. We assume that g(k, 1) = 1. Then, for
a given threshold ε > 0, the runtime of Algorithm 3 with input tuples (A, k, ε,A) is at most

O
(⌈

d

int dim(A, ε)

⌉
· g (k, int dim(A, ε)) + d2

)

Proof of Proposition 1. Suppose that the largest block size of Ã ∈ B(A, ε) is equal to int dim(A, ε),
and Ã can be sorted to a block-diagonal matrix with p blocks Ã1, Ã2, . . . , Ãp and block sizes
d1, d2, . . . , dp, respectively. WLOG we assume that p < d, otherwise the statement holds trivially. It
is clear that the time complexity of running line 5 - 8 in Algorithm 3 is upper bounded by a constant
multiple of

max
1≤di≤int dim(A,ε)∑m

i=1 di=d

p∑
i=1

g(k, dk). (2)

Since k is fixed, the optimization problem (2) is maximizing a convex objective function over a
polytope

P :=

{
(d1, d2, . . . , dp) ∈ Rp : 1 ≤ di ≤ int dim(A, ε), ∀i ∈ [p],

p∑
i=1

di = d

}
.

Therefore, the optimum to (2) is obtained at an extreme point of P . It is clear that an extreme point
(d?1, d

?
2, . . . , d

?
p) of P is active at a linearly independent system, i.e., among all d?i ’s, there are p− 1 of

them must be equal to 1 or int dim(A, ε), and the last one is taken such that the euqality
∑p
i=1 d

?
i = d

holds. Since there could be at most bd/ int dim(A, ε)c many blocks in Ã with block size equal to
int dim(A, ε), and that g(k, d) is increasing with respect to d, we obtain that the optimum of the
optimization problem (2) is upper bounded by⌈

d

int dim(A, ε)

⌉
· g (k, int dim(A, ε)) +

(
m−

⌊
d

int dim(A, ε)

⌋)
<

⌈
d

int dim(A, ε)

⌉
· g (k, int dim(A, ε)) + d.

We are then done by noticing the fact that lines 3 - 4 in Algorithm 3 have a runtime bounded by
O(d2).

B.2 PROOFS IN SECTION 4.1

To establish a connection with robust statistics, we begin by expressing each element of the input
matrix A in Model 1 as follows:

Aij = Ãij + Eij := Ãij + σ2Zij, i ≤ j,

where Zij is an i.i.d. centered (%2/σ2)-sub-Gaussian random variable with unit variance. Considering
that Ã is block-diagonal and, according to (ii) in Model 1, has at most dd/d?e · (d?)2 = O(d1+α)
nonzero entries, the methodology proposed by Comminges et al. (2021) can be employed to estimate
σ2 accurately using Algorithm 4.

Inspired by the methods proposed in Comminges et al. (2021), we show that the number σ̄ found in
Algorithm 4 could provide an constant approximation ratio to the true variance σ2 in Model 1 with
high probability:

Proposition 3 (adapted from Proposition 1 in Deshp et al. (2016)). Consider Model 1, and denote
PZ to be the distribution of the random variable Eij/σ2. Let σ̄2 be the same number found in
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Algorithm 4 with input tuple (A,C, α). There exist an absolute constant c > 0 such that for the
dimension d of the input matrix A satisfying

log d > log

(4C + 4) ·

 log (8C + 8)

cσ2

2%2 ·
(
σ2

2%2 + 1
) + 1

 /(1− α)

we have that for distribution PZ of Zij , the variance σ2, one has a uniform lower bound on the
accuracy of estimation:

inf
PZ

inf
σ>0

inf
‖Ã‖0≤Cd1+α

PPZ ,σ,Ã

(
1

2
≤ σ̄2

σ2
≤ 3

2

)
≥ 1− exp

{
− dα+1

4C + 4

}
.

