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ABSTRACT

Advances in audio editing have made public speeches increasingly vulnerable to
malicious tampering, raising concerns for social trust. Existing speech tampering
detection methods remain insufficient: they often rely on external references or
fail to balance sensitivity to attacks with robustness against benign operations like
compression. To tackle these challenges, we propose SpeeCheck, the first self-
contained speech integrity verification framework. SpeeCheck can (i) effectively
detect tampering attacks, (ii) remain robust under benign operations, and (iii) en-
able direct verification without external references. Our approach begins with
utilizing multiscale feature extraction to capture speech features across different
temporal resolutions. Then, it employs contrastive learning to generate finger-
prints that can detect modifications at varying granularities. These fingerprints
are designed to be robust to benign operations, but exhibit significant changes
when malicious tampering occurs. To enable self-contained verification, these
fingerprints are embedded into the audio itself via a watermark. Finally, dur-
ing verification, SpeeCheck retrieves the fingerprint from the audio and checks it
with the embedded watermark to assess integrity. Extensive experiments demon-
strate that SpeeCheck reliably detects tampering while maintaining robustness
against common benign operations. Real-world evaluations further confirm its
effectiveness in verifying speech integrity. The code and demo are available at
https://speecheck.github.io/SpeeCheck/.

1 INTRODUCTION

Audio serves as an important information carrier that is widely used in news reporting, legal evi-
dence, and public statements. However, the rapid development of audio editing tools (Wang et al.,
2023) and text-to-speech (TTS) generation models (Wang et al., 2017; Ping et al., 2018; Huang
et al., 2023; Du et al., 2024; Chen et al., 2024) has significantly lowered the technical barriers for
speech manipulation and synthesis. While these techniques benefit content creation and entertain-
ment, they also enable attackers to tamper speech content with ease. Public speeches and statements,
especially made by influential figures, have become prime targets for attacks due to their huge so-
cial impact (Reuters, 2023; Post, 2024). Tampered speech can cause the spread of misinformation,
undermine public trust, and even threaten social stability. Moreover, the prevalence of social me-
dia platforms accelerates the circulation of tampered audio, posing challenges to ordinary people in
identifying authenticity from numerous sources. Currently, verifying the truth often requires cross-
checking information across multiple social media platforms, a process that is time-consuming and
prolongs the spread of misinformation. These challenges highlight a critical need: Is it possible
to proactively protect publicly shared speech against tampering attacks while still allowing it to be
freely stored, distributed, and reshared?

Existing approaches against speech tampering can be categorized into two groups: passive detec-
tion and proactive protection. Passive detection methods (Rodrı́guez et al., 2010; Yang et al., 2008;
Pan et al., 2012; Blue et al., 2022; Leonzio et al., 2023) rely on deep binary classifiers trained to
identify artifacts introduced by tampering. While they show reasonable performance against known
attacks, their sensitivity to unseen or sophisticated manipulations remains limited. Moreover, pas-
sive detection alone cannot verify whether the speech content originates from the claimed speaker,
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Figure 1: System overview of the proposed SpeeCheck.

leaving systems vulnerable to impersonation-based attacks (Khan et al., 2022). Proactive protection
methods ensure content integrity by embedding auxiliary information into the audio and extracting
it during verification. Common approaches include cryptographic hashing (Steinebach & Dittmann,
2003) and fragile watermarking (Renza et al., 2018). Hash-based methods convert audio into fixed-
length digests, which can reliably detect even minor alterations. However, they require transmitting
or retrieving external reference hashes, preventing independent verification from the published au-
dio. Fragile watermarking, on the other hand, embeds a highly sensitive watermark into the audio,
enabling integrity verification without references. However, they can be unintentionally removed
by benign operations, which restricts applicability in real-world distribution scenarios. By contrast,
robust watermarking (Roman et al., 2024; Liu et al., 2024; Chen et al., 2023) is designed to sur-
vive such benign processing and is widely used for copyright protection. Yet, it is not suitable for
integrity verification, as the watermark may remain detectable after malicious tampering.

To address the issues above, a desired speech verification design should have the following proper-
ties: (1) Convenient to use: the integrity of the speech can easily be verified by the general public
without requiring external references. (2) Sensitive to tampering attacks: it can reliably detect
any malicious edits, including subtle semantic (e.g., can⇔ cannot) or speaker-related (e.g., timbre)
changes. (3) Robust to benign operations: it should be robust to typical benign audio operations,
especially commercial-off-the-shelf codecs (e.g., AAC in Instagram/TikTok), ensuring usability in
sharing and distribution. Therefore, in this paper, we propose SpeeCheck, a proactive acoustic
fingerprint-based speech verification design that jointly utilizes semantic content and speaker iden-
tity. Specifically, SpeeCheck uses multiscale feature extraction to capture speech features across
different temporal resolutions. Then, it employs contrastive learning to generate fingerprints that
can detect modifications at varying granularities. These fingerprints are designed to be robust to be-
nign operations, but exhibit significant changes when malicious tampering occurs. To enable speech
verification in a self-contained manner, the generated fingerprints are then embedded into the speech
signal by segment-wise watermarking. Without a copy of the original authentic speech, SpeeCheck
can retrieve the fingerprint from the published audio and check it with the embedded watermark to
verify the integrity. Our main contributions are summarized as follows.

• We propose SpeeCheck, the first self-contained integrity verification framework for speech.
It enables users to verify speech integrity without accessing original speech recordings.

• To enable self-contained verification, we leverage audio watermarking to embed discrimi-
native fingerprints into the speech signal, allowing for verifying the integrity only from the
watermarked audio.

• We develop a five-step algorithm that extracts multiscale features and applies contrastive
learning to generate binary fingerprints, which are robust to benign operations yet sensitive
to malicious manipulations.

• We validate SpeeCheck through extensive experiments on public speech datasets and a real-
world dataset constructed for this study. The evaluation demonstrates high effectiveness in
detecting diverse tampering attacks while maintaining robustness against benign operations
in practical scenarios.
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Figure 2: Probability distributions: (a) wav2vec embedding similarity to the original audio under
different modifications; (b) SHA256 Hamming distance to the original audio under different modi-
fications.

2 MOTIVATION

2.1 PROBLEM DEFINITION

As shown in Figure 1, the scenario considered in our study includes four parties: 1) Original speak-
ers, such as public institutions and celebrities, who publish statements or speeches on social media
platforms. 2) Legitimate users, who help disseminate these audio recordings by downloading or
reposting them. 3) Malicious attackers, which employ audio editing or voice conversion techniques
to alter either the semantic content or the speaker’s identity. 4) The public, who are exposed to con-
flicting audio sources, requires a reliable method to verify the integrity of a given speech recording.

2.2 MALICIOUS AND BENIGN AUDIO OPERATIONS

We define malicious audio tampering as intentional audio modifications that alter the semantic con-
tent or speaker identity. Typical malicious operations include audio splicing, deletion, substitution,
silencing, text-to-speech (TTS) synthesis, and voice conversion. In contrast, benign operations refer
to common audio transformations that occur during legitimate processes such as storage, transmis-
sion, or distribution. Examples include compression, reencoding, resampling, and noise suppres-
sion, none of which impact the semantic content or speaker identity. A detailed distinction between
malicious and benign audio operations, along with specific examples, is provided in Appendix B.2.

