Under review as a conference paper at ICLR 2026

HYPERBOLIC AWARE MINIMIZATION:
IMPLICIT BIAS FOR SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the implicit bias of optimization algorithms is key to explaining
and improving the generalization of deep models. The hyperbolic implicit bias
induced by pointwise overparameterization promotes sparsity, but also yields a
small inverse Riemannian metric near zero, slowing down parameter movement and
impeding meaningful parameter sign flips. To overcome this obstacle, we propose
Hyperbolic Aware Minimization (HAM), which alternates a standard optimizer step
with a lightweight hyperbolic mirror step. The mirror step incurs less compute and
memory than pointwise overparameterization, reproduces its beneficial hyperbolic
geometry for feature learning, and mitigates the small-inverse-metric bottleneck.
Our characterization of the implicit bias in the context of underdetermined linear
regression provides insights into the mechanism how HAM consistently increases
performance —even in the case of dense training, as we demonstrate in experiments
with standard vision benchmarks. HAM is especially effective in combination with
different sparsification methods, advancing the state of the art.

1 INTRODUCTION

The success of modern deep learning relies on large amounts of overparameterization, which has
led to a computationally demanding trend to increase the size of models, and thus the number of
trainable parameters by orders of magnitude (Hoffmann et al., 2022} Kaplan et al.,[2020). A common
explanation for this phenomenon are implicit biases that originate from a combination of the optimizer
and the overparameterization (Pesme et al.| [2021}; |Gunasekar et al., [2017aj; [Woodworth et al., 2020),
which regularize the training dynamics and thus improve the generalization performance.

Training sparse models instead leads to suboptimal performance (Li et al.| 2017; Frankle & Carbinl,
2018). This fact has limited pruning at initialization (Pal) approaches (Tanaka et al.| 2020; [Lee et al.,
2019} Liu et al.||2021a)) that aim to reduce the heavy computational and memory demands by masking
the network before training the remaining parameters. In contrast, state-of-the-art sparsification
methods utilize overparameterization in some capacity, as they either gradually prune parameters in
Dense-to-Sparse (DtS) training (Peste et al.l [2021; | Kuznedelev et al.| [2024; [Kusupati et al., [2020;
Jacobs & Burkholz}, 2025} [Kolb et al.,|2025)) or dynamically explore multiple sparse masks to find
high-performing sparse networks with Dynamic Sparse Training (DST) (Evcti et al., 2020; |Lasby,
et al.| 2023} |Chen et al., |2021)). Key observations regarding these algorithms are that a) mild sparsity
(which does not degrade performance relative to a dense baseline) (Jin et al.} [2022) and b) longer
training with standard optimizers can improve generalization performance significantly. The latter
indicates that sparse models are difficult to train and take longer to converge (Kuznedelev et al., [2023).
Consequently, sparse training ideally leverages overparameterization to improve generalization.

A recent development to improve sparse training is the pointwise overparameterization proposed
in PILoT (Jacobs & Burkholz, 2025) and Sign-In (Gadhikar et al.,|2025)). All parameter weights
6 < R" are replaced by a pointwise product of parameters m © w, with both m,w € R"™. This
changes the implicit bias of the optimization process and leads to substantial generalization benefits
for sparse training. In PILoT, a continuous sparsification method, the overparameterization is used to
jointly learn the mask m. Meanwhile, the Pal method Sign-In uses it to increase the plasticity of
non-masked parameters and facilitate sign flips, which was shown to be a major obstacle in sparse
training (Gadhikar & Burkholz| [20244). Both methods, PILoT and Sign-In , achieve state-of-the-art
results in their respective categories. However, on their own, they fall short of baseline methods of
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.. o . . No hard No extra
Implicit sparsity bias Sign flips perturbations parameters
Dense training (] - o (V]
PILoT (Jacobs & Burkholz|[2025) (v] (x] (V) ()
Sign-In (Gadhikar et al.|[2025) @ (less strong) (V] (] (]
HAM (ours) @ (less strong) (V] (V] o

Table 1: HAM induces a less strong implicit sparsity bias (moderating between Lo and L) and flips
parameter signs more easily due to its inverse metric (see Fig.[I)), which together lead to boosting
sparse training without explicit overparameterization.

sparse training that do not utilize this form of overparameterization, such as AC/DC (Peste et al.,
2021)) and RiGL (Evci et al.| |2020). To understand this gap, we investigate their training dynamics.

The dynamics of the overparameterization m © w
can be derived within the mirror flow (Li et al.|

2022)) or time-dependent mirror flow framework Acceleration Zone o ggM
(Jacobs et al., [2025)). It is associated with the hy- 3 \ — mow

perbolic mirror map (Woodworth et al.| |2020) and, D
depending on initialization, learning rate, and reg- w
ularization, it changes from an implicit Lo (Dense)

to L1 (Sparse) bias during training. The mirror

flow induced by m ©® w can also be characterized i
by a Riemannian gradient flow with an associated -2
metric (Li et all 2022). Comparing these met-
rics highlights a problem: m © w suffers from
a small inverse metric g~'(0) near the origin,
where ¢ is a Riemannian metric tensor (Jacobs
& Burkholz, 2025) (see Fig. [T]and Appendix [F).
As a consequence, parameters can get stuck at 0,
preventing effective sign-flips. Sign-In partially
mitigates this issue by iteratively re-initializing
m and w such that m © w remains fixed. We set

Figure 1: The inverse metric g~ 1(8) of HAM is
above the one of gradient descent (GD), while
the overparameterization m ® w is below for
small «. This enables moving from the initial-
ization 6 to the optimum 6* instead of getting
stuck. Therefore, HAM fixes the vanishing in-
9 verse metric. Note the hyperbolic geometric

._ 2)2 :
v = (m® — w ) >> 0. However, the r.emedy 18 structure of HAM and m @ w compared to the
unstable and introduces a hard perturbation to the g, acc of GD.

training dynamics, limiting its positive effects.

In this work, we propose to capture the essential structure of the two methods PILoT and Sign-In
and thus the implicit bias of pointwise overparameterization m ® w, which provably aids in finding
generalizable sparse solutions. At the same time, we are able to avoid their drawbacks: their slow
down near zero and their need for explicit overparameterization that negatively impacts memory and
compute (see Table[I)). We do this by deriving a plug-and-play hyperbolic optimization step, which
we alternate with gradient descent or any other first-order optimizer. Our alternating method is called
HAM: Hyperbolic Aware Minimization (§[3} 3.I). HAM mitigates the small inverse metric problem
of m ® w and keeps a similar but fully controllable implicit bias, as shown in § ] We evaluate HAM
on standard vision benchmarks and find that it consistently improves generalization, especially of
sparse training (§ [3). Remarkably, HAM tends to enhance generalization complementary to sharpness
aware minimization (SAM) (Foret et al.,|2021)), yet incurs only negligible computational overhead.
These improvements can be explained by two major mechanisms: a) It accelerates training around
0, thus improving sign learning. This is facilitated by its geometry and a larger inverse metric. b)
The implicit bias towards sparsity regularizes training inducing a mild sparsity. Both mechanisms
boost generalization performance of sparsification techniques, such as AC/DC (Peste et al., [2021)
and RiGL (Evci et al., |2020), and even of dense model training. In summary, our contributions are:

* We introduce HAM, a lightweight, plug-and-play general purpose optimization step that integrates
with any optimizer at a negligible computational cost.

* We provide a theoretical analysis of HAM’s training dynamics using Riemannian gradient flow for
linear regression (§ ), characterizing its implicit bias and sign-flipping mechanism (Appendix [E).
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* HAM inherits the geometric benefits of recent sparsity parameterizations while mitigating their
vanishing inverse metric problem (see Figure[T|and Appendix [F). The benefits are a implicit sparsity
bias which facilitates a mild sparsity and complementary sign flips to those of dense training.

* Empirically, HAM improves state-of-the-art sparsity methods (AC/DC, RiGL, STR), enhances
standard dense training, and is also compatible with optimizers like SAM.

2 RELATED WORK

Sparsification Sparse training methods can be categorized into three broad classes: Pruning at
Initialization (Pal), Dense-to-Sparse training (DtS), and Dynamic Sparse Training (DTS). Pal methods
identify a sparse mask at initialization and train the remaining parameters to convergence. They
include methods like SNIP (Lee et al.,2019), Synflow (Tanaka et al.,2020), NPB (Pham et al.| 2023)),
PHEW (Patil & Dovrolis| 2021), GraSP (Wang et al., 2020) and random pruning (Liu et al.,[2021a}
Gadhikar et al.,|2023)). Their primary limitation is that standard optimizers do not find generalizable
solutions on these fixed masks, as they struggle to effectively learn parameter signs (Gadhikar &
Burkholz, 2024b;|Gadhikar et al.,2025). In contrast, DtS methods learn the mask via a dense or denser
phase of training, followed by any kind of pruning step and possibly more training. This includes
iterative pruning methods like IMP (Frankle & Carbin} 2019), LRR (Renda et al.,|2020; Han et al.,
2015)), AC/DC (Peste et al.,[2021), CAP (Kuznedelev et al., 2024), and WoodFisher (Singh & Alistarh|
2020). Continuous sparsification methods, which start from a dense network and gradually sparsify
it with a learnable mask, also fall under this category. They include PILoT (Jacobs & Burkholz,
2025), STR (Kusupati et al., 2020), CS (Savarese et al.l[2021) and spred (Ziyin & Wang, [2022)). The
third class of methods, Dynamic Sparse Training, start from an already sparse mask but dynamically
update it during training, and in this sense utilize a form of (dynamic) overparameterization (Liu
et al., [2021b). Examples include RiGL (Evci et al., [2020), MEST (Yuan et al., [2021), and SET
(Mocanu et al.l |2018). While Pal methods cannot compete with the generalization performance
of DtS and DST methods, Sign-In (Gadhikar et al.| 2025)) improves on Pal by using the pointwise
overparameterization m ® w, which leverages a hyperbolic mirror map to facilitate sign flips. In this
work, we propose instead a simpler, more powerful hyperbolic optimization step to leverage a similar
mirror map without doubling the number of parameters and solving an issue with an associated
inverse metric.

