
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPEECHECK: SELF-CONTAINED SPEECH INTEGRITY
VERIFICATION VIA EMBEDDED ACOUSTIC FINGER-
PRINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Advances in audio editing have made public speeches increasingly vulnerable to
malicious tampering, raising concerns for social trust. Existing speech tampering
detection methods remain insufficient: they often rely on external references or
fail to balance sensitivity to attacks with robustness against benign operations like
compression. To tackle these challenges, we propose SpeeCheck, the first self-
contained speech integrity verification framework. SpeeCheck can (i) effectively
detect tampering attacks, (ii) remain robust under benign operations, and (iii) en-
able direct verification without external references. Our approach begins with
utilizing multiscale feature extraction to capture speech features across different
temporal resolutions. Then, it employs contrastive learning to generate finger-
prints that can detect modifications at varying granularities. These fingerprints
are designed to be robust to benign operations, but exhibit significant changes
when malicious tampering occurs. To enable self-contained verification, these
fingerprints are embedded into the audio itself via a watermark. Finally, dur-
ing verification, SpeeCheck retrieves the fingerprint from the audio and checks it
with the embedded watermark to assess integrity. Extensive experiments demon-
strate that SpeeCheck reliably detects tampering while maintaining robustness
against common benign operations. Real-world evaluations further confirm its
effectiveness in verifying speech integrity. The code and demo are available at
https://speecheck.github.io/SpeeCheck/.

1 INTRODUCTION

Audio serves as an important information carrier that is widely used in news reporting, legal evi-
dence, and public statements. However, the rapid development of audio editing tools (Wang et al.,
2023) and text-to-speech (TTS) generation models (Wang et al., 2017; Ping et al., 2018; Huang
et al., 2023; Du et al., 2024; Chen et al., 2024) has significantly lowered the technical barriers for
speech manipulation and synthesis. While these techniques benefit content creation and entertain-
ment, they also enable attackers to tamper speech content with ease. Public speeches and statements,
especially made by influential figures, have become prime targets for attacks due to their huge so-
cial impact (Reuters, 2023; Post, 2024). Tampered speech can cause the spread of misinformation,
undermine public trust, and even threaten social stability. Moreover, the prevalence of social me-
dia platforms accelerates the circulation of tampered audio, posing challenges to ordinary people in
identifying authenticity from numerous sources. Currently, verifying the truth often requires cross-
checking information across multiple social media platforms, a process that is time-consuming and
prolongs the spread of misinformation. These challenges highlight a critical need: Is it possible
to proactively protect publicly shared speech against tampering attacks while still allowing it to be
freely stored, distributed, and reshared?

Existing approaches against speech tampering can be categorized into two groups: passive detec-
tion and proactive protection. Passive detection methods (Rodrı́guez et al., 2010; Yang et al., 2008;
Pan et al., 2012; Blue et al., 2022; Leonzio et al., 2023) rely on deep binary classifiers trained to
identify artifacts introduced by tampering. While they show reasonable performance against known
attacks, their sensitivity to unseen or sophisticated manipulations remains limited. Moreover, pas-
sive detection alone cannot verify whether the speech content originates from the claimed speaker,

1

https://speecheck.github.io/SpeeCheck/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Upload

Benign Ops.

(e.g., compression)

Tampering Att.

TAMPERED

LEGIT

The Public
Original Speakers

SpeeCheck

Before publishing After publishing Integrity verification

+

Legitimate users

Malicious attackers

Figure 1: System overview of the proposed SpeeCheck.

leaving systems vulnerable to impersonation-based attacks (Khan et al., 2022). Proactive protection
methods ensure content integrity by embedding auxiliary information into the audio and extracting
it during verification. Common approaches include cryptographic hashing (Steinebach & Dittmann,
2003) and fragile watermarking (Renza et al., 2018). Hash-based methods convert audio into fixed-
length digests, which can reliably detect even minor alterations. However, they require transmitting
or retrieving external reference hashes, preventing independent verification from the published au-
dio. Fragile watermarking, on the other hand, embeds a highly sensitive watermark into the audio,
enabling integrity verification without references. However, they can be unintentionally removed
by benign operations, which restricts applicability in real-world distribution scenarios. By contrast,
robust watermarking (Roman et al., 2024; Liu et al., 2024; Chen et al., 2023) is designed to sur-
vive such benign processing and is widely used for copyright protection. Yet, it is not suitable for
integrity verification, as the watermark may remain detectable after malicious tampering.

To address the issues above, a desired speech verification design should have the following proper-
ties: (1) Convenient to use: the integrity of the speech can easily be verified by the general public
without requiring external references. (2) Sensitive to tampering attacks: it can reliably detect
any malicious edits, including subtle semantic (e.g., can⇔ cannot) or speaker-related (e.g., timbre)
changes. (3) Robust to benign operations: it should be robust to typical benign audio operations,
especially commercial-off-the-shelf codecs (e.g., AAC in Instagram/TikTok), ensuring usability in
sharing and distribution. Therefore, in this paper, we propose SpeeCheck, a proactive acoustic
fingerprint-based speech verification design that jointly utilizes semantic content and speaker iden-
tity. Specifically, SpeeCheck uses multiscale feature extraction to capture speech features across
different temporal resolutions. Then, it employs contrastive learning to generate fingerprints that
can detect modifications at varying granularities. These fingerprints are designed to be robust to be-
nign operations, but exhibit significant changes when malicious tampering occurs. To enable speech
verification in a self-contained manner, the generated fingerprints are then embedded into the speech
signal by segment-wise watermarking. Without a copy of the original authentic speech, SpeeCheck
can retrieve the fingerprint from the published audio and check it with the embedded watermark to
verify the integrity. Our main contributions are summarized as follows.

• We propose SpeeCheck, the first self-contained integrity verification framework for speech.
It enables users to verify speech integrity without accessing original speech recordings.

• To enable self-contained verification, we leverage audio watermarking to embed discrimi-
native fingerprints into the speech signal, allowing for verifying the integrity only from the
watermarked audio.

• We develop a five-step algorithm that extracts multiscale features and applies contrastive
learning to generate binary fingerprints, which are robust to benign operations yet sensitive
to malicious manipulations.

• We validate SpeeCheck through extensive experiments on public speech datasets and a real-
world dataset constructed for this study. The evaluation demonstrates high effectiveness in
detecting diverse tampering attacks while maintaining robustness against benign operations
in practical scenarios.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

De
ns

ity

Benign
Malicious
Cross

(a)

0 50 100 150
Hamming Distance

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

= 127.7, = 9.9
= 127.5, = 10.6
= 128.0, = 8.0

Benign
Malicious
Cross

(b)

Figure 2: Probability distributions: (a) wav2vec embedding similarity to the original audio under
different modifications; (b) SHA256 Hamming distance to the original audio under different modi-
fications.

2 MOTIVATION

2.1 PROBLEM DEFINITION

As shown in Figure 1, the scenario considered in our study includes four parties: 1) Original speak-
ers, such as public institutions and celebrities, who publish statements or speeches on social media
platforms. 2) Legitimate users, who help disseminate these audio recordings by downloading or
reposting them. 3) Malicious attackers, which employ audio editing or voice conversion techniques
to alter either the semantic content or the speaker’s identity. 4) The public, who are exposed to con-
flicting audio sources, requires a reliable method to verify the integrity of a given speech recording.

2.2 MALICIOUS AND BENIGN AUDIO OPERATIONS

We define malicious audio tampering as intentional audio modifications that alter the semantic con-
tent or speaker identity. Typical malicious operations include audio splicing, deletion, substitution,
silencing, text-to-speech (TTS) synthesis, and voice conversion. In contrast, benign operations refer
to common audio transformations that occur during legitimate processes such as storage, transmis-
sion, or distribution. Examples include compression, reencoding, resampling, and noise suppres-
sion, none of which impact the semantic content or speaker identity. A detailed distinction between
malicious and benign audio operations, along with specific examples, is provided in Appendix B.2.

2.3 LIMITATIONS OF ACOUSTIC FEATURE SIMILARITY

An intuitive approach for speech verification is to compare the acoustic similarity between the pub-
lished audio and its original version. Following this intuition, we analyzed similarity scores be-
tween the original audio and three types of modifications: benignly processed variants (“Benign”),
maliciously modified variants (“Malicious”), and unrelated audio samples (“Cross”). Figure 2a
presents cosine similarity distributions computed using wav2vec embeddings (Baevski et al., 2020).
The significant overlap between benign and malicious similarity distributions demonstrates that
acoustic feature similarity alone is insufficient to determine the types of modification operations.
Similar results are observed using traditional acoustic feature Mel-frequency cepstral coefficients
(MFCC) (Davis & Mermelstein, 1980), detailed in Appendix C.3. This limitation arises because ma-
licious operations, even significantly altering the content, may introduce minimal acoustic changes.
For instance, modifying the phrase “do not” to “do” in a 20-second speech affects only 0.2 seconds,
and similarity remains more than 99%, while causing substantial semantic alteration. Moreover, this
method requires access to the authentic audio, which is impractical in real-world scenarios. These
limitations highlight two key challenges:

Challenge 1: Insufficient sensitivity to semantic tampering attacks. Acoustic feature-based sim-
ilarity methods fail to distinguish benign operations from malicious ones, because they are not sen-
sitive enough to semantic tampering attacks.

