

000 SPEECHECK: SELF-CONTAINED SPEECH INTEGRITY 001 002 VERIFICATION VIA EMBEDDED ACOUSTIC FINGER- 003 004 PRINTS

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Advances in audio editing have made public speeches increasingly vulnerable to
014 malicious tampering, raising concerns for social trust. Existing speech tamper-
015 ing detection methods remain insufficient: they often rely on external references
016 or fail to balance sensitivity to attacks with robustness against benign operations
017 like compression. To tackle these challenges, we propose SpeeCheck, the first
018 **learning-based** self-contained speech integrity verification framework. SpeeCheck
019 can (i) effectively detect tampering attacks, (ii) remain robust under benign oper-
020 ations, and (iii) enable direct verification without external references. Our ap-
021 proach begins with utilizing multiscale feature extraction to capture speech fea-
022 tures across different temporal resolutions. Then, it employs contrastive learn-
023 ing to generate fingerprints that can detect modifications at varying granularities.
024 These fingerprints are designed to be robust to benign operations, but exhibit sig-
025 nificant changes when malicious tampering occurs. To enable self-contained veri-
026 fication, these fingerprints are embedded into the audio itself via a watermark. Fi-
027 nally, during verification, SpeeCheck retrieves the fingerprint from the audio and
028 checks it with the embedded watermark to assess integrity. Extensive experiments
029 demonstrate that SpeeCheck reliably detects tampering while maintaining robust-
030 ness against common benign operations. Real-world evaluations further confirm
031 its effectiveness in verifying speech integrity. The code and demo are available at
032 <https://speecheck.github.io/SpeeCheck/>.
033
034

1 INTRODUCTION

035 Audio serves as an important information carrier that is widely used in news reporting, legal evi-
036 dence, and public statements. However, the rapid development of audio editing tools (Wang et al.,
037 2023) and text-to-speech (TTS) generation models (Wang et al., 2017; Ping et al., 2018; Huang
038 et al., 2023; Du et al., 2024; Chen et al., 2024) has significantly lowered the technical barriers for
039 speech manipulation and synthesis. While these techniques benefit content creation and entertain-
040 ment, they also enable attackers to tamper speech content with ease. Public speeches and statements,
041 especially made by influential figures, have become prime targets for attacks due to their huge so-
042 cial impact (Reuters, 2023; Post, 2024). Tampered speech can cause the spread of misinformation,
043 undermine public trust, and even threaten social stability. Moreover, the prevalence of social me-
044 dia platforms accelerates the circulation of tampered audio, posing challenges to ordinary people in
045 identifying authenticity from numerous sources. Currently, verifying the truth often requires cross-
046 checking information across multiple social media platforms, a process that is time-consuming and
047 prolongs the spread of misinformation. These challenges highlight a critical need: Is it possible
048 to proactively protect publicly shared speech against tampering attacks while still allowing it to be
049 freely stored, distributed, and reshared?

050 Existing approaches against speech tampering can be categorized into two groups: passive detec-
051 tion and proactive protection. Passive detection methods (Rodríguez et al., 2010; Yang et al., 2008;
052 Pan et al., 2012; Blue et al., 2022; Leonzio et al., 2023) rely on deep binary classifiers trained to
053 identify artifacts introduced by tampering. While they show reasonable performance against known
054 attacks, their sensitivity to unseen or sophisticated manipulations remains limited. Moreover, pas-
055 sive detection alone cannot verify whether the speech content originates from the claimed speaker,

leaving systems vulnerable to impersonation-based attacks (Khan et al., 2022). Proactive protection methods verify integrity by extracting auxiliary information from the original audio and reusing it during verification. Early approaches compute cryptographic hashes (Steinebach & Dittmann, 2003; Zakariah et al., 2018) or embed fragile watermarks (Renza et al., 2018; Sripradha & Deepa, 2020; Zhang et al., 2024), which are very sensitive to any modification and therefore can reliably detect minor changes. However, cryptographic hashes require storing or transmitting external reference values, which prevents independent verification from the published audio. Fragile watermarking embeds a highly sensitive pattern into the signal and can enable self-contained verification, but the watermark is easily destroyed by benign operations, which restricts applicability in real-world distribution scenarios. To address this limitation, semi-fragile watermarking (Masmoudi et al., 2020; Wang et al., 2019; Wang & Fan, 2010) and watermark-fingerprint schemes (Gomez et al., 2002; Gubis et al., 2006; Steinebach & Dittmann, 2003) embed carefully selected bits or perceptual hashes into transform domains (Zhang et al., 2021) so that they survive expected benign processing but are damaged by local tampering. This design, however, requires tight coupling between the embedding pattern and the assumed attack model (Yu et al., 2017), and adapting to new operations often implies redesigning the watermarking scheme or the handcrafted features. More recently, neural audio watermarking has been used for proactive defense, for example by embedding speaker embeddings to detect voice conversion (Ge et al., 2025), or by using watermark payloads to flag AI-content (Roman et al., 2024; Chen et al., 2023) or cloned speech (Liu et al., 2024a). These methods provide proactive protection against specific threats, but there is still no unified speech integrity verification solution that can easily handle diverse tampering attacks while remaining compatible with real-world distribution scenarios.

To address the issues above, a desired speech verification design should have the following properties: (1) **Convenient to use**: the integrity of the speech can be verified directly from the published audio without requiring external references. (2) **Sensitive to tampering attacks**: it can reliably detect any malicious edits, including subtle semantic (e.g., can \Leftrightarrow cannot) or speaker-related (e.g., timbre) changes. (3) **Robust to benign operations**: it remains stable under typical benign audio operations, especially commercial-off-the-shelf codecs (e.g., AAC in Instagram/TikTok), ensuring usability in sharing and distribution. Therefore, in this paper, we propose SpeeCheck, a proactive acoustic fingerprint-based speech verification framework that jointly exploits semantic content and speaker identity. Instead of controlling robustness and fragility through the watermark embedding scheme or handcrafted features, we adopt a decoupled architecture. A robust neural watermark is used purely as a carrier, while integrity verification is governed entirely by the embedded fingerprint. Specifically, the fingerprint is generated by a multiscale feature extractor that captures speech characteristics across different temporal resolutions. By using contrastive learning, the fingerprint is designed to be stable under benign operations, yet to change significantly when malicious tampering occurs. To enable self-contained verification, the generated fingerprints are embedded into the speech signal by segment-wise watermarking. Without access to the original authentic speech, SpeeCheck can recover the fingerprint from the published audio and check it with the fingerprint embedded in the watermark payload to verify the integrity. Our main contributions are summarized as follows.

- We present SpeeCheck, a learning-based self-contained speech integrity verification framework with a decoupled fingerprint–watermark architecture that is easy to extend and adapt to new operations.
- We develop a discriminative fingerprint generator that extracts multiscale features and applies contrastive learning to produce binary fingerprints, which are robust to benign operations yet sensitive to malicious manipulations.
- We evaluate SpeeCheck through extensive experiments on public speech datasets and a real-world dataset constructed for this study. The results demonstrate high effectiveness in detecting diverse tampering attacks while maintaining robustness against benign operations in practical scenarios.

Figure 1: System overview of the proposed SpeeCheck.

2 MOTIVATION

2.1 PROBLEM DEFINITION

As shown in Figure 1, the scenario considered in our study includes four parties: 1) **Original speakers**, such as public institutions and celebrities, who publish statements or speeches on social media platforms. 2) **Legitimate users**, who help disseminate these audio recordings by downloading or reposting them. 3) **Malicious attackers**, which employ audio editing or voice conversion techniques to alter either the semantic content or the speaker’s identity. 4) **The public**, who are exposed to conflicting audio sources, requires a reliable method to verify the integrity of a given speech recording.

2.2 MALICIOUS AND BENIGN AUDIO OPERATIONS

We define malicious audio tampering as intentional audio modifications that alter the semantic content or speaker identity. Typical malicious operations include audio splicing, deletion, substitution, silencing, text-to-speech (TTS) synthesis, and voice conversion. In contrast, benign operations refer to common audio transformations that occur during legitimate processes such as storage, transmission, or distribution. Examples include compression, reencoding, resampling, and noise suppression, none of which impact the semantic content or speaker identity. A detailed distinction between malicious and benign audio operations, along with specific examples, is provided in Appendix B.2.

2.3 LIMITATIONS OF ACOUSTIC FEATURE SIMILARITY

An intuitive approach for speech verification is to compare the acoustic similarity between the published audio and its original version.

Following this intuition, we analyzed similarity scores between the original audio and three types of modifications: benignly processed variants (“Benign”), maliciously modified variants (“Malicious”), and unrelated audio samples (“Cross”). Figure 2 presents cosine similarity distributions computed using wav2vec embeddings (Baevski et al., 2020). The significant overlap between benign and malicious similarity distributions demonstrates that acoustic feature similarity alone is insufficient to determine the types of modification operations. Similar results are observed using traditional acoustic feature Mel-frequency cepstral coefficients (MFCC) (Davis & Mermelstein, 1980), detailed in Appendix C.3. This limitation arises because malicious operations, even significantly altering the content, may introduce minimal acoustic changes. For instance, modifying the phrase “do not” to “do” in a 20-second speech affects only 0.2 seconds, and similarity remains more than 99%, while causing substantial semantic alteration. Moreover, this method requires access to the authentic audio, which is impractical in real-world scenarios. These limitations highlight two key challenges:

Figure 2: Probability distributions of the wav2vec embedding similarity to the original audio under different modifications.

162 **Challenge 1: Insufficient sensitivity to semantic tampering attacks.** Acoustic feature-based sim-
 163 ilarity methods fail to distinguish benign operations from malicious ones, because they are not sen-
 164 sitive enough to semantic tampering attacks.

165 **Challenge 2: Dependence on the original authentic audio.** Acoustic similarity assessments re-
 166 quire the original authentic audio as a reference, which is not always applicable in practice.
 167

168

169

170 2.4 LIMITATIONS OF HASH-BASED INTEGRITY VERIFICATION

171

172 Another common class of integrity verification methods is hash-based verification. Cryptographic
 173 hashing (Menezes et al., 2018) (e.g., SHA256, MD5) is widely used in practice for digital file in-
 174 tegrity. Given an audio file, these functions produce a short digest that changes completely even
 175 when a single bit is modified. This extreme sensitivity is ideal for strict file integrity, but it is too
 176 strict for speech content integrity: benign operations such as compression or resampling already
 177 produce a completely different digest, even though they do not alter the semantic content or the
 178 speaker identity.

179 To relax this sensitivity while retaining content awareness, perceptual hashing (Zhang et al., 2021;
 180 Li et al., 2021) has been proposed. These methods extract handcrafted content descriptors (such as
 181 cepstral coefficients (Zhang et al., 2021), spectral envelopes (Zhang et al., 2018), or time-frequency
 182 energy patterns) and convert them into compact binary hashes. Their robustness to benign process-
 183 ing and their sensitivity to malicious tampering are determined by design choices such as which
 184 features are used and how they are quantized. As a result, a given perceptual hash is typically tai-
 185 lored to a specific set of operations, and adapting it to new codecs, platforms, or tampering attacks
 186 often requires redesigning the feature extractor or the quantization rule. In addition, hash-based
 187 verification requires externally stored or transmitted reference hash values for verification, which
 188 introduces practical complexity in real-world speech sharing and forwarding. These limitations lead
 189 to the following challenges:

190 **Challenge 3: Difficulty in balancing robustness and sensitivity.** Cryptographic hashes are overly
 191 sensitive to any modification, while perceptual hashes rely on handcrafted features whose robustness
 192 to benign operations and sensitivity to tampering must be manually tuned for specific operation sets,
 193 and are hard to adapt to new operations.

194 **Challenge 4: Dependence on external reference hash values.** Hash-based verification depends
 195 on externally stored or transmitted hash values, which prevents self-contained verification from a
 196 single audio file and introduces extra overhead and inconvenience for online speech distribution.

197

198 3 METHODOLOGY

199

200

201 3.1 SPEECHECK OVERVIEW

202

203

204

205

To address these challenges, we propose SpeeCheck, a proactive speech integrity verification design,
 which is (i) sensitive to tampering attacks, (ii) robust to benign operations, and (iii) convenient to
 use by the public since it verifies the published speech audio’s integrity in a self-contained manner.
 As the sketch shown in Figure 3, SpeeCheck consists of two stages: fingerprint generation and
 dual-path integrity verification.