Implicit bias and mirror flow The implicit bias of neural networks is a well studied topic that
aims to explain the regularization benefits resulting from overparameterization (Woodworth et al.|
2020; (Gunasekar et al.|, [2017b} 2018 L1 et al.| 2022). It is primarily characterized within the mirror
flow framework, a well-established concept in convex optimization (Alvarez et al., 2004} [Beck &
Teboulle, 2003; |[Rockafellar & Fenchel, |1970; |Boyd & Vandenberghe, 2009; Sun et al.,|[2022). A
mirror flow can be seen as a gradient flow on a Riemannian manifold (Li et al., 2022; |Alvarez
et al., 2004) with the metric tensor being the Hessian of the Legendre function, which has also been
extended to cover stochastic gradient descent (SGD) (Pesme et al.| 2021} |[Even et al., [2023; Lyu &
Zhu|,2023)) and more recently to explicit regularization (Jacobs et al.,[2025). This framework allows
us to characterize the implicit bias. The main observation is that large learning rates, stochastic noise
from SGD, and regularization can benefit generalization by implicitly inducing sparsity. However,
overparameterization can also lead to small inverse metrics, slowing down convergence and potentially
hampering generalization (Jacobs & Burkholz, [2025)), which we can successfully avoid in HAM.

Related optimizers The mirror flow framework also enables us to view our algorithm HAM
through the lens of natural gradient descent. Accordingly, the inverse metric is adapted due to (an
approximation of) the Fisher information matrix, which captures second-order information (Martens,
2014; |Amari, [1999). A more general Bayesian framework (Khan & Ruel [2021)) has been used to
gain insights into invariant distributions by using Lie groups (Kiral et al.,|2023) and to develop the
IVON optimizer (Shen et al., [2024). Within this framework, HAM, our proposal that alternates
exponential updates with gradient descent steps, can be interpreted as a mapping of the Fisher
information (metric) to a known posterior distribution, as derived in Appendix [C| Moreover, our
proposed hyperbolic update is reminiscent of exponentiated gradient descent (Kivinen & Warmuth,
1994)). Distinctly from HAM, it optimizes probability distributions and thus includes normalization
to stay on a probability simplex, as seen, for example, in Chapter 7 of [Vishnoi| (2021). Exponential
gradient descent, which has recently been applied to reweighting batches (Majidi et al.| [2021) or
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augmenting ADAM (Bernstein et al., [2020)), also utilizes similar exponential updates but does not
rely on an alternating scheme like HAM. This prevents it from facilitating more suitable sign flips
than gradient descent. More advantages of HAM are analyzed in Appendix [D]and[E]

Two-step and alternating schemes Various previous works have explored alternating training
schemes including proximal methods, soft thresholding, ADMM, alternating least squares, and
expectation maximization, among others (Parikh & Boyd, [2014; Boyd et al., 2011} |Cichocki et al.,
2009} McLachlan & Krishnan, [1996) . The most related alternating algorithms to HAM are based on
birth-death dynamics at a neuron level in two-layer neural network training (Rotskoff et al., [2019)
or variational inference (Mielke & Zhu, |[2025} |Gladin et al.,[2024; Yan et al., 2024). An important
difference is that we work on a weight level while other approaches work on a neuron or distribution
level and serve an entirely different purpose. Furthermore, one of the most well-known two-step
approaches is sharpness aware minimization (SAM) (Foret et al.| 2021)), which promotes the search
for flat solutions at the expense of almost doubling the compute of one optimization step. In contrast,
HAM encourages an implicit sparsity bias and acceleration around 0, which are complementary
mechanisms. Our experiments (Table [3) demonstrate that our proposed hyperbolic step can be
effectively combined with SAM to further boost generalization.

3 MOTIVATION AND DERIVATION OF HAM

We derive our novel optimization step by building on insights from the implicit bias of recently
developed sparse training methods. These methods have exploited a reparameterization of the neural
network: They replace each weight € with a product of two weights m ® w, where ® is the Hadamard
product, i.e., a pointwise multiplication. For this reparameterization, it is known that stochastic noise
and weight decay induce sparsity by an implicit L; penalty (Pesme et al.,2021; Jacobs & Burkholz,
2025). The next paragraphs restate the induced gradient flow of this reparameterization (where the
learning rate 7 — 0). Note that u? abreviates u®2.

Gradient flow training Consider a continuously differentiable and L-smoot}ﬂ loss function f :
R™ — R. It can be trained by means of gradient descent: 0.1 = 6; — nV f(0y), initialized
at 8g = 0+, where n > 0 is the learning rate. Taking n — 0, we obtain its gradient flow:
d0; = —V f(0;)dt. Tts integral form is used in the mirror flow analysis and descriptions of the

implicit bias: 8, — 8y = — [} V(6,)ds.

Reparameterized gradient flow |Li et al.| (2022) derive a similar formulation for the reparame-
terization m ® w trained with gradient descent, while Theorem 2.1 in Jacobs & Burkholz| (2025)
integrates weight decay with strength 3 in the analysis resulting of the following gradient flow:

dmt = —w¢ ® vf(gt)dt — 2Bmtdt, Wo = Winit,
dwy = —m; © Vf(6;)dt — 2pw,dt, My = Myt

This corresponds to the integral equation for 8; = m; © w;:

¢ ¢
0, = ul ®exp (—2/ Vf(0s)ds — 4Bt> — Vi © exp (2/ V£(0s)ds — 4Bt) , e
0 0

where ug = M;"O and vy := % for |wg| < my are chosen such that uZ — v = 6y. 3 > 0
is the strength of weight decay. This results in a time varying Riemannian gradient flow for 6,:

d0, = /02 + 2 O Vf(8,)dt — 286,dt, Oy = O, 2

where v; = 4u? © v exp (—403t). Eq. (2) implies that we cannot move through zero when ; — 0.

Exponential gradient descent The hyperbolic gradient flow in Eq. (I) not only corresponds to
the gradient flow of m ©® w, but also to exponential gradient descent. This is presented by Wu &
Rebeschini|(2021) for matrix forms in a matrix sensing task without regularization (8 = 0). We use
this connection to derive an update without the need for the reparameterization (or regularization).
The update is captured by the following theorem:

'See Deﬁnitionin the appendix for a definition of L-smoothness.
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Theorem 3.1 I[f mg = sign(@y)wy = /|00, then
011 = O exp (—77 (2 Sign(@k)v,f(ek) + 4ﬁ)) 3)
is equivalent to Eq. up-to first order, i.e., the discretization error is O(n?).

Proof. See proof of Theorem [B.1]in the appendix. O

Note that a more general update for a product of matrices is provided by Wu & Rebeschini| (2021]).
Their exponential update suffers from the same problem as the parameterization m © w, as it
corresponds to y = 0 and thus completely preventing sign flips (see Corollary [B.2)). Our proposal
HAM overcomes this obstacle by alternating a gradient step with an exponential update step.

Derivation of HAM The novelty stems from alternating the new hyperbolic update in Eq. (3)) with
another optimizer. This forms the basis of our proposal HAM. We derive its explicit form for gradient
descent as follows:

)1 =0, —nV[f(O), (GD)
01 = 0py 1 ©exp (—n (o sign(0x)V f(6k) + ) - (HYP)

Note it is not necessary to use the same learning rate for gradient descent and for the exponential

update. In fact, the learning rates control the strength of the implicit bias towards sparsity, for which
we have introduced an additional hyperparameter o« € R. The exponential update now more closely
resembles the hyperbolic gradient update in Eq. (I), as it can switch the sign in the exponential. §[]
studies the resulting gradient flow.

Interpretation The exponential update introduces a weight scaling which correspond to
a metric g(@) = 1/|6| for a Riemannian gradient flow, as we will see in This changes how
parameters evolve compared to standard gradient descent. When the sign of a parameter is correct, the
update refines its magnitude. If the sign is incorrect, it drives the parameter exponentially fast toward
zero. However, on its way to a sign flip, the parameter gets stuck in 0 —because the parameter update
is proportional to @ = 0 at the origin. To facilitate the sign flip, we need the intermediary gradient
step (GD), which explains the advantages of HAM over pure exponential updates. In summary, our
combined update can be interpreted as: Learn the magnitude when the sign is correct; otherwise,
move rapidly to zero to enable sign correction. This mechanism is crucial for enabling sparse training
(Gadhikar & Burkholz, 2024a; |Gadhikar et al., [2025)), as shown in our experiments (§ E]), where
HAM significantly boosts performance compared to standard optimizers.

Remark 3.2 Note that the second step ( ?YP depends both on ), and 6, L which would require

twice the memory of gradient descent. To avoid this, we replace sign(0y,) with sign (6, , 1 ). We restate
the second HAM step actually deployed in It also has benefits for the optimization
itself, promoting more stable sign flips, as we discuss in Appendix|D|and Figure[6] Building on recent
work on sign flips (Gadhikar et al.||2025)), we argue that the sign should be aligned with the gradient
evaluation to assess whether the step should be accelerated or not, to promote meaningful sign flips.
This insight is tightly linked to our choice of sign(6,. 1 ) instead of sign(0y,) in the step.

3.1 ALGORITHM: HYPERBOLIC AWARE MINIMIZATION (HAM)

We propose HAM (Algorithm [I)), which alternates between any standard optimizer step and a
hyperbolic (signed) mirror map to improve the general trainability of neural networks. The proposed
method is inspired by recent sparsification methods, as theoretically justified in § 4] We next state the
main algorithmic innovations.

Hyperbolic step Let > 0 denote the learning rate and o, 5 > 0 be positive constants. The
hyperbolic step deployed with parameters 8, € R" is given by

Or = 0,41 Oexp (777 (a sign(04 1)V f(0k) + ﬂ)), (HYP*)

where 0, 1 is the step of any other optimizer. « controls the convergence speed and hyperbolic
awareness of the method, and /3 induces an explicit regularization similar to that of PILoT (Jacobs &
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Algorithm 1 HAM
Require: steps 7', schedule 7, initialization 6;,,;;, constants «, 5 > 0.
forke0... T —1do
6.1 = OptimizerStep(V f(6),), )
Ori1 = HyperbolicStep(BkJr%, Vf(6),a, 5,7n) according to formula
end for
return Model weights 61

Burkholz, [2025). Note that we have replaced sign(6) with sign(6,, 1), as mentioned in Remark

[3:2] Our analysis of implicit bias § []still remains valid with this change, as we show in Appendix
Theorem

Memory and compute overhead HAM does not incur any memory overhead, as it reuses the
known gradient and current signs of the weights. In contrast, the pointwise overparameterization
m © w doubles the number of parameters, which would only be negligible in case of large batch sizes
—where activations dominate the memory requirements (Ziyin & Wang, |[2022; |Jacobs & Burkholz,
2025} [Kolb et al.| [2025). Moreover, the additional extra flops during training are negligible, as they
are linear in the number of parameters.