Challenge 2: Dependence on the original authentic audio. Acoustic similarity assessments re-
quire the original authentic audio as a reference, which is not always applicable in practice.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1011001101011010

……

256 bits

𝑧!

utterance-level vector
binary

fingerprint

extracted fingerprint

watermarked speech
extracted watermark

Hamming distance
less than threshold?

TAMPERED

LEGIT

Fingerprint Generation

Integrity Verification

Multiscale 
Feature Extractor

watermarked speech

Frozen Trainable

𝑧"

𝑧

close

far

Update

BinarizationAttentive Pooling Projector

fingerprint

fingerprint

Watermark Embedder

Fingerprint Extractor

original speech

Benign Operations
(Compression etc.)

Tampering Attacks
(Alter Semantic Info, 

or Speaker ID.)

1

Feature 
Encoder

Contrastive 
Loss

Watermark Extractor

binary fingerprint

2 3 4 5

Figure 3: A sketch of the proposed SpeeCheck design including speech fingerprint generation (top)
and integrity verification (bottom).

2.4 LIMITATIONS OF CRYPTOGRAPHIC HASHING

Given these limitations, another potential verification method is cryptographic hashing (Menezes
et al., 2018), which generates a digest for each audio file. Its extreme sensitivity enables the de-
tection of even minor changes, making it theoretically effective against tampering. However, this
sensitivity also captures benign operations that do not affect semantic content or speaker identity.
Figure 2b illustrates the significant Hamming distances between original audio and benign, mali-
cious, or unrelated variants. Consequently, cryptographic hashing fails to differentiate benign oper-
ations from malicious tampering. Moreover, cryptographic hashing requires external reference hash
values for verification, introducing additional practical complexity. These limitations expose two
key challenges:

Challenge 3: Lack of robustness to benign operations. Cryptographic hashes are overly sensitive,
changing significantly even under benign operations, thus limiting practical usability.

Challenge 4: Dependence on external reference hash values. Verification using hashes depends
on externally stored hash values, introducing extra overhead and inconvenience for speech forward-
ing on the online platforms.

3 METHODOLOGY

3.1 SPEECHECK OVERVIEW

To address these challenges, we propose SpeeCheck, a proactive speech integrity verification design,
which is (i) sensitive to tampering attacks, (ii) robust to benign operations, and (iii) convenient to
use by the public since it verifies the published speech audio’s integrity in a self-contained manner.
As the sketch shown in Figure 3, SpeeCheck consists of two stages: fingerprint generation and
dual-path integrity verification.

The speech fingerprint generation in SpeeCheck has five steps: (1) Frame-Level Feature Encoding
(Speech to Representation): raw speech is encoded into frame-level representations that preserve
acoustic information; (2) Multiscale Acoustic Feature Extraction (Representation to Vector): the
frame-level representations are first processed into contextual features, then aggregated at multiple
temporal resolutions, and finally attentively pooled into a fixed-dimensional vector that summarizes
the entire utterance; (3) Contrastive Fingerprint Training (Vector to Fingerprint): the vector is opti-
mized to be robust to benign operations, and sensitive to tampering attacks using contrastive learn-
ing; (4) Binary Fingerprint Encoding (Fingerprint to Bit): the trained fingerprint is discretized into
a binary representation; (5) Segment-Wise Watermarking (Bit to Watermark): the binary fingerprint

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is embedded into the original audio through segment-wise watermarking, making the fingerprint
self-contained.

The integrity verification in SpeeCheck independently performs two parallel paths on the published
audio: (1) regenerating the fingerprint via the same extraction pipeline, and (2) extracting the em-
bedded watermark via the watermark decoder. The two resulting binary codes are then compared
using Hamming distance to determine whether the speech has been attacked.

3.2 FINGERPRINT GENERATION AND WATERMARKING

Step 1. Frame-Level Feature Encoding (Speech to Representation) We utilize the pre-trained
wav2vec 2.0 model (Baevski et al., 2020) to extract frame-level representations from the original au-
dio before publishing. This step serves as a necessary preprocessing stage for fingerprint generation.
It converts continuous waveform signals into structured sequences of frame-level representations
that preserve essential acoustic information. These representations have demonstrated effectiveness
in downstream tasks such as automatic speech recognition (Baevski et al., 2021) and speaker verifi-
cation (Fan et al., 2021). Formally, the feature encoder ε : X → Z maps raw audio waveforms X
to a sequence of latent representations z1, z2, . . . , zT , where each zt ∈ Rdz denotes the frame-level
acoustic feature at time t, and T is the total number of output frames.

Step 2. Multiscale Acoustic Feature Extraction (Representation to Vector). Given the frame-
level representations z1, z2, . . . , zT obtained from Step 1, this step constructs a fixed-dimensional
vector that summarizes the speech across different temporal granularities. The multiscale feature
extractor F consists of two components: (a) a bidirectional long short-term memory (BiLSTM)
network that transforms the input frame-level representations into contextual hidden states, and (b)
a multiscale pooling operation that averages the hidden states over phoneme-, word-, and phrase-
level windows (size 20, 50, and 100, respectively) , producing a sequence of multiscale features
h1,h2, . . . ,hK (see Appendix B.3 for examples).

To summarize these features into an utterance-level vector, we apply self-attentive pooling (Lin et al.,
2017). This mechanism assigns higher weights to more informative components, with attention
weight computed as: wn = exp(ϕ(hn))∑K

t=1 exp(ϕ(ht))
, where ϕ(·) is a feedforward network. The weighted

sum yields a fixed-dimension vector: v′ =
∑K

n=1 wn ·hn, which is referred to as the utterance-level
vector. To obtain a more compact representation for fingerprint optimization, a projection module is
applied to reduce the dimensionality of v′, yielding the final fingerprint vector v ∈ Rdv .

Step 3. Contrastive Fingerprint Training (Vector to Fingerprint). Given the fixed-length vector
v obtained from Step 2, we optimize it to serve as a distinctive audio fingerprint that is robust to
benign operations and sensitive to malicious tampering attacks. To this end, we adopt contrastive
learning (Oord et al., 2018) to guide the training of all preceding modules. During the training, a
batch of original speech samples is randomly selected, where each sample serves as an anchor. For
each anchor, we generate: positive pairs, consisting of the anchor and its benign variants (e.g., com-
pression), and negative pairs, consisting of the anchor and its tampered variants (e.g., substitution).
Detailed operations are listed in Appendix B.2. The contrastive loss is defined as

Lc = −
1

B

B∑
i=1

1

P

P∑
j=1

log
exp

(
ṽOrig.⊤
i ṽBenign

i,j /τ
)

N∑
k=1, k ̸=i

exp
(
ṽOrig.⊤
i ṽi,k/τ

) , (1)

where B is the number of anchors in the batch, P is the number of benign variants per anchor,
and N denotes the total number of comparison samples for each anchor, including its own benign
and tampered variants as well as embeddings from other anchors in the batch. τ is the tempera-
ture parameter. ṽOrig.

i denotes the L2-normalized embedding of the i-th anchor, ṽBenign
i,j denotes the

embedding of its j-th benign variant, and ṽi,k enumerates all embeddings in the batch, including
benign, tampered and unrelated samples.

This contrastive learning above encourages the model to bring the anchor closer to its benign variants
while pushing it away from tampered and unrelated samples in the embedding space. As a result,
the fixed-length vector is optimized to serve as a distinctive audio fingerprint that is robust to benign
operations while remaining sensitive to malicious tampering attacks.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 4. Binary Fingerprint Encoding (Fingerprint to Bit). To enable self-contained verifica-
tion, we embed the generated fingerprint into the audio signal as a watermark. Since watermarking
schemes typically support binary payloads and inevitably incur information loss, we design the fin-
gerprint representation to preserve its discriminative power even after binarization. Specifically, we
convert the continuous fingerprint vector v ∈ Rdv into a binary code b ∈ {−1,+1}d, which is more
suitable for compact storage and fast retrieval via bit-wise comparison. To encourage the output to
approach the bipolar extremes of -1 and +1 and thus reduce quantization error, we apply a tanh
activation at the final projection layer. This is followed by a sign function to obtain the final bi-
narized output. As demonstrated in Section 4.2, the binarized fingerprint retains its discriminative
characteristics of v, i.e., robust to benign operations while sensitive to tampering attacks.