2.3 LIMITATIONS OF ACOUSTIC FEATURE SIMILARITY

An intuitive approach for speech verification is to compare the acoustic similarity between the pub-
lished audio and its original version. Following this intuition, we analyzed similarity scores be-
tween the original audio and three types of modifications: benignly processed variants (“Benign”),
maliciously modified variants (“Malicious”), and unrelated audio samples (“Cross”). Figure 2a
presents cosine similarity distributions computed using wav2vec embeddings (Baevski et al., 2020).
The significant overlap between benign and malicious similarity distributions demonstrates that
acoustic feature similarity alone is insufficient to determine the types of modification operations.
Similar results are observed using traditional acoustic feature Mel-frequency cepstral coefficients
(MFCC) (Davis & Mermelstein, 1980), detailed in Appendix C.3. This limitation arises because ma-
licious operations, even significantly altering the content, may introduce minimal acoustic changes.
For instance, modifying the phrase “do not” to “do” in a 20-second speech affects only 0.2 seconds,
and similarity remains more than 99%, while causing substantial semantic alteration. Moreover, this
method requires access to the authentic audio, which is impractical in real-world scenarios. These
limitations highlight two key challenges:

Challenge 1: Insufficient sensitivity to semantic tampering attacks. Acoustic feature-based sim-
ilarity methods fail to distinguish benign operations from malicious ones, because they are not sen-
sitive enough to semantic tampering attacks.

Challenge 2: Dependence on the original authentic audio. Acoustic similarity assessments re-
quire the original authentic audio as a reference, which is not always applicable in practice.

3
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Figure 3: A sketch of the proposed SpeeCheck design including speech fingerprint generation (top)
and integrity verification (bottom).

2.4 LIMITATIONS OF CRYPTOGRAPHIC HASHING

Given these limitations, another potential verification method is cryptographic hashing (Menezes
et al., 2018), which generates a digest for each audio file. Its extreme sensitivity enables the de-
tection of even minor changes, making it theoretically effective against tampering. However, this
sensitivity also captures benign operations that do not affect semantic content or speaker identity.
Figure 2b illustrates the significant Hamming distances between original audio and benign, mali-
cious, or unrelated variants. Consequently, cryptographic hashing fails to differentiate benign oper-
ations from malicious tampering. Moreover, cryptographic hashing requires external reference hash
values for verification, introducing additional practical complexity. These limitations expose two
key challenges:

Challenge 3: Lack of robustness to benign operations. Cryptographic hashes are overly sensitive,
changing significantly even under benign operations, thus limiting practical usability.

Challenge 4: Dependence on external reference hash values. Verification using hashes depends
on externally stored hash values, introducing extra overhead and inconvenience for speech forward-
ing on the online platforms.

3 METHODOLOGY

3.1 SPEECHECK OVERVIEW

To address these challenges, we propose SpeeCheck, a proactive speech integrity verification design,
which is (i) sensitive to tampering attacks, (ii) robust to benign operations, and (iii) convenient to
use by the public since it verifies the published speech audio’s integrity in a self-contained manner.
As the sketch shown in Figure 3, SpeeCheck consists of two stages: fingerprint generation and
dual-path integrity verification.

The speech fingerprint generation in SpeeCheck has five steps: (1) Frame-Level Feature Encoding
(Speech to Representation): raw speech is encoded into frame-level representations that preserve
acoustic information; (2) Multiscale Acoustic Feature Extraction (Representation to Vector): the
frame-level representations are first processed into contextual features, then aggregated at multiple
temporal resolutions, and finally attentively pooled into a fixed-dimensional vector that summarizes
the entire utterance; (3) Contrastive Fingerprint Training (Vector to Fingerprint): the vector is opti-
mized to be robust to benign operations, and sensitive to tampering attacks using contrastive learn-
ing; (4) Binary Fingerprint Encoding (Fingerprint to Bit): the trained fingerprint is discretized into
a binary representation; (5) Segment-Wise Watermarking (Bit to Watermark): the binary fingerprint
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is embedded into the original audio through segment-wise watermarking, making the fingerprint
self-contained.

The integrity verification in SpeeCheck independently performs two parallel paths on the published
audio: (1) regenerating the fingerprint via the same extraction pipeline, and (2) extracting the em-
bedded watermark via the watermark decoder. The two resulting binary codes are then compared
using Hamming distance to determine whether the speech has been attacked.

3.2 FINGERPRINT GENERATION AND WATERMARKING

Step 1. Frame-Level Feature Encoding (Speech to Representation) We utilize the pre-trained
wav2vec 2.0 model (Baevski et al., 2020) to extract frame-level representations from the original au-
dio before publishing. This step serves as a necessary preprocessing stage for fingerprint generation.
It converts continuous waveform signals into structured sequences of frame-level representations
that preserve essential acoustic information. These representations have demonstrated effectiveness
in downstream tasks such as automatic speech recognition (Baevski et al., 2021) and speaker verifi-
cation (Fan et al., 2021). Formally, the feature encoder ε : X → Z maps raw audio waveforms X
to a sequence of latent representations z1, z2, . . . , zT , where each zt ∈ Rdz denotes the frame-level
acoustic feature at time t, and T is the total number of output frames.

Step 2. Multiscale Acoustic Feature Extraction (Representation to Vector). Given the frame-
level representations z1, z2, . . . , zT obtained from Step 1, this step constructs a fixed-dimensional
vector that summarizes the speech across different temporal granularities. The multiscale feature
extractor F consists of two components: (a) a bidirectional long short-term memory (BiLSTM)
network that transforms the input frame-level representations into contextual hidden states, and (b)
a multiscale pooling operation that averages the hidden states over phoneme-, word-, and phrase-
level windows (size 20, 50, and 100, respectively) , producing a sequence of multiscale features
h1,h2, . . . ,hK (see Appendix B.3 for examples).

To summarize these features into an utterance-level vector, we apply self-attentive pooling (Lin et al.,
2017). This mechanism assigns higher weights to more informative components, with attention
weight computed as: wn = exp(ϕ(hn))∑K

t=1 exp(ϕ(ht))
, where ϕ(·) is a feedforward network. The weighted

sum yields a fixed-dimension vector: v′ =
∑K

n=1 wn ·hn, which is referred to as the utterance-level
vector. To obtain a more compact representation for fingerprint optimization, a projection module is
applied to reduce the dimensionality of v′, yielding the final fingerprint vector v ∈ Rdv .

Step 3. Contrastive Fingerprint Training (Vector to Fingerprint). Given the fixed-length vector
v obtained from Step 2, we optimize it to serve as a distinctive audio fingerprint that is robust to
benign operations and sensitive to malicious tampering attacks. To this end, we adopt contrastive
learning (Oord et al., 2018) to guide the training of all preceding modules. During the training, a
batch of original speech samples is randomly selected, where each sample serves as an anchor. For
each anchor, we generate: positive pairs, consisting of the anchor and its benign variants (e.g., com-
pression), and negative pairs, consisting of the anchor and its tampered variants (e.g., substitution).
Detailed operations are listed in Appendix B.2. The contrastive loss is defined as

Lc = −
1

B

B∑
i=1

1

P

P∑
j=1

log
exp

(
ṽOrig.⊤
i ṽBenign

i,j /τ
)

N∑
k=1, k ̸=i

exp
(
ṽOrig.⊤
i ṽi,k/τ

) , (1)

where B is the number of anchors in the batch, P is the number of benign variants per anchor,
and N denotes the total number of comparison samples for each anchor, including its own benign
and tampered variants as well as embeddings from other anchors in the batch. τ is the tempera-
ture parameter. ṽOrig.

i denotes the L2-normalized embedding of the i-th anchor, ṽBenign
i,j denotes the

embedding of its j-th benign variant, and ṽi,k enumerates all embeddings in the batch, including
benign, tampered and unrelated samples.