4 THEORY: GRADIENT FLOW ANALYSIS

Our theory (Eqgs. (GDJHYP)) identifies the implicit bias of HAM’s Riemannian gradient flow in
parameter space (Thm.[4.2) and provides a convergence analysis (Thms. 4.3|and @.5)). Accordingly,
HAM solves the vanishing inverse metric problem of m ® w, and thus converges faster, while
retaining the same asymptotic implicit sparsity bias. In this section, we assume that the objective
function f : R™ — R is continuously differentiable, i.e., f € C!, and L—smootlﬂ Appendix@
proves that HAM also induces meaningful sign flips like m ® w (Gadhikar et al., 2025)). We focus
on the case 3 = 0 to simplify the exposition. Theorem [{.2]derives the flow for general 3. The effects
of nonzero /3 are highlighted in Section [B.T}

Riemannian gradient flows In order to concisely study the behavior of HAM, we consider a
gradient flow formulation. Gradient flow (flat) and m ©® w (hyperbolic) flow can be described as
Riemannian gradient flows depending on a general metric g(6):

d0; = —g~1(0,)V £(8;)dt, 0o = Oinit-

We refer to the quantity g~ *(8) as the inverse metric. It is trivial for gradient flow, since g5 (8) = 1.
For m ® w,Jacobs & Burkholz|(2025) have derived g:nl(aw (0) = /602 + ~2, where ~ depends on
the initialization scale and can change due to noise and regularization. In contrast, the inverse metric
of HAM is not changed by these factors. To give an overview, the inverse metrics are also reported in

The vanishing inverse metric problem For smally and  Taple 2: Inverse metrics of gradient de-

small weights @, the inverse metric /02 + 2 of m ©® w  scent, the overparameterization m © w,
can get much smaller than 1 (see Figure[I). This implies and HAM.

that learning close to 0 is slowed down, which makes
transitions through 0 (and sign flips of ) much harder, GD mow HAM

slowing down convergence. g @) 1  \/02+~%2 1+ a6

Theorem 4.1 If f is L—smooth (Definition[A 1)), satisfies

the PL-inequality or is convex and arg min{ f(0) : @ € R"} is non-empty, then the iterates 0,
converge to a minimizer of f for both metrics ggp and gmew- Under the PL-inequality , the linear
convergence rates are respectively A and A min; y;, where A > 0 is the PL-inequality constant.

Proof. We can apply Theorem A.3 in|Jacobs & Burkholz| (2025) (Thm. in the appendix) and
Theorem 4.14 in|Li et al.| (2022) (Thm.[A.6|in the appendix). For the convergences rates it is sufficient
to bound the inverse metrics from below such that we have ggp > 1 and gy, > min; ;. ([l
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Riemannian gradient flow of HAM In comparison, HAM speeds up learning around 0. To show
this and characterize HAM’s dynamics, we derive its gradient flow from Eqs. (GDJHYP) by writing
out the iterates in sum notation and taking the learning rate n — 0.

Theorem 4.2 The Riemannian gradient flow (n — 0) of Egs. is:
0, = — (14 a|6:]) © Vf(6,)dt — 0,dt, 6o = i, “)

where | - | is applied pointwise. Moreover, if 3 = 0, the inverse metric is gyp\y(0) = 1+ ||

Proof. This follows from writing out the sum update and then taking the limit to get an integral
equation. The gradient flow then follows from the Leibniz rule. See Theorem [B.3]in the appendix. [J

Convergence of HAM We analyze the inverse metric and convergence behavior of HAM when
B = 0. In this case, the inverse metric is given by guam(0) = 1 + «|6| , indicating that
HAM can converge faster than gradient descent depending on « and the magnitude of the weights.
This stands in stark contrast with sparsification methods, where a decaying v < 1 slows down
movement. We formalize this behavior under the same conditions as Theorem 4.1k

Theorem 4.3 Under the same setting as Theorem[.1] the iterates of HAM in Eq. with

B = 0, 8, converge to a minimizer of f. Moreover, the linear convergence rate is A under the
PL-inequality.

Proof. Similar as in Theorem we again can lower bound gy, /iM > 1 for the convergence rate.

This proves that HAM avoids the vanishing inverse metric problem from the pointwise overparame-
terization m © w, while keeping the geometric benefits as we will see next. Furthermore, we discuss

the case for 5 > 0 in

Implicit bias of HAM We characterize the implicit bias of HAM by analyzing its associated
Riemannian gradient flow. This confirms that HAM not only speeds up convergence with respect
to m ® w and small ~y, but also influences the nature of the solution. To show this, we compute
the Bregmz;n function R,, (see Definition[A.4) such that its Hessian yields the required metric, i.e.,
guam = V°R,.

Lemma 4.4 The function R,, for o € R is given by

alf;|+ D In(alb;] +1) — alb; sign(0;,
Ru(e) = Y I DI 010 sien(tun)

log(1 + a6 0]).

Ifa > 0, R, is a Bregman function (Definition|A.4)).

Proof. See Lemma[B.4]in the appendix. O
Concretely, we can use Lemma [.4] to characterize the implicit bias for under-determined linear
regression. Let {(z;,;)}%_; C R™ x R be a dataset of size d. The output of a linear model 6 on the i-
th data is 2 @. The goal therefore is to solve the regression for the target vector y = (y1,y2, - - -, ya)’
and input vector Z = (21, 22, ..., 24).

Theorem 4.5 Consider the same setting as Theoremwith B =0. Then, if f(0) := f(ZT0 —y),
the gradient flow of 0, in Eq. (@) converges to the solution of the optimization problem: 0, =
arg mingzg—, R.(0)

Proof. Apply the mirror flow part of Theorem 4.17 (L1 et al.,[2022) for Bregman functions. ]

Theorem [4.5] provides an intuition about the type of solutions to which HAM converges. We are
particularly interested in the shape of R, when 6y = 0 (to understand sign flips). Note that the
gradient flow is well defined at 8 if 5 = 0.

Theorem 4.6 Let 6y = 0. Then, Ro, ~ ||6]|7, if « — 0, and Ry, ~ ||0)|L, if o« = o0, where ~
indicates proportionality, i.e., there exists some positive functions hy : R - Rand hs : R — R in
the neighborhood of the limiting point such that for all @ € R™, limo_,0 h1(a)Ro(0) = ||6]7, and
limg 00 h2() Ra(0) = [16]]L, -
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Proof. See proof of Theorem [B.3]in the appendix. O

Theorem [4.6] is illustrated in Figure R, of HAM induces an implicit bias that interpolates
between Lo and L4, similarly to m ® w (Jacobs & Burkholz, 2025).

Remark 4.7 In the a — oo setting, HAM induces an Ly bias. However, in practice, due to
discretizations, this setting would require a much smaller learning rate to ensure convergence. This
makes HAM less suited to fully induce sparsity on its own than the related sparsification methods.
Therefore, HAM is best used in combination with other methods to find sparse solutions, acting as a
guide for sparse geometry during training.

Remark [.7|emphasizes that HAM needs a substantially large « to induce sparsity on its own. This is
in line with our takeaway from §3} Our hyperbolic step primarily contributes to learning the correct
magnitude of a weight and promotes sign flips. This differs from m ® w overparameterization, where
sparsity emerges due to the inherently small inverse metric.

Remark 4.8 In practice, we apply additional weight decay with strength 3 > 0. This promotes
sparsity but does not change the inverse metric for HAM. In contrast, for m ® w it worsens the
vanishing inverse metric problem (see Appendix[F), as we learn from comparing gradient flows (Eq. 2]
and Eq.[). HAM has the advantage that we can freely tune o for the right amount of implicit sparsity.
For details on how 3 > 0 influences Thms{.3|and 4.3 see §B.1]

5 EXPERIMENTS

Our main goal is to highlight the versatility of our novel optimizer step, HAM, and verify our
theoretical insights into its mechanisms. To this end, we compare HAM to two algorithms that
explicitly utilize the parameterization m © w: a) PiLoT (Jacobs & Burkholz,|2025)), a continuous
sparsification method, and b) Sign-In (Gadhikar et al., 2025)), an optimization approach designed
to improve training sparse masks (especially in the context of Pal). Sign-In promotes sign flips
complementary to dense training by rescaling ~ to 1 in intervals, partially mitigating the vanishing
inverse metric problem but inducing frequent perturbations to the optimization (see Appendix [F).

HAM, due to its implicit sparsity bias (Theorem[.7) and improve plasticity, is particularly compatible
with sparse training methods, as we showcase in multiple scenarios. We choose hyperparameters
(a, B) based on a grid search for dense training (see Figure |[11|and Figure . The chosen
hyperparameters are transferred to all dense and sparse training methods. For ImageNet and Vision
Transformers, we use (o, 3) = (200, le — 3) and for CIFAR100 («, 5) = (200, 16e — 3).

HAM improves generalization in a way that is complementary to Sharpness Aware Minimization
(SAM) (Foret et al.,[2021)). We also apply HAM to other tasks such as pre-training vision transformers,
LLM fine-tuning and graph and node classification in Appendices[G.3][G.5]and[G.6] This demon-
strates the general utility of HAM as an optimization principle. In addition, Appendix [G.T] verifies
the improved (sparse) implicit bias proven in Theorem [.5]for underdetermined linear regression.

Dense training demonstrates that HAM improves dense training for a ResNet50 on Ima-
geNet (Deng et al.,2009). Moreover, HAM works complementary to Sharpeness Aware Minimization
(SAM) (Foret et al., |2021)). Combining both algorithms (SAM-HAM) achieves the best overall per-
formance. further highlights that training HAM longer (using a similar compute budget as
SAM, whose iterations are twice as expensive) achieves a similar improvement. Figure [I0]tracks the
total L1 norm of the parameters during training to illustrate the complementary mechanisms of HAM
and SAM. The same conclusions hold for similar experiments with the smaller vision benchmark
CIFAR100 (Krizhevsky et al., [2009) (see [Table 7). Furthermore, showcases performance
gains also for the transformer architecture DeiT (Touvron et al.,|2021) trained on ImageNet with
AdamW. A grid search for HAM’s hyperparameters « and 5 on ImageNet (Deng et al.|[2009) and
CIFAR100 (Krizhevsky et al.,[2009) is visualized in Fig.[TT|and[I2} The best values for « are stable
across different tasks, while 3 needs tuning similar to weight decay.

Sparsification We demonstrate that HAM improves state-of-the-art pruning methods AC/DC and
RiGL, as well as random pruning at initialization with the same hyperparameter configuration used
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(a) Sign flips during training. (b) HAM’s Bregman function.

Figure 2: Demonstration of HAM’s mechanisms. (a) The percentage of sign flips during training for
Random Pal with sparsity level 90% trained for 100 epochs, where each interval correspond to ten
epochs. HAM is able to consistently perform more sign flips than both the baseline and Sign-In. (b)
Plot of the normalized Bregman function R, where increasing « leads to an L, shape.

Table 3: HAM improves dense training of a ResNet50 on ImageNet.

