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ABSTRACT

Advances in audio editing have made public speeches increasingly vulnerable to
malicious tampering, raising concerns for social trust. Existing speech tamper-
ing detection methods remain insufficient: they often rely on external references
or fail to balance sensitivity to attacks with robustness against benign operations
like compression. To tackle these challenges, we propose SpeeCheck, the first
learning-based self-contained speech integrity verification framework. SpeeCheck
can (i) effectively detect tampering attacks, (ii) remain robust under benign oper-
ations, and (iii) enable direct verification without external references. Our ap-
proach begins with utilizing multiscale feature extraction to capture speech fea-
tures across different temporal resolutions. Then, it employs contrastive learn-
ing to generate fingerprints that can detect modifications at varying granularities.
These fingerprints are designed to be robust to benign operations, but exhibit sig-
nificant changes when malicious tampering occurs. To enable self-contained veri-
fication, these fingerprints are embedded into the audio itself via a watermark. Fi-
nally, during verification, SpeeCheck retrieves the fingerprint from the audio and
checks it with the embedded watermark to assess integrity. Extensive experiments
demonstrate that SpeeCheck reliably detects tampering while maintaining robust-
ness against common benign operations. Real-world evaluations further confirm
its effectiveness in verifying speech integrity. The code and demo are available at
https://speecheck.github.io/SpeeCheck/.

1 INTRODUCTION

Audio serves as an important information carrier that is widely used in news reporting, legal evi-
dence, and public statements. However, the rapid development of audio editing tools (Wang et al.,
2023) and text-to-speech (TTS) generation models (Wang et al., 2017; |Ping et al., [2018}; [Huang
et al., 2023} Du et al., 2024} (Chen et al., 2024) has significantly lowered the technical barriers for
speech manipulation and synthesis. While these techniques benefit content creation and entertain-
ment, they also enable attackers to tamper speech content with ease. Public speeches and statements,
especially made by influential figures, have become prime targets for attacks due to their huge so-
cial impact (Reuters, 2023} |Post| [2024)). Tampered speech can cause the spread of misinformation,
undermine public trust, and even threaten social stability. Moreover, the prevalence of social me-
dia platforms accelerates the circulation of tampered audio, posing challenges to ordinary people in
identifying authenticity from numerous sources. Currently, verifying the truth often requires cross-
checking information across multiple social media platforms, a process that is time-consuming and
prolongs the spread of misinformation. These challenges highlight a critical need: Is it possible
to proactively protect publicly shared speech against tampering attacks while still allowing it to be
freely stored, distributed, and reshared?

Existing approaches against speech tampering can be categorized into two groups: passive detec-
tion and proactive protection. Passive detection methods (Rodriguez et al.,[2010; Yang et al., 2008;
Pan et al.| 2012} Blue et al., 2022} [Leonzio et al., [2023) rely on deep binary classifiers trained to
identify artifacts introduced by tampering. While they show reasonable performance against known
attacks, their sensitivity to unseen or sophisticated manipulations remains limited. Moreover, pas-
sive detection alone cannot verify whether the speech content originates from the claimed speaker,
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leaving systems vulnerable to impersonation-based attacks 2022). Proactive protection
methods verify integrity by extracting auxiliary information from the original audio and reusing it
during verification. Early approaches compute cryptographic hashes (Steinebach & Dittmann, [2003};
Zakariah et al} [2018) or embed fragile watermarks (Renza et al.} 2018}, [Sripradha & Deepal, 2020
Zhang et al.| 2024), which are very sensitive to any modification and therefore can reliably detect
minor changes. However, cryptographic hashes require storing or transmitting external reference
values, which prevents independent verification from the published audio. Fragile watermarking
embeds a highly sensitive pattern into the signal and can enable self-contained verification, but the
watermark is easily destroyed by benign operations, which restricts applicability in real-world dis-
tribution scenarios. To address this limitation, semi-fragile watermarking (Masmoudi et al., 2020}
Wang et all 20195 [Wang & Fan|,[2010) and watermark-fingerprint schemes (Gomez et al.,[2002;|Gul-|
bis et al., 2006} [Steinebach & Dittmannl, [2003)) embed carefully selected bits or perceptual hashes
into transform domains (Zhang et al., [2021)) so that they survive expected benign processing but are
damaged by local tampering. This design, however, requires tight coupling between the embedding
pattern and the assumed attack model [2017), and adapting to new operations often implies
redesigning the watermarking scheme or the handcrafted features. More recently, neural audio wa-
termarking has been used for proactive defense, for example by embedding speaker embeddings to

detect voice conversion (Ge et al}[2025)), or by using watermark payloads to flag Al-content
et all} 2024} [Chen et al},[2023)) or cloned speech [2024a)). These methods provide proactive

protection against specific threats, but there is still no unified speech integrity verification solution
that can easily handle diverse tampering attacks while remaining compatible with real-world distri-
bution scenarios.

To address the issues above, a desired speech verification design should have the following proper-
ties: (1) Convenient to use: the integrity of the speech can be verified directly from the published
audio without requiring external references. (2) Sensitive to tampering attacks: it can reliably
detect any malicious edits, including subtle semantic (e.g., can < cannot) or speaker-related (e.g.,
timbre) changes. (3) Robust to benign operations: it remains stable under typical benign audio
operations, especially commercial-off-the-shelf codecs (e.g., AAC in Instagram/TikTok), ensuring
usability in sharing and distribution. Therefore, in this paper, we propose SpeeCheck, a proactive
acoustic fingerprint-based speech verification framework that jointly exploits semantic content and
speaker identity. Instead of controlling robustness and fragility through the watermark embedding
scheme or handcrafted features, we adopt a decoupled architecture. A robust neural watermark is
used purely as a carrier, while integrity verification is governed entirely by the embedded finger-
print. Specifically, the fingerprint is generated by a multiscale feature extractor that captures speech
characteristics across different temporal resolutions. By using contrastive learning, the fingerprint
is designed to be stable under benign operations, yet to change significantly when malicious tam-
pering occurs. To enable self-contained verification, the generated fingerprints are embedded into
the speech signal by segment-wise watermarking. Without access to the original authentic speech,
SpeeCheck can recover the fingerprint from the published audio and check it with the fingerprint
embedded in the watermark payload to verify the integrity. Our main contributions are summarized
as follows.

* We present SpeeCheck, a learning-based self-contained speech integrity verification frame-
work with a decoupled fingerprint—watermark architecture that is easy to extend and adapt
to new operations.

* We develop a discriminative fingerprint generator that extracts multiscale features and ap-
plies contrastive learning to produce binary fingerprints, which are robust to benign opera-
tions yet sensitive to malicious manipulations.

* We evaluate SpeeCheck through extensive experiments on public speech datasets and a
real-world dataset constructed for this study. The results demonstrate high effectiveness in
detecting diverse tampering attacks while maintaining robustness against benign operations
in practical scenarios.
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Figure 1: System overview of the proposed SpeeCheck.

2  MOTIVATION

2.1 PROBLEM DEFINITION

As shown in Figure[]] the scenario considered in our study includes four parties: 1) Original speak-
ers, such as public institutions and celebrities, who publish statements or speeches on social media
platforms. 2) Legitimate users, who help disseminate these audio recordings by downloading or
reposting them. 3) Malicious attackers, which employ audio editing or voice conversion techniques
to alter either the semantic content or the speaker’s identity. 4) The public, who are exposed to con-
flicting audio sources, requires a reliable method to verify the integrity of a given speech recording.

2.2 MALICIOUS AND BENIGN AUDIO OPERATIONS

We define malicious audio tampering as intentional audio modifications that alter the semantic con-
tent or speaker identity. Typical malicious operations include audio splicing, deletion, substitution,
silencing, text-to-speech (TTS) synthesis, and voice conversion. In contrast, benign operations refer
to common audio transformations that occur during legitimate processes such as storage, transmis-
sion, or distribution. Examples include compression, reencoding, resampling, and noise suppres-
sion, none of which impact the semantic content or speaker identity. A detailed distinction between
malicious and benign audio operations, along with specific examples, is provided in Appendix [B-2]

2.3  LIMITATIONS OF ACOUSTIC FEATURE SIMILARITY

An intuitive approach for speech verification is to com-

pare the acoustic similarity between the published audio ¢ | =1 Benign

and its original version. Malicious

Following this intuition, we analyzed similarity scores ‘E 44 =1 Cross

between the original audio and three types of modifi- &

cations: benignly processed variants (“Benign”), mali- © 5]

ciously modified variants (“Malicious”), and unrelated

audio samples (“Cross”). Figure [2] presents cosine sim-

11gr1ty d1str1bu§10ns computed using wlav2yec embed- 0 00 02 04 06 o8 10
dings (Baevski et al, 2020). The significant over- Cosine Similarity

lap between benign and malicious similarity distribu-

tions demonstrates that acoustic feature similarity alone Figure 2: Probability distributions of
is insufficient to determine the types of modification the wav2vec embedding similarity to
operations. Similar results are observed using tradi- the original audio under different modi-
tional acoustic feature Mel-frequency cepstral coeffi- fications.

cients (MFCC) (Davis & Mermelstein, [1980), detailed in

Appendix [C3] This limitation arises because malicious

operations, even significantly altering the content, may introduce minimal acoustic changes. For
instance, modifying the phrase “do not” to “do” in a 20-second speech affects only 0.2 seconds, and
similarity remains more than 99%, while causing substantial semantic alteration. Moreover, this
method requires access to the authentic audio, which is impractical in real-world scenarios. These
limitations highlight two key challenges:
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Challenge 1: Insufficient sensitivity to semantic tampering attacks. Acoustic feature-based sim-
ilarity methods fail to distinguish benign operations from malicious ones, because they are not sen-
sitive enough to semantic tampering attacks.

Challenge 2: Dependence on the original authentic audio. Acoustic similarity assessments re-
quire the original authentic audio as a reference, which is not always applicable in practice.