This contrastive learning above encourages the model to bring the anchor closer to its benign variants
while pushing it away from tampered and unrelated samples in the embedding space. As a result,
the fixed-length vector is optimized to serve as a distinctive audio fingerprint that is robust to benign
operations while remaining sensitive to malicious tampering attacks.
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Step 4. Binary Fingerprint Encoding (Fingerprint to Bit). To enable self-contained verifica-
tion, we embed the generated fingerprint into the audio signal as a watermark. Since watermarking
schemes typically support binary payloads and inevitably incur information loss, we design the fin-
gerprint representation to preserve its discriminative power even after binarization. Specifically, we
convert the continuous fingerprint vector v ∈ Rdv into a binary code b ∈ {−1,+1}d, which is more
suitable for compact storage and fast retrieval via bit-wise comparison. To encourage the output to
approach the bipolar extremes of -1 and +1 and thus reduce quantization error, we apply a tanh
activation at the final projection layer. This is followed by a sign function to obtain the final bi-
narized output. As demonstrated in Section 4.2, the binarized fingerprint retains its discriminative
characteristics of v, i.e., robust to benign operations while sensitive to tampering attacks.

Step 5. Segment-Wise Watermarking (Bit to Watermark). To enable self-contained verifica-
tion, the binary fingerprint must be embedded directly into the speech signal. We adapt the robust
watermarking method AudioSeal (Roman et al., 2024) for this purpose. However, a key challenge
arises from our high-capacity requirement. While AudioSeal is designed for short watermarks (i.e.,
16 bits) for copyright protection, our task requires embedding much longer fingerprints (e.g., 256
bits). To meet this requirement, we extend the original AudioSeal with a segment-wise embedding
strategy. Given an input waveform X of duration T seconds and its binary fingerprint b, both are
divided into N non-overlapping segments:

X = [X (1), . . . ,X (N)] and b = [b(1), . . . ,b(N)], (2)

where each X (n) spans T/N seconds and each b(n) contains d/N bits. For each audio segment
X (n), we embed b(n) into the Encodec embedding space and generate a watermark signal δ(n). The
watermarked segment is then formed as: X̃ (n) = X (n) + δ(n). Finally, the watermarked segments
[X̃ (1), . . . , X̃ (N)] are concatenated, yielding the final self-verifiable audio.

Notably, the watermark incurs only subtle perturbations. Our experiments confirm that the acoustic
fingerprint generated from the watermarked audio X̃ remains consistent with the original fingerprint,
while the embedded bits can still be reliably extracted without degradation.

3.3 DUAL-PATH SPEECH INTEGRITY VERIFICATION

SpeeCheck employs a dual-path mechanism to assess the integrity of the published speech X̃ :

Path A: Fingerprint Generation from Published Speech. The published speech audio is pro-
cessed using the same fingerprint generation pipeline described before. The fingerprint b′ is com-
puted as b′ = sign(F(ε(X̃ ))), where ε and F denote the feature encoder and multiscale extractor,
respectively, and sign(·) denotes the final binarization function.

Path B: Watermark Extraction. The published speech audio X̃ is processed in the inverse manner
of Step 5 to decode the embedded watermark (i.e., the original binary fingerprint). From each
segment X̃ (n), we extract the bit chunk b̂(n) using the watermark decoder, and then reconstruct the
full watermark as b̂ = [b̂(1), b̂(2), . . . , b̂(N)].

Finally, the integrity of the published audio is verified by comparing the generated fingerprint b′

with the extracted watermark b̂. This is done by computing the Hamming distance as follows.

dH(b′, b̂) ≤ θ ⇒ Accept; otherwise Reject,

where θ is a decision threshold set based on the validation set from public datasets.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. To train and evaluate the performance of SpeeCheck, we use VoxCeleb1 (Nagrani et al.,
2017), which includes over 150,000 utterances from 1,251 celebrities. These audio samples are
collected from interviews and public videos, providing conditions that reflect real-world speech
recordings. We further employ the test subset from LibriSpeech (Panayotov et al., 2015) dataset to
assess the model generalization. Furthermore, to validate SpeeCheck’s effectiveness under authentic
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scenarios, we build a real-world speech dataset and evaluated it after fine-grained editing and distri-
bution across major social media platforms. More details about the datasets and the preprocessing
steps are provided in Appendix C.2.

Implementation details. (i) Fingerprint model: We use Wav2Vec2.0 Base model1 as the acoustic
feature extractor. A two-layer BiLSTM with a hidden size of 512 follows the feature extractor.
Multiscale pooling is used with window sizes of 20, 50, and 100 frames with a stride of 10 frames. A
two-layer projection head then maps features into a 256-dimensional vector. (ii) Watermark model:
AudioSeal model2 is used to embed and extract fingerprints as watermark payloads. To improve the
watermarking capacity, we divide both the carrier audio and the fingerprint into 16 segments. Each
segment carries a 16-bit watermark, leading to a total payload of 256 bits per audio sample. (iii)
Training: We exploit benign and malicious operations (see Appendix B.2) and the original audio
samples for contrastive learning, with temperature set as 0.05. A cosine annealing learning rate
schedule is used, gradually decreasing the learning rate from 1×10−3 to 1×10−5 over the training.

Evaluation Metrics. We evaluate SpeeCheck as a binary classification task, where benign opera-
tions are treated as positive and malicious ones as negative. Evaluation metrics include true positive
rate (TPR), false positive rate (FPR), true negative rate (TNR), false negative rate (FNR), equal error
rate (EER), and area under the curve (AUC) (see Appendix C.2). The decision is made by comparing
the dual-path bit error with a threshold (θ = 42), which is determined on the validation set.

Table 1: Results of benign operation (positive) acceptance on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TPR FPR AUC EER TPR FPR AUC EER

Compression 99.80 1.60 99.84 1.40 97.00 2.40 99.51 2.80 ✓ ✓
Reencoding 99.60 1.20 99.86 0.60 98.60 3.40 99.80 2.20 ✓ ✓
Resampling 95.80 0.00 99.96 1.30 94.60 2.20 99.35 3.20 ✓ ✓
Noise suppression 99.60 0.80 99.95 0.30 98.40 1.80 99.85 1.70 ✓ ✓

Overall 98.70 0.90 99.90 0.90 97.15 2.45 99.63 2.48 - -

Table 2: Results of malicious operation (negative) rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TNR FNR AUC EER TNR FNR AUC EER

Deletion 99.47 0.00 100.00 0.07 98.80 0.00 100.00 0.13 ✗ ✓
Splicing 99.67 0.00 100.00 0.00 98.63 0.00 100.00 0.20 ✗ ✓
Silencing 99.23 0.47 99.84 0.87 97.57 1.73 99.63 2.57 ✗ ✓
Substitution 97.83 4.33 99.70 2.20 94.63 7.27 98.90 4.10 ✗ ✓
Reordering 98.40 2.40 99.08 2.60 97.20 3.00 99.05 3.00 ✗ ✓
Text-to-speech 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 ✗ ✓
Voice conversion 99.40 0.00 100.00 0.00 97.80 0.00 100.00 0.00 ✓ ✗

Overall 99.14 1.03 99.80 0.82 97.80 1.71 99.65 1.43 - -

4.2 RESULTS

Robustness to benign operations. Table 1 presents the performance of the proposed SpeeCheck
in accepting published speech samples subjected to benign audio operations, as defined in Ap-
pendix B.2. We focus on evaluating how well SpeeCheck accepts positive samples with harmless
modifications (TPR) and whether it mistakenly accepts maliciously tampered speech (FPR). To en-
sure balanced evaluation, the numbers of positive (benign) and negative (malicious) samples are
kept equal. On the test subsets of VoxCeleb1, SpeeCheck achieves an overall TPR of 98.70% and an
FPR of 0.90%, demonstrating strong robustness to non-malicious transformations. For cross-dataset
evaluation on LibriSpeech, using a model trained on VoxCeleb1, the TPR/FPR slightly change to
97.15% and 2.45%, respectively, indicating good generalizability across datasets.