Proof of Proposition 3. Recall that we write

Aij = Ãij + Eij := Ãij + σ2Zij, i ≤ j,

where Zij is an i.i.d. centered (%2/σ2)-sub-Gaussian random variable with unit variance. Since
d? ≤ Cdα for some α ∈ (0, 1), WLOG we assume that d? = Cdα for some C > 0, and for
simplicity we assume that d1+α and C are all integers to avoid countless discussions of integrality. By
Algorithm 4, one divides the index set {(i, j) ∈ [d]× [d] : i ≤ j} into m = (2C + 2)d1+α disjoint
subsets B1, B2, . . . , Bm, and each Bi has cardinality at lease k := b(d2 + d)/(2m)c. Denote the set
J to be the set of indices i such that the set Bi contains only indices such that for any (k, l) ∈ Bi,
Ãkl = 0. It is clear that |J | is lower bounded by m− Cdα+1 = (2C + 1)d1+α.

By Bernstein’s inequality (see, e.g., Corollary 2.8.3 in Vershynin (2018)), it is clear that there exists
an absolute constant c > 0 such that

P

∣∣∣∣∣∣ 1

|Bi|
∑

(k,l)∈Bi

E2
kl − σ2

∣∣∣∣∣∣ > σ2

2

 = P

∣∣∣∣∣∣ 1

|Bi|
∑

(k,l)∈Bi

Z2
kl − 1

∣∣∣∣∣∣ > 1

2


≤ 2 exp

{
−cmin

(
σ4

4%4
,
σ2

2%2

)
|Bi|

}
≤ 2 exp

{
−cmin

(
σ4

4%4
,
σ2

2%2

)⌊
d2 + d

2m

⌋}
.

Then, we denote I := [σ2/2, 3σ2/2], denote Ai to be the random event
{

1
|Bi|

∑
(k,l)∈Bi A

2
kl 6∈ I

}
,

and denote 1Ai to be the indicator function of Ai. One obtains that

P
(
σ̄2 6∈ I

)
≤ P

(
m∑
i=1

1Ai ≥
m

2

)

= P

∑
i∈J

1Ai ≥
m

2
−
∑
i 6∈J

1Ai


≤ P

(∑
i∈J

1Ai ≥
m

2
− Cdα+1

)

Denote

t :=
m

2
− Cdα+1 − 2|J | exp

{
−cmin

(
σ4

4%4
,
σ2

2%2

)⌊
d2 + d

2m

⌋}
,
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and by Hoeffding’s inequality, one obtains that

P

(∑
i∈J

1Ai ≥
m

2
− Cdα+1

)

≤ P

(∑
i∈J

(1Ai − E1Ai) ≥
m

2
− Cdα+1 − 2|J | exp

{
−cmin

(
σ4

4%4
,
σ2

2%2

)⌊
d2 + d

2m

⌋})

= P

(∑
i∈J

(1Ai − E1Ai) ≥ t

)

≤ exp

{
−2t2

|J |

}
Since m = (2C + 2)dα+1, it is clear that m ≥ |J | ≥ (2C + 1)dα+1, and

t ≥ dα+1

(
1− 2(2C + 2) exp

{
−cmin

(
σ4

4%4
,
σ2

2%2

)
bd1−α/(4C + 4)c

})
≥ dα+1 · 1

2
,

where the last inequality follows from the fact that

log d > log

(4C + 4) · log (8C + 8)

cσ2

2%2 ·
(
σ2

2%2 + 1
)
 /(1− α).

Hence, the probability of σ̄2 6∈ I is upper bounded by exp{−dα+1/(4C + 4)}.

Proposition 2. Consider Model 1, and denote by ε̄ the output of Algorithm 4 with input tuple
(A,C, α, u). Let k ≤ d be a positive integer, and assume that d satisfies that d1−α > C0 · (C + 1) ·
u log(8C + 8) for some large enough absolute constant C0 > 0. Then, the following holds with
probability at least 1− 2d−1 − exp{2 log d− d1+α/(4C + 4)}:

(i) Denote by x̃? the optimal solution to SPCA with input (Ã, k). For an (approximation) algorithm
A with multiplicative factor m(k, d) ≥ 1 and additive error a(k, d) ≥ 0, where the functions
m and a is non-deceasing with respect to d, the output y of Algorithm 3 with input tuple
(A, k, ε̄,A) satisfies that

y>Ãy ≥ (x̃?)>Ãx̃?

m (k, d?)
− a (k, d?)−

(
1 +

1

m (k, d?)

)
· 2kε̄.