2.4 LIMITATIONS OF HASH-BASED INTEGRITY VERIFICATION

Another common class of integrity verification methods is hash-based verification. Cryptographic
hashing (Menezes et al.l [2018) (e.g., SHA256, MD5) is widely used in practice for digital file in-
tegrity. Given an audio file, these functions produce a short digest that changes completely even
when a single bit is modified. This extreme sensitivity is ideal for strict file integrity, but it is too
strict for speech content integrity: benign operations such as compression or resampling already
produce a completely different digest, even though they do not alter the semantic content or the
speaker identity.

To relax this sensitivity while retaining content awareness, perceptual hashing (Zhang et al.| 2021}
Li et al.,|2021) has been proposed. These methods extract handcrafted content descriptors (such as
cepstral coefficients (Zhang et al.l 2021)), spectral envelopes (Zhang et al., 2018)), or time—frequency
energy patterns) and convert them into compact binary hashes. Their robustness to benign process-
ing and their sensitivity to malicious tampering are determined by design choices such as which
features are used and how they are quantized. As a result, a given perceptual hash is typically tai-
lored to a specific set of operations, and adapting it to new codecs, platforms, or tampering attacks
often requires redesigning the feature extractor or the quantization rule. In addition, hash-based
verification requires externally stored or transmitted reference hash values for verification, which
introduces practical complexity in real-world speech sharing and forwarding. These limitations lead
to the following challenges:

Challenge 3: Difficulty in balancing robustness and sensitivity. Cryptographic hashes are overly
sensitive to any modification, while perceptual hashes rely on handcrafted features whose robustness
to benign operations and sensitivity to tampering must be manually tuned for specific operation sets,
and are hard to adapt to new operations.

Challenge 4: Dependence on external reference hash values. Hash-based verification depends
on externally stored or transmitted hash values, which prevents self-contained verification from a
single audio file and introduces extra overhead and inconvenience for online speech distribution.

3 METHODOLOGY

3.1 SPEECHECK OVERVIEW

To address these challenges, we propose SpeeCheck, a proactive speech integrity verification design,
which is (i) sensitive to tampering attacks, (ii) robust to benign operations, and (iii) convenient to
use by the public since it verifies the published speech audio’s integrity in a self-contained manner.
As the sketch shown in Figure [3] SpeeCheck consists of two stages: fingerprint generation and
dual-path integrity verification.

The speech fingerprint generation in SpeeCheck has five steps: (1) Frame-Level Feature Encoding
(Speech to Representation): raw speech is encoded into frame-level representations that preserve
acoustic information; (2) Multiscale Acoustic Feature Extraction (Representation to Vector): the
frame-level representations are first processed into contextual features, then aggregated at multiple
temporal resolutions, and finally attentively pooled into a fixed-dimensional vector that summarizes
the entire utterance; (3) Contrastive Fingerprint Training (Vector to Fingerprint): the vector is opti-
mized to be robust to benign operations, and sensitive to tampering attacks using contrastive learn-
ing; (4) Binary Fingerprint Encoding (Fingerprint to Bit): the trained fingerprint is discretized into
a binary representation; (5) Segment-Wise Watermarking (Bit to Watermark): the binary fingerprint
is embedded into the original audio through segment-wise watermarking, making the fingerprint
self-contained.
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Figure 3: A sketch of the proposed SpeeCheck design including speech fingerprint generation (top)
and integrity verification (bottom).

The integrity verification in SpeeCheck independently performs two parallel paths on the published
audio: (1) regenerating the fingerprint via the same extraction pipeline, and (2) extracting the em-
bedded watermark via the watermark decoder. The two resulting binary codes are then compared
using Hamming distance to determine whether the speech has been attacked.

3.2 FINGERPRINT GENERATION AND WATERMARKING

Step 1. Frame-Level Feature Encoding (Speech to Representation) We utilize the pre-trained
wav2vec 2.0 model (Baevski et al.,|2020) to extract frame-level representations from the original au-
dio before publishing. This step serves as a necessary preprocessing stage for fingerprint generation.
It converts continuous waveform signals into structured sequences of frame-level representations
that preserve essential acoustic information. These representations have demonstrated effectiveness
in downstream tasks such as automatic speech recognition (Baevski et al., [2021) and speaker verifi-
cation (Fan et al.,[2021). Formally, the feature encoder € : X — Z maps raw audio waveforms X
to a sequence of latent representations z , zs, . . . , 7, where each z; € R% denotes the frame-level
acoustic feature at time ¢, and 7" is the total number of output frames.

Step 2. Multiscale Acoustic Feature Extraction (Representation to Vector). Given the frame-
level representations z1, Zo, . . . , Z7 obtained from Step 1, this step constructs a fixed-dimensional
vector that summarizes the speech across different temporal granularities. The multiscale feature
extractor F consists of two components: (a) a bidirectional long short-term memory (BiLSTM)
network that transforms the input frame-level representations into contextual hidden states, and (b)
a multiscale pooling operation that averages the hidden states over phoneme-, word-, and phrase-
level windows (size 20, 50, and 100, respectively) , producing a sequence of multiscale features
hy, hy, ... hg (see Appendix [B.3]for examples).

To summarize these features into an utterance-level vector, we apply self-attentive pooling (Lin et al.,
2017). This mechanism assigns higher weights to more informative components, with attention

%7 where ¢(-) is a feedforward network. The weighted
t=1 t

sum yields a fixed-dimension vector: v/ = Zle Wy, - hy, which is referred to as the utterance-level
vector. To obtain a more compact representation for fingerprint optimization, a projection module is
applied to reduce the dimensionality of v/, yielding the final fingerprint vector v € R%.

weight computed as: w,, =

Step 3. Contrastive Fingerprint Training (Vector to Fingerprint). Given the fixed-length vector
v obtained from Step 2, we optimize it to serve as a distinctive audio fingerprint that is robust to
benign operations and sensitive to malicious tampering attacks. To this end, we adopt contrastive
learning (Oord et al.| [2018)) to guide the training of all preceding modules. During the training, a
batch of original speech samples is randomly selected, where each sample serves as an anchor. For
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each anchor, we generate: positive pairs, consisting of the anchor and its benign variants (e.g., com-
pression), and negative pairs, consisting of the anchor and its tampered variants (e.g., substitution).
Detailed operations are listed in Appendix The contrastive loss is defined as

1 B 1 P exp <‘~Ii0ng.T€’f:;mgn/T>
b=l Pl
SPET F o (5% To)
k=1, k#i
where B is the number of anchors in the batch, P is the number of benign variants per anchor,
and N denotes the total number of comparison samples for each anchor, including its own benign
and tampered variants as well as embeddings from other anchors in the batch. 7 is the tempera-
ture parameter. V"% denotes the L2-normalized embedding of the i-th anchor, v><"€" denotes the
embedding of its j-th benign variant, and v; ;, enumerates all embeddings in the ﬁatch, including
benign, tampered and unrelated samples.

(D

This contrastive learning above encourages the model to bring the anchor closer to its benign variants
while pushing it away from tampered and unrelated samples in the embedding space. As a result,
the fixed-length vector is optimized to serve as a distinctive audio fingerprint that is robust to benign
operations while remaining sensitive to malicious tampering attacks.

Step 4. Binary Fingerprint Encoding (Fingerprint to Bit). To enable self-contained verifica-
tion, we embed the generated fingerprint into the audio signal as a watermark. Since watermarking
schemes typically support binary payloads and inevitably incur information loss, we design the fin-
gerprint representation to preserve its discriminative power even after binarization. Specifically, we
convert the continuous fingerprint vector v € R% into a binary code b € {—1, +1}¢, which is more
suitable for compact storage and fast retrieval via bit-wise comparison. To encourage the output to
approach the bipolar extremes of -1 and +1 and thus reduce quantization error, we apply a tanh ac-
tivation at the final projection layer. This is followed by a sign function to obtain the final binarized
output. As demonstrated in Section[4.2] the binarized fingerprint retains its discriminative charac-
teristics of v, i.e., robust to benign operations while sensitive to tampering attacks. In adversarial
settings where an attacker may manipulate the content, compute a new fingerprint, and attempt to
re-embed it into the audio stream (replay-style attacks), this binarization step can be further secured
by introducing a secret key, as detailed in Appendix [D.2]

Step 5. Segment-Wise Watermarking (Bit to Watermark). To enable self-contained verifica-
tion, the binary fingerprint must be embedded directly into the speech signal. We adapt the robust
watermarking method AudioSeal (Roman et al.| |2024)) for this purpose. However, a key challenge
arises from our high-capacity requirement. While AudioSeal is designed for short watermarks (i.e.,
16 bits) for copyright protection, our task requires embedding much longer fingerprints (e.g., 256
bits). To meet this requirement, we extend the original AudioSeal with a segment-wise embedding
strategy. Given an input waveform X of duration 7" seconds and its binary fingerprint b, both are
divided into N non-overlapping segments:

X =W x™] and b=[DpW, ... b )
where each X'(™) spans T'//N seconds and each b(") contains d/N bits. For each audio segment
X we embed b(™ into the Encodec embedding space and generate a watermark signal 5(") The
watermarked segment is then formed as: X () = X 4 5 Finally, the watermarked segments
(XM .. X(M)] are concatenated, yielding the final self-verifiable audio.

Notably, the watermark incurs only subtle perturbations. Our experiments in Appendix confirm

that the acoustic fingerprint generated from the watermarked audio X remains consistent with the
original fingerprint, while the embedded bits can still be reliably extracted without degradation.