1https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
2https://github.com/facebookresearch/audioseal
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Sensitivity to tampering attacks. Table 2 evaluates the ability of SpeeCheck to reject malicious
tampering attacks that alter the semantic content or speaker identity. The considered attacks in-
clude simple audio editing (e.g., deletion) as well as advanced learning-based manipulations such
as text-to-speech (TTS) synthesis and voice conversion, as detailed in Appendix B.2. In this setting,
tampering operations (actual negatives) are expected to be rejected with a high true negative rate
(TNR), while minimizing the false negative rate (FNR), which reflects incorrect rejection of benign
samples. Notably, on the VoxCeleb (in-domain) dataset, SpeeCheck achieves an overall TNR of
99.14% and an FNR of 1.03%. On the LibriSpeech dataset, the system maintains strong perfor-
mance with an overall of 97.80% and an FNR of 1.71%. These results highlight SpeeCheck’s strong
sensitivity to tampering attacks. A more detailed breakdown by tampering strength (e.g., minor,
moderate and severe) is provided in Appendix C.5.
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Figure 5: t-SNE visualizations
of speech samples: (a) before
training; (b) after training.

Multiscale feature and binarized fingerprints analysis. Figure 4 shows two analyses: (a) co-
sine similarity between extracted multiscale features and (b) Hamming distance between binarized
fingerprints. In Figure 4a, benign-original pairs yield high similarity values close to 1.0, while
malicious-original and cross-original pairs are much lower, indicating that the learned multiscale
features effectively capture the differences between benign operations and malicious tampering at-
tacks. Here, “cross” refers to the arbitrarily selected unrelated audio samples. In Figure 4b, binarized
fingerprints of benign processed samples yield low Hamming distances from their retrieved water-
marks, whereas malicious and cross pairs have much larger distances, with a clear margin of about
112-118 bits. This indicates that the binarization process preserves discriminability and enables
reliable separation of tampering and benign operations using a simple threshold.

Figure 5 shows the t-SNE visualizations of the extracted multiscale features before and after training.
Specifically, Figure 5a and Figure 5b show the distribution of anchors (original speech), positives
(after benign operations), and negatives (after malicious operations) in the latent space. Before train-
ing, anchor and positive samples are scattered and overlap with negatives, indicating poor separabil-
ity. After training, anchors and positives form tight clusters, while negatives are clearly separated.
This suggests that contrastive learning enables the multiscale feature extractor to learn embeddings
that distinguish benign operations from malicious tampering, which explains the strong performance
of SpeeCheck. Additional visualization evidences are provided in Appendix C.11.

Table 3: Detection accuracy on unseen benign operations and tampering attacks.

Unseen Operation Type Accuracy (%) dwm dfp

Benign
Loudness Normalization 100.00 0.96 0.08
Room Reverb 100.00 3.12 26.60
Combined Benign 100.00 4.64 8.29

Tampering
Voice Changer (Female) 100.00 122.46 71.62
Voice Changer (Male) 100.00 125.38 67.85
Combined Malicious 100.00 119.32 75.08
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Table 4: Performance of Deepfake detection at varying substitution ratios (all values in percentage)

Deepfake Ratio RawNet2 AASIST SpeeCheck (ours)
TPR FPR AUC EER TPR FPR AUC EER TPR FPR AUC EER

Substitute 10% 58.12 34.07 65.43 38.29 39.21 17.36 64.58 39.14 100.00 0.00 100.00 0.00
Substitute 25% 61.87 33.95 68.24 37.41 37.46 17.18 64.12 41.89 100.00 0.00 100.00 0.00
Substitute 50% 59.38 34.26 65.72 38.11 44.19 17.09 67.34 39.27 100.00 0.00 100.00 0.00
Substitute 75% 68.54 34.11 72.36 34.28 54.07 16.92 75.48 31.24 100.00 0.00 100.00 0.00
Substitute 90% 82.91 34.33 81.27 27.18 62.38 17.24 76.19 33.42 100.00 0.00 100.00 0.00

Out-of-Distribution and real-world generalization. To evaluate SpeeCheck’s generalization to
unseen audio operations, we conduct out-of-distribution (OOD) experiments using operations not in-
cluded in the training set. Table 3 reports detection accuracy at a fixed threshold (θ = 42), along with
the Hamming distances of watermarks (dwm) and fingerprints (dfp) between modified and original
audio. SpeeCheck achieves 100% accuracy on unseen benign transformations, including loudness
normalization, room reverberation, and combined benign manipulations. Concurrently, it success-
fully detects sophisticated unseen attacks, including commercial voice changer tools (ElevenLabs,
2024) that alter speaker identity and combined malicious edits. These results highlight the effective-
ness of SpeeCheck in identifying unseen audio operations. Specifically, for real-world recordings,
we observe similar strong performance, where SpeeCheck reliably identifies all fine-grained tam-
perings. Detailed evaluation is shown in Appendix C.6.

Deepfake detection comparison. We finally evaluate SpeeCheck as a deepfake detector3. Specif-
ically, we compare SpeeCheck with state-of-the-art methods including RawNet2 (Tak et al., 2021)
and AASIST (Jung et al., 2022), two end-to-end models developed for the ASVspoof challenge (Ya-
magishi et al., 2021), and widely used for audio spoofing detection. We utilize a zero-shot TTS
model YourTTS (Casanova et al., 2022) to generate deepfake speech segments, and substitute them
for varying proportions (10%, 25%, 50%, 75% and 90%) of the original speech. Next, the deepfake
samples are mixed with an equal amount of clean speech to ensure fair evaluation.

From Table 4, both RawNet2 and AASIST perform best given the highest substitution ratio at
90%, achieving up to 82.91% TPR by RawNet2. However, when decreasing the substitution ratio,
RawNet2 and AASIST both show significant degradation regarding the ability of detecting deep-
fake substitution samples. For example, at the ratio of 10%, the AUC of RawNet2 drops to 65.43%
and EER increases to 38.29%, indicating diminished sensitivity to subtle spoofing. Similarly, AA-
SIST exhibits similar performance degradation under the same condition. In contrast, SpeeCheck
consistently achieves very good detection performance across all substitution levels (TPR=100.00,
FPR=0.00, AUC=100.00, EER=0.00), demonstrating the superiority of the proposed proactive de-
fense design.

Since synthetic deepfake audio lacks embedded watermarks, the fingerprint-watermark verification
process becomes essentially random, making tampering attacks easy to detect. Even minor substi-
tutions alter the extracted fingerprint and disrupt the embedded watermark simultaneously, resulting
in a mismatch and enabling reliable detection of tampering. Further analysis of each module’s con-
tributions is provided in the ablation studies in Appendix C.10.