(ii) If, in addition, the time complexity of using A for (approximately) solving SPCA with input
(A, k) is a function g(k, d) which is convex and non-decreasing with respect to d, and satisfies
g(k, 1) = 1. Then, the runtime of Algorithm 3 with input tuples (A, k, ε,A) is at most

O
(⌈

d

d?

⌉
· g (k, d?) + d2

)

Proof of Proposition 2. We first show that, the probability that ‖E‖∞ ≤ ε̄ is at least 1 − 2d−1 −
exp

{
2 log d− d1+α

4C+4

}
. This comes directly from Proposition 3 that σ̄2 satisfies that 1

2 ≤
σ̄2

σ2 ≤ 3
2

with probability at least 1− exp{−d1+α/(4C+ 4)}, the definition of Ekl being i.i.d. %-sub-Gaussian
variables, and a union bound argument. Indeed, define the random event A := { 1

2 ≤
σ̄2

σ2 ≤ 3
2}, one
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can see that

P (|Ekl| > ε̄) = P (|Ekl| > ε̄ | A)P(A) + P (|Ekl| > ε̄ | Ac)P(Ac)

= P
(
|Ekl| > 2

√
3uσ̄

√
log d | A

)
P(A) + P (|Ekl| > ε̄ | Ac)P(Ac)

≤ P
(
|Ekl| >

√
6uσ

√
log d | A

)
P(A) + P(Ac)

≤ P
(
|Ekl| >

√
6uσ

√
log d

)
+ exp

{
− d1+α

4C + 4

}
≤ 2 exp

{
−6u2σ2

2%2
log d

}
+ exp

{
− d1+α

4C + 4

}
= 2d−3 + exp

{
− d1+α

4C + 4

}
.

By union bound, one has

P (‖E‖∞ > ε̄) ≤ d2 · P (|Ekl| > ε̄) ≤ 2d−1 + exp

{
2 log d− d1+α

4C + 4

}
.

This implies that, with high probability, int dim (A, ε̄) ≤ d?. In the remainder of the proof, we will
assume that the random event ‖E‖∞ ≤ ε̄ holds true.

We are now ready to show the desired approximation error. We first notice that∥∥∥Ã−Aε̄∥∥∥
∞
≤
∥∥∥Ã−A∥∥∥

∞
+
∥∥A−Aε̄∥∥∞ ≤ 2ε̄.

Follow a similar argument in the proof of Theorem 3, one can obtain the desired approximation error.

Finally, we obtain the desired runtime complexity via Proposition 1.

B.3 PROOFS IN SECTION 4.2

Theorem 4. LetA ∈ Rd×d be symmetric and let k be a positive integer. Suppose that an algorithmA
for SPCA with input (A, k) finds an approximate solution x ∈ Rd to SPCA such that has multiplicative
factor m(k, d) ≥ 1 and additive error a(k, d) ≥ 0, with m(k, d) and a(k, d) being non-decreasing
with respect to d. Suppose that Algorithm 5 with input (A, k, δ,A, d0) terminates with OPT(ε?)≥ 0.
Then one has

OPT(ε?) ≥ 1

m(k, d0)
· OPT(0)− a(k, d0)−

(
1 +

1

m(k, d0)

)
· kε?.

Suppose that for A, the time complexity of using A for (approximately) solving SPCA with input
(A, k) is a function g(k, d) which is convex and non-decreasing with respect to d, g(k, 1) = 1, and
g(k, 0) = 0. The runtime for Algorithm 5 is at most

O
(

log

(
‖A‖∞
δ

)
·
(⌈

d

d0

⌉
· g (k, d0) + d2

))

Proof of Theorem 4. We will use Theorem 3 and Proposition 1 to prove this theorem.

We first prove the approximation bound. First note that
∥∥A−Aε?∥∥∞ ≤ ε?. By Theorem 3,

OPT(ε?) ≥ (x?)>Ax?

m (k, int dim(A, ε?))
− a (k, int dim(A, ε?))−

(
1 +

1

m (k, int dim(A, ε?))

)
· kε?

=
OPT(0)

m (k, int dim(A, ε?))
− a (k, int dim(A, ε?))−

(
1 +

1

m (k, int dim(A, ε?))