100 epochs 200 epochs + SAM, 100 epochs + SAM, 200 epochs
Baseline 76.72+0.19  77.27+0.13 77.10+£0.21 77.944+0.16
HAM 77.51+0.11 77.86+0.05 77.92+0.15 78.56 £ 0.12

in dense training. [Table 4]illustrates that dense-to-sparse training becomes significantly better with
HAM. Improvements are most significant for AC/DC, which uses dense training phases effectively.
We attribute this also to the fact that AC/DC turns on parameters indiscriminately, while RiGL does so
based on gradient information. The improvements over PILoT and Sign-In show that we successfully
extract the main beneficial mechanism of the hyperbolic geometry while mitigating the downsides.

Sign flip mechanism We show that HAM outperforms Sign-In (Gadhikar et al.l [2025), which
promotes sign flips complementary to dense training and tries to mitigate the vanishing inverse
metric problem by repeated parameter rescaling. HAM still induces more sign flips than Sign-In and
standard training, as demonstrated by Figure[2(a)l which is in line with our theory (see Appendix [E)).
Supporting this, we show in Appendix [G.4]the improvement for training with various fixed masks.

Table 4: Dense-to-sparse training and pruning at initialization with HAM on ImageNet with ResNet50.

Pruning type Method s=0.8 s=0.9 s =0.95
Random 73.87(£0.06)  71.56(+0.03)  68.72(+0.05)
Pal Random + Sign-In ~ 74.12(+0.09)  72.19(£0.18) 69.38(£0.1)
Random + HAM  74.84(+0.09) 72.72(+0.03) 70.05(+0.06)
AC/DC 75.83(£0.02)  74.75(£0.02)  72.59(40.11)
DtS AC/DC + Sign-In 75.9(£0.14) 74.74(£0.12)  72.88(%0.13)
AC/DC + HAM 77.2(£0.14) 76.66(+0.12) 75.45(4+0.13)
DST RiGL 75.02(£0.1) 73.7(£0.2) 71.89(£0.07)
RiGL + Sign-In 75.02(£0.1) 74.27(£0.08)  73.07(£0.17)
RiGL + HAM 76.22(+£0.07) 74.83(+0.08) 72.93(£0.1)
spred 72.64 71.84 69.47
Cont. spars. PILoT 75.62 74.73 71.3
STR 75.49(40.14) 72.4(£0.11) 64.94(40.07)
STR + HAM 76.37(£0.18) 75.01(+0.02) 71.41(+0.1)
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6 CONCLUSION

We propose a new hyperbolic update step that can be combined with any first-order optimizer and
that improves generalization of dense and sparse training, making it suitable as a general purpose
optimizer. Our algorithm HAM (Hyperbolic Aware Minimization) mitigates the vanishing inverse
metric of the pointwise overparameterization m ® w used in recent sparsification methods, while
inducing a similar implicit bias. Due to discretization, it is more suitable to control the strength and
shape of the bias—and accordingly improve generalization in general, especially for dense-to-sparse
training. The main mechanisms how HAM achieves this are an implicit bias towards sparsity and an
acceleration of learning that promotes parameter sign flips. It remains an interesting open question
if different mirror maps could create better task and optimizer-specific awareness. For example,
for some tasks one might want to take into account robustness; for the optimizer, it might be the
momentum or normalization. This could lead to more algorithmic advances to improve generalization
via implicit bias control and to new theory for understanding the success of deep learning algorithms.
In particular, optimizers with implicit biases that emulate the positive effects of other types of
overparameterization, without explicitly requiring huge models, may represent an important leap in
reducing the high computational costs associated with deep learning.

10
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REPRODUCIBILITY STATEMENT

For the theory, detailed proofs have been provided for the main statements in Appendix [B]and used
previously known statements have been provided in Appendix [A] For the experiments, the details are
provided in Appendix |G| with each experiment having its own subsection with accompanied specifics.
The code use for the experiments is also attached.

LLM STATEMENT

To improve fluency of the text sentence level editing has been done using large language models.
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A OPTIMIZATION DEFINITIONS AND RESULTS

In this section we recall some basic definitions from convex and non-convex optimization.

Definition A.1 (L—smooth) A differentiable function f : R™ — R is said to be L-smooth if its
gradient is Lipschitz continuous with constant L > 0. That is, for all 0,€ € R",

IVf(6) = V(&) < LlI6— &l
or equivalently,
1(6) < 1(0) + (V1(0).6 — 0) + £ € — 0]
or equivalently,
LIVFO)I < L(f(6) - ).

where f* = mingegn f(6).

Definition A.2 (PL-inequality) A differentiable function f : R™ — R satisfies the PL inequality with
parameter A > 0 if for all 8 € R",

SIVF@)I7 > A(f(8) ~ 1),
where f* = mingegn f(0).

Definition A.3 (Legendre function Definition 3.8 ((Li et all|2022)))) Let R : R* — R U {oo} be a
differentiable convex function. We say R is a Legendre function when the following holds:

* Ris strictly convex on int(dom R).
* For any sequence {0;}5° | going to the boundary of dom R, lim; . |[|[VR(8;)||7, = .

In order to recover the convergence result in Theorem 4.14 in (L1 et al., [2022) the function R also
needs to be a Bregman function, which we define in Definition [A.4] First, let us denote with Dp
denote the Bregman divergence with respect to the generator function R:

DR(017 02) = R(Gl) - R(eg) - <VR(02>,01 - 92>
for 6,05 € dom R.

Definition A.4 (Bregman function Definition 4.1 (Alvarez et al., | 2004)) A function R is called a
Bregman function if it satisfies the following properties:

e dom R is closed. R is strictly convex and continuous on dom R. R is C' on int(dom R)).
» Forany @ € dom R andy € R, {{ € dom R|Dg(0,&) <~} is bounded.

* For any @ € dom R and sequence {6,}5°, C int(dom R) such that lim;_, ., 0; = 0, it
holds that lim;_,, Dr(0,0;) — 0.

Theorem A.5 (Theorem 4.7 |Alvarez et al.|(2004)) If R is a Legendre function with dom R = R",
then if the domain of the convex conjugate dom R* = R"™ implies that R is a Bregman function

From now on let R be a Bregman function Consider the Riemannian gradient flow:
d0; = —V>R™1(0,)V£(8,)dt, 0o = ;i

This covers all settings considered in the main text: gradient descent, m ® w and HAM as shown in

Lemmal[B.4]

Theorem A.6 (Theorem 4.14 (Li et al.| 2022)) Assume that R is a Bregman function and that f is
quasi-convex, V f is locally Lipschitz and argmin{ f(0)|0 € R"} is non-empty. Then as t — oo, 6,
converges to some critical point 8*. Moreover, if f is convex 8; converges to a minimizer of f.
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Theorem A.7 (Theorem A.3 (Jacobs & Burkholz| [2025))) Consider the same setting as Theorem[A.6]
Assume R satisfies for all € R",

2T (V2R(6)) ' z>o0||2]2, VzeR™ )

Furthermore, assume f satisfies the PL-inequality (A.2). Then 0, converges to a minimizer of f.
Furthermore, the loss converges linearly with rate o A.
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B PROOFS OF THEORETICAL STATEMENTS

Here we provide detailed proofs of the main statements in the paper. The theorems correspondence
is:

* The proof of Theorem [3.1]is in[B.1]
* The proof of Theorem[.7is in[B.3]
* The proof of Lemma[.4]is in[B.4]

* The proof of Theorem[4.6is in[B.3]

Theorem B.1 ( Theorem Ifmgy = sign(0g)wy = \/|OT , then
011 = O exp (—n (2sign(0x)V f(0r) +45)) 6)

is equivalent to Eq. ({I) up-to first order Taylor approximation.

First we use the Taylor approximation of the exponential function exp z ~ 1 + z + O(2?) to get the
update:

0k+1 ~ 0 — 2n|0k|Vf(0k) — 4np0; + 0(772).
We show this is equivalent up to first order to the gradient descent of the overparameterization:

Ors1 = Mpp1 © Wigr ~ O — 1 (M + wi) VF(Or) — 4065

To do so, we show that m? + w? = 2|6y for all k € [T] up to zeroth-order approximation by
induction. For k = 0, the statement holds per assumption on the initialization. The induction step is:

mi, ., +wi = mi+wi — 40V £(0r) — B0y +1* (mi + wi) Vf(01)* ~ 2|0,| + O(n).

This concludes the induction and the proof. []
Corollary B.2 Exponential gradient descent can not move through zero, preventing sign flips.

Proof. The operation exp(-) is always non-negative. Therefore multiplying with it will always keep
the same sign since the sign operator is pointwise distributive:

sign(Bp41) = sign(6) exp (—n (2sign(0)V f (k) + 48)))
= sign(6y)sign (exp (-7 (2sign(0x)V f(Or) + 45)))
= sign(6y).

Note we use L—smoothness and sufficient small learning rate to ensure bounded gradient preventing
V f(0x) — oc. If the gradient explodes we still can only end up in zero leading to sign(€x4+1) = 0
so also no sign flip in that case. O

Theorem B.3 (Theorem[d.2) The gradient flow (n — 0) of Egs. is given by:

Writing out the computation of iterates 8, give us:

k—1 k—1 k—1
O = Opexp | Y —nasign(0;)Vf(0,) —nB | => 1V f(0;)exp | = nasign(0)Vf(0;) — 1
7=0 j=0 I=j

This allows use to take  — 0 and get an integral equation for the dynamics:

0; = Oy exp (—/ asign(0,)Vf(0s) + Bds) —/ V£(0s)exp (—/ asign(6.)Vf(0.) + Bdc) ds.
0 0 s
(N
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Differentiating the first term under the Leibniz rule gives:

d t
£00 exp <_/0 asign(05)V £(0s) + Bds) =

Oy cxp ( [ asisn0vs@.) - ﬁds) (—asign(6.)V (8,) + 5)

Next, differentiate the second term under the Leibniz rule:

% (‘ /Ot V(0:) exp (— /:asign(ﬂc)vf(ec) +5dc> ds> -

V160 - [ 6 e ( / asign(echwc)mdc) ds =
9100t~ [ 910 exp (- [ asign(0.91(00) + 5dc) ds(~asign(8,)7 100 - 5

Combining gives by noticing the form of 6;:
dOt = —Vf(@t)dt - Ot (O{ 51gn(0t)Vf(0t) + ﬂ) dt
==V /f(6:)dt — |6:| (aV f(0:) + sign(6;)B) dt
(I
Lemma B.4 (Lemma[.4) The Bregman function R, for o > 0 is given by:

4+ 1)1 J+1) —alb; ign(6;
Rui)= Y DI+~ 010l sen(tun)

o?

log(l + a|9i’0|)

Proof.