206

207

208

209

210

211

212

213

214

215

The speech fingerprint generation in SpeeCheck has five steps: (1) Frame-Level Feature Encoding
 (Speech to Representation): raw speech is encoded into frame-level representations that preserve
 acoustic information; (2) Multiscale Acoustic Feature Extraction (Representation to Vector): the
 frame-level representations are first processed into contextual features, then aggregated at multiple
 temporal resolutions, and finally attentively pooled into a fixed-dimensional vector that summarizes
 the entire utterance; (3) Contrastive Fingerprint Training (Vector to Fingerprint): the vector is opti-
 mized to be robust to benign operations, and sensitive to tampering attacks using contrastive learn-
 ing; (4) Binary Fingerprint Encoding (Fingerprint to Bit): the trained fingerprint is discretized into
 a binary representation; (5) Segment-Wise Watermarking (Bit to Watermark): the binary fingerprint
 is embedded into the original audio through segment-wise watermarking, making the fingerprint
 self-contained.

Figure 3: A sketch of the proposed SpeeCheck design including speech fingerprint generation (top) and integrity verification (bottom).

The integrity verification in SpeeCheck independently performs two parallel paths on the published audio: (1) regenerating the fingerprint via the same extraction pipeline, and (2) extracting the embedded watermark via the watermark decoder. The two resulting binary codes are then compared using Hamming distance to determine whether the speech has been attacked.

3.2 FINGERPRINT GENERATION AND WATERMARKING

Step 1. Frame-Level Feature Encoding (Speech to Representation) We utilize the pre-trained wav2vec 2.0 model (Baevski et al., 2020) to extract frame-level representations from the original audio before publishing. This step serves as a necessary preprocessing stage for fingerprint generation. It converts continuous waveform signals into structured sequences of frame-level representations that preserve essential acoustic information. These representations have demonstrated effectiveness in downstream tasks such as automatic speech recognition (Baevski et al., 2021) and speaker verification (Fan et al., 2021). Formally, the feature encoder $\varepsilon : \mathcal{X} \rightarrow \mathcal{Z}$ maps raw audio waveforms \mathcal{X} to a sequence of latent representations $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_T$, where each $\mathbf{z}_t \in \mathbb{R}^{d_z}$ denotes the frame-level acoustic feature at time t , and T is the total number of output frames.

Step 2. Multiscale Acoustic Feature Extraction (Representation to Vector). Given the frame-level representations $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_T$ obtained from Step 1, this step constructs a fixed-dimensional vector that summarizes the speech across different temporal granularities. The multiscale feature extractor \mathcal{F} consists of two components: (a) a bidirectional long short-term memory (BiLSTM) network that transforms the input frame-level representations into contextual hidden states, and (b) a multiscale pooling operation that averages the hidden states over phoneme-, word-, and phrase-level windows (size 20, 50, and 100, respectively), producing a sequence of multiscale features $\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_K$ (see Appendix B.3 for examples).

To summarize these features into an utterance-level vector, we apply self-attentive pooling (Lin et al., 2017). This mechanism assigns higher weights to more informative components, with attention weight computed as: $w_n = \frac{\exp(\phi(h_n))}{\sum_{t=1}^K \exp(\phi(h_t))}$, where $\phi(\cdot)$ is a feedforward network. The weighted sum yields a fixed-dimension vector: $\mathbf{v}' = \sum_{n=1}^K w_n \cdot \mathbf{h}_n$, which is referred to as the utterance-level vector. To obtain a more compact representation for fingerprint optimization, a projection module is applied to reduce the dimensionality of \mathbf{v}' , yielding the final fingerprint vector $\mathbf{v} \in \mathbb{R}^{d_v}$.

Step 3. Contrastive Fingerprint Training (Vector to Fingerprint). Given the fixed-length vector \mathbf{v} obtained from Step 2, we optimize it to serve as a distinctive audio fingerprint that is robust to benign operations and sensitive to malicious tampering attacks. To this end, we adopt contrastive learning (Oord et al., 2018) to guide the training of all preceding modules. During the training, a batch of original speech samples is randomly selected, where each sample serves as an anchor. For

each anchor, we generate: positive pairs, consisting of the anchor and its benign variants (e.g., compression), and negative pairs, consisting of the anchor and its tampered variants (e.g., substitution). Detailed operations are listed in Appendix B.2. The contrastive loss is defined as

$$\mathcal{L}_c = -\frac{1}{B} \sum_{i=1}^B \frac{1}{P} \sum_{j=1}^P \log \frac{\exp \left(\tilde{\mathbf{v}}_i^{\text{Orig.}\top} \tilde{\mathbf{v}}_{i,j}^{\text{Benign}} / \tau \right)}{\sum_{k=1, k \neq i}^N \exp \left(\tilde{\mathbf{v}}_i^{\text{Orig.}\top} \tilde{\mathbf{v}}_{i,k}^{\text{Benign}} / \tau \right)}, \quad (1)$$

where B is the number of anchors in the batch, P is the number of benign variants per anchor, and N denotes the total number of comparison samples for each anchor, including its own benign and tampered variants as well as embeddings from other anchors in the batch. τ is the temperature parameter. $\tilde{\mathbf{v}}_i^{\text{Orig.}}$ denotes the L2-normalized embedding of the i -th anchor, $\tilde{\mathbf{v}}_{i,j}^{\text{Benign}}$ denotes the embedding of its j -th benign variant, and $\tilde{\mathbf{v}}_{i,k}$ enumerates all embeddings in the batch, including benign, tampered and unrelated samples.

This contrastive learning above encourages the model to bring the anchor closer to its benign variants while pushing it away from tampered and unrelated samples in the embedding space. As a result, the fixed-length vector is optimized to serve as a distinctive audio fingerprint that is robust to benign operations while remaining sensitive to malicious tampering attacks.

Step 4. Binary Fingerprint Encoding (Fingerprint to Bit). To enable self-contained verification, we embed the generated fingerprint into the audio signal as a watermark. Since watermarking schemes typically support binary payloads and inevitably incur information loss, we design the fingerprint representation to preserve its discriminative power even after binarization. Specifically, we convert the continuous fingerprint vector $\mathbf{v} \in \mathbb{R}^{d_v}$ into a binary code $\mathbf{b} \in \{-1, +1\}^d$, which is more suitable for compact storage and fast retrieval via bit-wise comparison. To encourage the output to approach the bipolar extremes of -1 and +1 and thus reduce quantization error, we apply a \tanh activation at the final projection layer. This is followed by a `sign` function to obtain the final binarized output. As demonstrated in Section 4.2, the binarized fingerprint retains its discriminative characteristics of \mathbf{v} , i.e., robust to benign operations while sensitive to tampering attacks. **In adversarial settings where an attacker may manipulate the content, compute a new fingerprint, and attempt to re-embed it into the audio stream (replay-style attacks), this binarization step can be further secured by introducing a secret key, as detailed in Appendix D.2.**

Step 5. Segment-Wise Watermarking (Bit to Watermark). To enable self-contained verification, the binary fingerprint must be embedded directly into the speech signal. We adapt the robust watermarking method AudioSeal (Roman et al., 2024) for this purpose. However, a key challenge arises from our high-capacity requirement. While AudioSeal is designed for short watermarks (i.e., 16 bits) for copyright protection, our task requires embedding much longer fingerprints (e.g., 256 bits). To meet this requirement, we extend the original AudioSeal with a segment-wise embedding strategy. Given an input waveform \mathcal{X} of duration T seconds and its binary fingerprint \mathbf{b} , both are divided into N non-overlapping segments:

$$\mathcal{X} = [\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(N)}] \quad \text{and} \quad \mathbf{b} = [\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(N)}], \quad (2)$$

where each $\mathcal{X}^{(n)}$ spans T/N seconds and each $\mathbf{b}^{(n)}$ contains d/N bits. For each audio segment $\mathcal{X}^{(n)}$, we embed $\mathbf{b}^{(n)}$ into the Codec embedding space and generate a watermark signal $\delta^{(n)}$. The watermarked segment is then formed as: $\tilde{\mathcal{X}}^{(n)} = \mathcal{X}^{(n)} + \delta^{(n)}$. Finally, the watermarked segments $[\tilde{\mathcal{X}}^{(1)}, \dots, \tilde{\mathcal{X}}^{(N)}]$ are concatenated, yielding the final self-verifiable audio.

Notably, the watermark incurs only subtle perturbations. Our experiments in Appendix C.12 confirm that the acoustic fingerprint generated from the watermarked audio $\tilde{\mathcal{X}}$ remains consistent with the original fingerprint, while the embedded bits can still be reliably extracted without degradation.

3.3 DUAL-PATH SPEECH INTEGRITY VERIFICATION

SpeeCheck employs a dual-path mechanism to assess the integrity of the published speech $\tilde{\mathcal{X}}$:

Path A: Fingerprint Generation from Published Speech. The published speech audio is processed using the same fingerprint generation pipeline described before. The fingerprint \mathbf{b}' is computed as $\mathbf{b}' = \text{sign}(\mathcal{F}(\varepsilon(\tilde{\mathcal{X}})))$, where ε and \mathcal{F} denote the feature encoder and multiscale extractor, respectively, and $\text{sign}(\cdot)$ denotes the final binarization function.

324 **Path B: Watermark Extraction.** The published speech audio $\tilde{\mathcal{X}}$ is processed in the inverse manner
 325 of Step 5 to decode the embedded watermark (i.e., the original binary fingerprint). From each
 326 segment $\tilde{\mathcal{X}}^{(n)}$, we extract the bit chunk $\hat{\mathbf{b}}^{(n)}$ using the watermark decoder, and then reconstruct the
 327 full watermark as $\hat{\mathbf{b}} = [\hat{\mathbf{b}}^{(1)}, \hat{\mathbf{b}}^{(2)}, \dots, \hat{\mathbf{b}}^{(N)}]$.
 328

329 Finally, the integrity of the published audio is verified by comparing the generated fingerprint \mathbf{b}'
 330 with the extracted watermark $\hat{\mathbf{b}}$. This is done by computing the Hamming distance as follows.
 331

$$d_H(\mathbf{b}', \hat{\mathbf{b}}) \leq \theta \Rightarrow \text{Accept}; \text{ otherwise } \text{Reject},$$

333 where θ is a decision threshold set based on the validation set from public datasets.
 334

335 4 EXPERIMENTS

337 4.1 EXPERIMENT SETUP

339 **Dataset.** To train and evaluate the performance of SpeeCheck, we use VoxCeleb1 (Nagrani et al.,
 340 2017), which includes over 150,000 utterances from 1,251 celebrities. These audio samples are
 341 collected from interviews and public videos, providing conditions that reflect real-world speech
 342 recordings. We further employ the test subset from LibriSpeech (Panayotov et al., 2015) dataset to
 343 assess the model generalization. Furthermore, to validate SpeeCheck’s effectiveness under authentic
 344 scenarios, we build a real-world speech dataset and evaluate it after fine-grained editing and distri-
 345 bution across major social media platforms. More details about the datasets and the preprocessing
 346 steps are provided in Appendix C.2.

347 **Implementation details.** (i) Fingerprint model: We use Wav2Vec2.0 Base model¹ as the acoustic
 348 feature extractor. A two-layer BiLSTM with a hidden size of 512 follows the feature extractor.
 349 Multiscale pooling is used with window sizes of 20, 50, and 100 frames with a stride of 10 frames. A
 350 two-layer projection head then maps features into a 256-dimensional vector. (ii) Watermark model:
 351 AudioSeal model² is used to embed and extract fingerprints as watermark payloads. To improve the
 352 watermarking capacity, we divide both the carrier audio and the fingerprint into 16 segments. Each
 353 segment carries a 16-bit watermark, leading to a total payload of 256 bits per audio sample. (iii)
 354 Training: We exploit benign and malicious operations (see Appendix B.2) and the original audio
 355 samples for contrastive learning, with temperature set as 0.05. A cosine annealing learning rate
 356 schedule is used, gradually decreasing the learning rate from 1×10^{-3} to 1×10^{-5} over the training.
 357

358 **Evaluation Metrics.** We evaluate SpeeCheck as a binary classification task, where benign operations
 359 are treated as the positive class and malicious ones as the negative class. To characterize the
 360 detector over different operating points, we sweep the decision threshold θ across the full range of
 361 Hamming distances and compute the receiver operating characteristic (ROC) curve. From this curve,
 362 we derive the area under the curve (AUC) and the equal error rate (EER). Afterwards, we select a
 363 single decision threshold $\theta^* = 42$ on the validation set to balance robustness to benign operations
 364 and sensitivity to tampering. All reported true positive rate (TPR), false positive rate (FPR), true
 365 negative rate (TNR), and false negative rate (FNR) in Tables 1 and 2 are computed at this fixed θ^* .
 366 Formal definitions of these metrics are given in Appendix C.2.