3.3 DUAL-PATH SPEECH INTEGRITY VERIFICATION

SpeeCheck employs a dual-path mechanism to assess the integrity of the published speech X:

Path A: Fingerprint Generation from Published Speech. The published speech audio is pro-
cessed using the same fingerprint generation pipeline described before. The fingerprint b’ is com-
puted as b’ = sign(F(¢(X))), where € and F denote the feature encoder and multiscale extractor,
respectively, and sign(-) denotes the final binarization function.
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Path B: Watermark Extraction. The published speech audio X is processed in the inverse manner
of Step 5 to decode the embedded watermark (i.e., the original binary fingerprint). From each

segment X", we extract the bit chunk b(™) using the watermark decoder, and then reconstruct the
full watermark as b = [b(") b2 ... bV,

Finally, the integrity of the published audio is verified by comparing the generated fingerprint b’
with the extracted watermark b. This is done by computing the Hamming distance as follows.

dg(b',b) <@ = Accept; otherwise Reject,

where 0 is a decision threshold set based on the validation set from public datasets.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. To train and evaluate the performance of SpeeCheck, we use VoxCelebl (Nagrani et al.,
2017), which includes over 150,000 utterances from 1,251 celebrities. These audio samples are
collected from interviews and public videos, providing conditions that reflect real-world speech
recordings. We further employ the test subset from LibriSpeech (Panayotov et al.,|2015) dataset to
assess the model generalization. Furthermore, to validate SpeeCheck’s effectiveness under authentic
scenarios, we build a real-world speech dataset and evaluate it after fine-grained editing and distri-
bution across major social media platforms. More details about the datasets and the preprocessing
steps are provided in Appendix [C.2]

Implementation details. (i) Fingerprint model: We use Wav2Vec2.0 Base modeﬂ as the acoustic
feature extractor. A two-layer BILSTM with a hidden size of 512 follows the feature extractor.
Multiscale pooling is used with window sizes of 20, 50, and 100 frames with a stride of 10 frames. A
two-layer projection head then maps features into a 256-dimensional vector. (ii) Watermark model:
AudioSeal mode is used to embed and extract fingerprints as watermark payloads. To improve the
watermarking capacity, we divide both the carrier audio and the fingerprint into 16 segments. Each
segment carries a 16-bit watermark, leading to a total payload of 256 bits per audio sample. (iii)
Training: We exploit benign and malicious operations (see Appendix [B.2) and the original audio
samples for contrastive learning, with temperature set as 0.05. A cosine annealing learning rate
schedule is used, gradually decreasing the learning rate from 1 x 1073 to 1 x 10~° over the training.

Evaluation Metrics. We evaluate SpeeCheck as a binary classification task, where benign opera-
tions are treated as the positive class and malicious ones as the negative class. To characterize the
detector over different operating points, we sweep the decision threshold 6 across the full range of
Hamming distances and compute the receiver operating characteristic (ROC) curve. From this curve,
we derive the area under the curve (AUC) and the equal error rate (EER). Afterwards, we select a
single decision threshold 8* = 42 on the validation set to balance robustness to benign operations
and sensitivity to tampering. All reported true positive rate (TPR), false positive rate (FPR), true
negative rate (TNR), and false negative rate (FNR) in Tables[1|and [2| are computed at this fixed 6*.
Formal definitions of these metrics are given in Appendix

4.2 RESULTS

Robustness to benign operations. Table [I] presents the performance of the proposed SpeeCheck
in accepting published speech samples subjected to benign audio operations, as defined in Ap-
pendix We focus on evaluating how well SpeeCheck accepts positive samples with harm-
less modifications (TPR) and whether it mistakenly accepts maliciously tampered speech (FPR).
For each benign operation listed in Table [T} we construct a balanced test set that contains all be-
nign samples produced by this operation and an equal number of maliciously tampered samples,
randomly drawn from the pool of attacks in Appendix [B.:2] On the test subsets of VoxCelebl,
SpeeCheck achieves an overall TPR of 99.15% and an FPR of 0.55%, demonstrating strong robust-
ness to non-malicious transformations. For cross-dataset evaluation on LibriSpeech, using a model

"https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
*https://github.com/facebookresearch/audioseal
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Table 1: Results of benign operation (positive) acceptance on VoxCeleb and LibriSpeech.

Operation VoxCeleb ‘ LibriSpeech ‘ Semantic Identity
TPR FPR AUC EER | TPR FPR AUC EER |

Compression 99.80 1.01 99.77 1.11 | 9698 1.21 99.51 2.82 v v

Reencoding 99.80 0.20 100.00 020 | 99.40 241 99.89 151 v v

Resampling 97.18 0.60 99.56 1.21 | 97.18 1.81 99.17 221 v v

Noise suppression  99.80 0.40 9999  0.20 | 9940 2.21 99.84 141 v v

Overall 99.15 055 99.83  0.68 | 98.24 191 99.60 1.99 | - -

Table 2: Results of malicious operation (negative) rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb ‘ LibriSpeech ‘ Semantic Identity
TNR FNR AUC EER| TNR FNR AUC EER |
Deletion 100.00 1.21 100.00 0.00 | 100.00 1.54 99.97 0.07 X v
Splicing 100.00 0.67 100.00 0.00 | 100.00 1.74 99.99 0.17 X v
Silencing 9859 0.74 99.64 124 | 98.12 1.81 99.71 1.88 X v
Substitution 9779 0.87 99.81 1.11 | 93.03 1.81 99.03 3.72 X v
Reordering 97.59 0.60 98.62 2.11 | 9839 141 9921 1.71 X v
Text-to-speech 100.00 0.00 100.00 0.00 | 100.00 0.00 100.00 0.00 X v
Voice conversion  99.40  0.00 100.00 0.00 | 97.80 0.00 100.00 0.00 v X

Overall 99.08 074 9980 0.61 | 97.98 148 99.69 128 |

trained on VoxCelebl, the TPR/FPR slightly change to 98.24% and 1.91%, respectively, indicating
good generalizability across datasets.

Sensitivity to tampering attacks. Table [2| evaluates the ability of SpeeCheck to reject malicious
tampering attacks that alter the semantic content or speaker identity. For each tampering category
listed in Table[2] we similarly form a balanced binary task that contains all samples generated by this
attack and an equal number of benign samples. The considered attacks include simple audio edit-
ing (e.g., deletion) as well as advanced learning-based manipulations such as text-to-speech (TTS)
synthesis and voice conversion, as detailed in Appendix [B.2} In this setting, tampering operations
(actual negatives) are expected to be rejected with a high true negative rate (TNR), while minimiz-
ing the false negative rate (FNR), which reflects incorrect rejection of benign samples. Notably, on
the VoxCeleb (in-domain) dataset, SpeeCheck achieves an overall TNR of 99.08% and an FNR of
0.74%. On the LibriSpeech dataset, the system maintains strong performance with an overall TNR
of 97.98% and an FNR of 1.48%. These results highlight SpeeCheck’s strong sensitivity to tamper-
ing attacks. A more detailed breakdown by tampering strength (e.g., minor, moderate, and severe)
is provided in Appendix and Appendix further analyzes the remaining false positives and
false negatives.
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Figure 5: t-SNE visualizations
Figure 4: (a) Extracted feature similarity; (b) binarized fingerprint of speech samples: (a) before
Hamming distance. training; (b) after training.

Multiscale feature and binarized fingerprints analysis. Figure ] shows two analyses: (a) co-
sine similarity between extracted multiscale features and (b) Hamming distance between binarized
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fingerprints. In Figure [da] benign-original pairs yield high similarity values close to 1.0, while
malicious-original and cross-original pairs are much lower, indicating that the learned multiscale
features effectively capture the differences between benign operations and malicious tampering at-
tacks. Here, “cross” refers to the arbitrarily selected unrelated audio samples. In Figure[db] binarized
fingerprints of benign processed samples yield low Hamming distances from their retrieved water-
marks, whereas malicious and cross pairs have much larger distances, with a clear margin of about
112-118 bits. This indicates that the binarization process preserves discriminability and enables
reliable separation of tampering and benign operations using a simple threshold.

Figure[5]|shows the t-SNE visualizations of the extracted multiscale features before and after training.
Specifically, Figure [5a] and Figure [5b] show the distribution of anchors (original speech), positives
(after benign operations), and negatives (after malicious operations) in the latent space. Before train-
ing, anchor and positive samples are scattered and overlap with negatives, indicating poor separabil-
ity. After training, anchors and positives form tight clusters, while negatives are clearly separated.
This suggests that contrastive learning enables the multiscale feature extractor to learn embeddings
that distinguish benign operations from malicious tampering, which explains the strong performance
of SpeeCheck. Additional visualization evidences are provided in Appendix [C.15]

Table 3: Detection accuracy on unseen benign operations and tampering attacks.

Unseen Operation Type Accuracy (%) dym dyp

Benign

Loudness Normalization 100.00 0.96 0.08
Room Reverb 100.00 3.12 26.60
Combined Benign 100.00 4.64 8.29
Tampering

Voice Changer (Female) 100.00 12246 71.62
Voice Changer (Male) 100.00 12538 67.85
Combined Malicious 100.00 119.32  75.08

Out-of-Distribution and real-world generalization. To evaluate SpeeCheck’s generalization to
unseen audio operations, we conduct out-of-distribution (OOD) experiments using operations not
included in the training set. Table [3| reports detection accuracy at a fixed threshold (6* = 42),
along with the Hamming distances of watermarks (d.,) and fingerprints (ds,) between modi-
fied and original audio. SpeeCheck achieves 100% accuracy on unseen benign transformations,
including loudness normalization, room reverberation, and combined benign manipulations. Con-
currently, it successfully detects sophisticated unseen attacks, including commercial voice changer
tools (ElevenLabs| 2024)) that alter speaker identity and combined malicious edits. These results
highlight the effectiveness of SpeeCheck in identifying unseen audio operations. Specifically, for
real-world recordings, we observe similar strong performance, where SpeeCheck reliably identifies
all fine-grained tamperings. Detailed evaluation is shown in Appendix [C.6]

Table 4: Performance of Deepfake detection at varying substitution ratios.