)
· kε?.

Note that in Algorithm 5, the algorithm is guaranteed to terminate with an ε? such that
int dim(A, ε?) ≤ d0. Since the functions m(k, d) and a(k, d) are all non-decreasing with respect
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to d, we have that m (k, int dim(A, ε?)) ≤ m(k, d0) and a (k, int dim(A, ε?)) ≤ a(k, d0), and
therefore we obtain our desired approximation bound

OPT(ε?) ≥ OPT(0)

m (k, d0)
− a (k, d0)−

(
1 +

1

m (k, d0)

)
· kε?.

Here, the inequality holds due to the fact that (i) if OPT(0) ≤ kε?, then since OPT(ε?) is non-
negative, the inequality trivially holds; (ii) if OPT(0) > kε?, then the inequality also holds since
a(k, d) and m(k, d) are non-decreasing with respect to d.

Then, we show the time complexity. By Proposition 1, it is clear that the runtime for a single iteration
in the while loop in Algorithm 5 is upper bounded by

O
(⌈

d

int dim(A, ε)

⌉
· g (k, int dim(A, ε)) + d2

)
, (3)

for some ε ≥ 0 such that int dim(A, ε) ≤ d0. Denote by ε1 ≥ ε2, it is clear that int dim(A, ε1) ≤
int dim(A, ε2). Since

int dim(A, ε1) =
int dim(A, ε1)

int dim(A, ε2)
· int dim(A, ε2) +

(
1− int dim(A, ε1)

int dim(A, ε2)

)
· 0,

and by convexity of g(k, d), along with the fact that g(k, 0) = 0, we obtain that

g(k, int dim(A, ε1)) ≤ int dim(A, ε1)

int dim(A, ε2)
· g(k, int dim(A, ε2)) + 0.

This implies that for any ε ≥ 0 such that int dim(A, ε) ≤ d0, we have that

d

int dim(A, ε1)
· g(k, int dim(A, ε1)) ≤ d

d0
· g(k, d0),

and thus ⌈
d

int dim(A, ε1)

⌉
· g(k, int dim(A, ε))

≤ d

int dim(A, ε1)
· g(k, int dim(A, ε1)) + g(k, int dim(A, ε))

≤ d

d0
· g(k, d0) + g(k, int dim(A, ε))

≤ d

d0
· g(k, d0) + g(k, d0) ≤ 2

⌈
d

d0

⌉
· g(k, d0).

Combining with (3), and the fact that at most O(log(‖A‖∞ /δ)) iterations would be executed in the
while loop in Algorithm 5, we are done.

C ADDITIONAL EMPIRICAL SETTINGS AND RESULTS

In this section, we report additional empirical settings in Appendix C.1 and detailed empirical results
in Appendices C.2 and C.3.

C.1 EMPIRICAL SETTINGS

Datasets. We summarize the dimensions and percentage of non-zero entries in the input matrices
in Table 5. It is important to note that more than 70% of these input covariance matrices are dense.
We utilize these matrices to evaluate the practicality of our approach, demonstrating its effectiveness
irrespective of whether the input matrix has a block-diagonal structure.

Parameters. (i) When integrated Algorithm 5 with Branch-and-Bound algorithm: For experiments
involving datasets CovColon (Alon et al., 1999), LymphomaCov1 (Alizadeh et al., 1998), Reddit1500

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: Dimensions for each dataset and percentage of non-zero entries.

Dataset Dimension (d) Percentage of non-zero entries

CovColonCov 500 100%
LymphomaCov1 500 100%
Reddit1500 1500 5.30%
Reddit2000 2000 6.20%
LeukemiaCov 3571 100%
LymphomaCov2 4026 100%
ProstateCov 6033 100%
ArceneCov 10000 100%
GLI85Cov 22283 100%
GLABRA180Cov 49151 100%
DorotheaCov 100000 77.65%

and Reddit2000 (Dey et al., 2022b), we use the method described in Remark 5: first set ε̄ := σ̄
√