Step 5. Segment-Wise Watermarking (Bit to Watermark). To enable self-contained verifica-
tion, the binary fingerprint must be embedded directly into the speech signal. We adapt the robust
watermarking method AudioSeal (Roman et al., 2024) for this purpose. However, a key challenge
arises from our high-capacity requirement. While AudioSeal is designed for short watermarks (i.e.,
16 bits) for copyright protection, our task requires embedding much longer fingerprints (e.g., 256
bits). To meet this requirement, we extend the original AudioSeal with a segment-wise embedding
strategy. Given an input waveform X of duration T seconds and its binary fingerprint b, both are
divided into N non-overlapping segments:

X = [X (1), . . . ,X (N)] and b = [b(1), . . . ,b(N)], (2)

where each X (n) spans T/N seconds and each b(n) contains d/N bits. For each audio segment
X (n), we embed b(n) into the Encodec embedding space and generate a watermark signal δ(n). The
watermarked segment is then formed as: X̃ (n) = X (n) + δ(n). Finally, the watermarked segments
[X̃ (1), . . . , X̃ (N)] are concatenated, yielding the final self-verifiable audio.

Notably, the watermark incurs only subtle perturbations. Our experiments confirm that the acoustic
fingerprint generated from the watermarked audio X̃ remains consistent with the original fingerprint,
while the embedded bits can still be reliably extracted without degradation.

3.3 DUAL-PATH SPEECH INTEGRITY VERIFICATION

SpeeCheck employs a dual-path mechanism to assess the integrity of the published speech X̃ :

Path A: Fingerprint Generation from Published Speech. The published speech audio is pro-
cessed using the same fingerprint generation pipeline described before. The fingerprint b′ is com-
puted as b′ = sign(F(ε(X̃ ))), where ε and F denote the feature encoder and multiscale extractor,
respectively, and sign(·) denotes the final binarization function.

Path B: Watermark Extraction. The published speech audio X̃ is processed in the inverse manner
of Step 5 to decode the embedded watermark (i.e., the original binary fingerprint). From each
segment X̃ (n), we extract the bit chunk b̂(n) using the watermark decoder, and then reconstruct the
full watermark as b̂ = [b̂(1), b̂(2), . . . , b̂(N)].

Finally, the integrity of the published audio is verified by comparing the generated fingerprint b′

with the extracted watermark b̂. This is done by computing the Hamming distance as follows.

dH(b′, b̂) ≤ θ ⇒ Accept; otherwise Reject,

where θ is a decision threshold set based on the validation set from public datasets.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. To train and evaluate the performance of SpeeCheck, we use VoxCeleb1 (Nagrani et al.,
2017), which includes over 150,000 utterances from 1,251 celebrities. These audio samples are
collected from interviews and public videos, providing conditions that reflect real-world speech
recordings. We further employ the test subset from LibriSpeech (Panayotov et al., 2015) dataset to
assess the model generalization. Furthermore, to validate SpeeCheck’s effectiveness under authentic

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

scenarios, we build a real-world speech dataset and evaluated it after fine-grained editing and distri-
bution across major social media platforms. More details about the datasets and the preprocessing
steps are provided in Appendix C.2.

Implementation details. (i) Fingerprint model: We use Wav2Vec2.0 Base model1 as the acoustic
feature extractor. A two-layer BiLSTM with a hidden size of 512 follows the feature extractor.
Multiscale pooling is used with window sizes of 20, 50, and 100 frames with a stride of 10 frames. A
two-layer projection head then maps features into a 256-dimensional vector. (ii) Watermark model:
AudioSeal model2 is used to embed and extract fingerprints as watermark payloads. To improve the
watermarking capacity, we divide both the carrier audio and the fingerprint into 16 segments. Each
segment carries a 16-bit watermark, leading to a total payload of 256 bits per audio sample. (iii)
Training: We exploit benign and malicious operations (see Appendix B.2) and the original audio
samples for contrastive learning, with temperature set as 0.05. A cosine annealing learning rate
schedule is used, gradually decreasing the learning rate from 1×10−3 to 1×10−5 over the training.

Evaluation Metrics. We evaluate SpeeCheck as a binary classification task, where benign opera-
tions are treated as positive and malicious ones as negative. Evaluation metrics include true positive
rate (TPR), false positive rate (FPR), true negative rate (TNR), false negative rate (FNR), equal error
rate (EER), and area under the curve (AUC) (see Appendix C.2). The decision is made by comparing
the dual-path bit error with a threshold (θ = 42), which is determined on the validation set.

Table 1: Results of benign operation (positive) acceptance on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TPR FPR AUC EER TPR FPR AUC EER

Compression 99.80 1.60 99.84 1.40 97.00 2.40 99.51 2.80 ✓ ✓
Reencoding 99.60 1.20 99.86 0.60 98.60 3.40 99.80 2.20 ✓ ✓
Resampling 95.80 0.00 99.96 1.30 94.60 2.20 99.35 3.20 ✓ ✓
Noise suppression 99.60 0.80 99.95 0.30 98.40 1.80 99.85 1.70 ✓ ✓

Overall 98.70 0.90 99.90 0.90 97.15 2.45 99.63 2.48 - -

Table 2: Results of malicious operation (negative) rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TNR FNR AUC EER TNR FNR AUC EER

Deletion 99.47 0.00 100.00 0.07 98.80 0.00 100.00 0.13 ✗ ✓
Splicing 99.67 0.00 100.00 0.00 98.63 0.00 100.00 0.20 ✗ ✓
Silencing 99.23 0.47 99.84 0.87 97.57 1.73 99.63 2.57 ✗ ✓
Substitution 97.83 4.33 99.70 2.20 94.63 7.27 98.90 4.10 ✗ ✓
Reordering 98.40 2.40 99.08 2.60 97.20 3.00 99.05 3.00 ✗ ✓
Text-to-speech 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 ✗ ✓
Voice conversion 99.40 0.00 100.00 0.00 97.80 0.00 100.00 0.00 ✓ ✗

Overall 99.14 1.03 99.80 0.82 97.80 1.71 99.65 1.43 - -

4.2 RESULTS

Robustness to benign operations. Table 1 presents the performance of the proposed SpeeCheck
in accepting published speech samples subjected to benign audio operations, as defined in Ap-
pendix B.2. We focus on evaluating how well SpeeCheck accepts positive samples with harmless
modifications (TPR) and whether it mistakenly accepts maliciously tampered speech (FPR). To en-
sure balanced evaluation, the numbers of positive (benign) and negative (malicious) samples are
kept equal. On the test subsets of VoxCeleb1, SpeeCheck achieves an overall TPR of 98.70% and an
FPR of 0.90%, demonstrating strong robustness to non-malicious transformations. For cross-dataset
evaluation on LibriSpeech, using a model trained on VoxCeleb1, the TPR/FPR slightly change to
97.15% and 2.45%, respectively, indicating good generalizability across datasets.

1https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
2https://github.com/facebookresearch/audioseal

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Sensitivity to tampering attacks. Table 2 evaluates the ability of SpeeCheck to reject malicious
tampering attacks that alter the semantic content or speaker identity. The considered attacks in-
clude simple audio editing (e.g., deletion) as well as advanced learning-based manipulations such
as text-to-speech (TTS) synthesis and voice conversion, as detailed in Appendix B.2. In this setting,
tampering operations (actual negatives) are expected to be rejected with a high true negative rate
(TNR), while minimizing the false negative rate (FNR), which reflects incorrect rejection of benign
samples. Notably, on the VoxCeleb (in-domain) dataset, SpeeCheck achieves an overall TNR of
99.14% and an FNR of 1.03%. On the LibriSpeech dataset, the system maintains strong perfor-
mance with an overall of 97.80% and an FNR of 1.71%. These results highlight SpeeCheck’s strong
sensitivity to tampering attacks. A more detailed breakdown by tampering strength (e.g., minor,
moderate and severe) is provided in Appendix C.5.

0.5 0.0 0.5 1.0
Cosine Similarity

0

10

20

30

40

50

De
ns

ity

Benign
Malicious
Cross

(a)

0 50 100 150 200 250
Hamming Distance

0.00

0.02

0.04

0.06

0.08

0.10

0.12
De

ns
ity

112.00

118.00

Benign
Malicious
Cross

(b)

Figure 4: (a) Extracted feature similarity; (b) binarized fingerprint
Hamming distance.

Anchor Positive Negative

(a)

(b)

Figure 5: t-SNE visualizations
of speech samples: (a) before
training; (b) after training.