Deepfake Ratio Nes2Net | SSL-AntiSpoofing | SpeeCheck (ours)
TPR FPR AUC EER ‘ TPR FPR AUC EER ‘ TPR FPR AUC EER

Substitute 10% 5427 30.08 6560 39.84 | 57.11 19.52 7258 33.00 | 82.97 040 99.57 3.21
Substitute 25% 88.01 20.12 90.54 1646 | 71.54 19.72 81.10 2596 | 9820 0.40 9995 0.40
Substitute 50% 98.78 2.03 9989  1.83 | 79.27 1227 8929 17.71 | 100.00 0.40 100.00 0.30
Substitute 75% 100.00 0.00 100.00 0.00 | 93.50 10.26 97.25 9.05 | 100.00 0.40 100.00 0.00
Substitute 90%  100.00 0.00 100.00 0.00 | 95.12 3.82 9897 4.63 | 100.00 0.40 100.00 0.00

Deepfake detection comparison. We further evaluate SpeeCheck as a deepfake detectoﬂ Specif-
ically, we compare SpeeCheck with two strong deepfake detectors, Nes2Net (Liu et al.| [2025) and
SSL-AntiSpoofing (Tak et al., [2022)), which are built upon self-supervised speech representations
and achieve competitive performance on recent ASVspoof challenges (Yamagishi et al., [2021). We
use the zero-shot TTS model YourTTS (Casanova et al.l [2022)) to synthesize deepfake speech seg-
ments, and substitute them for varying proportions (10%, 25%, 50%, 75% and 90%) of the original

3To avoid confusion, SpeeCheck is used here for deepfake detection, where “positive” now refers to deep-
fake samples to be identified.
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speech. The resulting deepfake utterances are then mixed with an equal number of clean utter-
ances to ensure fair evaluation. From Table [4] all three methods become stronger when the sub-
stitution ratio increases. When 75-90% of an utterance is replaced by deepfake content, Nes2Net
and SSL-AntiSpoofing already show very strong performance (for example, at 90% substitution
Nes2Net reaches 100.00% TPR and 100.00% AUC, while SSL-AntiSpoofing obtains 95.12% TPR
and 98.97% AUC with 4.63% EER). However, their performance degrades sharply when the substi-
tution ratio becomes small. At 10% substitution, Nes2Net only achieves 65.60% AUC with 39.84%
EER, and SSL-AntiSpoofing reaches 72.58% AUC with 33.00% EER, indicating limited sensitivity
to subtle spoofing. In contrast, SpeeCheck maintains strong detection performance across all sub-
stitution levels. For moderate to high substitution ratios (>25%), it achieves near-perfect detection.
Even in the most challenging case with only 10% deepfake substitution, SpeeCheck still reaches
82.97% TPR while keeping FPR as low as 0.40%, with 99.57% AUC and 3.21% EER. This trend
is consistent with the “Minor Substitution” results reported in Table[T0] (Appendix [C.5). Since syn-
thetic deepfake audio does not carry embedded watermarks, the fingerprint—watermark verification
process becomes essentially random, which makes tampering easier to detect. Even minor substitu-
tions alter the extracted fingerprint and disrupt the embedded watermark at the same time, leading
to a mismatch and enabling reliable detection of tampering. Further analysis of each module’s con-
tributions is provided in the ablation studies in Appendix [C.1T]

Table 5: Comparison with audio fingerprinting methods.

Method VoxCeleb | LibriSpeech

TPR FPR AUC EER | TPR FPR AUC EER

y112010 93.06 1630 9234 12.58 | 81.09 1343 8538 16.68
8240 335 9385 1237|7490 2.05 89.67 1853
60.20 830 79.88 26.12 | 59.75 855 80.93 2695
85.65 1740 93.07 1585|7938 1273 9196 16.70
. 92.05 6.14 9743 724 | 90.59 865 96.94 9.05
peeCheck (only fingerprint) 99.32 052 9998 0.55 | 98.24 211 99.67 1.96

Audio fingerprinting comparison. We benchmark the fingerprint generated by SpeeCheck for in-
tegrity verification. Since existing audio fingerprinting and perceptual hashing schemes for speech
authentication are non-learning-based and rely on handcrafted features, we select five representative
methods and evaluate them under the same integrity verification protocol. Chromaprint
2010) is a widely used open-source audio fingerprinting system for content identification. Renza
et al| use MFCC features with PCA compression, and a Collatz-conjecture-based binariza-
tion procedure to obtain a 96-bit code. construct gammatone filterbank features
followed by a random Gaussian projection to derive perceptual speech hashes. [Zhang et al.| (2018))
combine LP-MMSE coefficients with improved spectral entropy to form a binary hash sequence,
while [Zhang et al.| (2021) generate perceptual hashes from the product of sub-band spectrum vari-
ance and spectral entropy. As shown in Table[3] these handcrafted schemes struggle to balance the
acceptance of benign samples and the rejection of malicious ones. Chromaprint and
obtain relatively high TPR on VoxCeleb, but at the cost of FPR above 12%, which means
that many maliciously tampered samples are incorrectly accepted as benign. In contrast,
(2019) and [Zhang et al.| (2021) maintain lower FPR, but their TPR is reduced and EER is higher,
so a noticeable fraction of benign samples is wrongly rejected as tampered. The fingerprint used
by SpeeCheck achieves a clearly better operating point on both VoxCeleb and LibriSpeech, with
TPR above 98%, AUC above 99.6%, and EER below 2%. These results indicate that the learned
fingerprints provide a much clearer separation between benign and malicious modifications, which
is what integrity verification requires.

5 CONCLUSION

In this paper, we proposed SpeeCheck, a proactive and self-contained framework for speech in-
tegrity verification. SpeeCheck integrates multiscale feature extraction and contrastive learning to
produce robust fingerprints, which are embedded into audio via watermarking. These fingerprints
are sensitive to malicious tampering while robust to benign operations commonly introduced during
digital distribution, enabling integrity verification without access to external references. Extensive
experiments confirm its robustness and sensitivity across diverse tampering scenarios. Notably,
evaluations on a constructed real-world dataset further demonstrate its practicality, showing high
robustness under social media distribution and strong sensitivity to fine-grained malicious edits.

10
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All experiments are conducted on publicly available datasets (VoxCeleb and LibriSpeech) and a
small-scale real-world dataset collected with voluntary consent. To protect privacy, all data used
in public demos are anonymized, and no personally identifiable information is released. Deepfake
and voice conversion technologies are employed solely to simulate attack scenarios for research
evaluation, and no harmful or deceptive content is created or disseminated.

The proposed method aims to strengthen speech integrity verification and mitigate the spread of
misinformation. We recognize that, like any integrity verification technology, it could be misused
for surveillance or censorship; thus, it should be deployed responsibly and transparently. The authors
declare no conflicts of interest or sponsorship-related concerns in this study.

REPRODUCIBILITY STATEMENT

We make significant efforts to ensure reproducibility. All datasets used in this study are pub-
licly available (VoxCeleb, LibriSpeech), and the constructed real-world dataset is included in the
supplementary materials. Details of the fingerprint generation, watermark embedding, training
procedure, and evaluation metrics are described in Section |3| and Section 4], with extended infor-
mation in the Appendix [C] An anonymous implementation and demo are provided at https:
//speecheck.github.io/SpeeCheck/, which contains the source code and instructions
for reproducing our experiments.
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LLM USAGE STATEMENT

Large Language Models (LLMs) were used exclusively as general-purpose writing assistants to
improve readability and adjust formatting. They did not contribute to the research ideation, method-
ology, experimental design, analysis, or interpretation of results. All technical content and scientific
contributions are solely the work of the authors.

A RELATED WORKS

A.1 PASSIVE DETECTION OF SPEECH TAMPERING

Audio tampering can introduce detectable inconsistencies in acoustic signals. Traditional passive
detection methods rely on statistical or signal-level artifacts introduced during editing. These include
frame offset inconsistencies 2008)), local noise level variation 2012), and
interruptions in electric network frequency (Rodriguez et al., 2010} [Esquef et al., 2014). Using such
patterns, passive detectors are usually implemented as binary classifiers that distinguish authentic
from manipulated audio.

With the rise of neural audio generation and deepfake techniques, these handcrafted artifacts become
less reliable, since modern synthesis can produce high-quality speech with minimal visible traces.
To improve robustness, recent work explores more subtle acoustic features related to fluid dynamics
and articulatory phonetics 2022). Nevertheless, passive detection remains fundamentally
limited: it can only observe the received signal, has difficulty generalizing to unseen or adaptive
manipulations, and cannot verify whether the speech content originates from the claimed speaker.

A.2 PROACTIVE PROTECTION OF SPEECH INTEGRITY

Proactive integrity verification embeds or records auxiliary information at publishing time and reuses
it during verification. For speech, this is commonly implemented by computing a cryptographic or
perceptual hash, or by embedding a watermark payload into the audio signal. At verification time,
the received audio is checked by recomputing or extracting this information and comparing it with
the expected value.

A.2.1 HASH-BASED METHODS

Cryptographic hashing, such as SHA256 or MD5, has been widely adopted in industry for integrity
verification of digital files (Zakariah et al.| 2018]). These functions transform a digital audio file into
a fixed-length digest, and any bit-level modification changes the digest significantly. This property
is ideal for strict file integrity, but it is too sensitive for speech content integrity: common user
operations such as format conversion or compression already produce a completely different hash
value, which yields a high false alarm rate in realistic audio sharing pipelines.

To reduce this sensitivity, perceptual hashing has been proposed. Instead of operating on raw
bytes, perceptual hashes compute content-based digests that are designed to be stable under content-
preserving distortions. Typical audio perceptual hashing methods extract features such as cepstral
coefficients (Zhang et al}, 2021)), spectral envelopes (Zhang et all, [2018)), or time-frequency energy
patterns, and then quantize these features into compact binary codes for matching in a database.
These schemes have mainly been developed for copy detection and content retrieval

2013}, [Facebookl, 2019} [Applel, [2021)), where robustness to any distortions is more important than
distinguishing benign from malicious operations.

More recent work adapts perceptual hashing to integrity verification. For example,
design an encrypted perceptual hash based on uniform sub-band spectrum variance and spec-
tral entropy of encrypted speech, and (2021)) propose a reliable audio hash based on Mel-
frequency inverted spectrum coefficients and their dynamic parameters. In these methods, hand-
crafted features are tuned to be robust to benign processing but to change under tampering, and the
resulting hash acts as the integrity indicator. However, such handcrafted designs are rigid and may
not capture the subtle changes induced by modern generative tampering. In addition, perceptual
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hashes still require external storage of reference digests, which is inconvenient in many deployment
scenarios.