log d,
where σ̄ is estimated using Algorithm 4 with C := 1, α := 0.5, u := 1. Additionally, we
set parameters a := 0.01, b := 1000, d0 := 40, and δ := 0.1. For experiments with datasets
LeukemiaCov, LymphomaCov2, and ProstateCov (Dettling, 2004), and ArceneCov (Guyon et al.,
2007), we adjust the parameters to ε̄ := 1, a := 0, b := ‖A‖∞, d0 := 40, and δ := 0.01. This
adjustment was made after observing that the ε̄ estimated from Algorithm 5 resulted in significantly
longer runtimes for these large-scale datasets, whereas a simpler, fixed value of ε̄ proved to be more
effective. (ii) When integrated Algorithm 5 with Chan’s algorithm: We choose the parameter ε̄ := 1,
a := 0, b := ‖A‖∞, d0 := 2k (twice the sparsity constant), and δ := 0.01 · ‖A‖∞.

Solution improvement. For experiments conducted, we add a very simple step in Algorithm 5
- solving PCA exactly after each xε is obtained, for matrix AS,S , where S := supp(xε). This
additional step is efficient for small k, and could further decrease the approximation error.

Compute resources. We conducted all tests on a computing cluster equipped with 36 Cores (2x
3.1G Xeon Gold 6254 CPUs) and 768 GB of memory.

C.2 EMPIRICAL RESULTS WHEN INTEGRATED WITH BRANCH-AND-BOUND ALGORITHM

In this section, we provide the detailed empirical results of our framework when integrated with
Branch-and-Bound algorithm (previously summarized in Table 3), in Table 6. We also summarized
the average approximation errors and average speedup factors for with respect to k in Table 7. In
Appendices C.2.1 and C.2.2, we discuss improvements to Algorithm 5 to obtain smaller approximation
errors and higher speedup factors.

From the data presented in Table 6, it is evident that our framework achieves exceptional performance
metrics. The median approximation error is 0, with the 90th percentile approximation error not
exceeding 3.85%. Additionally, the median speedup factor is recorded at 39. These statistics further
underscore the efficiency and effectiveness of our framework, demonstrating its capability to provide
substantial computational speedups while maintaining small approximation errors.

From the data in Table 7, it is clear that our framework consistently obtains significant computational
speedups across a range of settings. Notably, it achieves an average speedup factor of 6.1 for k = 3,
with this factor increasing dramatically to over 69 for k ≥ 5. An observation from the analysis is the
relationship between k and performance metrics: although the speedup factor increases with larger k,
there is a corresponding rise in the average approximation errors. Specifically, for k = 3 and k = 5,
the average errors remain exceptionally low, under 0.01%, but they escalate to 3.2% for k = 10 and
5.4% for k = 15. Even after adjusting for outlier impacts from the LymphomaCov2 datasets, the
trend persists, with average errors for k = 10 and k = 15 at 0.43% and 1.17%, respectively. This
indicates a consistent pattern of increased approximation errors as k grows, which is aligned with
Theorem 3, despite the significant gains in speed.

Although the overall performance of our framework looks promising, we observe that the performance
of our framework in some instances presented in Table 6 is not ideal. For example, for the instances
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Table 6: Comparison of runtime and objective values on real-world datasets, between Branch-and-
Bound and Algorithm 5 integrated with Branch-and-Bound. d is the dimension of Sparse PCA
problem, and k is the sparsity constant. We set the time limit to 3600 seconds for each method.
Approximation errors between two methods, and speedup factors are reported. We note that the
objective value for ArceneCov is scaled by 105.