We first construct the mirror map R,, by using the corresponding Hessian gz 4 7. Next we check that
R, is a Bregman function. The Hessian of the mirror map R,,(0) is:

1

2
0)— —
V Ra(0) 1+ a6

Moreover we need VR, (6y) = 0. Therefore by integrating twice, R, for o > 0 is given by:

0;] + 1)1 0;| +1) —alb; ign(6;.
Ro(0) = Y2 VIO D bl poentio) s 1 jp, )

: o?
K2
It remains to be checked if R, is Bregman. For this we use a relationship between Legendre and
Bregman functions. We first show that R, is Legendre and its convex conjugate as well. Then it
follows from Theorem [A.5|that R, is Bregman for o > 0.

Note that we have domR, = int(domR,) = R™. R, is strictly convex as for all 6 € R" the
Hessian is positive definite. This shows the first statement. Next, since R,, is separable we can show
the second statement for each parameter separately. Take a sequence {6; ;}52; for coordinate j € [n]
such that |#; ;| — oo then by construction of R, we have

1 . .o 2 —
111)1210 0;Ra(0;)° = o0

as | - | and log(-) are increasing functions. Therefore R,, is Legendre.

The convex conjugate gradient domV R}, = (rangeVR,)~! = R™. Therefore since R" =
domV R}, C domR}, we can apply Theorem[A.5] This concludes the result. ]

Theorem B.5 (Theorem Let 0y = 0, then R, ~ ||0||7, if « = 0 and Ry, ~ ||0]|, if & — oo,
where ~ indicates proportionality i.e. there exists some positive functions h1 : R — Rand hy : R —
R in the neighborhood of the limiting point such that for all @ € R", limq_,0 hy () Ro (0) = |10]|7,
and limg o0 ho(a)Ra(6) = ||0]|L, -
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Proof. The first statement follows from the Taylor approximation:
1 1
~ Y 02+ —10;| — —0:] ~ |02
>20% + 10— 210 = el

which is valid if |6;] << L1 so hy(a) = 1.

For large o > 0 we have that R, ~ Zi 16:] log(c|6;]). Therefore, we have
0;| =116
o) (@) = 3104 = 01

s0 hy = which is positive a > 1. This concludes the proof. ]

logoza) i
The proof of Theorem B.5]follows similar steps as that ofWoodworth et al.| (2020).

Sign discrepancy In our implemented HAM algorithm (HYP*) we use sign(6,, +%) instead of

sign(0y,) from the derived step . We now argue why this does not change the implications of
our theory, as their gradient flows are equivalent. We show in Thm. that, in continuous time, the
iterates (GDJHYP¥) follow a jump process. For this jump process, the jump vanishes in the flow
setting, leading to no discrepancy between using either version. In discrete time, however, this may
not be the case. We provide an explanation for the effect in discrete time in Appendix [D] The main
implication of the flow being the same is that at the end of training the implicit bias is the same, as
the end corresponds to smaller learning rates.

Theorem B.6 Initialize 0,;,,;; # 0. Then the gradient flow of HAM i.e. Egs. (mn—0)is
given by:

6, = —V f(6,)dt — |6,] (aV £(6,) + sign(ét)ﬂ) At 6y = 6, (8)

Proof. The statement follows from making the observation: Sign flips can only occur near zero;
further away the processes are equivalent.

Let 6, denote the resulting process with n — 0 and 8, the signed gradient flow. 6, does not have to
be gradient flow as it can have discontinuous jumps due to the sign inconsistency. We can write the
update as follows:

k—1

6 = Boexp | S —nasien(6,)V £(8;) 06 — na (sign(6,,) — sien(6,)) V1(6,) | -

7=0

k—1 k—1

> nVF(6;)exp [ — > nasign(6,)V f(6;) — 1B — no (sign(éj 1) — sign( )) V£(6;)

i=0 1=j
Then the discrepancy (sign(éj +%) — sign(éj)) between the signs becomes a § : R™ — R™ function
ie.
0if6; #0
3(0)=(2if6; =0" ) fori € [n]
—2if0; =0~

The process for 6, with 1 — 0 can be written as

Btzeoexp(—/otasign(Gs)Vf( )+ B — ad(0,)V f(0,)d )
_/OtVf(Gs)exp(—/Stasign(GC)Vf( )+ B —ad(0:.)Vf(6.)d )ds.

Differentiating under the Leibniz rule gives:

0, = —V £(8,)dt — |6,| (an(ét) +sign(6,)8 + a&Vf(ét)) dt

™

0 Oinit .

21



Under review as a conference paper at ICLR 2026

where § : R™ — R™ is a delta function for every coordinate. Therefore, the jumps vanish as they are
multiplied with |@] we have that

jaaf)
o
Il

Binit .

0, = —V (6,)dt — |8,] (an(ét) + sign(ét)ﬁ) dt

which is equivalent to the gradient flow of Theorem[B.3] [J

B.1 THE EFFECT OF NON-ZERO f3

The convergence and implicit bias results Thms [4.3]and [4.3] focus on the case 5 = 0. In the follow,
we discuss general the case of § > 0. First, the flow takes the general form:

A0t = —g; 1 (8,)V f(0,)dt — BO,dt, B = B,y ®

We have for m ® w that gtf,l,@w(@t) = \/60? + ~7 and for HAM we have g5;',,,(0;) = 1+ a|6,| in
line with Table[2] For 3 > 0, we can define the on-manifold-regularization. This quantity determines
the corresponding explicit regularization.

Definition B.7 For a time varying Riemannian gradient flow with off manifold weight decay Eq. (9),
the on-manifold-regularization is given by

0;
M (0) := Z/ Gr,i(2i)zidz;

i€[n]

where g, ; is the i-th component of the seperable metric tensor.

Using Definition[B.7] we can compute M; in both cases. This gives

alb;] —In(la];] +1
My mowo(0) = 3 07 92, and Miga(0) = 32 =Tl g
]

i€n i€[n]

Knowing this, we can adapt the convergence result. As both on-manifold-regularizations are convex,
we converge to the minimizer of the objective function f 4+ M, assuming that there exists an M
such that M; — M for t — co. Note that, for m © w, we have that M; — || - ||, for t — co. This
matches the LASSO optimization objective derived in spred (Ziyin & Wang| 2022)). Additionally for
HAM, we have that a Myam — || - ||, for @ — oo, indicating that we induce less sparsity, as we
rescale with «. Concretely, for a fixed 3 and large «, we approximately solve the LASSO objective
with regularization coefficient 8/«. Note that for large «, the explicit regularization strength decays
while the implicit regularization gets closer to L.

Furthermore, to obtain the implicit bias result, we use the mirror flow formulation. We know from
(Jacobs & Burkholz, 2025)) that m ® w corresponds to a time-varying mirror flow for which we need
8 — 0 to recover optimality. In contrast, for HAM we get the following mirror flow:

(7]
dVRa(0:) = — (Vf(@t) + BM) dt, 0o = Oinit.
This follows from the new objective function f + SMpyanm. To fulfill the optimality condition in the
implicit bias result for linear regression, we would need to show that the mirror flow is in the span of
Z7T to satisfy the KKT condition. This can only be guaranteed when the regularization is turned off.
Therefore, similarly to m © w, we would need to turn-off the regularization at the end of training to
obtain optimality.
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C FISHER INFORMATION DERIVATIONS

Our algorithm can be interpreted through the lens of natural gradient descent (Amari, [1999; Martens)
2014). Each optimizer step corresponds to a natural gradient update 0x1 = 0, —ng~ ' (0x)V f(0),
with g is now the Fisher information. The key insight is that parameters follow a known parameterized
distribution that is learned by the optimizer. For gradient descent, ggp(6) = 1, which corresponds
to a normally distributed random variable 8 with unit variance and learnable mean; i.e., 8 = E[X].
Thus we can interpret 8 as the mean of a normal distribution whose position is learned.

In contrast, the hyperbolic step (HYP) on its own corresponds to gyyp(€) := 1/|6|, which directly
follows from the first order approximation of the exponential function. Similarly, we can match
a random variables Fisher information to the metric guyp(@). It corresponds to a random variable

X parameterized as a normal distribution with unit variance: A (24/]0], I). In this view, weights

are recovered via 6 = 1 sign(6)E[X]?, by using E[X]| = 2+/16]. This means that we learn the
magnitude of the expected position. Furthermore, if the sign is not correct, the hyperbolic step
will move the parameter exponentially fast towards zero, facilitating its sign flip. We provide
derivations in next paragraph. To summarize, our combined update can be interpreted as follows:

Learn the position , and then the magnitude if the sign is correct; else move fast to zero .

This mechanism is crucial to facilitate sparse training (Gadhikar & Burkholz, 2024a;|Gadhikar et al.
2025)), as portrayed in our experiments (§ [3)), where HAM considerably boosts its performance.

Derivations of the Fisher information We provide here the Fisher information Z := ¢ calculations

for one dimensional random variables N'(6, 1) and N'(1/]6|, 1). The Fisher information is defined as
see for example Definition 1.1 in (Ly et al.,|2017):

1(9) = Ex [((,fglogﬂx;e)) ] (1)

where f is the probability density function of the random variable X and E is the expectation with
respect to the random variable.

Let X ~ AN (6,1), where 6 € R is the mean parameter. The likelihood function is:

6:0) = exp (- 5(X -0

Taking the natural logarithm:

0(6) = log f(X:0) = —% log(2r) — %(X e

The score function is:

Then the Fisher Information is given by:
dt 2
do

Let X ~ N (24/]6],1). The likelihood function is:

oo (X -2

Iop(0) = E =E[(X —60)?] = Var(X) =1

f(X;0) =

The log-likelihood function is:
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Differentiate to get the score function:

a [ _sign®)) _ X —-2V0
25 = X =2Vl ( J@>_ sign(6)——5—

Now square the score and take the expectation:
AN X —2/0] ’ 1 1 1
—) | =B || X2 | = ZE[(X —2V]0)% = o Var(X) = —
(de) ] ( N ) g 6] 6]

Note that instead of being part of the exponential family of distributions this distribution is part of the
curved exponential family distributions.

Tuyr(0) =E
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D DIFFERENT SIGNS IN THE EXPONENTIAL UPDATE

In this section, we show that using the updated signs sign (6, +%) in the hyperbolic step instead
of the original ones sign(;) is actually beneficial for performance. The main difference occurs when
a sign flip takes place due to the gradient step (that is, sign (6, +%) # sign(6;)), which can lead to
a discrepancy in discrete time. Then, updating the sign leads to an acceleration away from zero,
as the gradient V f(8,) does not change and still points in the same direction. This further aids in
preventing parameters getting stuck at zero, apart from the benefits of the hyperbolic step on its own.
We present the different cases in Figure 3]

new sign(0k+%)

Accelerate away from 0

Different
sign(6y, 1) # sign(6y)
(at start of training)

yes

Sign used in[HYP]
|
old sign(6x)

Sign flip?