A.2.2 FRAGILE AND SEMI-FRAGILE WATERMARKING

Watermarking-based integrity verification follows a different strategy: instead of storing the ref-
erence externally, a watermark is directly embedded into the audio signal and later checked for
integrity. Fragile watermarking embeds highly sensitive marks whose presence can be destroyed by
even minor perturbations (Sripradha & Deepad, 2020}, [Zhang et al.,[2024)). This yields strong guaran-
tees that any detected watermark indicates unmodified content, but such schemes are not suitable for
everyday audio sharing, where benign operations like compression or resampling already remove or
distort the fragile watermark.

Semi-fragile watermarking is designed to survive common benign operations while remaining sen-
sitive to content tampering. For audio, semi-fragile schemes often embed watermark bits in selected
hybrid domains (Masmoudi et al 2020}, such as line spectral frequencies (Wang et all, [2019) or
wavelet packet subbands (Wang & Fan|, 2010)), and tune quantization steps and thresholds to balance
robustness and fragility for specific attack models. Although these methods can detect a wide range
of signal processing operations, they tightly couple the authentication behavior to the watermarking
design. As surveyed in 2017), many new semi-fragile watermarks are proposed only be-
cause previous designs fail under newly considered attacks. Supporting new benign operations or
tampering types often requires redesigning the embedding rule or the underlying transform.

A.2.3 COMBINATION OF FINGERPRINT AND WATERMARKING

Another line of work combines content-based fingerprints with watermarking. In these ap-
proaches (Gomez et al} 2002} [Gulbis et al., 2006} [Steinebach & Dittmann| [2003)), a compact fin-
gerprint is first extracted from the audio content and then embedded into the signal as a watermark
payload. During verification, the embedded fingerprint is extracted and compared with a newly
computed fingerprint from the received audio. This self-embedding principle reduces dependence
on external databases while still using content-based descriptors for integrity checking.

Early systems in this line use conventional fingerprints and watermark carriers. The fingerprints
are derived from handcrafted acoustic features (Seo et all, 2006}, 2003)) (e.g., subband energies or
cepstral-like descriptors) that are tuned to be robust to a predefined set of signal processing oper-
ations, and the watermarking schemes are designed for specific channels or codecs. As a result,
extending these designs to new manipulation attacks or benign operations is difficult and often re-
quires redesigning both the feature extractor and the embedding rule.

Recently, neural audio watermarking (Chen et al, 2023}, [Liu et all, 2024a; [Roman et al [2024)

has provided a strong carrier for information hiding. Some works have started to use neural wa-
termarking for proactive protection. For example, propose a proactive defense
against speaker identity manipulation by embedding speaker embeddings into speech using audio
watermarking. Their method, however, focuses on speaker-identity attacks and does not address
semantic content alterations. Other schemes embed payloads that indicate Al-generated or cloned

speech (Roman et al} 2024} [Ciu et all}, 2024d), but these payloads are still tailored to specific attack
types.

In summary, existing proactive approaches fall into three main categories: hash-based methods,
fragile or semi-fragile watermarking, and self-embedding schemes that combine fingerprints with
watermarking. Hash-based and perceptual-hash methods are either too sensitive to benign oper-
ations or rely on handcrafted features and external hash databases; fragile and semi-fragile wa-
termarking tightly couples robustness and fragility to a fixed embedding design; and prior finger-
print—watermark combinations are built on conventional fingerprints and watermark carriers, or fo-
cus on specific attack scenarios. SpeeCheck builds on this line of work by using a learned, operation-
selective acoustic fingerprint and a modern neural watermarking scheme within a decoupled archi-
tecture, which together enable robust and self-contained integrity verification for both identity and
semantic tampering, and can be adapted to new operations by retraining the fingerprint extractor
without redesigning the embedding process.
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Table 6: Summary of audio operations.

Operation

Example

Implementation

Benign Operations
Compression

Reencoding
Resampling
Noise Suppression

Podcasts, news broadcasts, online
meetings

Saving or uploading audio files
Low-bandwidth communication
Social media platforms

ffmpeg (MP3 @ 128 kbps)

f fmpeg (PCM 16-bit)
Resample (torchaudio)
RMS-based frame muting

Malicious Operations
Deletion

Removing “not” in “I do not agree”

VAD + remove voiced
portion

Splicing Inserting “not” into “I do agree” Insert voiced segment

Substitution Replacing “agree” with “disagree” Swap waveform segment

Silencing Muting “not” in “I do not agree” Mute VAD-detected
region

Reordering Changing sentence order Segment + shuffle +
concat

Voice Conversion Changing timbre (speaker identity) torchaudio.sox_effects

(training), Voice Changer
(testing)
Text-to-Speech Generate new speech with speaker’s YourTTS (zero-shot

timbre synthesis)

B SPEECHECK DESIGN AND OPERATION DEFINITIONS

B.1 OVERALL ALGORITHM

The training and verification procedures of SpeeCheck are summarized in Algorithm [T]and Algo-
rithm 2] respectively.

B.2 DEFINITION OF BENIGN AND MALICIOUS OPERATIONS

We simulate two categories of audio modifications: benign operations and malicious tampering. Be-
nign operations refer to legitimate processing steps encountered during audio storage, transmission,
or distribution. These operations do not change the semantic content or the speaker identity of the
speech. In contrast, malicious tampering refers to intentional alterations designed to distort either
the semantic meaning or the identity of the speaker. We detail each operation below and summarize
its characteristics in Table

Compression. Lossy compression is applied by converting the waveform to MP3(128 kbps) or
AAC (128 kbps), and decoding it back to WAV. This simulates typical processing in podcasts
and streaming platforms. We use FFmpeg: ffmpeg -i input.wav -b:a 128k temp.mp3;
ffmpeg —-i temp.mp3 output.wav.

Reencoding. The waveform is re-encoded to 16-bit PCM WAV format without compression. This
simulates storage or uploading scenarios where minor numerical alterations may occur. Imple-
mented with: ffmpeg —-i input.wav output.wav.

from 16 kHz to 8 kHz) and then up-
legacy systems. Implemented with:

Resampling. Audio is downsampled (e.g.,
sampled back, simulating low-bandwidth or
torchaudio.transforms.Resample.

Noise Suppression. To simulate automatic noise suppression utilized by social media and stream-

ing platforms, the waveform is divided into overlapping frames. Frames with low root-mean-square
(RMS) energy are muted.
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Algorithm 1 SpeeCheck Training and Deployment

1: Input: Raw speech X, benign operations 7 (-), malicious operations 7, (-), Wav2Vec2.0 en-
coder €, multiscale feature extractor F

2: Qutput: Watermarked speech X’
3: fore=1,2,...,epochs do
4. forb=1,2,..., batches do
3- Xbenign . 7;(‘)()’ Xmalicious — Tm (X)
6: Step 1: Frame-level feature extraction
7 Z +—e(X)
8: Step 2: Multiscale feature summarization
9: h, « F(2)
10: forn=1,..., Kdo
. exp(¢(hy))
L Wn S K op(p(hy))
12: end for
13: v fo:l w,, - hy,
14: v + Proj(v')
15: Step 3: Contrastive fingerprint training
16: Compute contrastive loss L,
17: Update F, ¢, Proj via backpropagation
18:  end for
19: end for

20: Step 4: Binary fingerprint encoding

21: b < sign(tanh(Proj(AttPool(F(¢(X))))))

22: Step 5: Segment-wise watermarking

23: Split X and b into N segments: [X¥ (1), ... XN, [bM) . bN)]
24: forn=1,...,N do

25:  §(") < WatermarkEmbedder(X' (™) b(™)

26 XM x4 50

27: end for _ _

28: X < Concat(X™M) ... AW))

Algorithm 2 SpeeCheck Verification

1: Input: Published speech X, wav2vec2.0 encoder ¢, trained multiscale feature extractor JF,
projection module Proj, attentive pooling AttPool, WatermarkExtractor

2: Qutput: Verification result (Accept or Reject)

3. Path A: Fingerprint extraction

4: b’ + sign(tanh(Proj(AttPool(F(£(X))))))

5: Path B: Segment-wise watermark extraction

6: Split X into N segments: XV ... x¥®)

7: forn =1to N do .

8:  b(™ < WatermarkExtractor(X (™))

9: end for A .

10: b < Concat(b(?), ... b))

11: Integrity decision

12: if dy (b’,b) < 6 then

13:

14:  return Accept
15: else

16:

17:  return Reject
18: end if
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Deletion. A portion of speech (not silence) is removed from the speech. For example, deleting
“not” from “I do not agree” changes the meaning entirely.

Splicing. A short segment of speech from the same speaker is spliced into the waveform. For
example, inserting “not” into the phrase “I do agree” reverses its original semantic meaning.

Substitution. A segment of speech is replaced with another waveform segment of equal length
from the same speaker. For instance, replacing “agree” with “disagree” fundamentally changes the
intended meaning.

Silencing. A portion of speech (not silence or noise) is deliberately muted by setting its amplitude
to zero. For instance, muting the word “not” in “I do not agree” leads to a reversed interpretation.

Reordering. The speech is segmented, rearranged, and concatenated to change the semantic con-
tent. For instance, reordering “I never said she stole my money” into “She stole my money, I never
said” distorts the original meaning and can lead to an opposite interpretation.

Voice Conversion. Note that integrating voice conversion models into the training pipelines
is computationally expensive and time-consuming, making large-scale training impractical. To
achieve a comparable effect with lower overhead, during the training phase, we apply pitch shift-
ing for speaker identity modification (e.g., +4 semitones) using SoX effects, implemented via
torchaudio.sox_effects.apply_effects_tensor. This modification introduces perceptual
changes to voice characteristics, effectively creating negative samples for learning to distinguish
speaker identity. In the testing phase, we validate SpeeCheck’s performance on a separate set of au-
dio manipulated by a state-of-the-art commercial voice changer tool from ElevenLabs (ElevenLabs)
2024).