Multiscale feature and binarized fingerprints analysis. Figure 4 shows two analyses: (a) co-
sine similarity between extracted multiscale features and (b) Hamming distance between binarized
fingerprints. In Figure 4a, benign-original pairs yield high similarity values close to 1.0, while
malicious-original and cross-original pairs are much lower, indicating that the learned multiscale
features effectively capture the differences between benign operations and malicious tampering at-
tacks. Here, “cross” refers to the arbitrarily selected unrelated audio samples. In Figure 4b, binarized
fingerprints of benign processed samples yield low Hamming distances from their retrieved water-
marks, whereas malicious and cross pairs have much larger distances, with a clear margin of about
112-118 bits. This indicates that the binarization process preserves discriminability and enables
reliable separation of tampering and benign operations using a simple threshold.

Figure 5 shows the t-SNE visualizations of the extracted multiscale features before and after training.
Specifically, Figure 5a and Figure 5b show the distribution of anchors (original speech), positives
(after benign operations), and negatives (after malicious operations) in the latent space. Before train-
ing, anchor and positive samples are scattered and overlap with negatives, indicating poor separabil-
ity. After training, anchors and positives form tight clusters, while negatives are clearly separated.
This suggests that contrastive learning enables the multiscale feature extractor to learn embeddings
that distinguish benign operations from malicious tampering, which explains the strong performance
of SpeeCheck. Additional visualization evidences are provided in Appendix C.11.

Table 3: Detection accuracy on unseen benign operations and tampering attacks.

Unseen Operation Type Accuracy (%) dwm dfp

Benign
Loudness Normalization 100.00 0.96 0.08
Room Reverb 100.00 3.12 26.60
Combined Benign 100.00 4.64 8.29

Tampering
Voice Changer (Female) 100.00 122.46 71.62
Voice Changer (Male) 100.00 125.38 67.85
Combined Malicious 100.00 119.32 75.08

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance of Deepfake detection at varying substitution ratios (all values in percentage)

Deepfake Ratio RawNet2 AASIST SpeeCheck (ours)
TPR FPR AUC EER TPR FPR AUC EER TPR FPR AUC EER

Substitute 10% 58.12 34.07 65.43 38.29 39.21 17.36 64.58 39.14 100.00 0.00 100.00 0.00
Substitute 25% 61.87 33.95 68.24 37.41 37.46 17.18 64.12 41.89 100.00 0.00 100.00 0.00
Substitute 50% 59.38 34.26 65.72 38.11 44.19 17.09 67.34 39.27 100.00 0.00 100.00 0.00
Substitute 75% 68.54 34.11 72.36 34.28 54.07 16.92 75.48 31.24 100.00 0.00 100.00 0.00
Substitute 90% 82.91 34.33 81.27 27.18 62.38 17.24 76.19 33.42 100.00 0.00 100.00 0.00

Out-of-Distribution and real-world generalization. To evaluate SpeeCheck’s generalization to
unseen audio operations, we conduct out-of-distribution (OOD) experiments using operations not in-
cluded in the training set. Table 3 reports detection accuracy at a fixed threshold (θ = 42), along with
the Hamming distances of watermarks (dwm) and fingerprints (dfp) between modified and original
audio. SpeeCheck achieves 100% accuracy on unseen benign transformations, including loudness
normalization, room reverberation, and combined benign manipulations. Concurrently, it success-
fully detects sophisticated unseen attacks, including commercial voice changer tools (ElevenLabs,
2024) that alter speaker identity and combined malicious edits. These results highlight the effective-
ness of SpeeCheck in identifying unseen audio operations. Specifically, for real-world recordings,
we observe similar strong performance, where SpeeCheck reliably identifies all fine-grained tam-
perings. Detailed evaluation is shown in Appendix C.6.

Deepfake detection comparison. We finally evaluate SpeeCheck as a deepfake detector3. Specif-
ically, we compare SpeeCheck with state-of-the-art methods including RawNet2 (Tak et al., 2021)
and AASIST (Jung et al., 2022), two end-to-end models developed for the ASVspoof challenge (Ya-
magishi et al., 2021), and widely used for audio spoofing detection. We utilize a zero-shot TTS
model YourTTS (Casanova et al., 2022) to generate deepfake speech segments, and substitute them
for varying proportions (10%, 25%, 50%, 75% and 90%) of the original speech. Next, the deepfake
samples are mixed with an equal amount of clean speech to ensure fair evaluation.

From Table 4, both RawNet2 and AASIST perform best given the highest substitution ratio at
90%, achieving up to 82.91% TPR by RawNet2. However, when decreasing the substitution ratio,
RawNet2 and AASIST both show significant degradation regarding the ability of detecting deep-
fake substitution samples. For example, at the ratio of 10%, the AUC of RawNet2 drops to 65.43%
and EER increases to 38.29%, indicating diminished sensitivity to subtle spoofing. Similarly, AA-
SIST exhibits similar performance degradation under the same condition. In contrast, SpeeCheck
consistently achieves very good detection performance across all substitution levels (TPR=100.00,
FPR=0.00, AUC=100.00, EER=0.00), demonstrating the superiority of the proposed proactive de-
fense design.

Since synthetic deepfake audio lacks embedded watermarks, the fingerprint-watermark verification
process becomes essentially random, making tampering attacks easy to detect. Even minor substi-
tutions alter the extracted fingerprint and disrupt the embedded watermark simultaneously, resulting
in a mismatch and enabling reliable detection of tampering. Further analysis of each module’s con-
tributions is provided in the ablation studies in Appendix C.10.

5 CONCLUSION

In this paper, we proposed SpeeCheck, a proactive and self-contained framework for speech in-
tegrity verification. SpeeCheck integrates multiscale feature extraction and contrastive learning to
produce robust fingerprints, which are embedded into audio via watermarking. These fingerprints
are sensitive to malicious tampering while robust to benign operations commonly introduced during
digital distribution, enabling integrity verification without access to external references. Extensive
experiments confirm its robustness and sensitivity across diverse tampering scenarios. Notably,
evaluations on a constructed real-world dataset further demonstrate its practicality, showing high
robustness under social media distribution and strong sensitivity to fine-grained malicious edits.

3To avoid confusion, SpeeCheck is used here for deepfake detection, where “positive” now refers to deep-
fake samples to be identified.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All experiments are conducted on publicly available datasets (VoxCeleb and LibriSpeech) and a
small-scale real-world dataset collected with voluntary consent. To protect privacy, all data used
in public demos are anonymized, and no personally identifiable information is released. Deepfake
and voice conversion technologies are employed solely to simulate attack scenarios for research
evaluation, and no harmful or deceptive content is created or disseminated.

The proposed method aims to strengthen speech integrity verification and mitigate the spread of
misinformation. We recognize that, like any integrity verification technology, it could be misused
for surveillance or censorship; thus, it should be deployed responsibly and transparently. The authors
declare no conflicts of interest or sponsorship-related concerns in this study.

REPRODUCIBILITY STATEMENT

We make significant efforts to ensure reproducibility. All datasets used in this study are pub-
licly available (VoxCeleb, LibriSpeech), and the constructed real-world dataset is included in the
supplementary materials. Details of the fingerprint generation, watermark embedding, training
procedure, and evaluation metrics are described in Section 3 and Section 4, with extended infor-
mation in the Appendix C. An anonymous implementation and demo are provided at https:
//speecheck.github.io/SpeeCheck/, which contains the source code and instructions
for reproducing our experiments.

REFERENCES

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33:12449–12460, 2020.

Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and Michael Auli. Unsupervised speech recogni-
tion. Advances in Neural Information Processing Systems, 34:27826–27839, 2021.

Logan Blue, Kevin Warren, Hadi Abdullah, Cassidy Gibson, Luis Vargas, Jessica O’Dell, Kevin
Butler, and Patrick Traynor. Who are you (i really wanna know)? detecting audio {DeepFakes}
through vocal tract reconstruction. In 31st USENIX Security Symposium (USENIX Security 22),
pp. 2691–2708, 2022.

Edresson Casanova, Julian Weber, Christopher D Shulby, Arnaldo Candido Junior, Eren Gölge, and
Moacir A Ponti. Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for
everyone. In International Conference on Machine Learning, pp. 2709–2720. PMLR, 2022.

Guangyu Chen, Yu Wu, Shujie Liu, Tao Liu, Xiaoyong Du, and Furu Wei. Wavmark: Watermarking
for audio generation. arXiv preprint arXiv:2308.12770, 2023.

Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. arXiv preprint
arXiv:2410.06885, 2024.

Steven Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 28(4):357–366, 1980.

Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
language models. arXiv preprint arXiv:2412.10117, 2024.

ElevenLabs. Speech to Speech. https://elevenlabs.io/app/speech-synthesis/
speech-to-speech, 2024. Accessed: 2025-09-21.