367 4.2 RESULTS

368 **Robustness to benign operations.** Table 1 presents the performance of the proposed SpeeCheck
 369 in accepting published speech samples subjected to benign audio operations, as defined in Ap-
 370 pendix B.2. We focus on evaluating how well SpeeCheck accepts positive samples with harm-
 371 less modifications (TPR) and whether it mistakenly accepts maliciously tampered speech (FPR).
 372 For each benign operation listed in Table 1, we construct a balanced test set that contains all be-
 373 nign samples produced by this operation and an equal number of maliciously tampered samples,
 374 randomly drawn from the pool of attacks in Appendix B.2. On the test subsets of VoxCeleb1,
 375 SpeeCheck achieves an overall TPR of 99.15% and an FPR of 0.55%, demonstrating strong robust-
 376 ness to non-malicious transformations. For cross-dataset evaluation on LibriSpeech, using a model
 377

¹<https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec>

²<https://github.com/facebookresearch/audioseal>

378
379

Table 1: Results of benign operation (positive) acceptance on VoxCeleb and LibriSpeech.

380
381
382
383
384
385
386

Operation	VoxCeleb				LibriSpeech				Semantic	Identity
	TPR	FPR	AUC	EER	TPR	FPR	AUC	EER		
Compression	99.80	1.01	99.77	1.11	96.98	1.21	99.51	2.82	✓	✓
Reencoding	99.80	0.20	100.00	0.20	99.40	2.41	99.89	1.51	✓	✓
Resampling	97.18	0.60	99.56	1.21	97.18	1.81	99.17	2.21	✓	✓
Noise suppression	99.80	0.40	99.99	0.20	99.40	2.21	99.84	1.41	✓	✓
Overall	99.15	0.55	99.83	0.68	98.24	1.91	99.60	1.99	-	-

387

388
389

Table 2: Results of malicious operation (negative) rejection on VoxCeleb and LibriSpeech.

390
391
392
393
394
395
396
397
398

Operation	VoxCeleb				LibriSpeech				Semantic	Identity
	TNR	FNR	AUC	EER	TNR	FNR	AUC	EER		
Deletion	100.00	1.21	100.00	0.00	100.00	1.54	99.97	0.07	✗	✓
Splicing	100.00	0.67	100.00	0.00	100.00	1.74	99.99	0.17	✗	✓
Silencing	98.59	0.74	99.64	1.24	98.12	1.81	99.71	1.88	✗	✓
Substitution	97.79	0.87	99.81	1.11	93.03	1.81	99.03	3.72	✗	✓
Reordering	97.59	0.60	98.62	2.11	98.39	1.41	99.21	1.71	✗	✓
Text-to-speech	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00	✗	✓
Voice conversion	99.40	0.00	100.00	0.00	97.80	0.00	100.00	0.00	✓	✗
Overall	99.08	0.74	99.80	0.61	97.98	1.48	99.69	1.28	-	-

399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

trained on VoxCeleb1, the TPR/FPR slightly change to 98.24% and 1.91%, respectively, indicating good generalizability across datasets.

Sensitivity to tampering attacks. Table 2 evaluates the ability of SpeeCheck to reject malicious tampering attacks that alter the semantic content or speaker identity. For each tampering category listed in Table 2, we similarly form a balanced binary task that contains all samples generated by this attack and an equal number of benign samples. The considered attacks include simple audio editing (e.g., deletion) as well as advanced learning-based manipulations such as text-to-speech (TTS) synthesis and voice conversion, as detailed in Appendix B.2. In this setting, tampering operations (actual negatives) are expected to be rejected with a high true negative rate (TNR), while minimizing the false negative rate (FNR), which reflects incorrect rejection of benign samples. Notably, on the VoxCeleb (in-domain) dataset, SpeeCheck achieves an overall TNR of 99.08% and an FNR of 0.74%. On the LibriSpeech dataset, the system maintains strong performance with an overall TNR of 97.98% and an FNR of 1.48%. These results highlight SpeeCheck’s strong sensitivity to tampering attacks. A more detailed breakdown by tampering strength (e.g., minor, moderate, and severe) is provided in Appendix C.5, and Appendix C.11 further analyzes the remaining false positives and false negatives.

Figure 4: (a) Extracted feature similarity; (b) binarized fingerprint of speech samples: (a) before Hamming distance.

427
428
429
430
431

Multiscale feature and binarized fingerprints analysis. Figure 4 shows two analyses: (a) cosine similarity between extracted multiscale features and (b) Hamming distance between binarized

Figure 5: t-SNE visualizations
(a) before training; (b) after training.

432 fingerprints. In Figure 4a, benign-original pairs yield high similarity values close to 1.0, while
 433 malicious-original and cross-original pairs are much lower, indicating that the learned multiscale
 434 features effectively capture the differences between benign operations and malicious tampering
 435 attacks. Here, “cross” refers to the arbitrarily selected unrelated audio samples. In Figure 4b, binarized
 436 fingerprints of benign processed samples yield low Hamming distances from their retrieved water-
 437 marks, whereas malicious and cross pairs have much larger distances, with a clear margin of about
 438 112-118 bits. This indicates that the binarization process preserves discriminability and enables
 439 reliable separation of tampering and benign operations using a simple threshold.

440 Figure 5 shows the t-SNE visualizations of the extracted multiscale features before and after training.
 441 Specifically, Figure 5a and Figure 5b show the distribution of anchors (original speech), positives
 442 (after benign operations), and negatives (after malicious operations) in the latent space. Before train-
 443 ing, anchor and positive samples are scattered and overlap with negatives, indicating poor separabil-
 444 ity. After training, anchors and positives form tight clusters, while negatives are clearly separated.
 445 This suggests that contrastive learning enables the multiscale feature extractor to learn embeddings
 446 that distinguish benign operations from malicious tampering, which explains the strong performance
 447 of SpeeCheck. Additional visualization evidences are provided in Appendix C.15.

448 Table 3: Detection accuracy on unseen benign operations and tampering attacks.
 449

450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471																							
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464		465		466		467		468		469		470		471	
450			451		452		453		454		455		456		457		458		459		460		461		462		463		464															

486 speech. The resulting deepfake utterances are then mixed with an equal number of clean utter-
 487 ances to ensure fair evaluation. From Table 4, all three methods become stronger when the sub-
 488 stitution ratio increases. When 75–90% of an utterance is replaced by deepfake content, Nes2Net
 489 and SSL-AntiSpoofing already show very strong performance (for example, at 90% substitution
 490 Nes2Net reaches 100.00% TPR and 100.00% AUC, while SSL-AntiSpoofing obtains 95.12% TPR
 491 and 98.97% AUC with 4.63% EER). However, their performance degrades sharply when the substi-
 492 tution ratio becomes small. At 10% substitution, Nes2Net only achieves 65.60% AUC with 39.84%
 493 EER, and SSL-AntiSpoofing reaches 72.58% AUC with 33.00% EER, indicating limited sensitivity
 494 to subtle spoofing. In contrast, SpeeCheck maintains strong detection performance across all sub-
 495 stitution levels. For moderate to high substitution ratios ($\geq 25\%$), it achieves near-perfect detection.
 496 Even in the most challenging case with only 10% deepfake substitution, SpeeCheck still reaches
 497 82.97% TPR while keeping FPR as low as 0.40%, with 99.57% AUC and 3.21% EER. This trend
 498 is consistent with the “Minor Substitution” results reported in Table 10 (Appendix C.5). Since syn-
 499 thetic deepfake audio does not carry embedded watermarks, the fingerprint–watermark verification
 500 process becomes essentially random, which makes tampering easier to detect. Even minor substitu-
 501 tions alter the extracted fingerprint and disrupt the embedded watermark at the same time, leading
 502 to a mismatch and enabling reliable detection of tampering. Further analysis of each module’s con-
 503 tributions is provided in the ablation studies in Appendix C.11.

503 Table 5: Comparison with audio fingerprinting methods.
 504

505 Method	506 VoxCeleb				507 LibriSpeech			
	508 TPR	509 FPR	510 AUC	EER	511 TPR	512 FPR	513 AUC	EER
Chromaprint (Lalinský, 2010)	93.06	16.30	92.34	12.58	81.09	13.43	85.38	16.68
Renzo et al. (2019)	82.40	3.35	93.85	12.37	74.90	2.05	89.67	18.53
Shi et al. (2020)	60.20	8.30	79.88	26.12	59.75	8.55	80.93	26.95
Zhang et al. (2018)	85.65	17.40	93.07	15.85	79.38	12.73	91.96	16.70
Zhang et al. (2021)	92.05	6.14	97.43	7.24	90.59	8.65	96.94	9.05
SpeeCheck (only fingerprint)	99.32	0.52	99.98	0.55	98.24	2.11	99.67	1.96

514 **Audio fingerprinting comparison.** We benchmark the fingerprint generated by SpeeCheck for in-
 515 tegrity verification. Since existing audio fingerprinting and perceptual hashing schemes for speech
 516 authentication are non-learning-based and rely on handcrafted features, we select five representative
 517 methods and evaluate them under the same integrity verification protocol. Chromaprint (Lalinský,
 518 2010) is a widely used open-source audio fingerprinting system for content identification. Renza
 519 et al. (2019) use MFCC features with PCA compression, and a Collatz-conjecture-based binariza-
 520 tion procedure to obtain a 96-bit code. Shi et al. (2020) construct gammatone filterbank features
 521 followed by a random Gaussian projection to derive perceptual speech hashes. Zhang et al. (2018)
 522 combine LP-MMSE coefficients with improved spectral entropy to form a binary hash sequence,
 523 while Zhang et al. (2021) generate perceptual hashes from the product of sub-band spectrum varia-
 524 nce and spectral entropy. As shown in Table 5, these handcrafted schemes struggle to balance the
 525 acceptance of benign samples and the rejection of malicious ones. Chromaprint and Zhang et al.
 526 (2018) obtain relatively high TPR on VoxCeleb, but at the cost of FPR above 12%, which means
 527 that many maliciously tampered samples are incorrectly accepted as benign. In contrast, Renza et al.
 528 (2019) and Zhang et al. (2021) maintain lower FPR, but their TPR is reduced and EER is higher,
 529 so a noticeable fraction of benign samples is wrongly rejected as tampered. The fingerprint used
 530 by SpeeCheck achieves a clearly better operating point on both VoxCeleb and LibriSpeech, with
 531 TPR above 98%, AUC above 99.6%, and EER below 2%. These results indicate that the learned
 532 fingerprints provide a much clearer separation between benign and malicious modifications, which
 533 is what integrity verification requires.

534

5 CONCLUSION

535 In this paper, we proposed **SpeeCheck**, a proactive and self-contained framework for speech in-
 536 tegrity verification. SpeeCheck integrates multiscale feature extraction and contrastive learning to
 537 produce robust fingerprints, which are embedded into audio via watermarking. These fingerprints
 538 are sensitive to malicious tampering while robust to benign operations commonly introduced during
 539 digital distribution, enabling integrity verification without access to external references. Extensive
 540 evaluations on a constructed real-world dataset further demonstrate its practicality, showing high
 541 robustness under social media distribution and strong sensitivity to fine-grained malicious edits.

540 ETHICS STATEMENT
541542 This work does not involve human subjects, personally identifiable information, or sensitive data.
543 All experiments are conducted on publicly available datasets (VoxCeleb and LibriSpeech) and a
544 small-scale real-world dataset collected with voluntary consent. To protect privacy, all data used
545 in public demos are anonymized, and no personally identifiable information is released. Deepfake
546 and voice conversion technologies are employed solely to simulate attack scenarios for research
547 evaluation, and no harmful or deceptive content is created or disseminated.548 The proposed method aims to strengthen speech integrity verification and mitigate the spread of
549 misinformation. We recognize that, like any integrity verification technology, it could be misused
550 for surveillance or censorship; thus, it should be deployed responsibly and transparently. The authors
551 declare no conflicts of interest or sponsorship-related concerns in this study.
552553 REPRODUCIBILITY STATEMENT
554555 We make significant efforts to ensure reproducibility. All datasets used in this study are pub-
556 licly available (VoxCeleb, LibriSpeech), and the constructed real-world dataset is included in the
557 supplementary materials. Details of the fingerprint generation, watermark embedding, training
558 procedure, and evaluation metrics are described in Section 3 and Section 4, with extended infor-
559 mation in the Appendix C. An anonymous implementation and demo are provided at <https://speecheck.github.io/SpecCheck/>, which contains the source code and instructions
560 for reproducing our experiments.
561562 REFERENCES
563564

565 Apple. Csam detection: Technical summary. https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf, 2021. Accessed: 2025-11-20.

566 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
567 work for self-supervised learning of speech representations. *Advances in Neural Information
568 Processing Systems*, 33:12449–12460, 2020.

