
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYPERBOLIC AWARE MINIMIZATION:
IMPLICIT BIAS FOR SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the implicit bias of optimization algorithms is key to explaining
and improving the generalization of deep models. The hyperbolic implicit bias
induced by pointwise overparameterization promotes sparsity, but also yields a
small inverse Riemannian metric near zero, slowing down parameter movement and
impeding meaningful parameter sign flips. To overcome this obstacle, we propose
Hyperbolic Aware Minimization (HAM), which alternates a standard optimizer step
with a lightweight hyperbolic mirror step. The mirror step incurs less compute and
memory than pointwise overparameterization, reproduces its beneficial hyperbolic
geometry for feature learning, and mitigates the small–inverse-metric bottleneck.
Our characterization of the implicit bias in the context of underdetermined linear
regression provides insights into the mechanism how HAM consistently increases
performance —even in the case of dense training, as we demonstrate in experiments
with standard vision benchmarks. HAM is especially effective in combination with
different sparsification methods, advancing the state of the art.

1 INTRODUCTION

The success of modern deep learning relies on large amounts of overparameterization, which has
led to a computationally demanding trend to increase the size of models, and thus the number of
trainable parameters by orders of magnitude (Hoffmann et al., 2022; Kaplan et al., 2020). A common
explanation for this phenomenon are implicit biases that originate from a combination of the optimizer
and the overparameterization (Pesme et al., 2021; Gunasekar et al., 2017a; Woodworth et al., 2020),
which regularize the training dynamics and thus improve the generalization performance.

Training sparse models instead leads to suboptimal performance (Li et al., 2017; Frankle & Carbin,
2018). This fact has limited pruning at initialization (PaI) approaches (Tanaka et al., 2020; Lee et al.,
2019; Liu et al., 2021a) that aim to reduce the heavy computational and memory demands by masking
the network before training the remaining parameters. In contrast, state-of-the-art sparsification
methods utilize overparameterization in some capacity, as they either gradually prune parameters in
Dense-to-Sparse (DtS) training (Peste et al., 2021; Kuznedelev et al., 2024; Kusupati et al., 2020;
Jacobs & Burkholz, 2025; Kolb et al., 2025) or dynamically explore multiple sparse masks to find
high-performing sparse networks with Dynamic Sparse Training (DST) (Evci et al., 2020; Lasby
et al., 2023; Chen et al., 2021). Key observations regarding these algorithms are that a) mild sparsity
(which does not degrade performance relative to a dense baseline) (Jin et al., 2022) and b) longer
training with standard optimizers can improve generalization performance significantly. The latter
indicates that sparse models are difficult to train and take longer to converge (Kuznedelev et al., 2023).
Consequently, sparse training ideally leverages overparameterization to improve generalization.

A recent development to improve sparse training is the pointwise overparameterization proposed
in PILoT (Jacobs & Burkholz, 2025) and Sign-In (Gadhikar et al., 2025). All parameter weights
θ ∈ Rn are replaced by a pointwise product of parameters m ⊙w, with both m,w ∈ Rn. This
changes the implicit bias of the optimization process and leads to substantial generalization benefits
for sparse training. In PILoT, a continuous sparsification method, the overparameterization is used to
jointly learn the mask m. Meanwhile, the PaI method Sign-In uses it to increase the plasticity of
non-masked parameters and facilitate sign flips, which was shown to be a major obstacle in sparse
training (Gadhikar & Burkholz, 2024a). Both methods, PILoT and Sign-In , achieve state-of-the-art
results in their respective categories. However, on their own, they fall short of baseline methods of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Implicit sparsity bias Sign flips No hard
perturbations

No extra
parameters

Dense training � − � �
PILoT (Jacobs & Burkholz, 2025) � � � �

Sign-In (Gadhikar et al., 2025) � (less strong) � � �
HAM (ours) � (less strong) � � �

Table 1: HAM induces a less strong implicit sparsity bias (moderating between L2 and L1) and flips
parameter signs more easily due to its inverse metric (see Fig. 1), which together lead to boosting
sparse training without explicit overparameterization.

sparse training that do not utilize this form of overparameterization, such as AC/DC (Peste et al.,
2021) and RiGL (Evci et al., 2020). To understand this gap, we investigate their training dynamics.

2 0 2
0

1

2

3

4

g
1 (

)

Acceleration Zone

0 *Stuck

HAM
GD
m w

Figure 1: The inverse metric g−1(θ) of HAM is
above the one of gradient descent (GD), while
the overparameterization m ⊙ w is below for
small γ. This enables moving from the initial-
ization θ0 to the optimum θ∗ instead of getting
stuck. Therefore, HAM fixes the vanishing in-
verse metric. Note the hyperbolic geometric
structure of HAM and m⊙w compared to the
flatness of GD.