[GD]step

sign(@,ﬁ_%) Zz sign (0,

Same
sign(0k+%) = sign(6x) *){ Same implicit bias (Thm.[B.6) ‘

(at end of training)

no

Figure 3: The difference between using sign(6;. 1) and sign(6y) in The main change we
incur by using the new sign is that it accelerates away from zero when a sign flip occurs. Thus, when
parameters are small, we can be more certain that they are actually redundant. Furthermore, when
sign flips become less frequent due to decreasing learning rate at the end of training, we get the same
implicit bias regardless, as shown in Theorem [B.6]
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E ONE-NEURON TOY EXAMPLE SIGN FLIPS

We show with a similar arguments as in (Gadhikar et al}, [2025)) that HAM allows for sign flips in a
one neuron toy example. For this argument we similarly set 3 = 0 and we have to use a layerwise
different .. In the same vein we argue that in presence of more overparameterization using the same
« constant is fine. This is also empirically substantiated by observing more sign flips with HAM.

One dimensional neuron Consider a Gaussian i.i.d. data set z; ~ A (0,1) with ¢ € [d]. Let
f R xR — R be our objective function described by:

d
fla,w) = = (y; — ao(wz))?
i=1
where o(-) = max{0, -} is the Rectified Linear Unit (ReLU). We want to learn a target one dimen-

sional neuron Go (w-), which generates the outputs y; for ¢ € [d]. Then gradient flow dynamics for
HAM is described by:

{dat = — (a1lag| + 1) 0o f(a, wy)dt, ag = Ginit (12)
dwy = — (a|wi| + 1) Ow, f(az, we)dt,  wo = Winit.

Note that standard gradient flow would get stuck at zero, as it has to satisfy a balance equation in
Lemma which is based on Theorem 2.1 in (Gadhikar et all,[2025)). The balance equation implies
that if a5 — w% = C, then for all ¢ > 0 we have that a; — w; = C (In our case: C' = 0). In order
that the student with parameters (a, w) learn the ground truth, the parameters have to be able to sign
flip when they don’t match the ground truth’s sign. This can be divided into four cases, i.e. the total
amount of sign cases. In the balanced setting for gradient flow, the ground truth is recoverable only if
the parameter signs align. Results of these four cases are shown in Figure[d]

Sparse Dense
Sparse Dense + Sign-In + Sign-In

w w w w
v v v | v v | v
a a a a
v v | v

Figure 4: (Figure 2 from [Gadhikar et al) (2025))), showing sign flipping benefits achieved with
pointwise overparameterization m ©® w, for the sparse and dense case on a single-hidden neuron
model.

Lemma E.1 Let §(a,w) = ao(w-) withw > 0 be the teacher and f be the student network objective
such that a and w follow the gradient flow dynamics in Eq. (I2) with a random balanced parameter
initialization. For ov; = ag = 0 (standard gradient flow) the student only can learn one of four cases
i.e. when wip;; > 0 and sign(a;n;;) = sign(a).

Proof. If w;,;: is negative then it needs to flip its sign which is prevented by the ReLLU activation. We
know from the balance equation that for ¢ > 0:
|a| = Jwy|.

This implies that if a; = 0 then w; = 0 implying we can also not recover the case where sign(a;,+) #
sign(a). O

We now show that Eq. (T2) can find the ground truth, even if the sign of a is misaligned, similarly as
in (Gadhikar et al.} [2025)) for the m © w reparameterization.

Theorem E.2 Let g(a,w) = ao(w-) with w > 0 be the teacher and f be the student network
objective such that a and w follow the gradient flow dynamics in Eq. (I2)) with a random balanced
parameter initialization. Moreover, let aq; > ao > 0. If wini > 0, then f can learn the correct

target with probability 1 — (%)d. In the other case (Win;+ < 0) learning fails.
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Proof. The proof idea is to show that for a balanced initialization with w;,;; > 0 the flow for ¢ > 0
always enters the open set
Io:={(a,w) €R?:a < —w,w > 0}.

Furthermore, we show that the flow stays in the open set I'g. The system is a Riemannian gradient
flow which implies that the flow converges towards a stationary point in I'y. It remains to be shown
that the stationary point at the origin is a saddle and the stable manifold of the origin is not in I'y.
Thus, the remaining stationary points are the global optimizers.

First we show that for balanced initializations |a;nit| = wini > 0 enter the region T'g, which
can be divided into two cases. In case ainit = Winst > 0, we have (ainit, Winit) € Lo. In case
—Qinit = Wingt > 0, we have that (anit, Winit) € Lo \ g i.e. the boundary of T'y. Therefore, we
need to show the gradient field at (a;nt, Winit) points into T'g.

The balanced initialization implies that
aaf(ainit» winit) = _awf(ainih winit)~
Moreover, since @ > 0, 9, f (Ginit, Winit) > 0. Using that @1 > ay > 0 we have that the gradient
field satisfies:
dainit = — (01]@init| + 1) Ou f(@init, Winie)dt

= (01 |Winit| + 1) Ow f (Ginit, Winit )dt

< (a2|winit] + 1) Ow f(Ginit, Winit)dt = —dwini
Therefore there is a to > 0 such that a;, < —wy, < 0. Thus there is a ty > 0 such that (a;,, w;,) €
Tp.

We have entered the set I'g, we have to show that we cannot leave the set I'g. This can be shown by
computing the gradient field at the boundaries. The boundary can be split up into three cases:

e By :={(a,w) €ER?: —a=w > 0}
¢ By :={(a,w) €R? :w=0,a>0}
* The origin {(0,0)}

The first case of B; is covered by the balanced initialization. For the second case of By we can
compute the gradient field again. We now only need that dw; > 0. We linearize dw;:

dwy = Cagdt > 0,

where C' = % Zle max{0, z;}2 > 0 with probability 1 — (%)d. The last case is the saddle point
at the origin which we show is not possible to be reached from the open set I'y. Thus for all

(@init, Winit) € To we have that for all t > 0, (at, wt) € T or limy—, oo (ar, wi) = (0, 0).

In the case that w > 0 the flow can be written as a dynamical system on a Riemannian manifold.
This allows us to guarantee convergence to a stationary point. The flow is given by

{dat = —C(ai|a| + 1) (atwf — wt) dt ao = Qinit

dw; = —=C (awe| + 1) (afwt — at) dt W = Winj,

where C' = %Zle max{0, z;}?> > 0 with probability 1 — (%)d. This dynamical system has
stationary points at the origin and the set aw = 1. The dynamical system is a Riemannian gradient
flow system therefore the flow converges to a stationary point. The stationary point at the origin
is a saddle point. Therefore, the only way of getting stuck at the origin is when we initialize on
the associated stable manifold. We show that this not possible for the balanced initialization. We
calculate the linearization of the stable manifold and use that the balanced initialization stays in I'y.
The linearization at the origin (0, 0) is given by

dat = thdt
dwt = Catdt.

By a direct calculation of the eigen vectors the linearization of the stable manifold is given by the
vector (—1,1). This is the exact boundary of 'y, for which we showed that for finite w;,;; and @,
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we enter I'g. Suppose that from I'y the stable manifold is reachable. Then there is a continuous
differentiable curve +; with initialization 79 = (@init, Winiz) € Lo such that lim; ;. v = (0,0).
This is not possible as it violates the gradient field at the boundaries of I'y. Thus, the flow does
not converge to the stationary point at the origin. This concludes the first part, since the only set of
stationary points are the set of global optima.

The other two remaining cases fail as the boundary at w = 0 is not differentiable and the gradient
flow stops there. [J

Theorem highlights a benefit of HAM over gradient flow. A key difference with the proof in
(Gadhikar et al., [2025)) is that now the stable manifold is exactly the boundary at I'y. Therefore, we
are relying on the non-linearity of the model to push us into the open set I'y. A similarity between the
proofs is that we rely on a; > a» > 0. In the next part we argue that for multidimensional inputs
this is not necessary and we can use a single constant «.

Multidimensional neuron We can consider the gradient field at a balanced initialization for a
multidimensional input case. Then we have the following inequality:

n

1 1
(@ainiel +1) = (@l[winiel 1o +1) 2 —= (@llwiniellz, +1) = Y (awing +1)  (13)
i=1

where we used the relation between the L; and Lo norm. Note that now there is a significant gap
due to switching between +/n and n. This inequality ensures that at initialization the gradient field is
pointing in a similar direction as for the one dimensional case, promoting useful sign flips (Gadhikar
et al.l [2025).
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F ILLUSTRATION OF VANISHING INVERSE METRIC

We track the average inverse metric coefficient at @ = 0. This implies for HAM we get g~1(0) = 1
by definition of its inverse metric. For m ® w we get g~*(0) = m? — w?. We track the average
during training in the first layer of a ResNet50 trained on Imagenet. We consider 4 scenarios: HAM,
Sign-In for 90% sparsity according to (Gadhikar et al.,2025), dense training m ® w with and without
weight decay. The weight decay selected for m © w is set to 2e — 5, which is less than half of
the strength it would be in case of dense training. Note that in both cases a Frobenius decay i.e.
[|lm o w| |2L2 is applied in accordance with (Jacobs & Burkholz, [2025).

In Figure [5] we observe that the inverse metrics of m © w decays severely when weight decay is
applied. For the reparameterization, weight decay is needed to induce sparsity, so in order to use
it for sparsity it needs to be used. Furthermore, note that even though Sign-In manually resets the
rescaling at the start of training the metric decays at the end of training.

1.0 HAM
Sign-In, 90%

0.8 — mow
§ 0.6 — MmO w-+wd
|
041

0.2

0.0 - : -

0 25 50 75 100
Interval

Figure 5: The first layer of a Resnet50’s average inverse metric at zero reported at every tenth epoch.
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Figure 6: Gradient flow simulation of HAM, HAM with corrected sign and gradient descent. Observe
the slight benefit of using sign(6;, | 1 ) instead of sign(6y).

G EXPERIMENTAL DETAILS

We present the additional hyper parameters and other details of the experimental setup. Furthermore
we provide ablations on various setups. In general HAM is applied to all layers except the batchnorm
or layernorm layers.