5 CONCLUSION

In this paper, we proposed SpeeCheck, a proactive and self-contained framework for speech in-
tegrity verification. SpeeCheck integrates multiscale feature extraction and contrastive learning to
produce robust fingerprints, which are embedded into audio via watermarking. These fingerprints
are sensitive to malicious tampering while robust to benign operations commonly introduced during
digital distribution, enabling integrity verification without access to external references. Extensive
experiments confirm its robustness and sensitivity across diverse tampering scenarios. Notably,
evaluations on a constructed real-world dataset further demonstrate its practicality, showing high
robustness under social media distribution and strong sensitivity to fine-grained malicious edits.

3To avoid confusion, SpeeCheck is used here for deepfake detection, where “positive” now refers to deep-
fake samples to be identified.
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All experiments are conducted on publicly available datasets (VoxCeleb and LibriSpeech) and a
small-scale real-world dataset collected with voluntary consent. To protect privacy, all data used
in public demos are anonymized, and no personally identifiable information is released. Deepfake
and voice conversion technologies are employed solely to simulate attack scenarios for research
evaluation, and no harmful or deceptive content is created or disseminated.

The proposed method aims to strengthen speech integrity verification and mitigate the spread of
misinformation. We recognize that, like any integrity verification technology, it could be misused
for surveillance or censorship; thus, it should be deployed responsibly and transparently. The authors
declare no conflicts of interest or sponsorship-related concerns in this study.

REPRODUCIBILITY STATEMENT

We make significant efforts to ensure reproducibility. All datasets used in this study are pub-
licly available (VoxCeleb, LibriSpeech), and the constructed real-world dataset is included in the
supplementary materials. Details of the fingerprint generation, watermark embedding, training
procedure, and evaluation metrics are described in Section 3 and Section 4, with extended infor-
mation in the Appendix C. An anonymous implementation and demo are provided at https:
//speecheck.github.io/SpeeCheck/, which contains the source code and instructions
for reproducing our experiments.
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LLM USAGE STATEMENT

Large Language Models (LLMs) were used exclusively as general-purpose writing assistants to
improve readability and adjust formatting. They did not contribute to the research ideation, method-
ology, experimental design, analysis, or interpretation of results. All technical content and scientific
contributions are solely the work of the authors.

A RELATED WORKS

A.1 PASSIVE DETECTION OF SPEECH TAMPERING

Audio editing process can generate artifacts or modify natural acoustic features within human
speech. For example, frame offset (Yang et al., 2008), inconsistent noise (Pan et al., 2012), and
even discontinued electric network frequency (Rodrı́guez et al., 2010; Esquef et al., 2014), are iden-
tified as evidence of tampering. Using such patterns, “passive” detectors can be trained as binary
classifiers using labeled clean and tampered audio. However, these methods are less effective when
facing deepfake audio. Advanced deepfake techniques can synthesize high-fidelity speech with few
or no detectable artifacts, making conventional patterns unreliable. To address this, recent work has
explored more subtle acoustic properties, such as fluid dynamics and articulatory phonetics (Blue
et al., 2022). Nevertheless, as the deepfake models evolve, relying solely on passive detection may
not be sufficient against future attacks.

A.2 PROACTIVE PROTECTION OF SPEECH INTEGRITY

Proactive defense provides another direction to detect speech tampering. In general, critical infor-
mation is extracted from the original audio and condensed into auxiliary data (or “meta” data). This
auxiliary data then serves as a reference for verification: one extracts the same data from the test
audio, and if it matches, it indicates that the test audio is free of audio editing, and vice versa. Cryp-
tographic hashing, which transforms the digital audio files into discrete bytes, is one of the proactive
defenses (Zakariah et al., 2018). However, hashing operations are too sensitive to tolerate common
operations from regular users, such as audio compression and resampling, resulting in a high false
alarm rate. Another method is fragile watermarking (Renza et al., 2018), where sensitive water-
marks are directly embedded into audio signals and checked for changes. However, this method is
also sensitive to minor perturbations, limiting the free and practical distribution of audio. Ge et al.
(2025) propose a proactive defense approach against speaker identity manipulation, which embeds
speaker embeddings into speech using audio watermarking. However, their method focuses only on
speaker-identity attacks and cannot detect semantic content alterations. Therefore, existing proac-
tive audio protection methods do not simultaneously achieve robustness against benign operations,
sensitivity to malicious tampering, and independence from external verification channels.

B SPEECHECK DESIGN AND OPERATION DEFINITIONS

B.1 OVERALL ALGORITHM

The training and verification procedures of SpeeCheck are summarized in Algorithm 1 and Algo-
rithm 2, respectively.

B.2 DEFINITION OF BENIGN AND MALICIOUS OPERATIONS

We simulate two categories of audio modifications: benign operations and malicious tampering. Be-
nign operations refer to legitimate processing steps encountered during audio storage, transmission,
or distribution. These operations do not change the semantic content or the speaker identity of the
speech. In contrast, malicious tampering refers to intentional alterations designed to distort either
the semantic meaning or the identity of the speaker. We detail each operation below and summarize
its characteristics in Table 5.
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Algorithm 1 SpeeCheck Training and Deployment

1: Input: Raw speech X , benign operations Tb(·), malicious operations Tm(·), Wav2Vec2.0 en-
coder ε, multiscale feature extractor F

2: Output: Watermarked speech X̃
3: for e = 1, 2, . . . , epochs do
4: for b = 1, 2, . . . , batches do
5: X benign ← Tb(X ), Xmalicious ← Tm(X )
6: Step 1: Frame-level feature extraction
7: Z ← ε(X )
8: Step 2: Multiscale feature summarization
9: hn ← F(Z)

10: for n = 1, . . . ,K do
11: wn ← exp(ϕ(hn))∑K

t=1 exp(ϕ(ht))

12: end for
13: v′ ←

∑K
n=1 wn · hn

14: v← Proj(v′)
15: Step 3: Contrastive fingerprint training
16: Compute contrastive loss Lc
17: Update F , ϕ, Proj via backpropagation
18: end for
19: end for
20: Step 4: Binary fingerprint encoding
21: b← sign(tanh(Proj(AttPool(F(ε(X̃))))))
22: Step 5: Segment-wise watermarking
23: Split X and b into N segments: [X (1), . . . ,X (N)], [b(1), . . . ,b(N)]
24: for n = 1, . . . , N do
25: δ(n) ←WatermarkEmbedder(X (n),b(n))

26: X̃ (n) ← X (n) + δ(n)

27: end for
28: X̃ ← Concat(X̃ (1), . . . , X̃ (N))

Algorithm 2 SpeeCheck Verification

1: Input: Published speech X̃ , wav2vec2.0 encoder ε, trained multiscale feature extractor F ,
projection module Proj, attentive pooling AttPool, WatermarkExtractor

2: Output: Verification result (Accept or Reject)
3: Path A: Fingerprint extraction
4: b′ ← sign(tanh(Proj(AttPool(F(ε(X̃ ))))))
5: Path B: Segment-wise watermark extraction
6: Split X̃ into N segments: X̃ (1), . . . , X̃ (N)

7: for n = 1 to N do
8: b̂(n) ←WatermarkExtractor(X̃ (n))
9: end for

10: b̂← Concat(b̂(1), . . . , b̂(N))
11: Integrity decision
12: if dH(b′, b̂) ≤ θ then
13:
14: return Accept
15: else
16:
17: return Reject
18: end if
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Table 5: Summary of audio operations.