Text-to-Speech. We synthesize speech from text using a pre-trained text-to-speech (TTS) model,
YourTTS (Casanova et al., [2022), which supports multilingual and zero-shot speaker adaptation.
This attack can generate speech that closely mimics the speaker’s voice with arbitrary semantic
content.

Different Levels of Tampering. To evaluate the performance under varying conditions, we define
three levels of tampering: minor, moderate, and severe. Specifically, at the minor level, tampering
operations, including deletion, splicing, silencing, and substitution, alter about 10% of the original
audio content (alteration ratio = 0.1). At the moderate level, these same operations alter 30% of the
audio (alteration ratio = 0.3). At the severe level, 50% of the audio is altered (alteration ratio = 0.5),
and this level also includes reordering operations, which disrupts the logical structure of the speech.

B.3 EXPLANATION OF MALICIOUS TAMPERING OVER DIFFERENT GRANULARITIES

Table [/| presents representative examples of malicious tampering at the phoneme, word, and phrase
levels. These examples illustrate how manipulations at different temporal granularities can alter the
meaning of speech. They also motivate the use of multiscale pooling with window sizes of 20, 50,
and 100 frames, which are designed to capture such variations in real-world scenarios.

C EXPERIMENTAL SETUP AND EXTENDED RESULTS

C.1 IMPLEMENTATION DETAILS

To supplement Section we provide a detailed description of the model architecture and training
configuration.

Model. We use the pretrained Wav2Vec2.0 Base model] to extract 768-dimensional frame-level
acoustic features. These are passed to a two-layer Bidirectional LSTM (BiLSTM) with an input
size of 768, a hidden size of 512 (i.e., 256 per direction), and a dropout rate of 0.25. To capture

*nttps://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
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Table 7: Examples of malicious tampering at different levels of granularity

Granularity Example Description

Phoneme-level Change “bed” to “bad” (English); Altering a single phoneme can lead to sub-

change “ma” (mother) to “ma” tle yet meaningful changes. These edits are

(horse) (Mandarin) often difficult to detect but can reverse or
distort the intended meaning.
Word-level Insert “not” into “He is guilty” to Tampering at the word level through inser-
form “He is not guilty”; replace tion, deletion, or substitution can directly
“approved” with “denied” modify semantic content, leading to mis-
leading interpretations.
Phrase-level Change “Negotiations will begin Reordering or replacing entire phrases can
immediately” to “Negotiations will ~fabricate new narratives while maintaining
be delayed indefinitely” natural-sounding speech, making the tam-

pering more deceptive.

temporal features at multiple resolutions, we apply average pooling with window sizes of 20, 50,
and 100 frames, with a stride of 10 frames, implemented using avg_pool1d along the time axis.
The pooled outputs are aggregated by an attentive pooling module consisting of a linear-tanh-linear
projection. The resulting weighted sum forms the utterance-level embedding, followed by dropout
with a rate of 0.2. This embedding is fed into a two-layer MLP projection head with dimensions
768 — 512 — 256, with ReLU activation between layers. The final output vector is L2-normalized
and passed through a tanh function to constrain values to the range [—1, 1], yielding the continuous-
valued fingerprint. For segment-wise watermarking, we use the pretrained AudioSeal modeﬂ to
embed and extract binary fingerprints as watermarks. Each audio is divided into 16 non-overlapping
segments, with each segment embedded with a 16-bit binary watermark, resulting in a total payload
size of 256 bits per audio.

Training. SpeeCheck is trained using a cosine annealing learning rate schedule, decaying from
1 x 1073 to 1 x 107> over 50 epochs. The contrastive loss is temperature-scaled with 7 = 0.05.
Training is conducted on 2 NVIDIA A100 GPUs using distributed data parallelism.

Table 8: Examples from RWSID with corresponding editing operations

Sentence Editing Operation

The board has decided they can not approve the new budget. Deletion / Silencing (“not”)
Our analysis shows this investment is not a secure option. Deletion / Silencing (“not”)
Based on the evidence, the suspect is innocent. Substitution — “guilty”
Based on the evidence, the suspect is guilty. Substitution — “innocent”
I never said she stole the company’s data. Reordering

I never said she stole the company’s data. Voice Conversion (AI)

We will begin the product launch immediately. Replacement — “delay”
We will delay the product launch immediately. Replacement — “begin”

I believe it is a good idea, but we need more time. Splicing

This is authentic audio, not deepfake. Text-to-Speech (Al)

C.2 DATASET AND EVALUATION DETAILS

We use two public speech datasets: VoxCeleb and LibriSpeech. For VoxCeleb, the development set
is used for training and the test set for evaluation. For LibriSpeech, we use only the test-clean
subset for evaluation. To comprehensively evaluate the effectiveness of SpeeCheck in real-world
scenarios, we construct a Real-World Speech Integrity Dataset (RWSID). This dataset comprises
recordings from 10 volunteers with diverse demographic backgrounds (including multiple races and
sexes). Each participant read 8 prepared speeches (see Table [8). All audio files are converted to
WAV format and resampled to 16 kHz.

*https://github.com/facebookresearch/audioseal
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Preprocessing. We randomly sample 10,000 utterances from the VoxCeleb development set for
model training. For evaluation, we sample 500 utterances each from the VoxCeleb test set and the
LibriSpeech test—-clean subset. To stabilize the training and ensure data quality, we retain only
utterances with durations between 2 and 20 seconds. We further analyze the effect of utterance
duration in Appendix

For each valid utterance, we generate two sets of augmented variants for contrastive learning: (i)
Benign Augmentations: These are modifications that preserve both speaker identity and semantic
content. (ii) Malicious Augmentations: These include tampering operations intended to alter speaker
identity and semantic content. The details can be found in Appendix [B.2]

Evaluation Metrics. For evaluation, we consider benign and malicious as positive and negative
classes, respectively. TP is the number of benign samples correctly classified, and FN is the num-
ber of benign samples incorrectly classified as malicious. FP is the number of malicious samples
incorrectly classified as benign, and TN is the number of malicious samples correctly rejected. The
following metrics are computed:

* True Positive Rate (TPR): TPR = TP/(TP + FN)

* False Positive Rate (FPR): FPR = FP/(FP + TN)

* True Negative Rate (TNR): TNR = TN/(TN + FP)

* False Negative Rate (FNR): FNR = FN/(FN -+ TP)

* Equal Error Rate (EER): The error rate at the decision threshold where FPR = FNR.

* Area Under the Curve (AUC): The area under the receiver operating characteristic curve.

C.3 SIMILARITY DISTRIBUTION USING MFCC FEATURE
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Figure 6: Probability distributions: (a) MFCC embedding similarity to original audio under different
modifications; (b) MFCC embedding similarity to original audio at different tampering levels.

To complement the observations in Section [2.3] we present similarity distributions computed us-
ing handcrafted Mel-frequency cepstral coefficients (MFCC) instead of wav2vec2 embeddings. As
shown in Figure [6] the similarity distributions between original and modified audio samples us-
ing MFCC features exhibit trends similar to those observed with wav2vec2-based representations.
Specifically, the distributions corresponding to benign and malicious modifications overlap, and the
similarity scores tend to decrease as the extent of tampering increases. This indicates that MFCC-
based similarity comparison can only measure the extent of modification but does not effectively
distinguish between different types of modifications.

C.4 EVALUATION ON SEMANTIC AND IDENTITY CHANGES UNDER BENIGN AND
MALICIOUS OPERATIONS

We evaluate the impact of different audio modifications on both semantic integrity and speaker iden-
tity consistency. Semantic preservation is quantified using word error rate (WER) computed from a
pre-trained automatic speech recognition (ASR) model’} facebook/wav2vec2-base-960h,

Shttps://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
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Table 9: WER and Identity Similarity under Different Operations

Operation WER % Identity Similarity %
Benign Operations

Compression 1.15 95.60
Reencoding 0.26 99.99
Resampling 6.87 78.00
Noise suppression 8.24 94.52
Malicious Operations

Deletion (minor) 21.65 99.04
Deletion (moderate) 40.20 96.84
Deletion (severe) 62.32 93.29
Splicing (minor) 31.24 99.00
Splicing (moderate) 52.45 97.35
Splicing (severe) 78.36 96.55
Silencing (minor) 30.76 98.16
Silencing (moderate) 53.79 90.13
Silencing (severe) 75.74 75.96
Substitution (minor) 23.22 98.33
Substitution (moderate) 48.12 94.36
Substitution (severe) 63.03 90.72
Reordering 69.55 99.53
Text-to-speech - -
Voice conversion 8.60 41.60

a CTC-based ASR model. Speaker identity preservation is measured by cosine similar-
ity between embeddings extracted using the pre-trained speaker verification (SV) mode
speechbrain/spkrec-ecapa-voxceleb.

As shown in Table 0] benign operations (e.g., compression, reencoding, resampling, noise suppres-
sion) result in low WER (<8.24%) and high identity similarity (>78%), indicating that they largely
preserve both semantic content and speaker identity. In contrast, malicious operations introduce sub-
stantial degradation. WER increases steadily with the severity of deletion, splicing, silencing, and
substitution, reflecting significant semantic changes. These operations, however, generally maintain
high identity similarity because they retain the original timbre. Notably, voice conversion results
in relatively low WER, but significantly reduces identity similarity (41.60%), since it deliberately
alters the speaker’s timbre.

To further investigate the nonzero WER observed under benign operations, we manually examined
the ASR outputs. Most transcription errors were minor substitutions or alignment shifts that did not
affect the overall meaning. This suggests that the observed WER in these cases reflects limitations
of the ASR model and metric sensitivity rather than genuine semantic distortion.