10

https://speecheck.github.io/SpeeCheck/
https://speecheck.github.io/SpeeCheck/
https://elevenlabs.io/app/speech-synthesis/speech-to-speech
https://elevenlabs.io/app/speech-synthesis/speech-to-speech


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Paulo Antonio Andrade Esquef, José Antonio Apolinário, and Luiz WP Biscainho. Edit detection
in speech recordings via instantaneous electric network frequency variations. IEEE Transactions
on Information Forensics and Security, 9(12):2314–2326, 2014.

Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu. Exploring wav2vec 2.0 on speaker verification and
language identification. In Proc. Interspeech 2021, pp. 1509–1513, 2021.

Wanying Ge, Xin Wang, and Junichi Yamagishi. Proactive detection of speaker identity manipula-
tion with neural watermarking. In The 1st Workshop on GenAI Watermarking, 2025.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models. In International Conference on Machine Learning, pp. 13916–13932. PMLR,
2023.

Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-Jin
Yu, and Nicholas Evans. Aasist: Audio anti-spoofing using integrated spectro-temporal graph
attention networks. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6367–6371. IEEE, 2022.

Awais Khan, Khalid Mahmood Malik, James Ryan, and Mikul Saravanan. Voice spoofing counter-
measures: Taxonomy, state-of-the-art, experimental analysis of generalizability, open challenges,
and the way forward. arXiv preprint arXiv:2210.00417, 2022.

Daniele Ugo Leonzio, Luca Cuccovillo, Paolo Bestagini, Marco Marcon, Patrick Aichroth, and
Stefano Tubaro. Audio splicing detection and localization based on acquisition device traces.
IEEE Transactions on Information Forensics and Security, 18:4157–4172, 2023.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017.

Chang Liu, Jie Zhang, Tianwei Zhang, Xi Yang, Weiming Zhang, and Nenghai Yu. Detecting voice
cloning attacks via timbre watermarking. In NDSS, 2024.

Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied cryptography.
CRC press, 2018.

Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: A large-scale speaker identifi-
cation dataset. Interspeech 2017, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Xunyu Pan, Xing Zhang, and Siwei Lyu. Detecting splicing in digital audios using local noise level
estimation. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1841–1844. IEEE, 2012.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE, 2015.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O Arik, Ajay Kannan, Sharan Narang, Jonathan
Raiman, and John Miller. Deep voice 3: Scaling text-to-speech with convolutional sequence
learning. In International Conference on Learning Representations, 2018.

The Washington Post. Ai is spawning a flood of fake trump and harris voices.
https://www.washingtonpost.com/technology/interactive/2024/
ai-voice-detection-trump-harris-deepfake-election/, 2024. Accessed:
2025-09-21.

Diego Renza, Camilo Lemus, et al. Authenticity verification of audio signals based on fragile
watermarking for audio forensics. Expert systems with applications, 91:211–222, 2018.

11

https://www.washingtonpost.com/technology/interactive/2024/ai-voice-detection-trump-harris-deepfake-election/
https://www.washingtonpost.com/technology/interactive/2024/ai-voice-detection-trump-harris-deepfake-election/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Reuters. Fact check: Video does not show joe biden making transphobic remarks, 2023. URL
https://www.reuters.com/article/fact-check/idUSL1N34Q1IW. Accessed:
2025-09-21.

Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual evaluation
of speech quality (pesq)-a new method for speech quality assessment of telephone networks and
codecs. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No. 01CH37221), volume 2, pp. 749–752. IEEE, 2001.

Daniel Patricio Nicolalde Rodrı́guez, José Antonio Apolinario, and Luiz Wagner Pereira Biscainho.
Audio authenticity: Detecting enf discontinuity with high precision phase analysis. IEEE Trans-
actions on Information Forensics and Security, 5(3):534–543, 2010.

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan
Tran. Proactive detection of voice cloning with localized watermarking. In Proceedings of the
41st International Conference on Machine Learning, pp. 43180–43196, 2024.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Martin Steinebach and Jana Dittmann. Watermarking-based digital audio data authentication.
EURASIP Journal on Advances in Signal Processing, 2003:1–15, 2003.

Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. A short-time objective
intelligibility measure for time-frequency weighted noisy speech. In 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 4214–4217. IEEE, 2010.

Hemlata Tak, Jose Patino, Massimiliano Todisco, Andreas Nautsch, Nicholas Evans, and Anthony
Larcher. End-to-end anti-spoofing with rawnet2. In ICASSP 2021-2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6369–6373. IEEE, 2021.

Vocloner. Vocloner: AI Voice Cloning Tool. https://vocloner.com/, 2024. Accessed:
2025-09-21.

Yuancheng Wang, Zeqian Ju, Xu Tan, Lei He, Zhizheng Wu, Jiang Bian, et al. Audit: Audio
editing by following instructions with latent diffusion models. Advances in Neural Information
Processing Systems, 36:71340–71357, 2023.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
speech synthesis. Interspeech 2017, pp. 4006, 2017.

Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah, Jose Patino, Andreas Nautsch,
Xuechen Liu, Kong Aik Lee, Tomi Kinnunen, Nicholas Evans, et al. Asvspoof 2021: accelerating
progress in spoofed and deepfake speech detection. arXiv preprint arXiv:2109.00537, 2021.

Rui Yang, Zhenhua Qu, and Jiwu Huang. Detecting digital audio forgeries by checking frame
offsets. In Proceedings of the 10th ACM Workshop on Multimedia and Security, pp. 21–26, 2008.

Mohammed Zakariah, Muhammad Khurram Khan, and Hafiz Malik. Digital multimedia audio
forensics: past, present and future. Multimedia Tools and Applications, 77:1009–1040, 2018.

12

https://www.reuters.com/article/fact-check/idUSL1N34Q1IW
https://vocloner.com/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

Large Language Models (LLMs) were used exclusively as general-purpose writing assistants to
improve readability and adjust formatting. They did not contribute to the research ideation, method-
ology, experimental design, analysis, or interpretation of results. All technical content and scientific
contributions are solely the work of the authors.

A RELATED WORKS

A.1 PASSIVE DETECTION OF SPEECH TAMPERING

Audio editing process can generate artifacts or modify natural acoustic features within human
speech. For example, frame offset (Yang et al., 2008), inconsistent noise (Pan et al., 2012), and
even discontinued electric network frequency (Rodrı́guez et al., 2010; Esquef et al., 2014), are iden-
tified as evidence of tampering. Using such patterns, “passive” detectors can be trained as binary
classifiers using labeled clean and tampered audio. However, these methods are less effective when
facing deepfake audio. Advanced deepfake techniques can synthesize high-fidelity speech with few
or no detectable artifacts, making conventional patterns unreliable. To address this, recent work has
explored more subtle acoustic properties, such as fluid dynamics and articulatory phonetics (Blue
et al., 2022). Nevertheless, as the deepfake models evolve, relying solely on passive detection may
not be sufficient against future attacks.

A.2 PROACTIVE PROTECTION OF SPEECH INTEGRITY

Proactive defense provides another direction to detect speech tampering. In general, critical infor-
mation is extracted from the original audio and condensed into auxiliary data (or “meta” data). This
auxiliary data then serves as a reference for verification: one extracts the same data from the test
audio, and if it matches, it indicates that the test audio is free of audio editing, and vice versa. Cryp-
tographic hashing, which transforms the digital audio files into discrete bytes, is one of the proactive
defenses (Zakariah et al., 2018). However, hashing operations are too sensitive to tolerate common
operations from regular users, such as audio compression and resampling, resulting in a high false
alarm rate. Another method is fragile watermarking (Renza et al., 2018), where sensitive water-
marks are directly embedded into audio signals and checked for changes. However, this method is
also sensitive to minor perturbations, limiting the free and practical distribution of audio. Ge et al.
(2025) propose a proactive defense approach against speaker identity manipulation, which embeds
speaker embeddings into speech using audio watermarking. However, their method focuses only on
speaker-identity attacks and cannot detect semantic content alterations. Therefore, existing proac-
tive audio protection methods do not simultaneously achieve robustness against benign operations,
sensitivity to malicious tampering, and independence from external verification channels.

B SPEECHECK DESIGN AND OPERATION DEFINITIONS

B.1 OVERALL ALGORITHM

The training and verification procedures of SpeeCheck are summarized in Algorithm 1 and Algo-
rithm 2, respectively.