Operation Example Implementation
Benign Operations
Compression Podcasts, news broadcasts, online

meetings
ffmpeg (MP3 @ 128 kbps)

Reencoding Saving or uploading audio files ffmpeg (PCM 16-bit)
Resampling Low-bandwidth communication Resample (torchaudio)
Noise Suppression Social media platforms RMS-based frame muting

Malicious Operations
Deletion Removing “not” in “I do not agree” VAD + remove voiced

portion
Splicing Inserting “not” into “I do agree” Insert voiced segment
Substitution Replacing “agree” with “disagree” Swap waveform segment
Silencing Muting “not” in “I do not agree” Mute VAD-detected

region
Reordering Changing sentence order Segment + shuffle +

concat
Voice Conversion Changing timbre (speaker identity) torchaudio.sox effects

(training), Voice Changer
(testing)

Text-to-Speech Generate new speech with speaker’s
timbre

YourTTS (zero-shot
synthesis)

Compression. Lossy compression is applied by converting the waveform to MP3(128 kbps) or
AAC (128 kbps), and decoding it back to WAV. This simulates typical processing in podcasts
and streaming platforms. We use FFmpeg: ffmpeg -i input.wav -b:a 128k temp.mp3;
ffmpeg -i temp.mp3 output.wav.

Reencoding. The waveform is re-encoded to 16-bit PCM WAV format without compression. This
simulates storage or uploading scenarios where minor numerical alterations may occur. Imple-
mented with: ffmpeg -i input.wav output.wav.

Resampling. Audio is downsampled (e.g., from 16 kHz to 8 kHz) and then up-
sampled back, simulating low-bandwidth or legacy systems. Implemented with:
torchaudio.transforms.Resample.

Noise Suppression. To simulate automatic noise suppression utilized by social media and stream-
ing platforms, the waveform is divided into overlapping frames. Frames with low root-mean-square
(RMS) energy are muted.

Deletion. A portion of speech (not silence) is removed from the speech. For example, deleting
“not” from “I do not agree” changes the meaning entirely.

Splicing. A short segment of speech from the same speaker is spliced into the waveform. For
example, inserting “not” into the phrase “I do agree” reverses its original semantic meaning.

Substitution. A segment of speech is replaced with another waveform segment of equal length
from the same speaker. For instance, replacing “agree” with “disagree” fundamentally changes the
intended meaning.

Silencing. A portion of speech (not silence or noise) is deliberately muted by setting its amplitude
to zero. For instance, muting the word “not” in “I do not agree” leads to a reversed interpretation.
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Reordering. The speech is segmented, rearranged, and concatenated to change the semantic con-
tent. For instance, reordering “I never said she stole my money” into “She stole my money, I never
said” distorts the original meaning and can lead to an opposite interpretation.

Voice Conversion. Note that integrating voice conversion models into the training pipelines
is computationally expensive and time-consuming, making large-scale training impractical. To
achieve a comparable effect with lower overhead, during the training phase, we apply pitch shift-
ing for speaker identity modification (e.g., +4 semitones) using SoX effects, implemented via
torchaudio.sox_effects.apply_effects_tensor. This modification introduces perceptual
changes to voice characteristics, effectively creating negative samples for learning to distinguish
speaker identity. In the testing phase, we validate SpeeCheck’s performance on a separate set of au-
dio manipulated by a state-of-the-art commercial voice changer tool from ElevenLabs (ElevenLabs,
2024).

Text-to-Speech. We synthesize speech from text using a pre-trained text-to-speech (TTS) model,
YourTTS (Casanova et al., 2022), which supports multilingual and zero-shot speaker adaptation.
This attack can generate speech that closely mimics the speaker’s voice with arbitrary semantic
content.

Different Levels of Tampering. To evaluate the performance under varying conditions, we define
three levels of tampering: minor, moderate, and severe. Specifically, at the minor level, tampering
operations, including deletion, splicing, silencing, and substitution, alter about 10% of the original
audio content (alteration ratio = 0.1). At the moderate level, these same operations alter 30% of the
audio (alteration ratio = 0.3). At the severe level, 50% of the audio is altered (alteration ratio = 0.5),
and this level also includes reordering operations, which disrupts the logical structure of the speech.

B.3 EXPLANATION OF MALICIOUS TAMPERING OVER DIFFERENT GRANULARITIES

Table 6 presents representative examples of malicious tampering at the phoneme, word, and phrase
levels. These examples illustrate how manipulations at different temporal granularities can alter the
meaning of speech. They also motivate the use of multiscale pooling with window sizes of 20, 50,
and 100 frames, which are designed to capture such variations in real-world scenarios.

Table 6: Examples of malicious tampering at different levels of granularity

Granularity Example Description
Phoneme-level Change “bed” to “bad” (English);

change “mā” (mother) to “mǎ”
(horse) (Mandarin)

Altering a single phoneme can lead to sub-
tle yet meaningful changes. These edits are
often difficult to detect but can reverse or
distort the intended meaning.

Word-level Insert “not” into “He is guilty” to
form “He is not guilty”; replace
“approved” with “denied”

Tampering at the word level through inser-
tion, deletion, or substitution can directly
modify semantic content, leading to mis-
leading interpretations.

Phrase-level Change “Negotiations will begin
immediately” to “Negotiations will
be delayed indefinitely”

Reordering or replacing entire phrases can
fabricate new narratives while maintaining
natural-sounding speech, making the tam-
pering more deceptive.

C EXPERIMENTAL SETUP AND EXTENDED RESULTS

C.1 IMPLEMENTATION DETAILS

To supplement Section 4.1, we provide a detailed description of the model architecture and training
configuration.
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Model. We use the pretrained Wav2Vec2.0 Base model4 to extract 768-dimensional frame-level
acoustic features. These are passed to a two-layer Bidirectional LSTM (BiLSTM) with an input
size of 768, a hidden size of 512 (i.e., 256 per direction), and a dropout rate of 0.25. To capture
temporal features at multiple resolutions, we apply average pooling with window sizes of 20, 50,
and 100 frames, with a stride of 10 frames, implemented using avg pool1d along the time axis.
The pooled outputs are aggregated by an attentive pooling module consisting of a linear-tanh-linear
projection. The resulting weighted sum forms the utterance-level embedding, followed by dropout
with a rate of 0.2. This embedding is fed into a two-layer MLP projection head with dimensions
768→ 512→ 256, with ReLU activation between layers. The final output vector is L2-normalized
and passed through a tanh function to constrain values to the range [−1, 1], yielding the continuous-
valued fingerprint. For segment-wise watermarking, we use the pretrained AudioSeal model5 to
embed and extract binary fingerprints as watermarks. Each audio is divided into 16 non-overlapping
segments, with each segment embedded with a 16-bit binary watermark, resulting in a total payload
size of 256 bits per audio.

Training. SpeeCheck is trained using a cosine annealing learning rate schedule, decaying from
1 × 10−3 to 1 × 10−5 over 50 epochs. The contrastive loss is temperature-scaled with τ = 0.05.
Training is conducted on 2 NVIDIA A100 GPUs using distributed data parallelism.