The dynamics of the overparameterization m⊙w
can be derived within the mirror flow (Li et al.,
2022) or time-dependent mirror flow framework
(Jacobs et al., 2025). It is associated with the hy-
perbolic mirror map (Woodworth et al., 2020) and,
depending on initialization, learning rate, and reg-
ularization, it changes from an implicit L2 (Dense)
to L1 (Sparse) bias during training. The mirror
flow induced by m⊙w can also be characterized
by a Riemannian gradient flow with an associated
metric (Li et al., 2022). Comparing these met-
rics highlights a problem: m ⊙ w suffers from
a small inverse metric g−1(θ) near the origin,
where g is a Riemannian metric tensor (Jacobs
& Burkholz, 2025) (see Fig. 1 and Appendix F).
As a consequence, parameters can get stuck at 0,
preventing effective sign-flips. Sign-In partially
mitigates this issue by iteratively re-initializing
m and w such that m⊙ w remains fixed. We set
γ := (m2 − w2)2 >> 0. However, the remedy is
unstable and introduces a hard perturbation to the
training dynamics, limiting its positive effects.

In this work, we propose to capture the essential structure of the two methods PILoT and Sign-In
and thus the implicit bias of pointwise overparameterization m⊙w, which provably aids in finding
generalizable sparse solutions. At the same time, we are able to avoid their drawbacks: their slow
down near zero and their need for explicit overparameterization that negatively impacts memory and
compute (see Table 1). We do this by deriving a plug-and-play hyperbolic optimization step, which
we alternate with gradient descent or any other first-order optimizer. Our alternating method is called
HAM: Hyperbolic Aware Minimization (§ 3, 3.1). HAM mitigates the small inverse metric problem
of m⊙w and keeps a similar but fully controllable implicit bias, as shown in § 4. We evaluate HAM
on standard vision benchmarks and find that it consistently improves generalization, especially of
sparse training (§ 5). Remarkably, HAM tends to enhance generalization complementary to sharpness
aware minimization (SAM) (Foret et al., 2021), yet incurs only negligible computational overhead.
These improvements can be explained by two major mechanisms: a) It accelerates training around
0, thus improving sign learning. This is facilitated by its geometry and a larger inverse metric. b)
The implicit bias towards sparsity regularizes training inducing a mild sparsity. Both mechanisms
boost generalization performance of sparsification techniques, such as AC/DC (Peste et al., 2021)
and RiGL (Evci et al., 2020), and even of dense model training. In summary, our contributions are:

• We introduce HAM, a lightweight, plug-and-play general purpose optimization step that integrates
with any optimizer at a negligible computational cost.

• We provide a theoretical analysis of HAM’s training dynamics using Riemannian gradient flow for
linear regression (§ 4), characterizing its implicit bias and sign-flipping mechanism (Appendix E).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• HAM inherits the geometric benefits of recent sparsity parameterizations while mitigating their
vanishing inverse metric problem (see Figure 1 and Appendix F). The benefits are a implicit sparsity
bias which facilitates a mild sparsity and complementary sign flips to those of dense training.

• Empirically, HAM improves state-of-the-art sparsity methods (AC/DC, RiGL, STR), enhances
standard dense training, and is also compatible with optimizers like SAM.

2 RELATED WORK

Sparsification Sparse training methods can be categorized into three broad classes: Pruning at
Initialization (PaI), Dense-to-Sparse training (DtS), and Dynamic Sparse Training (DTS). PaI methods
identify a sparse mask at initialization and train the remaining parameters to convergence. They
include methods like SNIP (Lee et al., 2019), Synflow (Tanaka et al., 2020), NPB (Pham et al., 2023),
PHEW (Patil & Dovrolis, 2021), GraSP (Wang et al., 2020) and random pruning (Liu et al., 2021a;
Gadhikar et al., 2023). Their primary limitation is that standard optimizers do not find generalizable
solutions on these fixed masks, as they struggle to effectively learn parameter signs (Gadhikar &
Burkholz, 2024b; Gadhikar et al., 2025). In contrast, DtS methods learn the mask via a dense or denser
phase of training, followed by any kind of pruning step and possibly more training. This includes
iterative pruning methods like IMP (Frankle & Carbin, 2019), LRR (Renda et al., 2020; Han et al.,
2015), AC/DC (Peste et al., 2021), CAP (Kuznedelev et al., 2024), and WoodFisher (Singh & Alistarh,
2020). Continuous sparsification methods, which start from a dense network and gradually sparsify
it with a learnable mask, also fall under this category. They include PILoT (Jacobs & Burkholz,
2025), STR (Kusupati et al., 2020), CS (Savarese et al., 2021) and spred (Ziyin & Wang, 2022). The
third class of methods, Dynamic Sparse Training, start from an already sparse mask but dynamically
update it during training, and in this sense utilize a form of (dynamic) overparameterization (Liu
et al., 2021b). Examples include RiGL (Evci et al., 2020), MEST (Yuan et al., 2021), and SET
(Mocanu et al., 2018). While PaI methods cannot compete with the generalization performance
of DtS and DST methods, Sign-In (Gadhikar et al., 2025) improves on PaI by using the pointwise
overparameterization m⊙w, which leverages a hyperbolic mirror map to facilitate sign flips. In this
work, we propose instead a simpler, more powerful hyperbolic optimization step to leverage a similar
mirror map without doubling the number of parameters and solving an issue with an associated
inverse metric.