B.2 DEFINITION OF BENIGN AND MALICIOUS OPERATIONS

We simulate two categories of audio modifications: benign operations and malicious tampering. Be-
nign operations refer to legitimate processing steps encountered during audio storage, transmission,
or distribution. These operations do not change the semantic content or the speaker identity of the
speech. In contrast, malicious tampering refers to intentional alterations designed to distort either
the semantic meaning or the identity of the speaker. We detail each operation below and summarize
its characteristics in Table 5.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 SpeeCheck Training and Deployment

1: Input: Raw speech X , benign operations Tb(·), malicious operations Tm(·), Wav2Vec2.0 en-
coder ε, multiscale feature extractor F

2: Output: Watermarked speech X̃
3: for e = 1, 2, . . . , epochs do
4: for b = 1, 2, . . . , batches do
5: X benign ← Tb(X ), Xmalicious ← Tm(X )
6: Step 1: Frame-level feature extraction
7: Z ← ε(X )
8: Step 2: Multiscale feature summarization
9: hn ← F(Z)

10: for n = 1, . . . ,K do
11: wn ← exp(ϕ(hn))∑K

t=1 exp(ϕ(ht))

12: end for
13: v′ ←

∑K
n=1 wn · hn

14: v← Proj(v′)
15: Step 3: Contrastive fingerprint training
16: Compute contrastive loss Lc
17: Update F , ϕ, Proj via backpropagation
18: end for
19: end for
20: Step 4: Binary fingerprint encoding
21: b← sign(tanh(Proj(AttPool(F(ε(X̃))))))
22: Step 5: Segment-wise watermarking
23: Split X and b into N segments: [X (1), . . . ,X (N)], [b(1), . . . ,b(N)]
24: for n = 1, . . . , N do
25: δ(n) ←WatermarkEmbedder(X (n),b(n))

26: X̃ (n) ← X (n) + δ(n)

27: end for
28: X̃ ← Concat(X̃ (1), . . . , X̃ (N))

Algorithm 2 SpeeCheck Verification

1: Input: Published speech X̃ , wav2vec2.0 encoder ε, trained multiscale feature extractor F ,
projection module Proj, attentive pooling AttPool, WatermarkExtractor

2: Output: Verification result (Accept or Reject)
3: Path A: Fingerprint extraction
4: b′ ← sign(tanh(Proj(AttPool(F(ε(X̃ ))))))
5: Path B: Segment-wise watermark extraction
6: Split X̃ into N segments: X̃ (1), . . . , X̃ (N)

7: for n = 1 to N do
8: b̂(n) ←WatermarkExtractor(X̃ (n))
9: end for

10: b̂← Concat(b̂(1), . . . , b̂(N))
11: Integrity decision
12: if dH(b′, b̂) ≤ θ then
13:
14: return Accept
15: else
16:
17: return Reject
18: end if

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Summary of audio operations.

Operation Example Implementation
Benign Operations
Compression Podcasts, news broadcasts, online

meetings
ffmpeg (MP3 @ 128 kbps)

Reencoding Saving or uploading audio files ffmpeg (PCM 16-bit)
Resampling Low-bandwidth communication Resample (torchaudio)
Noise Suppression Social media platforms RMS-based frame muting

Malicious Operations
Deletion Removing “not” in “I do not agree” VAD + remove voiced

portion
Splicing Inserting “not” into “I do agree” Insert voiced segment
Substitution Replacing “agree” with “disagree” Swap waveform segment
Silencing Muting “not” in “I do not agree” Mute VAD-detected

region
Reordering Changing sentence order Segment + shuffle +

concat
Voice Conversion Changing timbre (speaker identity) torchaudio.sox effects

(training), Voice Changer
(testing)

Text-to-Speech Generate new speech with speaker’s
timbre

YourTTS (zero-shot
synthesis)

Compression. Lossy compression is applied by converting the waveform to MP3(128 kbps) or
AAC (128 kbps), and decoding it back to WAV. This simulates typical processing in podcasts
and streaming platforms. We use FFmpeg: ffmpeg -i input.wav -b:a 128k temp.mp3;
ffmpeg -i temp.mp3 output.wav.

Reencoding. The waveform is re-encoded to 16-bit PCM WAV format without compression. This
simulates storage or uploading scenarios where minor numerical alterations may occur. Imple-
mented with: ffmpeg -i input.wav output.wav.

Resampling. Audio is downsampled (e.g., from 16 kHz to 8 kHz) and then up-
sampled back, simulating low-bandwidth or legacy systems. Implemented with:
torchaudio.transforms.Resample.

Noise Suppression. To simulate automatic noise suppression utilized by social media and stream-
ing platforms, the waveform is divided into overlapping frames. Frames with low root-mean-square
(RMS) energy are muted.

Deletion. A portion of speech (not silence) is removed from the speech. For example, deleting
“not” from “I do not agree” changes the meaning entirely.

Splicing. A short segment of speech from the same speaker is spliced into the waveform. For
example, inserting “not” into the phrase “I do agree” reverses its original semantic meaning.

Substitution. A segment of speech is replaced with another waveform segment of equal length
from the same speaker. For instance, replacing “agree” with “disagree” fundamentally changes the
intended meaning.

Silencing. A portion of speech (not silence or noise) is deliberately muted by setting its amplitude
to zero. For instance, muting the word “not” in “I do not agree” leads to a reversed interpretation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Reordering. The speech is segmented, rearranged, and concatenated to change the semantic con-
tent. For instance, reordering “I never said she stole my money” into “She stole my money, I never
said” distorts the original meaning and can lead to an opposite interpretation.

Voice Conversion. Note that integrating voice conversion models into the training pipelines
is computationally expensive and time-consuming, making large-scale training impractical. To
achieve a comparable effect with lower overhead, during the training phase, we apply pitch shift-
ing for speaker identity modification (e.g., +4 semitones) using SoX effects, implemented via
torchaudio.sox_effects.apply_effects_tensor. This modification introduces perceptual
changes to voice characteristics, effectively creating negative samples for learning to distinguish
speaker identity. In the testing phase, we validate SpeeCheck’s performance on a separate set of au-
dio manipulated by a state-of-the-art commercial voice changer tool from ElevenLabs (ElevenLabs,
2024).

Text-to-Speech. We synthesize speech from text using a pre-trained text-to-speech (TTS) model,
YourTTS (Casanova et al., 2022), which supports multilingual and zero-shot speaker adaptation.
This attack can generate speech that closely mimics the speaker’s voice with arbitrary semantic
content.

Different Levels of Tampering. To evaluate the performance under varying conditions, we define
three levels of tampering: minor, moderate, and severe. Specifically, at the minor level, tampering
operations, including deletion, splicing, silencing, and substitution, alter about 10% of the original
audio content (alteration ratio = 0.1). At the moderate level, these same operations alter 30% of the
audio (alteration ratio = 0.3). At the severe level, 50% of the audio is altered (alteration ratio = 0.5),
and this level also includes reordering operations, which disrupts the logical structure of the speech.

B.3 EXPLANATION OF MALICIOUS TAMPERING OVER DIFFERENT GRANULARITIES

Table 6 presents representative examples of malicious tampering at the phoneme, word, and phrase
levels. These examples illustrate how manipulations at different temporal granularities can alter the
meaning of speech. They also motivate the use of multiscale pooling with window sizes of 20, 50,
and 100 frames, which are designed to capture such variations in real-world scenarios.

Table 6: Examples of malicious tampering at different levels of granularity

Granularity Example Description
Phoneme-level Change “bed” to “bad” (English);

change “mā” (mother) to “mǎ”
(horse) (Mandarin)

Altering a single phoneme can lead to sub-
tle yet meaningful changes. These edits are
often difficult to detect but can reverse or
distort the intended meaning.

Word-level Insert “not” into “He is guilty” to
form “He is not guilty”; replace
“approved” with “denied”

Tampering at the word level through inser-
tion, deletion, or substitution can directly
modify semantic content, leading to mis-
leading interpretations.

Phrase-level Change “Negotiations will begin
immediately” to “Negotiations will
be delayed indefinitely”

Reordering or replacing entire phrases can
fabricate new narratives while maintaining
natural-sounding speech, making the tam-
pering more deceptive.

C EXPERIMENTAL SETUP AND EXTENDED RESULTS

C.1 IMPLEMENTATION DETAILS

To supplement Section 4.1, we provide a detailed description of the model architecture and training
configuration.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model. We use the pretrained Wav2Vec2.0 Base model4 to extract 768-dimensional frame-level
acoustic features. These are passed to a two-layer Bidirectional LSTM (BiLSTM) with an input
size of 768, a hidden size of 512 (i.e., 256 per direction), and a dropout rate of 0.25. To capture
temporal features at multiple resolutions, we apply average pooling with window sizes of 20, 50,
and 100 frames, with a stride of 10 frames, implemented using avg pool1d along the time axis.
The pooled outputs are aggregated by an attentive pooling module consisting of a linear-tanh-linear
projection. The resulting weighted sum forms the utterance-level embedding, followed by dropout
with a rate of 0.2. This embedding is fed into a two-layer MLP projection head with dimensions
768→ 512→ 256, with ReLU activation between layers. The final output vector is L2-normalized
and passed through a tanh function to constrain values to the range [−1, 1], yielding the continuous-
valued fingerprint. For segment-wise watermarking, we use the pretrained AudioSeal model5 to
embed and extract binary fingerprints as watermarks. Each audio is divided into 16 non-overlapping
segments, with each segment embedded with a 16-bit binary watermark, resulting in a total payload
size of 256 bits per audio.