Table 7: Examples from RWSID with corresponding editing operations

Sentence Editing Operation
The board has decided they can not approve the new budget. Deletion / Silencing (“not”)
Our analysis shows this investment is not a secure option. Deletion / Silencing (“not”)
Based on the evidence, the suspect is innocent. Substitution→ “guilty”
Based on the evidence, the suspect is guilty. Substitution→ “innocent”
I never said she stole the company’s data. Reordering
I never said she stole the company’s data. Voice Conversion (AI)
We will begin the product launch immediately. Replacement→ “delay”
We will delay the product launch immediately. Replacement→ “begin”
I believe it is a good idea, but we need more time. Splicing
This is authentic audio, not deepfake. Text-to-Speech (AI)

C.2 DATASET AND EVALUATION DETAILS

We use two public speech datasets: VoxCeleb and LibriSpeech. For VoxCeleb, the development set
is used for training and the test set for evaluation. For LibriSpeech, we use only the test-clean
subset for evaluation. To comprehensively evaluate the effectiveness of SpeeCheck in real-world
scenarios, we construct a Real-World Speech Integrity Dataset (RWSID). This dataset comprises
recordings from 10 volunteers with diverse demographic backgrounds (including multiple races and
sexes). Each participant read 8 prepared speeches (see Table 7). All audio files are converted to
WAV format and resampled to 16 kHz.

Preprocessing. We randomly sample 10,000 utterances from the VoxCeleb development set for
model training. For evaluation, we sample 500 utterances each from the VoxCeleb test set and the
LibriSpeech test-clean subset. To stabilize the training and ensure data quality, we retain only
utterances with durations between 2 and 20 seconds.

For each valid utterance, we generate two sets of augmented variants for contrastive learning: (i)
Benign Augmentations: These are modifications that preserve both speaker identity and semantic
content. (ii) Malicious Augmentations: These include tampering operations intended to alter speaker
identity and semantic content. The details can be found in Appendix B.2.

Evaluation Metrics. For evaluation, we consider benign and malicious as positive and negative
classes, respectively. TP is the number of benign samples correctly classified, and FN is the num-
ber of benign samples incorrectly classified as malicious. FP is the number of malicious samples
incorrectly classified as benign, and TN is the number of malicious samples correctly rejected. The
following metrics are computed:

4https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
5https://github.com/facebookresearch/audioseal
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• True Positive Rate (TPR): TPR = TP/(TP + FN)

• False Positive Rate (FPR): FPR = FP/(FP + TN)

• True Negative Rate (TNR): TNR = TN/(TN + FP)

• False Negative Rate (FNR): FNR = FN/(FN + TP)

• Equal Error Rate (EER): The error rate at the decision threshold where FPR = FNR.

• Area Under the Curve (AUC): The area under the receiver operating characteristic curve.

C.3 SIMILARITY DISTRIBUTION USING MFCC FEATURE
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Figure 6: Probability distributions: (a) MFCC embedding similarity to original audio under different
modifications; (b) MFCC embedding similarity to original audio at different tampering levels.

To complement the observations in Section 2.3, we present similarity distributions computed us-
ing handcrafted Mel-frequency cepstral coefficients (MFCC) instead of wav2vec2 embeddings. As
shown in Figure 6, the similarity distributions between original and modified audio samples us-
ing MFCC features exhibit trends similar to those observed with wav2vec2-based representations.
Specifically, the distributions corresponding to benign and malicious modifications overlap, and the
similarity scores tend to decrease as the extent of tampering increases. This indicates that MFCC-
based similarity comparison can only measure the extent of modification but does not effectively
distinguish between different types of modifications.

C.4 EVALUATION ON SEMANTIC AND IDENTITY CHANGES UNDER BENIGN AND
MALICIOUS OPERATIONS

We evaluate the impact of different audio modifications on both semantic integrity and speaker iden-
tity consistency. Semantic preservation is quantified using word error rate (WER) computed from a
pre-trained automatic speech recognition (ASR) model6, facebook/wav2vec2-base-960h,
a CTC-based ASR model. Speaker identity preservation is measured by cosine similar-
ity between embeddings extracted using the pre-trained speaker verification (SV) model7,
speechbrain/spkrec-ecapa-voxceleb.

As shown in Table 8, benign operations (e.g., compression, recording, resampling, noise suppres-
sion) result in low WER (≤8.24%) and high identity similarity (≥78%), indicating that they largely
preserve both semantic content and speaker identity. In contrast, malicious operations introduce sub-
stantial degradation. WER increases steadily with the severity of deletion, splicing, silencing, and
substitution, reflecting significant semantic changes. These operations, however, generally maintain
high identity similarity because they retain the original timbre. Notably, voice conversion results
in relatively low WER, but significantly reduces identity similarity (41.60%), since it deliberately
alters the speaker’s timbre.

To further investigate the nonzero WER observed under benign operations, we manually examined
the ASR outputs. Most transcription errors were minor substitutions or alignment shifts that did not
affect the overall meaning. This suggests that the observed WER in these cases reflects limitations
of the ASR model and metric sensitivity rather than genuine semantic distortion.

6https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
7https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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Table 8: WER and Identity Similarity under Different Operations

Operation WER % Identity Similarity %
Benign Operations
Compression 1.15 95.60
Recoding 0.26 99.99
Resampling 6.87 78.00
Noise suppression 8.24 94.52

Malicious Operations
Deletion (minor) 21.65 99.04
Deletion (moderate) 40.20 96.84
Deletion (severe) 62.32 93.29
Splicing (minor) 31.24 99.00
Splicing (moderate) 52.45 97.35
Splicing (severe) 78.36 96.55
Silencing (minor) 30.76 98.16
Silencing (moderate) 53.79 90.13
Silencing (severe) 75.74 75.96
Substitution (minor) 23.22 98.33
Substitution (moderate) 48.12 94.36
Substitution (severe) 63.03 90.72
Reordering 69.55 99.53
Text-to-speech - -
Voice conversion 8.60 41.60

C.5 RESULTS OF FINE-GRAINED MALICIOUS OPERATIONS REJECTION

We report the detection performance of SpeeCheck on fine-grained malicious operations across
varying degrees of tampering severity, as shown in Table 9.

Table 9: Results of fine-grained malicious operation rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TNR FNR AUC EER TNR FNR AUC EER

Deletion (minor) 100.00 2.20 99.92 0.60 100.00 5.20 99.77 1.20 ✗ ✓
Deletion (moderate) 100.00 2.80 99.96 0.40 100.00 5.20 99.84 0.80 ✗ ✓
Deletion (severe) 100.00 3.40 99.99 0.20 100.00 4.40 99.76 0.80 ✗ ✓
Splicing (minor) 100.00 2.40 99.99 0.40 100.00 4.20 99.57 1.30 ✗ ✓
Splicing (moderate) 100.00 2.40 99.99 0.40 100.00 4.80 99.79 0.40 ✗ ✓
Splicing (severe) 100.00 2.60 99.98 0.20 100.00 5.80 99.72 0.50 ✗ ✓
Silencing (minor) 98.00 3.60 99.73 3.20 86.60 6.00 97.34 8.70 ✗ ✓
Silencing (moderate) 99.60 2.40 99.90 1.80 97.20 4.20 98.82 4.10 ✗ ✓
Silencing (severe) 99.60 2.80 99.86 1.80 98.80 6.40 99.12 4.00 ✗ ✓
Substitution (minor) 88.40 3.00 98.75 6.10 72.20 4.40 95.50 11.80 ✗ ✓
Substitution (moder.) 99.20 3.20 99.62 2.60 92.80 5.20 98.24 5.50 ✗ ✓
Substitution (severe) 100.00 3.00 99.80 1.20 100.00 4.80 99.27 2.70 ✗ ✓
Reordering 97.60 2.60 98.44 2.60 99.20 5.80 99.08 1.70 ✗ ✓
Text-to-speech 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 ✗ ✓
Voice conversion 100.00 3.00 99.93 0.50 100.00 5.40 99.64 0.50 ✓ ✗

Overall 98.83 2.63 99.72 1.47 96.45 4.79 99.05 2.93 - -

C.6 EVALUATION IN REAL-WORLD SCENARIO

To validate SpeeCheck’s performance in practical settings, we conducted evaluations on the RWSID
dataset (described in Appendix C.2). Example recordings and verification results are available on
our demo page.8 We then designed two evaluation scenarios to simulate real-world challenges:

8https://speecheck.github.io/SpeeCheck/
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Figure 7: Hamming distance distributions for real-world scenarios: (a) benign social media distri-
bution and (b) malicious tampering.