C.5 RESULTS OF FINE-GRAINED MALICIOUS OPERATIONS REJECTION

We report the detection performance of SpeeCheck on fine-grained malicious operations across
varying degrees of tampering severity, as shown in Table [I0}

C.6 EVALUATION IN REAL-WORLD SCENARIO

To validate SpeeCheck’s performance in practical settings, we conducted evaluations on the RWSID
dataset (described in Appendix [C.2). Example recordings and verification results are available on
our demo pageﬂ We then designed two evaluation scenarios to simulate real-world challenges:

"nttps://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
8https://speecheck.github.io/SpeeCheck/
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Table 10: Results of fine-grained malicious operation rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb | LibriSpeech | Semantic Identity
TNR FNR AUC EER| TNR FNR AUC EER |

Deletion (minor) 100.00 1.01 100.00 0.00 | 100.00 1.01 9992 0.20 X v
Deletion (moderate) 100.00 1.61 100.00 0.00 | 100.00 1.81 100.00 0.00 X v
Deletion (severe) 100.00 1.01 100.00 0.00 | 100.00 1.81 100.00 0.00 X v
Splicing (minor) 100.00 0.80 100.00 0.00 | 100.00 1.61 99.99 040 X v
Splicing (moderate) 100.00 0.20 100.00 0.00 | 100.00 221 100.00 0.00 X v
Splicing (severe) 100.00 1.01 100.00 0.00 | 100.00 1.41 9998 0.10 X v
Silencing (minor) 97.59 080 9944 171 | 9557 141 9952 322 X v
Silencing (moderate) 9899 0.00 99.68 091 | 9940 1.61 9992 0091 X v
Silencing (severe) 9920 141 99.81 .11 | 9940 241 99.68 1.1 X v
Substitution (minor) 9336 1.01 9943 292 | 79.88 181 97.79 8.35 X v
Substitution (moderate) 100.00 0.80 9999 040 | 9920 181 9946 1.51 X v
Substitution (severe) 100.00 0.80 100.00 0.00 | 100.00 1.81 99.84 1.3l X v
Reordering 97.59 0.60 98.62 211 | 9839 141 99.21 1.71 X v
Text-to-speech 100.00  0.00 100.00 0.00 | 100.00 0.00 100.00 0.00 X v
Voice conversion 99.40 0.00 100.00 0.00 | 97.80 0.00 100.00 0.00 v X
Overall 99.08 0.74 99.80 0.61 \ 9798 148 99.69 1.28 \ -
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Figure 7: Hamming distance distributions for real-world scenarios: (a) benign social media distri-
bution and (b) malicious tampering.

Benign Distribution. To assess SpeeCheck’s robustness under practical distribution scenarios, the
protected audios were uploaded to widely used social media platforms (including WhatsApp, Tele-
gram, WeChat, Discord, and Twitter) and subsequently downloaded after platform-side preprocess-
ing. These steps reflect realistic distribution pipelines where compression, reencoding, and noise
suppression may be applied.

Malicious Tampering.: To evaluate its sensitivity to sophisticated attacks, we performed fine-
grained edits manually, including deletion, splicing, silencing, substitution, and reordering. More-
over, we tested commercial platforms for voice conversion (ElevenLabs| 2024) and text-to-speech
synthesis (Vocloner;, [2024).

Figure [7a) shows that the Hamming distances of audios redistributed via social media consistently
remain below the detection threshold, confirming SpeeCheck’s robustness against real-world distri-
bution. In contrast, Figure[7bdemonstrates that all malicious edits yield Hamming distances above
the threshold across all 10 users, indicating its reliable sensitivity to real-world tampering.

C.7 EVALUATION ON DIFFERENT LENGTHS OF SPEECH

To evaluate SpeeCheck on longer audio recordings, we test speech samples with durations ranging
from 20 seconds to 10 minutes. As shown in Table[TT] the system performs well across all lengths.
While performance gradually degrades with increasing duration, the EER rises from 1.57% at 20
seconds to 8.41% at 10 minutes, the overall detection remains robust, with the AUC consistently
above 96%.
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This behavior is consistent with the roles of the two main components in SpeeCheck. The acoustic
fingerprint summarizes the entire segment into a single 256-bit representation. When the segment
becomes very long, local manipulations (for example, deleting or substituting a single word) affect
only a small portion of the frames, so their influence on the global fingerprint can be diluted, which
increases the EER. At the same time, the watermarking backbone (AudioSeal) acts only as a carrier
for this fingerprint. If segments were extremely short, the effective embedding capacity would be
limited and watermark extraction on benign audio could become unstable, which would increase
false rejections. The results in Table[TT]show that, within the tested range, SpeeCheck maintains a
good balance between these two effects.

Table 11: Performance of SpeeCheck under different speech durations.

Speech Duration TPR FPR AUC EER

20s 98.75 1.65 99.69 1.57
60s 92.50 488 98.39 5.87
Sm 9487 7.05 98.02 6.09
10m 90.95 7.76 96.04 8.41

C.8 EVALUATION ON DIFFERENT LANGUAGES OF SPEECH

SpeeCheck operates directly on acoustic features rather than on linguistic semantic content. There-
fore, language differences should not interfere with the fingerprint generation process. To empiri-
cally validate this, we conduct an additional evaluation on the multilingual FLEURS dataset (Con-
neau et al [2023), which includes 102 languages. We select six representative languages (French,
German, Chinese, Spanish, Japanese, and Polish) and evaluate SpeeCheck under the same protocol
as in the main experiments, including the same benign operations and tampering attacks.

As shown in Table [I2] SpeeCheck maintains high robustness to benign operations and high sensi-
tivity to tampering across all six languages. All AUC scores are above 98%, and the EER remains
below 8%, which is comparable to the results on the English-centric datasets in the main paper.

Table 12: Performance of SpeeCheck on different speech languages.

Language TPR FPR AUC EER

French 98.27 337 99.54 247
German 98.62 220 99.61 2.03
Chinese 96.70 3.12 99.37 321
Spanish 99.69 1.78 99.83 1.07
Japanese 9227 1.80 9847 7.09
Polish 98.37 8.06 98.02 7.06

C.9 REAL-TIME EVALUATION

Table 13: Real-time performance of SpeeCheck.

Process Real-Time Coefficient (RTC)
Protection 0.02x
Verification 0.03x

We evaluate computational efficiency using the Real-Time Coefficient (RTC), defined as the ratio of
processing time to audio duration. As shown in Table [I3] both protection and verification achieve
RTC values well below 1, confirming the practicality of SpeeCheck for real-time use.
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C.10 WATERMARKED SPEECH QUALITY

We evaluate the perceptual quality of watermarked speech using four objective metrics. (1) Scale-
Invariant Signal to Noise Ratio (SI-SNR) quantifies waveform-level distortion in decibels (dB).
Higher values indicate less distortion. (2) Perceptual Evaluation of Speech Quality (PESQ) (Rix
et al., 2001) ranges from 1.0 (poor) to 4.5 (excellent), and reflects perceived speech quality. (3)
Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) ranges from O to 1, with higher val-
ues indicating better intelligibility. (4) Log Spectral Distance (LSD) measures spectral deviation
between original and watermarked speech, lower values indicate greater spectral fidelity.

As shown in Table [I4] our proposed SpeeCheck has little perceptual degradation. The high SI-
SNR and PESQ scores, along with near-perfect intelligibility (STOI) and low spectral error (LSD),
demonstrate that the watermarking process preserves both fidelity and intelligibility, making it suit-
able for practical deployment.

Table 14: Audio quality metrics.

Methods SI-SNR  PESQ STOI LSD
SpeeCheck  25.14 428 0998 0.111

C.11 ABLATION STUDIES

To assess the contribution of SpeeCheck’s core modules, we conduct ablation studies at two lev-
els. Unless otherwise stated, all ablations are performed on the VoxCelebl test set. At the system
level, we ablate three key components: the multiscale feature extractor, the attentive pooling mod-
ule, and the contrastive learning objective. We evaluate the multiscale feature extractor by removing
the multiscale branch and using the direct output of the BiLSTM as the fingerprint feature. For
temporal pooling, we substitute attentive pooling with average pooling. Finally, we compare the
InfoNCE loss (Oord et al. 2018)) with the widely used Triplet Loss (Schroff et al.l 2015). As shown
in Table each module contributes to the overall performance. Removing the multiscale feature
extractor leads to a significant degradation, indicating the importance of capturing both global and
local temporal patterns. Substituting attentive pooling with average pooling reduces performance,
indicating that the attention mechanism provides better frame selection for embedding generation.
Replacing InfoNCE with Triplet Loss causes a substantial performance decline, showing that In-
foNCE is more effective for learning discriminative embeddings in our task.

Table 15: Ablation study on feature extractor, temporal pooling scheme, and loss function.

Method Variant \TPR FPR AUC EER

SpeeCheck (Multiscale — w/o Multiscale) 9448 526 9850 5.29
SpeeCheck (AttentivePooling — AvgPooling) | 93.80 6.25 98.42 6.22
SpeeCheck (InfoNCE Loss — Triplet Loss) 8594 146 9577 10.73
SpeeCheck 99.14 0.80 99.85 0.83

Since the multiscale feature extractor is the main component of the fingerprint generation module,
we further provide a more detailed evaluation of this part. Specifically, we instantiate a variant of
SpeeCheck where the multiscale branch is removed and only the BiLSTM output is used as the
fingerprint feature, while keeping the training protocol, datasets, and evaluation metrics identical to
the main experiments. The detailed per-operation results of this variant are reported in Tables [I6]
and Compared to the full model, the overall performance drops for both benign and malicious
operations, and the degradation is particularly clear for subtle tampering such as Substitution (mi-
nor), which confirms that the multiscale design is crucial for the fingerprint generator.
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Table 16: Benign-operation performance of the variant without the multiscale module.

Operation TPR FPR AUC EER
Compression 79.60 13.40 90.41 14.40
Reencoding 100.00 1020 99.85 0.90
Resampling 99.40 11.00 99.52 3.20
Noise suppression  100.00 11.00 99.84 0.70
Overall 9475 1140 9741 4.80

Table 17: Tampering-detection performance of the variant without the multiscale module.