Implicit bias and mirror flow The implicit bias of neural networks is a well studied topic that
aims to explain the regularization benefits resulting from overparameterization (Woodworth et al.,
2020; Gunasekar et al., 2017b; 2018; Li et al., 2022). It is primarily characterized within the mirror
flow framework, a well-established concept in convex optimization (Alvarez et al., 2004; Beck &
Teboulle, 2003; Rockafellar & Fenchel, 1970; Boyd & Vandenberghe, 2009; Sun et al., 2022). A
mirror flow can be seen as a gradient flow on a Riemannian manifold (Li et al., 2022; Alvarez
et al., 2004) with the metric tensor being the Hessian of the Legendre function, which has also been
extended to cover stochastic gradient descent (SGD) (Pesme et al., 2021; Even et al., 2023; Lyu &
Zhu, 2023) and more recently to explicit regularization (Jacobs et al., 2025). This framework allows
us to characterize the implicit bias. The main observation is that large learning rates, stochastic noise
from SGD, and regularization can benefit generalization by implicitly inducing sparsity. However,
overparameterization can also lead to small inverse metrics, slowing down convergence and potentially
hampering generalization (Jacobs & Burkholz, 2025), which we can successfully avoid in HAM.

Related optimizers The mirror flow framework also enables us to view our algorithm HAM
through the lens of natural gradient descent. Accordingly, the inverse metric is adapted due to (an
approximation of) the Fisher information matrix, which captures second-order information (Martens,
2014; Amari, 1999). A more general Bayesian framework (Khan & Rue, 2021) has been used to
gain insights into invariant distributions by using Lie groups (Kıral et al., 2023) and to develop the
IVON optimizer (Shen et al., 2024). Within this framework, HAM, our proposal that alternates
exponential updates with gradient descent steps, can be interpreted as a mapping of the Fisher
information (metric) to a known posterior distribution, as derived in Appendix C. Moreover, our
proposed hyperbolic update is reminiscent of exponentiated gradient descent (Kivinen & Warmuth,
1994). Distinctly from HAM, it optimizes probability distributions and thus includes normalization
to stay on a probability simplex, as seen, for example, in Chapter 7 of Vishnoi (2021). Exponential
gradient descent, which has recently been applied to reweighting batches (Majidi et al., 2021) or

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

augmenting ADAM (Bernstein et al., 2020), also utilizes similar exponential updates but does not
rely on an alternating scheme like HAM. This prevents it from facilitating more suitable sign flips
than gradient descent. More advantages of HAM are analyzed in Appendix D and E.

Two-step and alternating schemes Various previous works have explored alternating training
schemes including proximal methods, soft thresholding, ADMM, alternating least squares, and
expectation maximization, among others (Parikh & Boyd, 2014; Boyd et al., 2011; Cichocki et al.,
2009; McLachlan & Krishnan, 1996) . The most related alternating algorithms to HAM are based on
birth-death dynamics at a neuron level in two-layer neural network training (Rotskoff et al., 2019)
or variational inference (Mielke & Zhu, 2025; Gladin et al., 2024; Yan et al., 2024). An important
difference is that we work on a weight level while other approaches work on a neuron or distribution
level and serve an entirely different purpose. Furthermore, one of the most well-known two-step
approaches is sharpness aware minimization (SAM) (Foret et al., 2021), which promotes the search
for flat solutions at the expense of almost doubling the compute of one optimization step. In contrast,
HAM encourages an implicit sparsity bias and acceleration around 0, which are complementary
mechanisms. Our experiments (Table 3) demonstrate that our proposed hyperbolic step can be
effectively combined with SAM to further boost generalization.

3 MOTIVATION AND DERIVATION OF HAM

We derive our novel optimization step by building on insights from the implicit bias of recently
developed sparse training methods. These methods have exploited a reparameterization of the neural
network: They replace each weight θ with a product of two weights m⊙w, where ⊙ is the Hadamard
product, i.e., a pointwise multiplication. For this reparameterization, it is known that stochastic noise
and weight decay induce sparsity by an implicit L1 penalty (Pesme et al., 2021; Jacobs & Burkholz,
2025). The next paragraphs restate the induced gradient flow of this reparameterization (where the
learning rate η → 0). Note that u2 abreviates u⊙2.