Dataset d k Branch-and-Bound Ours Error (%) Speedup

Time Objective Time(s) Objective

CovColonCov 500 3 8 1059 3 1059 0 2.67
CovColonCov 500 5 8 1646 3 1646 0 2.67
CovColonCov 500 10 3600 2641 12 2641 0 300
CovColonCov 500 15 3600 3496 11 3496 0 327.27
LymphomaCov1 500 3 11 2701 4 2701 0 2.75
LymphomaCov1 500 5 44 4300 5 4300 0 8.8
LymphomaCov1 500 10 3600 6008 5 5911 1.64 720
LymphomaCov1 500 15 3600 7628 16 7593 0.46 225
Reddit1500 1500 3 75 946 13 946 0 5.77
Reddit1500 1500 5 3600 980 18 980 0 200
Reddit1500 1500 10 3600 1045 120 1044 0.10 30
Reddit1500 1500 15 3600 1082 896 1081 0.09 4.02
Reddit2000 2000 3 412 1311 25 1311 0 16.48
Reddit2000 2000 5 3600 1397 29 1396 0.07 124.14
Reddit2000 2000 10 3600 1523 28 1521 0.13 128.57
Reddit2000 2000 15 3600 1605 39 1595 0.63 92.31
LeukemiaCov 3571 3 280 7.1 22 7.1 0 12.73
LeukemiaCov 3571 5 3600 10.2 22 10.2 0 163.64
LeukemiaCov 3571 10 3600 17.2 23 17.0 1.18 156.52
LeukemiaCov 3571 15 3600 21.8 26 20.8 4.81 138.46
LymphomaCov2 4026 3 210 40.6 32 40.6 0 6.56
LymphomaCov2 4026 5 144 63.6 32 63.6 0 4.5
LymphomaCov2 4026 10 3600 78.2 35 69.2 13.01 102.86
LymphomaCov2 4026 15 3600 93.4 69 69.2 34.97 52.17
ProstateCov 6033 3 102 8.1 64 8.1 0 1.59
ProstateCov 6033 5 3600 12.9 65 12.9 0 55.38
ProstateCov 6033 10 3600 24.3 75 24.3 0 48
ProstateCov 6033 15 3600 35.0 74 34.4 1.57 48.65
ArceneCov 10000 3 88 3.3 376 3.3 0 0.23
ArceneCov 10000 5 248 5.5 388 5.5 0 0.64
ArceneCov 10000 10 3600 10.8 377 10.8 0 9.55
ArceneCov 10000 15 3600 15.3 416 15.2 0.66 8.65

Table 7: Summary of average approximation errors and average speedup factors for each k, when
integrated our framework with Branch-and-Bound algorithm. The standard deviations are reported in
the parentheses.

k Avg. Error (Std. Dev) Avg. Speedup (Std. Dev)

3 0.00 (0.00) 6.10 (5.73)
5 0.01 (0.03) 69.97 (81.23)
10 3.20 (5.11) 186.94 (234.14)
15 5.40 (12.05) 112.07 (113.47)

k = 10 and k = 15 in the LymphomaCov2 dataset, our framework yields notably large approximation
errors. Additionally, we find that on ArceneCov dataset, specifically for k = 3 and k = 5, Algorithm 5
operates slower than the Branch-and-Bound algorithm. In the following sections, we show that
performance of our framework on these instances can be greatly improved by fine-tuning Algorithm 5.
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C.2.1 IMPROVING APPROXIMATION ERRORS

In the LymphomaCov2 dataset, instances with k = 10 and k = 15 exhibit notably large approximation
errors when using Algorithm 5. This issue primarily arises because the maximum block size constraint
of d0 = 40 is insufficient to include the support of the optimal solution for SPCA for these two
instances, leading to sub-optimal solutions. In Table 8, we summarize the numerical results when
increasing d0 to 50 and 60. We observe a significant improvement on the approximation error, going
from an average of 12.0% to less than 1%, at the cost of slightly lowering the speedups.

Table 8: Comparison of errors and speedups for different d0 values across LymphomaCov2 dataset.

Dataset d k d0 = 40 d0 = 50 d0 = 60

Error Speedup Error Speedup Error Speedup

LymphomaCov2 4026 3 0.0 6.6 0.0 5.8 0.0 5.7
LymphomaCov2 4026 5 0.0 4.5 0.0 4.4 0.0 4.2
LymphomaCov2 4026 10 13.0 102.9 1.2 83.7 0.3 90.0
LymphomaCov2 4026 15 35.0 52.2 3.0 43.9 2.4 19.5
Overall 12.0 41.5 1.0 34.4 0.7 29.8

C.2.2 IMPROVING SPEEDUP FACTORS

In ArceneCov dataset, Algorithm 5 exhibits relatively low speedup factors compared to other datasets.
This slower performance is due to the fact that Algorithm 5 necessitating numerous calls to Al-
gorithm 3 compared to its solving process with other datasets, thereby significantly extending the
runtime. We managed to improve the performance of Algorithm 5 on the ArceneCov dataset by
the following two simple improvements on Algorithm 5: (i) We set an extra stopping criteria on
Algorithm 5, which breaks the while loop as soon as a problem with largest block size d0 has been
solved, and (ii) We set the tolerance parameter δ to 0.01 · ‖A‖∞ instead of 0.01. By making these
two modifications, we manage to improve the average speedup factor from 4.77 to 12.9, and also
improve the approximation from 2.55% to 0%. We summarize the results in Table 9.