Training. SpeeCheck is trained using a cosine annealing learning rate schedule, decaying from
1 × 10−3 to 1 × 10−5 over 50 epochs. The contrastive loss is temperature-scaled with τ = 0.05.
Training is conducted on 2 NVIDIA A100 GPUs using distributed data parallelism.

Table 7: Examples from RWSID with corresponding editing operations

Sentence Editing Operation
The board has decided they can not approve the new budget. Deletion / Silencing (“not”)
Our analysis shows this investment is not a secure option. Deletion / Silencing (“not”)
Based on the evidence, the suspect is innocent. Substitution→ “guilty”
Based on the evidence, the suspect is guilty. Substitution→ “innocent”
I never said she stole the company’s data. Reordering
I never said she stole the company’s data. Voice Conversion (AI)
We will begin the product launch immediately. Replacement→ “delay”
We will delay the product launch immediately. Replacement→ “begin”
I believe it is a good idea, but we need more time. Splicing
This is authentic audio, not deepfake. Text-to-Speech (AI)

C.2 DATASET AND EVALUATION DETAILS

We use two public speech datasets: VoxCeleb and LibriSpeech. For VoxCeleb, the development set
is used for training and the test set for evaluation. For LibriSpeech, we use only the test-clean
subset for evaluation. To comprehensively evaluate the effectiveness of SpeeCheck in real-world
scenarios, we construct a Real-World Speech Integrity Dataset (RWSID). This dataset comprises
recordings from 10 volunteers with diverse demographic backgrounds (including multiple races and
sexes). Each participant read 8 prepared speeches (see Table 7). All audio files are converted to
WAV format and resampled to 16 kHz.

Preprocessing. We randomly sample 10,000 utterances from the VoxCeleb development set for
model training. For evaluation, we sample 500 utterances each from the VoxCeleb test set and the
LibriSpeech test-clean subset. To stabilize the training and ensure data quality, we retain only
utterances with durations between 2 and 20 seconds.

For each valid utterance, we generate two sets of augmented variants for contrastive learning: (i)
Benign Augmentations: These are modifications that preserve both speaker identity and semantic
content. (ii) Malicious Augmentations: These include tampering operations intended to alter speaker
identity and semantic content. The details can be found in Appendix B.2.

Evaluation Metrics. For evaluation, we consider benign and malicious as positive and negative
classes, respectively. TP is the number of benign samples correctly classified, and FN is the num-
ber of benign samples incorrectly classified as malicious. FP is the number of malicious samples
incorrectly classified as benign, and TN is the number of malicious samples correctly rejected. The
following metrics are computed:

4https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
5https://github.com/facebookresearch/audioseal

17

https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
https://github.com/facebookresearch/audioseal


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• True Positive Rate (TPR): TPR = TP/(TP + FN)

• False Positive Rate (FPR): FPR = FP/(FP + TN)

• True Negative Rate (TNR): TNR = TN/(TN + FP)

• False Negative Rate (FNR): FNR = FN/(FN + TP)

• Equal Error Rate (EER): The error rate at the decision threshold where FPR = FNR.

• Area Under the Curve (AUC): The area under the receiver operating characteristic curve.

C.3 SIMILARITY DISTRIBUTION USING MFCC FEATURE

0.6 0.7 0.8 0.9 1.0

Cosine Similarity
0

10

20

30

40

50

60

De
ns

ity

Benign
Malicious
Cross

(a)

0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity
0

2

4

6

8

10

De
ns

ity

Minor
Moderate
Severe

(b)

Figure 6: Probability distributions: (a) MFCC embedding similarity to original audio under different
modifications; (b) MFCC embedding similarity to original audio at different tampering levels.

To complement the observations in Section 2.3, we present similarity distributions computed us-
ing handcrafted Mel-frequency cepstral coefficients (MFCC) instead of wav2vec2 embeddings. As
shown in Figure 6, the similarity distributions between original and modified audio samples us-
ing MFCC features exhibit trends similar to those observed with wav2vec2-based representations.
Specifically, the distributions corresponding to benign and malicious modifications overlap, and the
similarity scores tend to decrease as the extent of tampering increases. This indicates that MFCC-
based similarity comparison can only measure the extent of modification but does not effectively
distinguish between different types of modifications.

C.4 EVALUATION ON SEMANTIC AND IDENTITY CHANGES UNDER BENIGN AND
MALICIOUS OPERATIONS

We evaluate the impact of different audio modifications on both semantic integrity and speaker iden-
tity consistency. Semantic preservation is quantified using word error rate (WER) computed from a
pre-trained automatic speech recognition (ASR) model6, facebook/wav2vec2-base-960h,
a CTC-based ASR model. Speaker identity preservation is measured by cosine similar-
ity between embeddings extracted using the pre-trained speaker verification (SV) model7,
speechbrain/spkrec-ecapa-voxceleb.

As shown in Table 8, benign operations (e.g., compression, recording, resampling, noise suppres-
sion) result in low WER (≤8.24%) and high identity similarity (≥78%), indicating that they largely
preserve both semantic content and speaker identity. In contrast, malicious operations introduce sub-
stantial degradation. WER increases steadily with the severity of deletion, splicing, silencing, and
substitution, reflecting significant semantic changes. These operations, however, generally maintain
high identity similarity because they retain the original timbre. Notably, voice conversion results
in relatively low WER, but significantly reduces identity similarity (41.60%), since it deliberately
alters the speaker’s timbre.

To further investigate the nonzero WER observed under benign operations, we manually examined
the ASR outputs. Most transcription errors were minor substitutions or alignment shifts that did not
affect the overall meaning. This suggests that the observed WER in these cases reflects limitations
of the ASR model and metric sensitivity rather than genuine semantic distortion.

6https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
7https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

18

https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: WER and Identity Similarity under Different Operations

Operation WER % Identity Similarity %
Benign Operations
Compression 1.15 95.60
Recoding 0.26 99.99
Resampling 6.87 78.00
Noise suppression 8.24 94.52

Malicious Operations
Deletion (minor) 21.65 99.04
Deletion (moderate) 40.20 96.84
Deletion (severe) 62.32 93.29
Splicing (minor) 31.24 99.00
Splicing (moderate) 52.45 97.35
Splicing (severe) 78.36 96.55
Silencing (minor) 30.76 98.16
Silencing (moderate) 53.79 90.13
Silencing (severe) 75.74 75.96
Substitution (minor) 23.22 98.33
Substitution (moderate) 48.12 94.36
Substitution (severe) 63.03 90.72
Reordering 69.55 99.53
Text-to-speech - -
Voice conversion 8.60 41.60

C.5 RESULTS OF FINE-GRAINED MALICIOUS OPERATIONS REJECTION

We report the detection performance of SpeeCheck on fine-grained malicious operations across
varying degrees of tampering severity, as shown in Table 9.

Table 9: Results of fine-grained malicious operation rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TNR FNR AUC EER TNR FNR AUC EER

Deletion (minor) 100.00 2.20 99.92 0.60 100.00 5.20 99.77 1.20 ✗ ✓
Deletion (moderate) 100.00 2.80 99.96 0.40 100.00 5.20 99.84 0.80 ✗ ✓
Deletion (severe) 100.00 3.40 99.99 0.20 100.00 4.40 99.76 0.80 ✗ ✓
Splicing (minor) 100.00 2.40 99.99 0.40 100.00 4.20 99.57 1.30 ✗ ✓
Splicing (moderate) 100.00 2.40 99.99 0.40 100.00 4.80 99.79 0.40 ✗ ✓
Splicing (severe) 100.00 2.60 99.98 0.20 100.00 5.80 99.72 0.50 ✗ ✓
Silencing (minor) 98.00 3.60 99.73 3.20 86.60 6.00 97.34 8.70 ✗ ✓
Silencing (moderate) 99.60 2.40 99.90 1.80 97.20 4.20 98.82 4.10 ✗ ✓
Silencing (severe) 99.60 2.80 99.86 1.80 98.80 6.40 99.12 4.00 ✗ ✓
Substitution (minor) 88.40 3.00 98.75 6.10 72.20 4.40 95.50 11.80 ✗ ✓
Substitution (moder.) 99.20 3.20 99.62 2.60 92.80 5.20 98.24 5.50 ✗ ✓
Substitution (severe) 100.00 3.00 99.80 1.20 100.00 4.80 99.27 2.70 ✗ ✓
Reordering 97.60 2.60 98.44 2.60 99.20 5.80 99.08 1.70 ✗ ✓
Text-to-speech 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 ✗ ✓
Voice conversion 100.00 3.00 99.93 0.50 100.00 5.40 99.64 0.50 ✓ ✗

Overall 98.83 2.63 99.72 1.47 96.45 4.79 99.05 2.93 - -

C.6 EVALUATION IN REAL-WORLD SCENARIO

To validate SpeeCheck’s performance in practical settings, we conducted evaluations on the RWSID
dataset (described in Appendix C.2). Example recordings and verification results are available on
our demo page.8 We then designed two evaluation scenarios to simulate real-world challenges:

8https://speecheck.github.io/SpeeCheck/

19

https://speecheck.github.io/SpeeCheck/


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

WhatsApp Telegram WeChat Discord Twitter
0

10

20

30

40

50

60

Ha
m

m
in

g 
Di

st
an

ce
Threshold = 43

(a)

User1 User2 User3 User4 User5 User6 User7 User8 User9 User10
30

50

70

90

110

130

150

Threshold = 43

(b)

Figure 7: Hamming distance distributions for real-world scenarios: (a) benign social media distri-
bution and (b) malicious tampering.