569 Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and Michael Auli. Unsupervised speech recogni-
570 tion. *Advances in Neural Information Processing Systems*, 34:27826–27839, 2021.

571 Logan Blue, Kevin Warren, Hadi Abdullah, Cassidy Gibson, Luis Vargas, Jessica O’Dell, Kevin
572 Butler, and Patrick Traynor. Who are you (i really wanna know)? detecting audio {DeepFakes}
573 through vocal tract reconstruction. In *31st USENIX Security Symposium (USENIX Security 22)*,
574 pp. 2691–2708, 2022.

575 Edresson Casanova, Julian Weber, Christopher D Shulby, Arnaldo Candido Junior, Eren Gölge, and
576 Moacir A Ponti. Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for
577 everyone. In *International Conference on Machine Learning*, pp. 2709–2720. PMLR, 2022.

578 Moses S Charikar. Similarity estimation techniques from rounding algorithms. In *Proceedings of
579 the thiry-fourth annual ACM symposium on Theory of computing*, pp. 380–388, 2002.

580 Guangyu Chen, Yu Wu, Shujie Liu, Tao Liu, Xiaoyong Du, and Furu Wei. Wavmark: Watermarking
581 for audio generation. *arXiv preprint arXiv:2308.12770*, 2023.

582 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
583 Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. *arXiv preprint
584 arXiv:2410.06885*, 2024.

585 Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
586 Riesa, Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal repre-
587 sentations of speech. In *2022 IEEE Spoken Language Technology Workshop (SLT)*, pp. 798–805.
588 IEEE, 2023.

594 Steven Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic
 595 word recognition in continuously spoken sentences. *IEEE Transactions on Acoustics, Speech,*
 596 *and Signal Processing*, 28(4):357–366, 1980.

597

598 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
 599 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
 600 language models. *arXiv preprint arXiv:2412.10117*, 2024.

601 ElevenLabs. Speech to Speech. <https://elevenlabs.io/app/speech-synthesis/speech-to-speech>, 2024. Accessed: 2025-09-21.

603

604 Paulo Antonio Andrade Esquef, José Antonio Apolinário, and Luiz WP Biscainho. Edit detection
 605 in speech recordings via instantaneous electric network frequency variations. *IEEE Transactions*
 606 *on Information Forensics and Security*, 9(12):2314–2326, 2014.

607 Gautier Evennou, Vivien Chappelier, and Ewa Kijak. Fast, secure, and high-capacity image water-
 608 marking with autoencoded text vectors. *arXiv preprint arXiv:2510.00799*, 2025.

609

610 Facebook. Open-sourcing photo- and video-matching technology to make
 611 the internet safer. <https://about.fb.com/news/2019/08/open-source-photo-video-matching>, 2019. Accessed: 2025-11-20.

612

613 Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu. Exploring wav2vec 2.0 on speaker verification and
 614 language identification. In *Proc. Interspeech 2021*, pp. 1509–1513, 2021.

615

616 Wanying Ge, Xin Wang, and Junichi Yamagishi. Proactive detection of speaker identity manipula-
 617 tion with neural watermarking. In *The 1st Workshop on GenAI Watermarking*, 2025.

618

619 Emilia Gomez, Pedro Cano, L Gomes, Eloi Batlle, and Madeleine Bonnet. Mixed watermarking-
 620 fingerprinting approach for integrity verification of audio recordings. In *Proceedings of the Inter-
 621 national Telecommunications Symposium*, 2002.

622

623 Michael Gulbis, Erika Muller, and Martin Steinebach. Audio integrity protection and falsification
 624 estimation by embedding multiple watermarks. In *2006 International Conference on Intelligent
 625 Information Hiding and Multimedia*, pp. 469–472. IEEE, 2006.

626

627 Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
 628 black-box adversarial attacks. In *International conference on machine learning*, pp. 2484–2493.
 629 PMLR, 2019.

630

631 Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
 632 Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
 633 diffusion models. In *International Conference on Machine Learning*, pp. 13916–13932. PMLR,
 2023.

634

635 Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn Goh. Biohashing: two factor authen-
 636 tication featuring fingerprint data and tokenised random number. *Pattern recognition*, 37(11):
 637 2245–2255, 2004.

638

639 Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-Jin
 640 Yu, and Nicholas Evans. Aasist: Audio anti-spoofing using integrated spectro-temporal graph
 641 attention networks. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech*
 642 *and Signal Processing (ICASSP)*, pp. 6367–6371. IEEE, 2022.

643

644 Awais Khan, Khalid Mahmood Malik, James Ryan, and Mikul Saravanan. Voice spoofing counter-
 645 measures: Taxonomy, state-of-the-art, experimental analysis of generalizability, open challenges,
 646 and the way forward. *arXiv preprint arXiv:2210.00417*, 2022.

647

648 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
 649 In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.

650

651 Lukáš Lalinský. Chromaprint. <https://acoustid.org/chromaprint>, 2010. Accessed:
 652 2025-11-23.

648 Daniele Ugo Leonzio, Luca Cuccovillo, Paolo Bestagini, Marco Marcon, Patrick Aichroth, and
 649 Stefano Tubaro. Audio splicing detection and localization based on acquisition device traces.
 650 *IEEE Transactions on Information Forensics and Security*, 18:4157–4172, 2023.

651

652 Li Li, Yang Li, Zizhen Wang, Xuemei Li, and Guozhen Shi. A reliable voice perceptual hash
 653 authentication algorithm. In *International Conference on Mobile Multimedia Communications*,
 654 pp. 253–263. Springer, 2021.

655 Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
 656 and Yoshua Bengio. A structured self-attentive sentence embedding. *arXiv preprint*
 657 *arXiv:1703.03130*, 2017.

658

659 Chang Liu, Jie Zhang, Tianwei Zhang, Xi Yang, Weiming Zhang, and Nenghai Yu. Detecting voice
 660 cloning attacks via timbre watermarking. In *NDSS*, 2024a.

661

662 Hongbin Liu, Youzheng Chen, Arun Narayanan, Athula Balachandran, Pedro J Moreno, and Lun
 663 Wang. Can deepfake speech be reliably detected? *arXiv preprint arXiv:2410.06572*, 2024b.

664

665 Tianchi Liu, Duc-Tuan Truong, Rohan Kumar Das, Kong Aik Lee, and Haizhou Li. Nes2net: A
 666 lightweight nested architecture for foundation model driven speech anti-spoofing. *IEEE Trans-
 667 actions on Information Forensics and Security*, 20:12005–12018, 2025. doi: 10.1109/TIFS.2025.
 668 3626963.

669

670 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 671 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 672 2017.

673

674 Salma Masmoudi, Maha Charfeddine, and Chokri Ben Amar. A semi-fragile digital audio water-
 675 marking scheme for mp3-encoded signals using huffman data. *Circuits, Systems, and Signal
 676 Processing*, 39(6):3019–3034, 2020.

677

678 Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. *Handbook of applied cryptography*.
 679 CRC press, 2018.

680

681 Microsoft. Photodna. <https://www.microsoft.com/en-us/photodna>, 2015. Accessed:
 682 2025-11-20.

683

684 Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: A large-scale speaker identifi-
 685 cation dataset. *Interspeech 2017*, 2017.

686

687 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 688 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

689

690 Xunyu Pan, Xing Zhang, and Siwei Lyu. Detecting splicing in digital audios using local noise level
 691 estimation. In *2012 IEEE International Conference on Acoustics, Speech and Signal Processing
 692 (ICASSP)*, pp. 1841–1844. IEEE, 2012.

693

694 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 695 based on public domain audio books. In *2015 IEEE International Conference on Acoustics,
 696 Speech and Signal Processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.

697

698 Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O Arik, Ajay Kannan, Sharan Narang, Jonathan
 699 Raiman, and John Miller. Deep voice 3: Scaling text-to-speech with convolutional sequence
 700 learning. In *International Conference on Learning Representations*, 2018.

701

The Washington Post. Ai is spawning a flood of fake trump and harris voices.
<https://www.washingtonpost.com/technology/interactive/2024/ai-voice-detection-trump-harris-deepfake-election/>, 2024. Accessed:
 2025-09-21.

Diego Renza, Camilo Lemus, et al. Authenticity verification of audio signals based on fragile
 watermarking for audio forensics. *Expert systems with applications*, 91:211–222, 2018.

702 Diego Renza, Jaison Vargas, and Dora M Ballesteros. Robust speech hashing for digital audio
 703 forensics. *Applied Sciences*, 10(1):249, 2019.

704

705 Reuters. Fact check: Video does not show joe biden making transphobic remarks, 2023. URL
 706 <https://www.reuters.com/article/fact-check/idUSL1N34Q1IW>. Accessed:
 707 2025-09-21.

708

709 Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual evaluation
 710 of speech quality (pesq)-a new method for speech quality assessment of telephone networks and
 711 codecs. In *2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221)*, volume 2, pp. 749–752. IEEE, 2001.

712

713 Daniel Patrício Nicolalde Rodríguez, José Antonio Apolinario, and Luiz Wagner Pereira Biscainho.
 714 Audio authenticity: Detecting enf discontinuity with high precision phase analysis. *IEEE Transactions on Information Forensics and Security*, 5(3):534–543, 2010.

715

716 Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan
 717 Tran. Proactive detection of voice cloning with localized watermarking. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 43180–43196, 2024.

718

719 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
 720 recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern
 721 recognition*, pp. 815–823, 2015.

722

723 Jin S Seo, Minho Jin, Sunil Lee, Dalwon Jang, Seungjae Lee, and Chang D Yoo. Audio fingerprinting
 724 based on normalized spectral subband centroids. In *Proceedings.(ICASSP'05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.*, volume 3, pp. iii–213.
 725 IEEE, 2005.

726

727 Jin S Seo, Minho Jin, Sunil Lee, Dalwon Jang, Seungjae Lee, and Chang Dong Yoo. Audio finger-
 728 printing based on normalized spectral subband moments. *IEEE Signal Processing Letters*, 13(4):
 729 209–212, 2006.

730

731 Canghong Shi, Xiaojie Li, and Hongxia Wang. A novel integrity authentication algorithm based on
 732 perceptual speech hash and learned dictionaries. *IEEE Access*, 8:22249–22265, 2020.

733

734 R Sripradha and K Deepa. A new fragile image-in-audio watermarking scheme for tamper detection.
 735 In *2020 3rd International Conference on Intelligent Sustainable Systems (ICISS)*, pp. 767–773.
 IEEE, 2020.

736

737 Martin Steinebach and Jana Dittmann. Watermarking-based digital audio data authentication.
 738 *EURASIP Journal on Advances in Signal Processing*, 2003:1–15, 2003.

739

740 Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. A short-time objective
 741 intelligibility measure for time-frequency weighted noisy speech. In *2010 IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 4214–4217. IEEE, 2010.

742

743 Hemlata Tak, Jose Patino, Massimiliano Todisco, Andreas Nautsch, Nicholas Evans, and Anthony
 744 Larcher. End-to-end anti-spoofing with rawnet2. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 6369–6373. IEEE, 2021.

745

746 Hemlata Tak, Massimiliano Todisco, Xin Wang, Jee-weon Jung, Junichi Yamagishi, and Nicholas
 747 Evans. Automatic speaker verification spoofing and deepfake detection using wav2vec 2.0 and
 748 data augmentation. In *The Speaker and Language Recognition Workshop*, 2022.

749

750 Vocloner. Vocloner: AI Voice Cloning Tool. <https://vocloner.com/>, 2024. Accessed:
 2025-09-21.

751

752 HongXia Wang and MingQuan Fan. Centroid-based semi-fragile audio watermarking in hybrid
 753 domain. *Science China Information Sciences*, 53(3):619–633, 2010.

754

755 Shengbei Wang, Weitao Yuan, Jianming Wang, and Masashi Unoki. Detection of speech tamper-
 756 ing using sparse representations and spectral manipulations based information hiding. *Speech
 Communication*, 112:1–14, 2019.

756 Yuancheng Wang, Zeqian Ju, Xu Tan, Lei He, Zhizheng Wu, Jiang Bian, et al. Audit: Audio
757 editing by following instructions with latent diffusion models. *Advances in Neural Information
758 Processing Systems*, 36:71340–71357, 2023.

759
760 Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
761 Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
762 speech synthesis. *Interspeech 2017*, pp. 4006, 2017.

763 Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah, Jose Patino, Andreas Nautsch,
764 Xuechen Liu, Kong Aik Lee, Tomi Kinnunen, Nicholas Evans, et al. Asvspoof 2021: accelerating
765 progress in spoofed and deepfake speech detection. *arXiv preprint arXiv:2109.00537*, 2021.