Benign Distribution. To assess SpeeCheck’s robustness under practical distribution scenarios, the
protected audios were uploaded to widely used social media platforms (including WhatsApp, Tele-
gram, WeChat, Discord, and Twitter) and subsequently downloaded after platform-side preprocess-
ing. These steps reflect realistic distribution pipelines where compression, reencoding, and noise
suppression may be applied.

Malicious Tampering.: To evaluate its sensitivity to sophisticated attacks, we performed fine-
grained edits manually, including deletion, splicing, silencing, substitution, and reordering. More-
over, we tested commercial platforms for voice conversion (ElevenLabs, 2024) and text-to-speech
synthesis (Vocloner, 2024).

Figure 7a shows that the Hamming distances of audios redistributed via social media consistently
remain below the detection threshold, confirming SpeeCheck’s robustness against real-world distri-
bution. In contrast, Figure 7b demonstrates that all malicious edits yield Hamming distances above
the threshold across all 10 users, indicating its reliable sensitivity to real-world tampering.

C.7 EVALUATION ON DIFFERENT LENGTHS OF SPEECH

To evaluate SpeeCheck on longer audio recordings, we tested speech samples ranging from 20 sec-
onds to 10 minutes. As shown in Table 10, the system performs well across all lengths. While
performance gradually degrades with increasing duration, the EER rises from 1.57% at 20 seconds
to 8.41% at 10 minutes, the overall detection remains robust, with the AUC consistently above 96%.

Table 10: Performance of SpeeCheck under different speech durations.

Speech Duration TPR FPR AUC EER
20s 98.75 1.65 99.69 1.57
60s 92.50 4.88 98.39 5.87
5m 94.87 7.05 98.02 6.09
10m 90.95 7.76 96.04 8.41

C.8 REAL-TIME EVALUATION

Table 11: Real-time performance of SpeeCheck.

Process Real-Time Coefficient (RTC)
Protection 0.02×
Verification 0.03×

We evaluate computational efficiency using the Real-Time Coefficient (RTC), defined as the ratio of
processing time to audio duration. As shown in Table 11, both protection and verification achieve
RTC values well below 1×, confirming the practicality of SpeeCheck for real-time use.
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C.9 WATERMARKED SPEECH QUALITY

We evaluate the perceptual quality of watermarked speech using four objective metrics. (1) Scale-
Invariant Signal to Noise Ratio (SI-SNR) quantifies waveform-level distortion in decibels (dB).
Higher values indicate less distortion. (2) Perceptual Evaluation of Speech Quality (PESQ) (Rix
et al., 2001) ranges from 1.0 (poor) to 4.5 (excellent), and reflects perceived speech quality. (3)
Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) ranges from 0 to 1, with higher val-
ues indicating better intelligibility. (4) Log Spectral Distance (LSD) measures spectral deviation
between original and watermarked speech, lower values indicate greater spectral fidelity.

As shown in Table 12, our proposed SpeeCheck has little perceptual degradation. The high SI-
SNR and PESQ scores, along with near-perfect intelligibility (STOI) and low spectral error (LSD),
demonstrate that the watermarking process preserves both fidelity and intelligibility, making it suit-
able for practical deployment.

Table 12: Audio quality metrics.

Methods SI-SNR PESQ STOI LSD
SpeeCheck 25.14 4.28 0.998 0.111

C.10 ABLATION STUDIES

To access the contribution of SpeeCheck’s core modules, we conduct ablation studies on three key
components: the multiscale feature extractor, the attentive pooling module, and the contrastive learn-
ing objective. We evaluate the multiscale feature extractor by removing it and using the direct output
of BiLSTM. For temporal pooling, we substitute attentive pooling with average pooling. Finally, we
compare the InfoNCE loss (Oord et al., 2018) with widely-used Triplet Loss (Schroff et al., 2015).

As shown in Table 13, each module contributes to the overall performance. Removing the mul-
tiscale feature extractor leads to a significant degradation, indicating the importance of extracting
both global and local temporal patterns. Substituting attentive pooling with average pooling reduces
performance, indicating that the attention mechanism provides better frame selection for embedding
generation. Finally, replacing InfoNCE with Triplet Loss results in a substantial performance de-
cline, demonstrating that InfoNCE is more effective for learning discriminative embeddings in our
task.

Table 13: Ablation study on feature extractor, temporal pooling scheme, and loss function.

Method Variant TPR FPR AUC EER
SpeeCheck (Multiscale→ w/o Multiscale) 94.48 5.26 98.50 5.29
SpeeCheck (AttentivePooling→ AvgPooling) 93.80 6.25 98.42 6.22
SpeeCheck (InfoNCEloss→ TripletLoss) 85.94 1.46 95.77 10.73
SpeeCheck 98.70 0.85 98.89 0.92
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C.11 VISUALIZATION OF MULTISCALE FEATURE EXTRACTION

Anchor Positive Negative

Figure 8: t-SNE visualizations of speech samples (after training).

D DISCUSSION

While SpeeCheck provides a new paradigm for self-contained speech integrity verification, we ac-
knowledge several limitations that can be improved in future research: 1) SpeeCheck’s robustness
is limited concerning certain operations like time-stretching (speeding up/slowing down) and Voice
Activity Detection (VAD). These operations are sometimes not malicious, but they can inherently
alter pitch, tempo, or meaningful phonemes in the speech. Our framework prioritizes a security-first
design, we conservatively treat modified speech as unreliable. But extending training with such
operations, or integrating more robust watermarking schemes, could improve the applicability in
the future. 2) SpeeCheck is optimized for speech durations between 2 and 20 seconds. For very
short clips, the embedding and watermark extraction may become unstable. However, such clips
often lack meaningful semantic content, making them less critical targets for tampering. For very
long audio, although we did not explicitly train on durations beyond 20 seconds, SpeeCheck still
exhibited reasonable generalization. A practical solution is to segment longer recordings into multi-
ple 20-second chunks, protect and verify the content in controllable chunks. 3) Current SpeeCheck
is tailored for speech integrity verification rather than general audio (e.g., music, environmental
sounds). This choice is motivated by the fact that Speech is particularly vulnerable to tampering and
can significantly impact social trust and social stability. Generalizing the system to broader audio
domains would be a promising direction for future work, for instance, emphasizing perceptual fi-
delity, spectral consistency, and artistic style preservation. 4) SpeeCheck provides an utterance-level
tampering detection, but does not localize the tampered region. This is because SpeeCheck summa-
rized each speech into a concrete digest. Extending SpeeCheck with temporal localization could be
a promising future direction.
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