Benign Distribution. To assess SpeeCheck’s robustness under practical distribution scenarios, the
protected audios were uploaded to widely used social media platforms (including WhatsApp, Tele-
gram, WeChat, Discord, and Twitter) and subsequently downloaded after platform-side preprocess-
ing. These steps reflect realistic distribution pipelines where compression, reencoding, and noise
suppression may be applied.

Malicious Tampering.: To evaluate its sensitivity to sophisticated attacks, we performed fine-
grained edits manually, including deletion, splicing, silencing, substitution, and reordering. More-
over, we tested commercial platforms for voice conversion (ElevenLabs, 2024) and text-to-speech
synthesis (Vocloner, 2024).

Figure 7a shows that the Hamming distances of audios redistributed via social media consistently
remain below the detection threshold, confirming SpeeCheck’s robustness against real-world distri-
bution. In contrast, Figure 7b demonstrates that all malicious edits yield Hamming distances above
the threshold across all 10 users, indicating its reliable sensitivity to real-world tampering.

C.7 EVALUATION ON DIFFERENT LENGTHS OF SPEECH

To evaluate SpeeCheck on longer audio recordings, we tested speech samples ranging from 20 sec-
onds to 10 minutes. As shown in Table 10, the system performs well across all lengths. While
performance gradually degrades with increasing duration, the EER rises from 1.57% at 20 seconds
to 8.41% at 10 minutes, the overall detection remains robust, with the AUC consistently above 96%.

Table 10: Performance of SpeeCheck under different speech durations.

Speech Duration TPR FPR AUC EER
20s 98.75 1.65 99.69 1.57
60s 92.50 4.88 98.39 5.87
5m 94.87 7.05 98.02 6.09
10m 90.95 7.76 96.04 8.41

C.8 REAL-TIME EVALUATION

Table 11: Real-time performance of SpeeCheck.

Process Real-Time Coefficient (RTC)
Protection 0.02×
Verification 0.03×

We evaluate computational efficiency using the Real-Time Coefficient (RTC), defined as the ratio of
processing time to audio duration. As shown in Table 11, both protection and verification achieve
RTC values well below 1×, confirming the practicality of SpeeCheck for real-time use.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.9 WATERMARKED SPEECH QUALITY

We evaluate the perceptual quality of watermarked speech using four objective metrics. (1) Scale-
Invariant Signal to Noise Ratio (SI-SNR) quantifies waveform-level distortion in decibels (dB).
Higher values indicate less distortion. (2) Perceptual Evaluation of Speech Quality (PESQ) (Rix
et al., 2001) ranges from 1.0 (poor) to 4.5 (excellent), and reflects perceived speech quality. (3)
Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) ranges from 0 to 1, with higher val-
ues indicating better intelligibility. (4) Log Spectral Distance (LSD) measures spectral deviation
between original and watermarked speech, lower values indicate greater spectral fidelity.

As shown in Table 12, our proposed SpeeCheck has little perceptual degradation. The high SI-
SNR and PESQ scores, along with near-perfect intelligibility (STOI) and low spectral error (LSD),
demonstrate that the watermarking process preserves both fidelity and intelligibility, making it suit-
able for practical deployment.

Table 12: Audio quality metrics.

Methods SI-SNR PESQ STOI LSD
SpeeCheck 25.14 4.28 0.998 0.111

C.10 ABLATION STUDIES

To access the contribution of SpeeCheck’s core modules, we conduct ablation studies on three key
components: the multiscale feature extractor, the attentive pooling module, and the contrastive learn-
ing objective. We evaluate the multiscale feature extractor by removing it and using the direct output
of BiLSTM. For temporal pooling, we substitute attentive pooling with average pooling. Finally, we
compare the InfoNCE loss (Oord et al., 2018) with widely-used Triplet Loss (Schroff et al., 2015).

As shown in Table 13, each module contributes to the overall performance. Removing the mul-
tiscale feature extractor leads to a significant degradation, indicating the importance of extracting
both global and local temporal patterns. Substituting attentive pooling with average pooling reduces
performance, indicating that the attention mechanism provides better frame selection for embedding
generation. Finally, replacing InfoNCE with Triplet Loss results in a substantial performance de-
cline, demonstrating that InfoNCE is more effective for learning discriminative embeddings in our
task.

Table 13: Ablation study on feature extractor, temporal pooling scheme, and loss function.

Method Variant TPR FPR AUC EER
SpeeCheck (Multiscale→ w/o Multiscale) 94.48 5.26 98.50 5.29
SpeeCheck (AttentivePooling→ AvgPooling) 93.80 6.25 98.42 6.22
SpeeCheck (InfoNCEloss→ TripletLoss) 85.94 1.46 95.77 10.73
SpeeCheck 98.70 0.85 98.89 0.92

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.11 VISUALIZATION OF MULTISCALE FEATURE EXTRACTION

Anchor Positive Negative

Figure 8: t-SNE visualizations of speech samples (after training).

D DISCUSSION

While SpeeCheck provides a new paradigm for self-contained speech integrity verification, we ac-
knowledge several limitations that can be improved in future research: 1) SpeeCheck’s robustness
is limited concerning certain operations like time-stretching (speeding up/slowing down) and Voice
Activity Detection (VAD). These operations are sometimes not malicious, but they can inherently
alter pitch, tempo, or meaningful phonemes in the speech. Our framework prioritizes a security-first
design, we conservatively treat modified speech as unreliable. But extending training with such
operations, or integrating more robust watermarking schemes, could improve the applicability in
the future. 2) SpeeCheck is optimized for speech durations between 2 and 20 seconds. For very
short clips, the embedding and watermark extraction may become unstable. However, such clips
often lack meaningful semantic content, making them less critical targets for tampering. For very
long audio, although we did not explicitly train on durations beyond 20 seconds, SpeeCheck still
exhibited reasonable generalization. A practical solution is to segment longer recordings into multi-
ple 20-second chunks, protect and verify the content in controllable chunks. 3) Current SpeeCheck
is tailored for speech integrity verification rather than general audio (e.g., music, environmental
sounds). This choice is motivated by the fact that Speech is particularly vulnerable to tampering and
can significantly impact social trust and social stability. Generalizing the system to broader audio
domains would be a promising direction for future work, for instance, emphasizing perceptual fi-
delity, spectral consistency, and artistic style preservation. 4) SpeeCheck provides an utterance-level
tampering detection, but does not localize the tampered region. This is because SpeeCheck summa-
rized each speech into a concrete digest. Extending SpeeCheck with temporal localization could be
a promising future direction.

22


	Introduction
	Motivation
	Problem Definition
	Malicious and Benign Audio Operations
	Limitations of Acoustic Feature Similarity
	Limitations of Cryptographic Hashing

	Methodology
	SpeeCheck Overview
	Fingerprint Generation and Watermarking
	Dual-Path Speech Integrity Verification

	Experiments
	Experiment Setup
	Results

	Conclusion
	Related Works
	Passive Detection of Speech Tampering
	Proactive Protection of Speech Integrity

	SpeeCheck Design and Operation Definitions
	Overall Algorithm
	Definition of Benign and Malicious Operations
	Explanation of Malicious Tampering over Different Granularities

	Experimental Setup and Extended Results
	Implementation Details
	Dataset and Evaluation Details
	Similarity Distribution using MFCC Feature
	Evaluation on Semantic and Identity Changes under Benign and Malicious Operations
	Results of Fine-Grained Malicious Operations Rejection
	Evaluation in Real-World Scenario
	Evaluation on Different Lengths of Speech
	Real-Time Evaluation
	Watermarked Speech Quality
	Ablation Studies
	Visualization of Multiscale Feature Extraction

	Discussion