766
767 Rui Yang, Zhenhua Qu, and Jiwu Huang. Detecting digital audio forgeries by checking frame
768 offsets. In *Proceedings of the 10th ACM Workshop on Multimedia and Security*, pp. 21–26, 2008.

769 Xiaoyan Yu, Chengyou Wang, and Xiao Zhou. Review on semi-fragile watermarking algorithms for
770 content authentication of digital images. *Future Internet*, 9(4):56, 2017.

771
772 Mohammed Zakariah, Muhammad Khurram Khan, and Hafiz Malik. Digital multimedia audio
773 forensics: past, present and future. *Multimedia Tools and Applications*, 77:1009–1040, 2018.

774 Qiu-yu Zhang, Wen-jin Hu, Yi-bo Huang, and Si-bin Qiao. An efficient perceptual hashing based
775 on improved spectral entropy for speech authentication. *Multimedia Tools and Applications*, 77
776 (2):1555–1581, 2018.

777
778 Qiu-yu Zhang, Deng-hai Zhang, and Fu-jiu Xu. An encrypted speech authentication and tampering
779 recovery method based on perceptual hashing. *Multimedia Tools and Applications*, 80(16):24925–
780 24948, 2021.

781 Xuanyu Zhang, Runyi Li, Jiwen Yu, Youmin Xu, Weiqi Li, and Jian Zhang. Editguard: Versatile
782 image watermarking for tamper localization and copyright protection. In *Proceedings of the
783 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11964–11974, 2024.

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 LLM USAGE STATEMENT
811812 Large Language Models (LLMs) were used exclusively as general-purpose writing assistants to
813 improve readability and adjust formatting. They did not contribute to the research ideation, method-
814 ology, experimental design, analysis, or interpretation of results. All technical content and scientific
815 contributions are solely the work of the authors.816
817 A RELATED WORKS
818819 A.1 PASSIVE DETECTION OF SPEECH TAMPERING
820821 Audio tampering can introduce detectable inconsistencies in acoustic signals. Traditional passive
822 detection methods rely on statistical or signal-level artifacts introduced during editing. These include
823 frame offset inconsistencies (Yang et al., 2008), local noise level variation (Pan et al., 2012), and
824 interruptions in electric network frequency (Rodríguez et al., 2010; Esquef et al., 2014). Using such
825 patterns, passive detectors are usually implemented as binary classifiers that distinguish authentic
826 from manipulated audio.827 With the rise of neural audio generation and deepfake techniques, these handcrafted artifacts become
828 less reliable, since modern synthesis can produce high-quality speech with minimal visible traces.
829 To improve robustness, recent work explores more subtle acoustic features related to fluid dynamics
830 and articulatory phonetics (Blue et al., 2022). Nevertheless, passive detection remains fundamentally
831 limited: it can only observe the received signal, has difficulty generalizing to unseen or adaptive
832 manipulations, and cannot verify whether the speech content originates from the claimed speaker.833
834 A.2 PROACTIVE PROTECTION OF SPEECH INTEGRITY
835836 Proactive integrity verification embeds or records auxiliary information at publishing time and reuses
837 it during verification. For speech, this is commonly implemented by computing a cryptographic or
838 perceptual hash, or by embedding a watermark payload into the audio signal. At verification time,
839 the received audio is checked by recomputing or extracting this information and comparing it with
the expected value.840
841 A.2.1 HASH-BASED METHODS
842843 Cryptographic hashing, such as SHA256 or MD5, has been widely adopted in industry for integrity
844 verification of digital files (Zakariah et al., 2018). These functions transform a digital audio file into
845 a fixed-length digest, and any bit-level modification changes the digest significantly. This property
846 is ideal for strict file integrity, but it is too sensitive for speech content integrity: common user
847 operations such as format conversion or compression already produce a completely different hash
848 value, which yields a high false alarm rate in realistic audio sharing pipelines.849 To reduce this sensitivity, perceptual hashing has been proposed. Instead of operating on raw
850 bytes, perceptual hashes compute content-based digests that are designed to be stable under content-
851 preserving distortions. Typical audio perceptual hashing methods extract features such as cepstral
852 coefficients (Zhang et al., 2021), spectral envelopes (Zhang et al., 2018), or time-frequency energy
853 patterns, and then quantize these features into compact binary codes for matching in a database.
854 These schemes have mainly been developed for copy detection and content retrieval (Microsoft,
855 2015; Facebook, 2019; Apple, 2021), where robustness to any distortions is more important than
856 distinguishing benign from malicious operations.857
858 More recent work adapts perceptual hashing to integrity verification. For example, Zhang et al.
859 (2021) design an encrypted perceptual hash based on uniform sub-band spectrum variance and spec-
860 tral entropy of encrypted speech, and Li et al. (2021) propose a reliable audio hash based on Mel-
861 frequency inverted spectrum coefficients and their dynamic parameters. In these methods, hand-
862 crafted features are tuned to be robust to benign processing but to change under tampering, and the
863 resulting hash acts as the integrity indicator. However, such handcrafted designs are rigid and may
not capture the subtle changes induced by modern generative tampering. In addition, perceptual

864 hashes still require external storage of reference digests, which is inconvenient in many deployment
 865 scenarios.
 866
 867
 868

869 A.2.2 FRAGILE AND SEMI-FRAGILE WATERMARKING

870 Watermarking-based integrity verification follows a different strategy: instead of storing the ref-
 871 erence externally, a watermark is directly embedded into the audio signal and later checked for
 872 integrity. Fragile watermarking embeds highly sensitive marks whose presence can be destroyed by
 873 even minor perturbations (Sripradha & Deepa, 2020; Zhang et al., 2024). This yields strong guar-
 874 antees that any detected watermark indicates unmodified content, but such schemes are not suitable for
 875 everyday audio sharing, where benign operations like compression or resampling already remove or
 876 distort the fragile watermark.

877 Semi-fragile watermarking is designed to survive common benign operations while remaining sen-
 878 sitive to content tampering. For audio, semi-fragile schemes often embed watermark bits in selected
 879 hybrid domains (Masmoudi et al., 2020), such as line spectral frequencies (Wang et al., 2019) or
 880 wavelet packet subbands (Wang & Fan, 2010), and tune quantization steps and thresholds to balance
 881 robustness and fragility for specific attack models. Although these methods can detect a wide range
 882 of signal processing operations, they tightly couple the authentication behavior to the watermarking
 883 design. As surveyed in (Yu et al., 2017), many new semi-fragile watermarks are proposed only be-
 884 cause previous designs fail under newly considered attacks. Supporting new benign operations or
 885 tampering types often requires redesigning the embedding rule or the underlying transform.

887 A.2.3 COMBINATION OF FINGERPRINT AND WATERMARKING

888 Another line of work combines content-based fingerprints with watermarking. In these ap-
 889 proaches (Gomez et al., 2002; Gulbis et al., 2006; Steinebach & Dittmann, 2003), a compact fin-
 890 gerprint is first extracted from the audio content and then embedded into the signal as a watermark
 891 payload. During verification, the embedded fingerprint is extracted and compared with a newly
 892 computed fingerprint from the received audio. This self-embedding principle reduces dependence
 893 on external databases while still using content-based descriptors for integrity checking.

894 Early systems in this line use conventional fingerprints and watermark carriers. The fingerprints
 895 are derived from handcrafted acoustic features (Seo et al., 2006; 2005) (e.g., subband energies or
 896 cepstral-like descriptors) that are tuned to be robust to a predefined set of signal processing op-
 897 erations, and the watermarking schemes are designed for specific channels or codecs. As a result,
 898 extending these designs to new manipulation attacks or benign operations is difficult and often re-
 899 quires redesigning both the feature extractor and the embedding rule.

900 Recently, neural audio watermarking (Chen et al., 2023; Liu et al., 2024a; Roman et al., 2024)
 901 has provided a strong carrier for information hiding. Some works have started to use neural wa-
 902 termarking for proactive protection. For example, Ge et al. (2025) propose a proactive defense
 903 against speaker identity manipulation by embedding speaker embeddings into speech using audio
 904 watermarking. Their method, however, focuses on speaker-identity attacks and does not address
 905 semantic content alterations. Other schemes embed payloads that indicate AI-generated or cloned
 906 speech (Roman et al., 2024; Liu et al., 2024a), but these payloads are still tailored to specific attack
 907 types.

908 In summary, existing proactive approaches fall into three main categories: hash-based methods,
 909 fragile or semi-fragile watermarking, and self-embedding schemes that combine fingerprints with
 910 watermarking. Hash-based and perceptual-hash methods are either too sensitive to benign op-
 911 erations or rely on handcrafted features and external hash databases; fragile and semi-fragile wa-
 912 termarking tightly couples robustness and fragility to a fixed embedding design; and prior fin-
 913 gerprint–watermark combinations are built on conventional fingerprints and watermark carriers, or fo-
 914 cuses on specific attack scenarios. SpeeCheck builds on this line of work by using a learned, operation-
 915 selective acoustic fingerprint and a modern neural watermarking scheme within a decoupled archi-
 916 tecture, which together enable robust and self-contained integrity verification for both identity and
 917 semantic tampering, and can be adapted to new operations by retraining the fingerprint extractor
 without redesigning the embedding process.

918
919
920
921
922
923
924
925
926
927
Table 6: Summary of audio operations.

920 921 922 923 924 925 926 927 Operation	928 929 930 931 932 933 934 935 936 937 938 939 940 Example	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 Implementation
Benign Operations		
Compression	Podcasts, news broadcasts, online meetings	ffmpeg (MP3 @ 128 kbps)
Reencoding	Saving or uploading audio files	ffmpeg (PCM 16-bit)
Resampling	Low-bandwidth communication	Resample (torchaudio)
Noise Suppression	Social media platforms	RMS-based frame muting
Malicious Operations		
Deletion	Removing “not” in “I do not agree”	VAD + remove voiced portion
Splicing	Inserting “not” into “I do agree”	Insert voiced segment
Substitution	Replacing “agree” with “disagree”	Swap waveform segment
Silencing	Muting “not” in “I do not agree”	Mute VAD-detected region
Reordering	Changing sentence order	Segment + shuffle + concat
Voice Conversion	Changing timbre (speaker identity)	torchaudio.sox_effects (training), Voice Changer (testing)
Text-to-Speech	Generate new speech with speaker’s timbre	YourTTS (zero-shot synthesis)

942 B SPEECHECK DESIGN AND OPERATION DEFINITIONS

944 B.1 OVERALL ALGORITHM

946 The training and verification procedures of SpeeCheck are summarized in Algorithm 1 and Algo-
947 rithm 2, respectively.

949 B.2 DEFINITION OF BENIGN AND MALICIOUS OPERATIONS

951 We simulate two categories of audio modifications: benign operations and malicious tampering. Be-
952 nign operations refer to legitimate processing steps encountered during audio storage, transmission,
953 or distribution. These operations do not change the semantic content or the speaker identity of the
954 speech. In contrast, malicious tampering refers to intentional alterations designed to distort either
955 the semantic meaning or the identity of the speaker. We detail each operation below and summarize
956 its characteristics in Table 6.

957 **Compression.** Lossy compression is applied by converting the waveform to MP3(128 kbps) or
958 AAC (128 kbps), and decoding it back to WAV. This simulates typical processing in podcasts
959 and streaming platforms. We use FFmpeg: `ffmpeg -i input.wav -b:a 128k temp.mp3;`
960 `ffmpeg -i temp.mp3 output.wav.`

962 **Reencoding.** The waveform is re-encoded to 16-bit PCM WAV format without compression. This
963 simulates storage or uploading scenarios where minor numerical alterations may occur. Imple-
964 mented with: `ffmpeg -i input.wav output.wav.`

966 **Resampling.** Audio is downsampled (e.g., from 16 kHz to 8 kHz) and then up-
967 sampled back, simulating low-bandwidth or legacy systems. Implemented with:
968 `torchaudio.transforms.Resample.`

969 **Noise Suppression.** To simulate automatic noise suppression utilized by social media and stream-
970 ing platforms, the waveform is divided into overlapping frames. Frames with low root-mean-square
971 (RMS) energy are muted.