Table 9: Comparison of errors and speedups between Algorithm 5 and refined Algorithm 5.

Dataset d k Algorithm 5 Refined Algorithm 5

Error Speedup Error Speedup

ArceneCov 10000 3 0.0 0.2 0.0 0.6
ArceneCov 10000 5 0.0 0.6 0.0 1.8
ArceneCov 10000 10 0.0 9.6 0.0 27.7
ArceneCov 10000 15 0.7 8.7 0.0 21.4
Overall 0.2 4.8 0.0 12.9

C.3 EMPIRICAL RESULTS WHEN INTEGRATED WITH CHAN’S ALGORITHM

In this section, we provide the detailed numerical test results of our framework when integrated with
Chan’s algorithm (previously summarized in Table 4), in Table 10. We also summarized the average
approximation errors and average speedup factors for with respect to k in Table 11.

In Table 10, we once again demonstrate the substantial speedup improvements our framework
achieves when integrated with Chan’s algorithm. The results show a median approximation error of
only 0.38%, with the maximum approximation error not exceeding 2.73%, and a median speedup
factor of 5.37. We observe that the speedup factor grows (linearly) as the dimension of the dataset
goes up, highlighting the efficacy of our framework, especially in large datasets. Notably, in all
instances within the DorotheaCov dataset, and the instance k = 1000 in GLI85Cov dataset, our
framework attains negative approximation errors, indicating that it consistently finds better solutions
than Chan’s algorithm alone. These instances provide tangible proof of our framework’s potential to
find better solutions, as highlighted in Remark 2.
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In Table 11, we do not observe an increase in speedup factors as k increases. This phenomenon can be
attributed to the runtime of Chan’s algorithm, which isO(d3) and independent of k. Consequently, as
predicted by Proposition 1, the speedup factors do not escalate with larger values of k. Additionally,
unlike the trends noted in Table 7, the average errors do not increase with k. This deviation is likely
due to Chan’s algorithm only providing an approximate solution with a certain multiplicative factor:
As shown in Theorem 3, our algorithm has the capability to improve this multiplicative factor at
the expense of some additive error. When both k and d are large, the benefits from the improved
multiplicative factor tend to balance out the impact of the additive error. Consequently, our framework
consistently achieves high-quality solutions that are comparable to those obtained solely through
Chan’s algorithm, maintaining an average error of less than 0.55% for each k.

Finally, we note that Chan’s algorithm is considerably more scalable than the Branch-and-Bound
algorithm. The statistics underscore our framework’s ability not only to enhance the speed of scalable
algorithms like Chan’s, but also to maintain impressively low approximation errors in the process.

Table 10: Comparison of runtime and objective values on real-world datasets, between Chan’s
algorithm and Algorithm 5 integrated with Chan’s algorithm. d is the dimension of Sparse PCA
problem, and k is the sparsity constant. We note that the objective value for GLI85Cov is scaled
by 109 and that for GLABRA180Cov is scaled by 108. The error being negative means that our
framework finds a better solution than the standalone algorithm.