G.1 OVERPARAMETERIZED LINEAR REGRESSION

We illustrate Theorem 4.3 by considering a under-determined linear regression setup, similar to that
of Pesme et al.|(2021); Jacobs & Burkholz| (2025)). We consider a sparse groundtruth 8* and initialize
at 8y = 0. Moreover, we use the mean squared error loss function. We generate data by sampling
z; ~ N(0,1I) iid. fori € [d], with d = 40 and n = 100. We compare gradient descent with
and without HAM. Moreover we also show what happens if we replace sign(8, +%) with sign(6y,)

denoted with HAM signed. The learning rate is set n = 10~%, and both algorithms are run for 10e + 6
steps. We track the distance to the ground truth during training. In Figure[6] we observe that HAM
gets closer to the ground truth and converges faster then both gradient descent and HAM signed,
where we set & = 1000. This corresponds to a less strong sparse implicit bias than L.

In the same setting, we illustrate why we need both steps . We do this with an ablation,
i.e., by using the hyperbolic step (HYP¥) and gradient descent :E;l%) on their own. We initialize
€ = —10e — 5 - 1. This means we initialize with the opposite signs compared with the ground
truth. In Figure[7] we observe that HAM reaches close to the ground truth, while the exponential
step diverges, as it can not reach the ground truth due to having no sparse implicit bias. Moreover,
gradient descent can also not reach the ground truth on its own. Therefore, both the hyperbolic and
the gradient steps are necessary.

Furthermore, if we increase o and decrease the learning rate 7, we can recover the ground truth
solution. Concretely, consider HAM with the following configurations («, ) = (1037,10~4~7) for
j € [3]. In Figure we observe that we get closer to the ground truth.

G.2 DENSE AND SPARSE TRAINING ON VISION TASKS AND ABLATION

We provide additional results on CIFAR100 (Krizhevsky et al.l 2009) in Table m Furthermore, we
train a small DeiT (Touvron et al. [2021)) with AdamW in Table[8] All results are for 3 seeds. We
provide the hyperparameter grid search for CIFAR 100 and Imagenet (Deng et al., |2009) in Figures
[[T)and[T2] We find that the grid search is consistent i.e. there is a global best configuration. This
implies it is easy to tune for specific tasks. We illustrate the convergence and implicit bias behaviour
by tracking the training loss and L; norm in Figure[9] We also track the L; norm when comparing
with SAM to show that SAM and HAM exploit different principles in Figure[T0} The additional
hyper-parameters of the experiments can be found in Table[5] The same parameters are used for the
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Figure 7: HAM vs hyperbolic step (HYP¥) under the incorrect sign initializations.
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Figure 8: Gradient flow simulation of HAM with corrected sign for different «v. Larger « leads to
closer ground truth recovery.
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Figure 9: Training dynamics of HAM compared to the baseline for a ResNet 50 on Imagenet. Observe
in the first figure (left) that the average training loss converges faster with higher « given the same .
This illustrates the convergence speed up predicted by our developed theory. Moreover, in the second
figure (right) the average L, norm decays more due the regularization constant 3, whereas larger a
leads to a larger initial increase in the average L1 norm it decays faster in the end. This is in line with
being more uncertain about the sign of the weights in the beginning of training.

sparse training setup. To reproduce sparse training methods including AC/DC, RiGL and STR we use
hyperparameters prescribed by the authors. Each experiment was run on 4 A100 GPUS. The code
used is based on TurboPrune as in (Nelaturu et al.).

Parameters for m ® w The m ® w parameterization is not regularized with weight decay for the
dense scenario, as this induces sparsity. Instead, weight decay is applied on the product |[[m © w||7,
with strength 5e — 5, the same strength as for dense training (Gadhikar et al.| 2025).

HAM optimization To optimize with HAM for dense and sparse training setups on vision tasks,
we use = 200 and 5 = 1e — 3 based on our grid search in Figure[12] Additionally, we clamp the
exponent in the HAM step (see Equation[HYP*)) between [—5, 5] to avoid exploding gradients. Note,
in all experiments, is not applied to BatchNorm or LayerNorm layers.

Table 5: Training Details for the dense vision experiments presented in the paper.

Dataset Model LR  Weight Decay Epochs Batch Size Optim LR Schedule

CIFAR100 ResNet18 0.2 le — 4 150 512 SGD, m = 0.9, SAM Triangular

ImaceNet ResNet50  0.25 5e —5 100, 200 1024 SGD, m = 0.9, SAM  Triangular
& DelT Small  0.005 le—1 300 1024 AdamW Triangular

Table 6: HAM improves dense training of a ResNet50 on Imagenet (Deng et al., 2009).

Dataset Baseline (no HAM) a=0,=1le—3 «a=200,=0 «a=200,=1e—3
HAM, 100 epchs 76.72 £0.19 77.01 £0.14 76.72 £0.07 77.51+0.11
HAM, 200 epchs 77.27£0.13 77.48 £0.09 77.24 +0.09 77.86 +0.05
SAM-HAM, 100 epchs 77.10 £0.21 77.53 £0.16 77.21 +£0.09 7792+ 0.15
SAM-HAM, 200 epchs 77.94 4+ 0.16 78.17 £ 0.16 77.60 £ 0.03 78.56 +0.12

Table 7: Dense training with HAM on the CIFAR100 vision benchmarks.

Dataset Baseline a=0,=16e—3 a=200,=0 «a=200,8=16e—3
HAM 75.25 +£0.24 75.36 = 0.04 75.31 £ 0.30 76.12 + 0.27
SAM-HAM 75.12 +0.68 76.30 £0.11 75.25 +0.20 76.65 + 0.23
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Figure 10: Training dynamics of HAM with and without SAM for a ResNet50 on Imagenet. Observe
that the choice of our hyperparameters « and 3 determine the general trend of the average L; norm
while the choice between SGD and SAM make less of a difference. This provides additional evidence
for their complementary working.
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Figure 11: One seed hyperparameter search for a ResNet18 on CIFAR100.
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Figure 12: One seed hyperparameter search for a Resnet 50 on Imagenet.

G.3 HAM FOR VISION TRANSFORMERS

We also verify that HAM can boost pre-training performance for ViTs trained with AdamW, for both
dense training as well as sparse training with AC/DC as shown in Table 8]and Table Q] respectively.
We use the same hyperparameters as for the ResNet-50 trained on Imagenet: («, 3) = (200, 1le — 3).

Table 8: Pre-training a vision transformer from scratch for 300 epochs on ImageNet.
Setup AdamW + HAM  AdamW

ImageNet, peit small 72.6240.22 72.3140.09

Table 9: Sparse pre-training of a vision transformer with AC/DC for 300 epochs on ImageNet at 50%
sparsity.

Setup AC/DC+HAM  AC/DC

ImageNet, peit small 73.2419 .45 72.5+0.16

G.4 TRAINING WITH HAM AND DIFFERENT SPARSE MASKS.

HAM can be used to optimize sparse networks with different mask topologies. We train the nonzero
weights of sparse mask topologies identified by different sparse methods including AC/DC, RiGL,
STR and Pal masks. The weights are randomly initialized and optimized with HAM. Note, this is
equivalent to pruning at initialization with the mask obtained from the listed methods. We see a
consistent improvement across all topologies with HAM except the SNIP mask, which was unstable
to train also without HAM. HAM performs best for sparse masks identified by RiGL and random
pruning, potentially due to better trainability and good layerwise sparsity ratios identified by these
methods, which influences performance when the mask does not change during training. Results are
provided in Table[10]
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Table 10: HAM with different masks for a ResNet50 trained on ImageNet with 90% sparsity and
random initialization. (x denotes a single run, as the runs for other seeds crashed.)

Init
Base Sign-In HAM

AC/DC  70.664012 70.961000 7T1.841017
RiIGL  72.0210923 72484019 73.311001
STR 68.3610.17 67.8l1p31 68.751016
Snip 52.9* 54.27°  44.48 057
Synﬂow 60.66:‘:0.2 60.59:&0,07 62.4:‘:0‘03
Random 71-56i0.03 72-19i0.18 72-72i0403

Mask

G.5 FINETUNING LLMS

As we show, HAM can also boost the performance of LLM finetuning. We evaluate on the common-
sense reasoning benchmark (Hu et al., 2023) to finetune LlaMA 3.2 models (Grattafiori et al., 2024)
and report accuracies across eight benchmarks in[Table T1] On average, HAM improves on this task,
demonstrating its compatibility with the optimizer ADAM and the LoRA architecture.

Table 11: Performance of LoRA + HAM on the commonsense reasoning (Hu et al.,[2023) benchmark.

LlaMa 3.2 Size HS WG PQ AE AC OB SQ BQ Avg

LoRA 1B 63.8 65.8 74.04 6763 5588 63.6 7098 64.25 65.74
LoRA+HAM 1B 648 6835 74.21 6839 51.79 658 71.2 6217 65.83
LoRA 3B 88.8 80.66 83.73 8265 6689 76.8 7819 69.44 78.39

LoRA+HAM 3B 8940 80.58 82.69 81.77 6843 80.2 78.25 69.48 78.85

Experimental details Each experiment was run on 4 A100 GPUs. We use th experimental setup of
DoRA [Liu et al.|(2024) to finetune LlaMA 3.2 models of size 1B and 3B with o = 200, 5 = le—3 and
a = 100, 8 = le — 4 respectively. We find that larger models benefit from less strong regularization
which is consistent with our different regularization strengths 3 for ResNet18 and ResNet50.

35



Under review as a conference paper at ICLR 2026

G.6 GRAPH AND NODE CLASSIFICATION

We report the experimental details of the 4 graph classification benchmarks from We also
include results on 13 node classification benchmarks, and an ablation on o < 0. Each experiment
was run on an A100. We consider 4 graph classification tasks on the GCN architecture (Kipf &
Welling, [2017) in Table@], and 13 node classification tasks on GCN, GATv2 (Brody et al.,[2022),
and GraphSAGE (Hamilton et al.,|2017) in Tables We also include the hyperparameter grid
search, as well as an ablation on negative . The success of negative values indicates that node
classification prefers a different type of implicit bias. Nonetheless, we see consistent improvements
across almost all datasets and architectures with o« > 0.

Table 12: Evaluation of HAM on 4 graph classification benchmarks from OGB (Hu et al., 2020).