972
973
974**Algorithm 1** SpeeCheck Training and Deployment

1: **Input:** Raw speech \mathcal{X} , benign operations $\mathcal{T}_b(\cdot)$, malicious operations $\mathcal{T}_m(\cdot)$, Wav2Vec2.0 encoder ε , multiscale feature extractor \mathcal{F}
2: **Output:** Watermarked speech $\tilde{\mathcal{X}}$
3: **for** $e = 1, 2, \dots$, epochs **do**
4: **for** $b = 1, 2, \dots$, batches **do**
5: $\mathcal{X}^{\text{benign}} \leftarrow \mathcal{T}_b(\mathcal{X})$, $\mathcal{X}^{\text{malicious}} \leftarrow \mathcal{T}_m(\mathcal{X})$
6: **Step 1: Frame-level feature extraction**
7: $\mathcal{Z} \leftarrow \varepsilon(\mathcal{X})$
8: **Step 2: Multiscale feature summarization**
9: $\mathbf{h}_n \leftarrow \mathcal{F}(\mathcal{Z})$
10: **for** $n = 1, \dots, K$ **do**
11: $w_n \leftarrow \frac{\exp(\phi(\mathbf{h}_n))}{\sum_{t=1}^K \exp(\phi(\mathbf{h}_t))}$
12: **end for**
13: $\mathbf{v}' \leftarrow \sum_{n=1}^K w_n \cdot \mathbf{h}_n$
14: $\mathbf{v} \leftarrow \text{Proj}(\mathbf{v}')$
15: **Step 3: Contrastive fingerprint training**
16: Compute contrastive loss \mathcal{L}_c
17: Update $\mathcal{F}, \phi, \text{Proj}$ via backpropagation
18: **end for**
19: **end for**
20: **Step 4: Binary fingerprint encoding**
21: $\mathbf{b} \leftarrow \text{sign}(\tanh(\text{Proj}(\text{AttPool}(\mathcal{F}(\varepsilon(\tilde{\mathcal{X}}))))))$
22: **Step 5: Segment-wise watermarking**
23: Split \mathcal{X} and \mathbf{b} into N segments: $[\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(N)}], [\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(N)}]$
24: **for** $n = 1, \dots, N$ **do**
25: $\delta^{(n)} \leftarrow \text{WatermarkEmbedder}(\mathcal{X}^{(n)}, \mathbf{b}^{(n)})$
26: $\tilde{\mathcal{X}}^{(n)} \leftarrow \mathcal{X}^{(n)} + \delta^{(n)}$
27: **end for**
28: $\tilde{\mathcal{X}} \leftarrow \text{Concat}(\tilde{\mathcal{X}}^{(1)}, \dots, \tilde{\mathcal{X}}^{(N)})$

1003
1004
1005
1006
Algorithm 2 SpeeCheck Verification

1: **Input:** Published speech $\tilde{\mathcal{X}}$, wav2vec2.0 encoder ε , trained multiscale feature extractor \mathcal{F} , projection module Proj , attentive pooling AttPool , WatermarkExtractor
2: **Output:** Verification result (Accept or Reject)
3: **Path A: Fingerprint extraction**
4: $\mathbf{b}' \leftarrow \text{sign}(\tanh(\text{Proj}(\text{AttPool}(\mathcal{F}(\varepsilon(\tilde{\mathcal{X}}))))))$
5: **Path B: Segment-wise watermark extraction**
6: Split $\tilde{\mathcal{X}}$ into N segments: $\tilde{\mathcal{X}}^{(1)}, \dots, \tilde{\mathcal{X}}^{(N)}$
7: **for** $n = 1$ to N **do**
8: $\hat{\mathbf{b}}^{(n)} \leftarrow \text{WatermarkExtractor}(\tilde{\mathcal{X}}^{(n)})$
9: **end for**
10: $\hat{\mathbf{b}} \leftarrow \text{Concat}(\hat{\mathbf{b}}^{(1)}, \dots, \hat{\mathbf{b}}^{(N)})$
11: **Integrity decision**
12: **if** $d_H(\mathbf{b}', \hat{\mathbf{b}}) \leq \theta$ **then**
13:
14: **return** Accept
15: **else**
16:
17: **return** Reject
18: **end if**

1023
1024
1025

1026 **Deletion.** A portion of speech (not silence) is removed from the speech. For example, deleting
 1027 “not” from “I do not agree” changes the meaning entirely.
 1028

1029 **Splicing.** A short segment of speech from the same speaker is spliced into the waveform. For
 1030 example, inserting “not” into the phrase “I do agree” reverses its original semantic meaning.
 1031

1032 **Substitution.** A segment of speech is replaced with another waveform segment of equal length
 1033 from the same speaker. For instance, replacing “agree” with “disagree” fundamentally changes the
 1034 intended meaning.
 1035

1036 **Silencing.** A portion of speech (not silence or noise) is deliberately muted by setting its amplitude
 1037 to zero. For instance, muting the word “not” in “I do not agree” leads to a reversed interpretation.
 1038

1039 **Reordering.** The speech is segmented, rearranged, and concatenated to change the semantic con-
 1040 tent. For instance, reordering “I never said she stole my money” into “She stole my money, I never
 1041 said” distorts the original meaning and can lead to an opposite interpretation.
 1042

1043 **Voice Conversion.** Note that integrating voice conversion models into the training pipelines
 1044 is computationally expensive and time-consuming, making large-scale training impractical. To
 1045 achieve a comparable effect with lower overhead, during the training phase, we apply pitch shifting
 1046 for speaker identity modification (e.g., +4 semitones) using SoX effects, implemented via
 1047 `torchaudio.sox_effects.apply_effects_tensor`. This modification introduces perceptual
 1048 changes to voice characteristics, effectively creating negative samples for learning to distinguish
 1049 speaker identity. In the testing phase, we validate SpeeCheck’s performance on a separate set of au-
 1050 dio manipulated by a state-of-the-art commercial voice changer tool from ElevenLabs (ElevenLabs,
 2024).
 1051

1052 **Text-to-Speech.** We synthesize speech from text using a pre-trained text-to-speech (TTS) model,
 1053 YourTTS (Casanova et al., 2022), which supports multilingual and zero-shot speaker adaptation.
 1054 This attack can generate speech that closely mimics the speaker’s voice with arbitrary semantic
 1055 content.
 1056

1057 **Different Levels of Tampering.** To evaluate the performance under varying conditions, we define
 1058 three levels of tampering: minor, moderate, and severe. Specifically, at the minor level, tampering
 1059 operations, including deletion, splicing, silencing, and substitution, alter about 10% of the original
 1060 audio content (alteration ratio = 0.1). At the moderate level, these same operations alter 30% of the
 1061 audio (alteration ratio = 0.3). At the severe level, 50% of the audio is altered (alteration ratio = 0.5),
 1062 and this level also includes reordering operations, which disrupts the logical structure of the speech.
 1063

B.3 EXPLANATION OF MALICIOUS TAMPERING OVER DIFFERENT GRANULARITIES

1065 Table 7 presents representative examples of malicious tampering at the phoneme, word, and phrase
 1066 levels. These examples illustrate how manipulations at different temporal granularities can alter the
 1067 meaning of speech. They also motivate the use of multiscale pooling with window sizes of 20, 50,
 1068 and 100 frames, which are designed to capture such variations in real-world scenarios.
 1069

C EXPERIMENTAL SETUP AND EXTENDED RESULTS

C.1 IMPLEMENTATION DETAILS

1074 To supplement Section 4.1, we provide a detailed description of the model architecture and training
 1075 configuration.
 1076

Model. We use the pretrained Wav2Vec2.0 Base model⁴ to extract 768-dimensional frame-level
 1077 acoustic features. These are passed to a two-layer Bidirectional LSTM (BiLSTM) with an input
 1078 size of 768, a hidden size of 512 (i.e., 256 per direction), and a dropout rate of 0.25. To capture
 1079

⁴<https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec>

1080
1081
1082 Table 7: Examples of malicious tampering at different levels of granularity
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Granularity	Example	Description
Phoneme-level	Change “bed” to “bad” (English); change “mā” (mother) to “mǎ” (horse) (Mandarin)	Altering a single phoneme can lead to subtle yet meaningful changes. These edits are often difficult to detect but can reverse or distort the intended meaning.
Word-level	Insert “not” into “He is guilty” to form “He is not guilty”; replace “approved” with “denied”	Tampering at the word level through insertion, deletion, or substitution can directly modify semantic content, leading to misleading interpretations.
Phrase-level	Change “Negotiations will begin immediately” to “Negotiations will be delayed indefinitely”	Reordering or replacing entire phrases can fabricate new narratives while maintaining natural-sounding speech, making the tampering more deceptive.

temporal features at multiple resolutions, we apply average pooling with window sizes of 20, 50, and 100 frames, with a stride of 10 frames, implemented using `avg_pool1d` along the time axis. The pooled outputs are aggregated by an attentive pooling module consisting of a linear-tanh-linear projection. The resulting weighted sum forms the utterance-level embedding, followed by dropout with a rate of 0.2. This embedding is fed into a two-layer MLP projection head with dimensions $768 \rightarrow 512 \rightarrow 256$, with ReLU activation between layers. The final output vector is L2-normalized and passed through a tanh function to constrain values to the range $[-1, 1]$, yielding the continuous-valued fingerprint. For segment-wise watermarking, we use the pretrained AudioSeal model⁵ to embed and extract binary fingerprints as watermarks. Each audio is divided into 16 non-overlapping segments, with each segment embedded with a 16-bit binary watermark, resulting in a total payload size of 256 bits per audio.

Training. SpeeCheck is trained using a cosine annealing learning rate schedule, decaying from 1×10^{-3} to 1×10^{-5} over 50 epochs. The contrastive loss is temperature-scaled with $\tau = 0.05$. Training is conducted on 2 NVIDIA A100 GPUs using distributed data parallelism.

1111
1112 Table 8: Examples from RWSID with corresponding editing operations
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 8: Examples from RWSID with corresponding editing operations

Sentence	Editing Operation
The board has decided they can not approve the new budget.	Deletion / Silencing (“not”)
Our analysis shows this investment is not a secure option.	Deletion / Silencing (“not”)
Based on the evidence, the suspect is innocent.	Substitution → “guilty”
Based on the evidence, the suspect is guilty.	Substitution → “innocent”
I never said she stole the company’s data.	Reordering
I never said she stole the company’s data.	Voice Conversion (AI)
We will begin the product launch immediately.	Replacement → “delay”
We will delay the product launch immediately.	Replacement → “begin”
I believe it is a good idea, but we need more time.	Splicing
This is authentic audio, not deepfake.	Text-to-Speech (AI)

C.2 DATASET AND EVALUATION DETAILS

We use two public speech datasets: **VoxCeleb** and **LibriSpeech**. For VoxCeleb, the development set is used for training and the test set for evaluation. For LibriSpeech, we use only the `test-clean` subset for evaluation. To comprehensively evaluate the effectiveness of SpeeCheck in real-world scenarios, we construct a **Real-World Speech Integrity Dataset** (RWSID). This dataset comprises recordings from 10 volunteers with diverse demographic backgrounds (including multiple races and sexes). Each participant read 8 prepared speeches (see Table 8). All audio files are converted to WAV format and resampled to 16 kHz.

⁵<https://github.com/facebookresearch/audioseal>

1134
 1135 **Preprocessing.** We randomly sample 10,000 utterances from the VoxCeleb development set for
 1136 model training. For evaluation, we sample 500 utterances each from the VoxCeleb test set and the
 1137 LibriSpeech test-clean subset. To stabilize the training and ensure data quality, we retain only
 1138 utterances with durations between 2 and 20 seconds. [We further analyze the effect of utterance
 1139 duration in Appendix C.7.](#)

1140 For each valid utterance, we generate two sets of augmented variants for contrastive learning: (i)
 1141 Benign Augmentations: These are modifications that preserve both speaker identity and semantic
 1142 content. (ii) Malicious Augmentations: These include tampering operations intended to alter speaker
 1143 identity and semantic content. The details can be found in Appendix B.2.

1144 **Evaluation Metrics.** For evaluation, we consider benign and malicious as positive and negative
 1145 classes, respectively. TP is the number of benign samples correctly classified, and FN is the num-
 1146 ber of benign samples incorrectly classified as malicious. FP is the number of malicious samples
 1147 incorrectly classified as benign, and TN is the number of malicious samples correctly rejected. The
 1148 following metrics are computed:

- 1149 • True Positive Rate (TPR): $TPR = TP/(TP + FN)$
- 1150 • False Positive Rate (FPR): $FPR = FP/(FP + TN)$
- 1151 • True Negative Rate (TNR): $TNR = TN/(TN + FP)$
- 1152 • False Negative Rate (FNR): $FNR = FN/(FN + TP)$
- 1153 • Equal Error Rate (EER): The error rate at the decision threshold where $FPR = FNR$.
- 1154 • Area Under the Curve (AUC): The area under the receiver operating characteristic curve.

1158 C.3 SIMILARITY DISTRIBUTION USING MFCC FEATURE

1160
 1161 Figure 6: Probability distributions: (a) MFCC embedding similarity to original audio under different
 1162 modifications; (b) MFCC embedding similarity to original audio at different tampering levels.