Operation TNR FNR AUC EER
Deletion (minor) 83.60 6.00 97.53 9.30
Deletion (moderate) 9740 5.60 99.22 4.00
Deletion (severe) 99.40 4.60  99.68 1.60
Splicing (minor) 96.00 4.00 99.16 4.00
Splicing (moderate) 98.60 480 99.60 2.70
Splicing (severe) 99.60 6.00 99.83  2.10
Silencing (minor) 79.60 520 96.37 13.70
Silencing (moderate) 82.00 520 97.00 11.60
Silencing (severe) 85.80 4.00 97.80 9.60
Substitution (minor) 64.60 540 92,55 20.80
Substitution (moderate)  70.60  5.60 94.45 18.10
Substitution (severe) 81.00 420 96.74 13.00
Reordering 9320 6.60 97.85 6.70
Text-to-speech 100.00 0.00 100.00 0.00
Voice conversion 100.00 4.80  99.75 2.40
Overall 87.55 474 98.09 7.97

C.12 EFFECT OF WATERMARKING ON FINGERPRINT STABILITY

To verify that watermarking does not destroy the acoustic fingerprint that it is supposed to protect,
we compare fingerprints before and after watermark embedding. For each audio sample, we com-
pute a binary fingerprint from the original audio and from its watermarked version, and measure
the Hamming distance between these two. Table [I8] summarizes the average distances on three
datasets. The average Hamming distances are 6.87 on VoxCeleb, 9.15 on LibriSpeech, and 5.40 on
the RWSID dataset, for a fingerprint length of 256 bits and a decision threshold § = 42. These values
are much smaller than the threshold, showing that watermarking introduces only minor variations to
the fingerprint and therefore does not affect the integrity verification decision.

Table 18: Hamming distance between fingerprints before and after watermark embedding.

Dataset VoxCeleb LibriSpeech RWSID
Average Hamming Distance 6.87 9.15 5.40

C.13 ERROR ANALYSIS OF FALSE POSITIVES AND FALSE NEGATIVES

As discussed in Section [3.3] the integrity verification pipeline in SpeeCheck contains two paths:
fingerprint recalculation and embedded fingerprint extraction. From the received audio, Path A
recomputes an acoustic fingerprint f,, while Path B decodes the embedded fingerprint fg from the
watermark carrier. The decision is based on the Hamming distance between these two fingerprints:
we predict benign if dg (fa, fg) < 6 and tampered otherwise, where 6 is the decision threshold. We
recall that benign speech is treated as the positive class and tampered speech as the negative class in
all experiments.
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A False Positive (FP) corresponds to a tampered sample that is incorrectly accepted as benign. In
our system, this happens when a malicious edit is subtle enough that fs does not change sufficiently,
so that dg (fa, fg) remains below 6. In these cases, the watermark decoder in Path B still reliably
recovers the original embedded fingerprint, and the error is mainly due to the limited sensitivity of
the recomputed fingerprint. This effect is most visible in the “Substitution (minor)” category (see
Table[I0), where the TNR is lower than in other tampering categories.

A False Negative (FN) corresponds to a benign sample that is incorrectly rejected. We observe two
main causes for such errors. In some benign cases, aggressive but allowed operations (for example,
strong compression or noise suppression) can perturb the acoustics so much that fa drifts far from fg
and the distance exceeds the threshold, leading to an unnecessary rejection. In a smaller number of
cases, the watermarking carrier (AudioSeal) may fail to decode a stable fingerprint, and fg contains
many bit errors, which also increases the distance. Since the carrier is modular, future work can
replace AudioSeal with a more robust watermarking scheme to further reduce this type of failure.

C.14 HANDLING BORDERLINE CASES IN DEPLOYMENT

In real deployments, the small fraction of remaining failure cases can be handled through a simple
hierarchical verification strategy. Instead of using a single hard threshold 6, the system can define a
narrow uncertainty band around this value, with two thresholds Gy < Ohigh-

Samples with Hamming distance dg(b,b’) < 6, are accepted as benign, and samples with
di(b,b’) > Opign are rejected as tampered. Only samples that fall into the uncertainty interval
(Grow, nign) are flagged as borderline cases and sent to secondary checks, such as human review
or additional forensic tools, depending on the deployment. This design does not change the core
SpeeCheck pipeline, but it provides a practical way to handle rare edge cases in a controlled and
predictable manner.

C.15 VISUALIZATION OF MULTISCALE FEATURE EXTRACTION
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Figure 8: t-SNE visualizations of speech samples (after training).
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D SECURITY DISCUSSION AND EXTENSIONS

D.1 ADVERSARIAL ATTACKS ON DEEPFAKE DETECTORS

Liu et al. (Liu et al., 2024b) evaluate strong targeted adversarial attacks on deepfake speech detec-
tors, including PGD(Madry et all, 2017), I-FGSM (Kurakin et al.} 2018}, and SimBA (Guo et al}
[2019). These methods are designed for passive detectors such as RawNet2 (Tak et all 2021) and
AASIST [2022), which treat deepfake detection as a binary classification problem and
learn a decision boundary that separates “Real” from “Fake” based on synthesis artifacts. The ad-
versarial attacks work by adding small, imperceptible perturbations so that a given fake sample is
pushed across this decision boundary and is misclassified as “Real.”

SpeeCheck follows a different verification principle. Instead of deciding authenticity from artifacts
alone, it checks the consistency between two quantities: (i) a 256-bit fingerprint that has been em-
bedded into the audio via watermarking, and (ii) a fingerprint recomputed from the received audio
using the same feature extractor. Deepfake audio generated from scratch does not contain an embed-
ded fingerprint that matches this verification protocol. Under the threat model of [2024b),
an attacker may add adversarial noise to a deepfake sample, but such an additive perturbation cannot
by itself create a valid 256-bit fingerprint that is consistent with the internal SpeeCheck pipeline. As
a result, the adversarially perturbed deepfake still fails the fingerprint—watermark consistency check
and is rejected.

Formally analyzing adversarial robustness against adaptive attackers who explicitly target the fin-
gerprint—watermark verification mechanism is an important direction for future work. However, the
above discussion shows that SpeeCheck is not directly vulnerable to the same class of adversarial ex-
amples studied in (Liu et al., 2024b), because it does not rely on a single artifact-based classification
boundary.

D.2 SECURITY EXTENSION AGAINST REPLAY ATTACKS

In practical deployments, if the feature extractor and watermarking pipeline are publicly available,
an attacker could manipulate the audio content, run the same feature extractor as the verifier to
compute a continuous fingerprint v, and then re-embed this fingerprint into the audio stream using
the watermarking scheme. Such a replay-style attack could produce forged audio that passes the
verification. To mitigate this risk, SpeeCheck can be extended with a simple secret-key mechanism
in the fingerprint binarization step, inspired by biohashing and similarity-preserving hashing
let all 2004} [Charikar, 2002} [Evennou et al.| 2023).

In the basic design, the final binary fingerprint is obtained by applying a sign function to the contin-
uous vector v € R,

b = sign(v), (3)

where b € {—1,+1}% is the binary code used for integrity verification. To secure this step, we
replace the direct binarization with a keyed projection:

bgec = sign(vR), 4)

where R € R%*4v is a secret orthogonal matrix that acts as a private key shared between the
embedder and the verifier. Only by, is embedded and later recovered for verification; the matrix R
is never exposed to the adversary.

This modification brings two advantages. First, an attacker who only observes the public feature
extractor cannot forge a valid binary code. Even if they can compute v from a manipulated audio,
they do not know R and thus cannot construct the correct secured fingerprint by, that matches the
verifier’s output. The non-linear sign function further discards magnitude information and makes
it difficult to infer R from observed binary codes. Second, because R is orthogonal, it preserves
distances in the continuous feature space. As a result, the robustness properties of SpeeCheck are
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maintained: benign operations and malicious tampering still induce similar distance patterns after
the keyed transform, so the decision rule based on the Hamming distance remains effective.

In practice, the secret matrix R can be derived from a shorter cryptographic key using a pseudo-
random generator and refreshed when necessary. In many realistic deployments, the fingerprint
generator and the watermark embedder would also be provided as managed services rather than re-
leased as public models, which further increases the practical difficulty for attackers, although we
do not rely on obscurity as a formal security guarantee. A complete formal security analysis of this
extension is left for future work.

E DiscussioN

While SpeeCheck provides a new paradigm for self-contained speech integrity verification, we ac-
knowledge several limitations that can be improved in future research: 1) SpeeCheck’s robustness
is limited concerning certain operations like time-stretching (speeding up/slowing down) and Voice
Activity Detection (VAD). These operations are sometimes not malicious, but they can inherently
alter pitch, tempo, or meaningful phonemes in the speech. Our framework prioritizes a security-first
design, we conservatively treat modified speech as unreliable. But extending training with such
operations, or integrating more robust watermarking schemes, could improve the applicability in
the future. 2) SpeeCheck is optimized for speech durations between 2 and 20 seconds. For very
short clips, the embedding and watermark extraction may become unstable. However, such clips
often lack meaningful semantic content, making them less critical targets for tampering. For very
long audio, although we did not explicitly train on durations beyond 20 seconds, SpeeCheck still
exhibited reasonable generalization. A practical solution is to segment longer recordings into multi-
ple 20-second chunks, protect and verify the content in controllable chunks. 3) Current SpeeCheck
is tailored for speech integrity verification rather than general audio (e.g., music, environmental
sounds). This choice is motivated by the fact that Speech is particularly vulnerable to tampering
and can significantly impact social trust and social stability. Generalizing the system to broader au-
dio domains would be a promising direction for future work, for instance, emphasizing perceptual
fidelity, spectral consistency, and artistic style preservation. 4) Current SpeeCheck design only pro-
vides an utterance-level integrity decision without explicitly localizing the tampered region. While
this is sufficient for the targeted use cases of general users and platforms who mainly need a clear
“authentic vs. tampered” verdict per utterance, finer-grained temporal localization would be valu-
able for forensic analysts. Extending SpeeCheck with segment-level localization capabilities is an
interesting direction for future work.
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