Dataset d k Chan’s algorithm Ours Error Speedup

Time Objective Time Objective

ArceneCov 10000 200 228 91.7 186 91.3 0.44 1.23
ArceneCov 10000 500 239 140.4 187 137.5 2.07 1.28
ArceneCov 10000 1000 249 190.4 176 185.2 2.73 1.41
ArceneCov 10000 2000 256 233.3 199 232.9 0.17 1.29
GLI85Cov 22283 200 2836 35.8 847 34.9 2.51 3.35
GLI85Cov 22283 500 2728 38.8 923 38.8 0.00 2.96
GLI85Cov 22283 1000 2869 39.9 993 40.7 -2.01 2.89
GLI85Cov 22283 2000 2680 42.3 1000 42.1 0.47 2.68
GLABRA180Cov 49151 200 35564 44.6 3796 44.1 1.12 9.37
GLABRA180Cov 49151 500 33225 60.4 4157 60.2 0.33 7.99
GLABRA180Cov 49151 1000 30864 70.5 4171 70.0 0.71 7.40
GLABRA180Cov 49151 2000 29675 78.1 3840 77.4 0.90 7.73
DorotheaCov 100000 200 246348 3.25 15864 3.31 -1.85 15.53
DorotheaCov 100000 500 246539 4.94 17603 4.96 -0.40 14.01
DorotheaCov 100000 1000 244196 6.23 16381 6.28 -0.80 14.91
DorotheaCov 100000 2000 255281 7.18 17760 7.21 -0.42 14.37

C.4 EMPIRICAL RESULTS UNDER MODEL 1

In this section, we report the numerical results in Model 1 using Algorithm 3 with a threshold obtained
by Algorithm 4. In Model 1, we set E to have i.i.d. centered Gaussian variables with a standard
deviation σ = 0.1 in its lower triangle entries, i.e., Eij for 1 ≤ i ≤ j, and set Eij = Eji for i 6= j to

Table 11: Summary of average approximation errors and average speedup factors for each k, when
integrated our framwork with Chan’s algorithm. The standard deviations are reported in the parenthe-
ses.

k Avg. Error (Std. Dev) Avg. Speedup (Std. Dev)

200 0.55 (1.82) 7.37 (6.44)
500 0.50 (1.09) 6.56 (5.73)

1000 0.16 (2.04) 6.65 (6.07)
2000 0.28 (0.55) 6.52 (5.92)
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make it symmetric. We generate 30 independent random blocks in Ã, each of size 20, with each block
defined as M>i M/100, where M ∈ R100×20 has i.i.d. standard Gaussian entries (which implies that
u = 1 in Model 1).

We run Algorithm 4 with C = 1, α = 0.7, and u = 1, obtaining the threshold ε̄ as the output.
Subsequently, we execute Algorithm 3 with Ã, k ∈ {2, 3, 5, 7, 10}, the Branch-and-Bound algorithm,
and ε̄. We denote the solution output by Algorithm 3 as xOurs.

In Table 12, we compare Algorithm 3 integrated with Branch-and-Bound algorithm, with vanilla
Branch-and-Bound algorithm. We report the optimality gap, speed up factor, and the value of ε̄
outputted by Algorithm 4. The optimality gap is defined as:

Gap := ObjBB − ObjOurs,

where ObjBB := x>BBÃxBB, and xBB is the output of the Branch-and-Bound algorithm with input
(Ã, k), and where ObjOurs is the objective value y>Ãy in Proposition 2.

To ensure reproducibility, we set the random seed to 42 and run the experiments ten times for each k.

Table 12: Summary of average optimality gaps, average speedup factors, and average threshold ε̄ for
each k, when integrated our framework with Branch-and-Bound algorithm. The standard deviations
are reported in the parentheses. The time limit for Branch-and-Bound is set to 600 seconds.

k Avg. Gap (Std. Dev) Avg. Spdup (Std. Dev) Avg. ε̄ (Std. Dev)

2 0.30 (0.10) 17.95 (13.28) 0.96 (0.01)
3 0.36 (0.12) 91.32 (66.10) 0.96 (0.01)
5 0.48 (0.13) 1856.68 (781.22) 0.96 (0.01)
7 0.59 (0.14) 1315.56 (837.27) 0.96 (0.01)
10 0.65 (0.13) 1837.19 (573.64) 0.96 (0.01)

From Table 12, we observe that the average optimality gap increases as k grows. Additionally, ε̄
remains relatively stable across different values of k, as the calculation of ε̄ does not depend on k at
all. The optimality gap is much smaller than the predicted bound 4k · ε̄, providing computational
verification of the bound proposed in Proposition 2. The speedup factor is exceptionally high, often
exceeding a thousand when k ≥ 5.
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