1163
 1164 To complement the observations in Section 2.3, we present similarity distributions computed us-
 1165 ing handcrafted Mel-frequency cepstral coefficients (MFCC) instead of wav2vec2 embeddings. As
 1166 shown in Figure 6, the similarity distributions between original and modified audio samples us-
 1167 ing MFCC features exhibit trends similar to those observed with wav2vec2-based representations.
 1168 Specifically, the distributions corresponding to benign and malicious modifications overlap, and the
 1169 similarity scores tend to decrease as the extent of tampering increases. This indicates that MFCC-
 1170 based similarity comparison can only measure the extent of modification but does not effectively
 1171 distinguish between different types of modifications.

1172 C.4 EVALUATION ON SEMANTIC AND IDENTITY CHANGES UNDER BENIGN AND 1173 MALICIOUS OPERATIONS

1174 We evaluate the impact of different audio modifications on both semantic integrity and speaker iden-
 1175 tity consistency. Semantic preservation is quantified using word error rate (WER) computed from a
 1176 pre-trained automatic speech recognition (ASR) model⁶, facebook/wav2vec2-base-960h,

1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416

Table 9: WER and Identity Similarity under Different Operations

Operation	WER %	Identity Similarity %
Benign Operations		
Compression	1.15	95.60
Reencoding	0.26	99.99
Resampling	6.87	78.00
Noise suppression	8.24	94.52
Malicious Operations		
Deletion (minor)	21.65	99.04
Deletion (moderate)	40.20	96.84
Deletion (severe)	62.32	93.29
Splicing (minor)	31.24	99.00
Splicing (moderate)	52.45	97.35
Splicing (severe)	78.36	96.55
Silencing (minor)	30.76	98.16
Silencing (moderate)	53.79	90.13
Silencing (severe)	75.74	75.96
Substitution (minor)	23.22	98.33
Substitution (moderate)	48.12	94.36
Substitution (severe)	63.03	90.72
Reordering	69.55	99.53
Text-to-speech	-	-
Voice conversion	8.60	41.60

a CTC-based ASR model. Speaker identity preservation is measured by cosine similarity between embeddings extracted using the pre-trained speaker verification (SV) model⁷, `speechbrain/spkrec-ecapa-voxceleb`.

As shown in Table 9, benign operations (e.g., compression, reencoding, resampling, noise suppression) result in low WER ($\leq 8.24\%$) and high identity similarity ($\geq 78\%$), indicating that they largely preserve both semantic content and speaker identity. In contrast, malicious operations introduce substantial degradation. WER increases steadily with the severity of deletion, splicing, silencing, and substitution, reflecting significant semantic changes. These operations, however, generally maintain high identity similarity because they retain the original timbre. Notably, voice conversion results in relatively low WER, but significantly reduces identity similarity (41.60%), since it deliberately alters the speaker’s timbre.

To further investigate the nonzero WER observed under benign operations, we manually examined the ASR outputs. Most transcription errors were minor substitutions or alignment shifts that did not affect the overall meaning. This suggests that the observed WER in these cases reflects limitations of the ASR model and metric sensitivity rather than genuine semantic distortion.

C.5 RESULTS OF FINE-GRAINED MALICIOUS OPERATIONS REJECTION

We report the detection performance of SpeeCheck on fine-grained malicious operations across varying degrees of tampering severity, as shown in Table 10.

C.6 EVALUATION IN REAL-WORLD SCENARIO

To validate SpeeCheck’s performance in practical settings, we conducted evaluations on the RWSID dataset (described in Appendix C.2). Example recordings and verification results are available on our demo page.⁸ We then designed two evaluation scenarios to simulate real-world challenges:

⁷<https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb>

⁸<https://speecheck.github.io/SpeeCheck/>

Table 10: Results of fine-grained malicious operation rejection on VoxCeleb and LibriSpeech.

Operation	VoxCeleb				LibriSpeech				Semantic	Identity
	TNR	FNR	AUC	EER	TNR	FNR	AUC	EER		
Deletion (minor)	100.00	1.01	100.00	0.00	100.00	1.01	99.92	0.20	\times	\checkmark
Deletion (moderate)	100.00	1.61	100.00	0.00	100.00	1.81	100.00	0.00	\times	\checkmark
Deletion (severe)	100.00	1.01	100.00	0.00	100.00	1.81	100.00	0.00	\times	\checkmark
Splicing (minor)	100.00	0.80	100.00	0.00	100.00	1.61	99.99	0.40	\times	\checkmark
Splicing (moderate)	100.00	0.20	100.00	0.00	100.00	2.21	100.00	0.00	\times	\checkmark
Splicing (severe)	100.00	1.01	100.00	0.00	100.00	1.41	99.98	0.10	\times	\checkmark
Silencing (minor)	97.59	0.80	99.44	1.71	95.57	1.41	99.52	3.22	\times	\checkmark
Silencing (moderate)	98.99	0.00	99.68	0.91	99.40	1.61	99.92	0.91	\times	\checkmark
Silencing (severe)	99.20	1.41	99.81	1.11	99.40	2.41	99.68	1.51	\times	\checkmark
Substitution (minor)	93.36	1.01	99.43	2.92	79.88	1.81	97.79	8.35	\times	\checkmark
Substitution (moderate)	100.00	0.80	99.99	0.40	99.20	1.81	99.46	1.51	\times	\checkmark
Substitution (severe)	100.00	0.80	100.00	0.00	100.00	1.81	99.84	1.31	\times	\checkmark
Reordering	97.59	0.60	98.62	2.11	98.39	1.41	99.21	1.71	\times	\checkmark
Text-to-speech	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00	\times	\checkmark
Voice conversion	99.40	0.00	100.00	0.00	97.80	0.00	100.00	0.00	\checkmark	\times
Overall	99.08	0.74	99.80	0.61	97.98	1.48	99.69	1.28	-	-

Figure 7: Hamming distance distributions for real-world scenarios: (a) benign social media distribution and (b) malicious tampering.

Benign Distribution. To assess SpeeCheck’s robustness under practical distribution scenarios, the protected audios were uploaded to widely used social media platforms (including WhatsApp, Telegram, WeChat, Discord, and Twitter) and subsequently downloaded after platform-side preprocessing. These steps reflect realistic distribution pipelines where compression, reencoding, and noise suppression may be applied.

Malicious Tampering. To evaluate its sensitivity to sophisticated attacks, we performed fine-grained edits manually, including deletion, splicing, silencing, substitution, and reordering. Moreover, we tested commercial platforms for voice conversion (ElevenLabs, 2024) and text-to-speech synthesis (Vocloner, 2024).

Figure 7a shows that the Hamming distances of audios redistributed via social media consistently remain below the detection threshold, confirming SpeeCheck’s robustness against real-world distribution. In contrast, Figure 7b demonstrates that all malicious edits yield Hamming distances above the threshold across all 10 users, indicating its reliable sensitivity to real-world tampering.

C.7 EVALUATION ON DIFFERENT LENGTHS OF SPEECH

To evaluate SpeeCheck on longer audio recordings, we test speech samples with durations ranging from 20 seconds to 10 minutes. As shown in Table 11, the system performs well across all lengths. While performance gradually degrades with increasing duration, the EER rises from 1.57% at 20 seconds to 8.41% at 10 minutes, the overall detection remains robust, with the AUC consistently above 96%.

This behavior is consistent with the roles of the two main components in SpeeCheck. The acoustic fingerprint summarizes the entire segment into a single 256-bit representation. When the segment becomes very long, local manipulations (for example, deleting or substituting a single word) affect only a small portion of the frames, so their influence on the global fingerprint can be diluted, which increases the EER. At the same time, the watermarking backbone (AudioSeal) acts only as a carrier for this fingerprint. If segments were extremely short, the effective embedding capacity would be limited and watermark extraction on benign audio could become unstable, which would increase false rejections. The results in Table 11 show that, within the tested range, SpeeCheck maintains a good balance between these two effects.

Table 11: Performance of SpeeCheck under different speech durations.

Speech Duration	TPR	FPR	AUC	EER
20s	98.75	1.65	99.69	1.57
60s	92.50	4.88	98.39	5.87
5m	94.87	7.05	98.02	6.09
10m	90.95	7.76	96.04	8.41

C.8 EVALUATION ON DIFFERENT LANGUAGES OF SPEECH

SpeeCheck operates directly on acoustic features rather than on linguistic semantic content. Therefore, language differences should not interfere with the fingerprint generation process. To empirically validate this, we conduct an additional evaluation on the multilingual FLEURS dataset (Conneau et al., 2023), which includes 102 languages. We select six representative languages (French, German, Chinese, Spanish, Japanese, and Polish) and evaluate SpeeCheck under the same protocol as in the main experiments, including the same benign operations and tampering attacks.

As shown in Table 12, SpeeCheck maintains high robustness to benign operations and high sensitivity to tampering across all six languages. All AUC scores are above 98%, and the EER remains below 8%, which is comparable to the results on the English-centric datasets in the main paper.

Table 12: Performance of SpeeCheck on different speech languages.

Language	TPR	FPR	AUC	EER
French	98.27	3.37	99.54	2.47
German	98.62	2.20	99.61	2.03
Chinese	96.70	3.12	99.37	3.21
Spanish	99.69	1.78	99.83	1.07
Japanese	92.27	1.80	98.47	7.09
Polish	98.37	8.06	98.02	7.06

C.9 REAL-TIME EVALUATION

Table 13: Real-time performance of SpeeCheck.

Process	Real-Time Coefficient (RTC)
Protection	0.02 \times
Verification	0.03 \times

We evaluate computational efficiency using the Real-Time Coefficient (RTC), defined as the ratio of processing time to audio duration. As shown in Table 13, both protection and verification achieve RTC values well below 1 \times , confirming the practicality of SpeeCheck for real-time use.

1350
1351

C.10 WATERMARKED SPEECH QUALITY

1352
1353
1354
1355
1356
1357
1358

We evaluate the perceptual quality of watermarked speech using four objective metrics. (1) Scale-Invariant Signal to Noise Ratio (SI-SNR) quantifies waveform-level distortion in decibels (dB). Higher values indicate less distortion. (2) Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) ranges from 1.0 (poor) to 4.5 (excellent), and reflects perceived speech quality. (3) Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) ranges from 0 to 1, with higher values indicating better intelligibility. (4) Log Spectral Distance (LSD) measures spectral deviation between original and watermarked speech, lower values indicate greater spectral fidelity.

1359
1360
1361
1362

As shown in Table 14, our proposed SpeeCheck has little perceptual degradation. The high SI-SNR and PESQ scores, along with near-perfect intelligibility (STOI) and low spectral error (LSD), demonstrate that the watermarking process preserves both fidelity and intelligibility, making it suitable for practical deployment.

1363
1364
1365
1366
1367
1368
1369

Table 14: Audio quality metrics.

Methods	SI-SNR	PESQ	STOI	LSD
SpeeCheck	25.14	4.28	0.998	0.111

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

C.11 ABLATION STUDIES

To assess the contribution of SpeeCheck’s core modules, we conduct ablation studies at two levels. Unless otherwise stated, all ablations are performed on the VoxCeleb1 test set. At the system level, we ablate three key components: the multiscale feature extractor, the attentive pooling module, and the contrastive learning objective. We evaluate the multiscale feature extractor by removing the multiscale branch and using the direct output of the BiLSTM as the fingerprint feature. For temporal pooling, we substitute attentive pooling with average pooling. Finally, we compare the InfoNCE loss (Oord et al., 2018) with the widely used Triplet Loss (Schroff et al., 2015). As shown in Table 15, each module contributes to the overall performance. Removing the multiscale feature extractor leads to a significant degradation, indicating the importance of capturing both global and local temporal patterns. Substituting attentive pooling with average pooling reduces performance, indicating that the attention mechanism provides better frame selection for embedding generation. Replacing InfoNCE with Triplet Loss causes a substantial performance decline, showing that InfoNCE is more effective for learning discriminative embeddings in our task.

1384
1385

Table 15: Ablation study on feature extractor, temporal pooling scheme, and loss function.

Method Variant	TPR	FPR	AUC	EER
SpeeCheck (Multiscale → w/o Multiscale)	94.48	5.26	98.50	5.29
SpeeCheck (AttentivePooling → AvgPooling)	93.80	6.25	98.42	6.22
SpeeCheck (InfoNCE Loss → Triplet Loss)	85.94	1.46	95.77	10.73
SpeeCheck	99.14	0.80	99.85	0.83

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Since the multiscale feature extractor is the main component of the fingerprint generation module, we further provide a more detailed evaluation of this part. Specifically, we instantiate a variant of SpeeCheck where the multiscale branch is removed and only the BiLSTM output is used as the fingerprint feature, while keeping the training protocol, datasets, and evaluation metrics identical to the main experiments. The detailed per-operation results of this variant are reported in Tables 16 and 17. Compared to the full model, the overall performance drops for both benign and malicious operations, and the degradation is particularly clear for subtle tampering such as Substitution (minor), which confirms that the multiscale design is crucial for the fingerprint generator.