Dataset ogbg-ppa ogbg-molpcba  ogbg-molhiv  ogbg-code2
Metric Accuracy T Avg. Precision 1 AUROC 1 F1 score 1
GCN 75.48 £0.15 27.57 £0.04 82.37 £0.29 13.89 +2.11

GCN + HAM 75.72 £ 0.24 27.81 £ 0.22 82.50 £0.69 13.96 + 2.06

G.6.1 GRAPH CLASSIFICATION

We report the performance of HAM on four graph classification datasets from Open Graph Benchmark
(OGB) (Hu et al., [2020). The code to run these benchmarks is based on (Luo et al.l 2025)), using their
choice of hyperparameters and ADAM as the optimizer. We use their GCN+ architecture, which
is a GCN equipped with edge features, normalization, dropout, residual connections, feed-forward
networks, and positional encodings. In order to implement HAM in combination with dropout, we
mask the regularization term § with (grad ## 0). We only apply HAM on the weights and biases
associated with the convolutional layers. The results, shown in[Table 12] are averaged over 3 seeds.
We report the best validation metric for the best values of « and 3 for HAM, the selection of which is
displayed in[Table 13] The tuning range is « € {1, 10,100,200}, and 8 € {0,0.01,0.1}.
also includes the size of the datasets in terms of number of graphs. Note that for three datasets, « is
the same as for the vision tasks.

Table 13: « and /3 best values for the graph classification tasks.

Dataset  ogbg-ppa ogbg-molpcba ogbg-molhiv  ogbg-code2

# graphs 158,100 437,929 452,741 41,127
o 200 200 200 1
Ié] 0.1 0.1 0.1 0.01

G.6.2 NODE CLASSIFICATION

We furthermore report the performance of HAM on thirteen node classification datasets: Cora,
CiteSeer, and PubMed (Kipf & Welling, [2017), Wiki-CS (Mernyei & Cangea, [2022), Coauthor-CS,
Coauthor-Physics, Amazon-Computers, and Amazon-Photo (Shchur et al., 2019) (homophilic);
Amazon-Ratings, Squirrel, Chameleon, Minesweeper, and Roman-Empire (Platonov et al.| 2023
(heterophilic). We evaluate over GCN, GATv2, and GraphSAGE. We only apply HAM on the weights
and biases associated with the convolutional layers and on the attention parameters. The code to run
these benchmarks is based on (Luo et al.,2024), using their choice of hyperparameters and ADAM
as the optimizer. The results, shown in Tables|I4] (homophilic) and [T5] (heterophilic), are averaged
over different runs according to the original setup. We report the best validation accuracy for the best
values of o and 8 for HAM, the selection of which is displayed in [Table 16| The tuning range is
a € {1,10,100,200}, and 5 € {0,0.01,0.1}. The best value per architecture is in bold, and ties are
underlined. Tables [[4]l and [[3also include the size of the datasets in terms of number of nodes and
edges.
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Table 14: Evaluation of HAM on 8 homophilic node classification benchmarks.

Dataset cora citeseer pubmed wikics coauthor-cs  coauthor-physics ~amazon-computer —amazon-photo
# nodes 2,708 3,327 19,717 11,701 18,333 34,493 13,752 7,650

# edges 5278 4,522 44,324 216,123 81,894 247,962 245,861 119,081

GCN 81.32+£0.30 68.60+0.94 77964046 80.71+£029 9532+0.12 97.17 £ 0.01 83.47 £ 0.70 94.33 +0.61
GCN+HAM  81.44 + 043 68.64 097 78.16+0.65 80.84 +0.27 95324 0.04 97.18 £ 0.02 83.93 +0.58 95.33 £0.23
GAT 81.24 £0.68 68.68 =0.30 79.00+0.95 8235+£0.39 95.33+0.07 97.15 4+ 0.01 83.67 +£0.23 94.47 +0.31
GAT+HAM  81.56 + 0.67 68.92 +0.27 79.08 +0.88 82.47 +£0.38 95.33 4+ 0.07 97.16 £ 0.01 84.40 + 0.92 94.60 + 0.69
SAGE 80.44+1.03 6744 +£026 79.36+0.67 81.72+046 9550=+0.08 97.01 +£0.10 83.07 £ 0.90 95.33 +£0.31
SAGE+HAM  80.60 + 0.63 67.48 +0.18 79.96 + 0.62 81.78 =0.41 95.58 + 0.09 97.03 £ 0.08 83.60 + 1.11 95.40 + 0.40

Table 15: Evaluation of HAM on 5 heterophilic node classification benchmarks.

Dataset amazon-ratings squirrel chameleon  minesweeper roman-empire
# nodes 24,492 2,223 890 10,000 22,662

# edges 93,050 46,998 8,854 39,402 32,927

GCN 5323 £0.54 4452+£1.12 46.12+2.38 9746+0.24 90.96 +0.33
GCN+HAM 5343 +0.44 4455+ 1.28 46.78 £2.22 97.78 +£0.53 91.22 + 0.40
GAT 5547+£0.20 4222+£1.73 4584+3.02 9798 +0.21 90.58 £ 0091
GAT+HAM 55.58 £ 0.47 43.17 £1.37 46.37 =332 98.37 + 046 90.83 £ 0.89
SAGE 55.05£0.50 4091 £1.27 4280+£290 97.02+0.59 90.51+0.33
SAGE+HAM 5550 £0.55 4085+ 1.16 43.07+£2.84 97.77+£0.16 90.57 + 0.44

Table 16: « and 3 best values for the node classification tasks.

GCN GAT SAGE
Dataset | Q B Q B8 e I6]
cora 200 0.1 200 0.1 200 0.1
citeseer 1 0.01 10 0 200 0.01
pubmed 200 0.1 100 O 10 0.01
wikics 10 0.01 1 0.1 1 0.1
coauthor-cs 1 0.1 10 0.1 10 0.1
coauthor-physics 10 0 10 0.01 1 0
amazon-computer 10 0.01 10 0 200 0
amazon-photo 10 0.01 10 0 1 001
amazon-ratings 10 0.01 200 0.01 200 0
squirrel 10 0.01 200 0 200 0.1
chameleon 200 0 200 0 200 0.1
minesweeper 200 0.1 100 0.1 1 0.01
roman-empire 10 0.1 10 0.1 10 0.1

Node classification with & < 0 We perform an ablation on the node classification tasks by
assigning negative values to o, denoted as nHAM. Tables[T7) (homophilic) and [I8](heterophilic) show
the results of this ablation, while [Table 19]displays the optimal pair of (o < 0, 3) hyperparameters.
Note that the baselines never perform better than HAM or nHAM. Surprisingly, heterophilic datasets
appear to be able to benefit more consistently from nHAM, especially for GCN and GraphSAGE.
In homophilic datasets and GATsS, it still provides consistent but smaller improvements, or matches
the best performance of o > 0. This intriguing phenomenon requires further investigation, as it may
indicate the need for a different kind of implicit bias in certain graph-based architectures. Other
methods particularly effective in heterophilic settings, such as modifying the adjacency matrix (Qian
et al., 2024;|Jamadandi et al.||[2024; Rubio-Madrigal et al., 2025)), may offer insight into these results.
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Table 17: HAM (a > 0) compared to nHAM (« < 0) on 8 homophilic node classification benchmarks.

Dataset cora citeseer pubmed wikics coauthor-cs  coauthor-physics amazon-computer —amazon-photo
GCN 81324+ 030 68.60+0.94 77.96+0.46 80.71 £0.29 9532 +0.12 97.17 +£ 0.01 83.47 +£0.70 94.33 +0.61
GCN+HAM 81444043 68.64+0.97 78.16+0.65 80.84 +0.27 9532 +0.04 97.18 + 0.02 83.93 +0.58 95.33 +0.23
GCN+nHAM 8144 +0.26 68.68 + 0.99 78.08 +0.58 80.89 + 0.30 95.34 + 0.09 97.17 + 0.00 84.20 + 0.40 95.27 + 0.50
GAT 81.24 £0.68 68.68 £0.30 79.00£0.95 82.35+0.39 95.33+0.07 97.15 +0.01 83.67 £0.23 94.47 £+ 0.31
GAT+HAM 81.56 +0.67 68.92+0.27 79.08+0.88 82.47+0.38 95.33 +0.07 97.16 + 0.01 84.40 + 0.92 94.60 + 0.69
GAT+nHAM  81.56 + 043 68.92 +0.18 79.08 +0.88 82.45+0.41 95.33 +0.07 97.16 + 0.01 83.93 +0.31 94.80 + 0.72
SAGE 8044 +1.03 67.44+026 7936+0.67 81.72+046 9550+ 0.08 97.01 +0.10 83.07 + 0.90 95.33 +0.31
SAGE+HAM  80.60 +£0.63 6748 £0.18 79.96 +0.62 81.78 +£0.41 95.58 +0.09 97.03 + 0.08 83.60 £+ 1.11 95.40 + 0.40
SAGE+nHAM 81.00 + 0.35 67.48 +0.23 79.84 £0.93 81.82+0.45 9556+0.12 97.02 +0.10 83.60 + 1.04 95.67 + 0.61

Table 18: HAM (a > 0) compared to nHAM (a < 0) on 5 heterophilic node classification benchmarks.

Dataset amazon-ratings squirrel chameleon  minesweeper roman-empire
GCN 5323 £0.54 4452+ 1.12 46.12£238 9746+0.24 90.96 +£0.33
GCN+HAM 53.43+0.44 4455+ 1.28 46778 £2.22 9778 £0.53 91.22+0.40
GCN+nHAM 5343 £0.25 4458+1.09 4678 £1.85 97.85+0.10 91.23 +0.36
GAT 55.47+0.20 4222+1.73 4584 +3.02 9798+£0.21 90.58 £0.91
GAT+HAM 55.58 £0.47 4317 +1.37 4637 £3.32 9837+046 90.83 + 0.89
GAT+nHAM 55.76 £0.55 4284 +125 4623 +£291 9853+0.25 90.74 +£0.82
SAGE 55.05£0.50 4091 +£1.27 4280£290 97.02+0.59 90.51 +0.33
SAGE+HAM 55.50 £0.55 4085+1.16 43.07+£2.84 97.77+0.16 90.57 +0.44
SAGE+nHAM 5525+ 1.00 41.11 £1.61 43324292 97.81 +£0.14 90.64 £ 0.56

Table 19: « and S best values for the node classification tasks with « < 0.

GCN GAT SAGE

Dataset | « I} « 153 « 153

cora -10 0.01 -10 0 -200 0.01
citeseer -1 0.01 -10 0 -100 0

pubmed -100  0.01 -100 0 -1 0.1
wikics -100 0.1 -10 0.01 -10 0.01
coauthor-cs -10  0.01 -100 0.01 -100 0.01
coauthor-physics -1 0.1 -1 0.01 -100 0.1
amazon-computer -200 0 -1 0.01 -1 0.01
amazon-photo -200 0 -200 0 -1 0.01
amazon-ratings -10 0 -200 0.1 -1 0

squirrel -100 0 -200 0.01 -200 0.1
chameleon -200 0 -100 0 -200 0.1
minesweeper -100 0.1 -10 0.1 -200 0.1
roman-empire -200 0.1 -10 0.1 -1 0.1
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