Table 16: Benign-operation performance of the variant without the multiscale module.

Operation	TPR	FPR	AUC	EER
Compression	79.60	13.40	90.41	14.40
Reencoding	100.00	10.20	99.85	0.90
Resampling	99.40	11.00	99.52	3.20
Noise suppression	100.00	11.00	99.84	0.70
Overall	94.75	11.40	97.41	4.80

Table 17: Tampering-detection performance of the variant without the multiscale module.

Operation	TNR	FNR	AUC	EER
Deletion (minor)	83.60	6.00	97.53	9.30
Deletion (moderate)	97.40	5.60	99.22	4.00
Deletion (severe)	99.40	4.60	99.68	1.60
Splicing (minor)	96.00	4.00	99.16	4.00
Splicing (moderate)	98.60	4.80	99.60	2.70
Splicing (severe)	99.60	6.00	99.83	2.10
Silencing (minor)	79.60	5.20	96.37	13.70
Silencing (moderate)	82.00	5.20	97.00	11.60
Silencing (severe)	85.80	4.00	97.80	9.60
Substitution (minor)	64.60	5.40	92.55	20.80
Substitution (moderate)	70.60	5.60	94.45	18.10
Substitution (severe)	81.00	4.20	96.74	13.00
Reordering	93.20	6.60	97.85	6.70
Text-to-speech	100.00	0.00	100.00	0.00
Voice conversion	100.00	4.80	99.75	2.40
Overall	87.55	4.74	98.09	7.97

C.12 EFFECT OF WATERMARKING ON FINGERPRINT STABILITY

To verify that watermarking does not destroy the acoustic fingerprint that it is supposed to protect, we compare fingerprints before and after watermark embedding. For each audio sample, we compute a binary fingerprint from the original audio and from its watermarked version, and measure the Hamming distance between these two. Table 18 summarizes the average distances on three datasets. The average Hamming distances are 6.87 on VoxCeleb, 9.15 on LibriSpeech, and 5.40 on the RWSID dataset, for a fingerprint length of 256 bits and a decision threshold $\theta = 42$. These values are much smaller than the threshold, showing that watermarking introduces only minor variations to the fingerprint and therefore does not affect the integrity verification decision.

Table 18: Hamming distance between fingerprints before and after watermark embedding.

Dataset	VoxCeleb	LibriSpeech	RWSID
Average Hamming Distance	6.87	9.15	5.40

C.13 ERROR ANALYSIS OF FALSE POSITIVES AND FALSE NEGATIVES

As discussed in Section 3.3, the integrity verification pipeline in SpeeCheck contains two paths: fingerprint recalculation and embedded fingerprint extraction. From the received audio, Path A recomputes an acoustic fingerprint f_A , while Path B decodes the embedded fingerprint f_B from the watermark carrier. The decision is based on the Hamming distance between these two fingerprints: we predict benign if $d_H(f_A, f_B) \leq \theta$ and tampered otherwise, where θ is the decision threshold. We recall that benign speech is treated as the positive class and tampered speech as the negative class in all experiments.

1458 A False Positive (FP) corresponds to a tampered sample that is incorrectly accepted as benign. In
 1459 our system, this happens when a malicious edit is subtle enough that f_A does not change sufficiently,
 1460 so that $d_H(f_A, f_B)$ remains below θ . In these cases, the watermark decoder in Path B still reliably
 1461 recovers the original embedded fingerprint, and the error is mainly due to the limited sensitivity of
 1462 the recomputed fingerprint. This effect is most visible in the “Substitution (minor)” category (see
 1463 Table 10), where the TNR is lower than in other tampering categories.

1464 A False Negative (FN) corresponds to a benign sample that is incorrectly rejected. We observe two
 1465 main causes for such errors. In some benign cases, aggressive but allowed operations (for example,
 1466 strong compression or noise suppression) can perturb the acoustics so much that f_A drifts far from f_B
 1467 and the distance exceeds the threshold, leading to an unnecessary rejection. In a smaller number of
 1468 cases, the watermarking carrier (AudioSeal) may fail to decode a stable fingerprint, and f_B contains
 1469 many bit errors, which also increases the distance. Since the carrier is modular, future work can
 1470 replace AudioSeal with a more robust watermarking scheme to further reduce this type of failure.

1471

1472

1473 C.14 HANDLING BORDERLINE CASES IN DEPLOYMENT

1474

1475

1476

In real deployments, the small fraction of remaining failure cases can be handled through a simple
 hierarchical verification strategy. Instead of using a single hard threshold θ , the system can define a
 narrow uncertainty band around this value, with two thresholds $\theta_{\text{low}} < \theta_{\text{high}}$.

1477

1478

1479

1480

1481

1482

Samples with Hamming distance $d_H(b, b') \leq \theta_{\text{low}}$ are accepted as benign, and samples with
 $d_H(b, b') \geq \theta_{\text{high}}$ are rejected as tampered. Only samples that fall into the uncertainty interval
 $(\theta_{\text{low}}, \theta_{\text{high}})$ are flagged as borderline cases and sent to secondary checks, such as human review
 or additional forensic tools, depending on the deployment. This design does not change the core
 SpeeCheck pipeline, but it provides a practical way to handle rare edge cases in a controlled and
 predictable manner.

1483

1484

1485 C.15 VISUALIZATION OF MULTISCALE FEATURE EXTRACTION

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 Figure 8: t-SNE visualizations of speech samples (after training).

1512 **D SECURITY DISCUSSION AND EXTENSIONS**
15131514
1515 **D.1 ADVERSARIAL ATTACKS ON DEEPFAKE DETECTORS**
15161517 Liu et al. (Liu et al., 2024b) evaluate strong targeted adversarial attacks on deepfake speech detec-
1518 tors, including PGD(Madry et al., 2017), I-FGSM (Kurakin et al., 2018), and SimBA (Guo et al.,
1519 2019). These methods are designed for passive detectors such as RawNet2 (Tak et al., 2021) and
1520 AASIST (Jung et al., 2022), which treat deepfake detection as a binary classification problem and
1521 learn a decision boundary that separates “Real” from “Fake” based on synthesis artifacts. The ad-
1522 versarial attacks work by adding small, imperceptible perturbations so that a given fake sample is
1523 pushed across this decision boundary and is misclassified as “Real.”
15241525 SpeeCheck follows a different verification principle. Instead of deciding authenticity from artifacts
1526 alone, it checks the consistency between two quantities: (i) a 256-bit fingerprint that has been em-
1527 bedded into the audio via watermarking, and (ii) a fingerprint recomputed from the received audio
1528 using the same feature extractor. Deepfake audio generated from scratch does not contain an embed-
1529 ded fingerprint that matches this verification protocol. Under the threat model of (Liu et al., 2024b),
1530 an attacker may add adversarial noise to a deepfake sample, but such an additive perturbation cannot
1531 by itself create a valid 256-bit fingerprint that is consistent with the internal SpeeCheck pipeline. As
1532 a result, the adversarially perturbed deepfake still fails the fingerprint–watermark consistency check
1533 and is rejected.
15341535 Formally analyzing adversarial robustness against adaptive attackers who explicitly target the fin-
1536 gerprint–watermark verification mechanism is an important direction for future work. However, the
1537 above discussion shows that SpeeCheck is not directly vulnerable to the same class of adversarial ex-
1538 amples studied in (Liu et al., 2024b), because it does not rely on a single artifact-based classification
1539 boundary.
15401541 **D.2 SECURITY EXTENSION AGAINST REPLAY ATTACKS**
15421543 In practical deployments, if the feature extractor and watermarking pipeline are publicly available,
1544 an attacker could manipulate the audio content, run the same feature extractor as the verifier to
1545 compute a continuous fingerprint \mathbf{v} , and then re-embed this fingerprint into the audio stream using
1546 the watermarking scheme. Such a replay-style attack could produce forged audio that passes the
1547 verification. To mitigate this risk, SpeeCheck can be extended with a simple secret-key mechanism
1548 in the fingerprint binarization step, inspired by biohashing and similarity-preserving hashing (Jin
1549 et al., 2004; Charikar, 2002; Evennou et al., 2025).
15501551 In the basic design, the final binary fingerprint is obtained by applying a sign function to the contin-
1552 uous vector $\mathbf{v} \in \mathbb{R}^{d_v}$,
1553

1554
$$\mathbf{b} = \text{sign}(\mathbf{v}), \quad (3)$$

1555 where $\mathbf{b} \in \{-1, +1\}^d$ is the binary code used for integrity verification. To secure this step, we
1556 replace the direct binarization with a keyed projection:
1557

1558
$$\mathbf{b}_{\text{sec}} = \text{sign}(\mathbf{v}\mathbf{R}), \quad (4)$$

1559 where $\mathbf{R} \in \mathbb{R}^{d_v \times d_v}$ is a secret orthogonal matrix that acts as a private key shared between the
1560 embedder and the verifier. Only \mathbf{b}_{sec} is embedded and later recovered for verification; the matrix \mathbf{R}
1561 is never exposed to the adversary.
15621563 This modification brings two advantages. First, an attacker who only observes the public feature
1564 extractor cannot forge a valid binary code. Even if they can compute \mathbf{v} from a manipulated audio,
1565 they do not know \mathbf{R} and thus cannot construct the correct secured fingerprint \mathbf{b}_{sec} that matches the
1566 verifier’s output. The non-linear sign function further discards magnitude information and makes
1567 it difficult to infer \mathbf{R} from observed binary codes. Second, because \mathbf{R} is orthogonal, it preserves
1568 distances in the continuous feature space. As a result, the robustness properties of SpeeCheck are
1569

1566 maintained: benign operations and malicious tampering still induce similar distance patterns after
 1567 the keyed transform, so the decision rule based on the Hamming distance remains effective.
 1568

1569 In practice, the secret matrix \mathbf{R} can be derived from a shorter cryptographic key using a pseudo-
 1570 random generator and refreshed when necessary. In many realistic deployments, the fingerprint
 1571 generator and the watermark embedder would also be provided as managed services rather than re-
 1572 leased as public models, which further increases the practical difficulty for attackers, although we
 1573 do not rely on obscurity as a formal security guarantee. A complete formal security analysis of this
 1574 extension is left for future work.

1575 E DISCUSSION

1576 While SpeeCheck provides a new paradigm for self-contained speech integrity verification, we ac-
 1577 knowledge several limitations that can be improved in future research: 1) SpeeCheck’s robustness
 1579 is limited concerning certain operations like time-stretching (speeding up/slowing down) and Voice
 1580 Activity Detection (VAD). These operations are sometimes not malicious, but they can inherently
 1581 alter pitch, tempo, or meaningful phonemes in the speech. Our framework prioritizes a security-first
 1582 design, we conservatively treat modified speech as unreliable. But extending training with such
 1583 operations, or integrating more robust watermarking schemes, could improve the applicability in
 1584 the future. 2) SpeeCheck is optimized for speech durations between 2 and 20 seconds. For very
 1585 short clips, the embedding and watermark extraction may become unstable. However, such clips
 1586 often lack meaningful semantic content, making them less critical targets for tampering. For very
 1587 long audio, although we did not explicitly train on durations beyond 20 seconds, SpeeCheck still
 1588 exhibited reasonable generalization. A practical solution is to segment longer recordings into multi-
 1589 ple 20-second chunks, protect and verify the content in controllable chunks. 3) Current SpeeCheck
 1590 is tailored for speech integrity verification rather than general audio (e.g., music, environmental
 1591 sounds). This choice is motivated by the fact that Speech is particularly vulnerable to tampering
 1592 and can significantly impact social trust and social stability. Generalizing the system to broader au-
 1593 dio domains would be a promising direction for future work, for instance, emphasizing perceptual
 1594 fidelity, spectral consistency, and artistic style preservation. 4) **Current SpeeCheck design only pro-**
 1595 **vides an utterance-level integrity decision without explicitly localizing the tampered region.** While
 1596 this is sufficient for the targeted use cases of general users and platforms who mainly need a clear
 1597 “authentic vs. tampered” verdict per utterance, finer-grained temporal localization would be val-
 1598 uable for forensic analysts. Extending SpeeCheck with segment-level localization capabilities is an
 1599 interesting direction for future work.

1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619