Gradient flow training Consider a continuously differentiable and L-smooth1 loss function f :
Rn → R. It can be trained by means of gradient descent: θk+1 = θk − η∇f(θk), initialized
at θ0 = θinit, where η > 0 is the learning rate. Taking η → 0, we obtain its gradient flow:
dθt = −∇f(θt)dt. Its integral form is used in the mirror flow analysis and descriptions of the
implicit bias: θt − θ0 = −

∫ t

0
∇f(θs)ds.

Reparameterized gradient flow Li et al. (2022) derive a similar formulation for the reparame-
terization m ⊙w trained with gradient descent, while Theorem 2.1 in Jacobs & Burkholz (2025)
integrates weight decay with strength β in the analysis resulting of the following gradient flow:{

dmt = −wt ⊙∇f(θt)dt− 2βmtdt, w0 = winit,

dwt = −mt ⊙∇f(θt)dt− 2βwtdt, m0 = minit.

This corresponds to the integral equation for θt = mt ⊙wt:

θt = u2
0 ⊙ exp

(
−2

∫ t

0

∇f(θs)ds− 4βt

)
− v2

0 ⊙ exp

(
2

∫ t

0

∇f(θs)ds− 4βt

)
, (1)

where u0 := m0+w0√
2

and v0 := m0−w0√
2

for |w0| ≤ m0 are chosen such that u2
0 − v2

0 = θ0. β > 0

is the strength of weight decay. This results in a time varying Riemannian gradient flow for θt:

dθt =
√
θ2
t + γ2

t ⊙∇f(θt)dt− 2βθtdt, θ0 = θinit, (2)

where γt = 4u2
0 ⊙ v2

0 exp (−4βt). Eq. (2) implies that we cannot move through zero when γt → 0.

Exponential gradient descent The hyperbolic gradient flow in Eq. (1) not only corresponds to
the gradient flow of m ⊙w, but also to exponential gradient descent. This is presented by Wu &
Rebeschini (2021) for matrix forms in a matrix sensing task without regularization (β = 0). We use
this connection to derive an update without the need for the reparameterization (or regularization).
The update is captured by the following theorem:

1See Definition A.1 in the appendix for a definition of L-smoothness.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3.1 If m0 = sign(θ0)w0 =
√
|θ0|, then

θk+1 = θk exp (−η (2 sign(θk)∇f(θk) + 4β)) (3)

is equivalent to Eq. (1) up-to first order, i.e., the discretization error is O(η2).

Proof. See proof of Theorem B.1 in the appendix. □

Note that a more general update for a product of matrices is provided by Wu & Rebeschini (2021).
Their exponential update suffers from the same problem as the parameterization m ⊙ w, as it
corresponds to γ = 0 and thus completely preventing sign flips (see Corollary B.2). Our proposal
HAM overcomes this obstacle by alternating a gradient step with an exponential update step.

Derivation of HAM The novelty stems from alternating the new hyperbolic update in Eq. (3) with
another optimizer. This forms the basis of our proposal HAM. We derive its explicit form for gradient
descent as follows:

θk+ 1
2
= θk − η∇f(θk), (GD)

θk+1 = θk+ 1
2
⊙ exp (−η (α sign(θk)∇f(θk) + β)) . (HYP)

Note it is not necessary to use the same learning rate for gradient descent and for the exponential
update. In fact, the learning rates control the strength of the implicit bias towards sparsity, for which
we have introduced an additional hyperparameter α ∈ R. The exponential update now more closely
resembles the hyperbolic gradient update in Eq. (1), as it can switch the sign in the exponential. § 4
studies the resulting gradient flow.

Interpretation The exponential update (HYP) introduces a weight scaling which correspond to
a metric g(θ) = 1/|θ| for a Riemannian gradient flow, as we will see in §4. This changes how
parameters evolve compared to standard gradient descent. When the sign of a parameter is correct, the
update refines its magnitude. If the sign is incorrect, it drives the parameter exponentially fast toward
zero. However, on its way to a sign flip, the parameter gets stuck in 0 —because the parameter update
is proportional to θ = 0 at the origin. To facilitate the sign flip, we need the intermediary gradient
step (GD), which explains the advantages of HAM over pure exponential updates. In summary, our
combined update can be interpreted as: Learn the magnitude when the sign is correct; otherwise,
move rapidly to zero to enable sign correction. This mechanism is crucial for enabling sparse training
(Gadhikar & Burkholz, 2024a; Gadhikar et al., 2025), as shown in our experiments (§ 5), where
HAM significantly boosts performance compared to standard optimizers.

Remark 3.2 Note that the second step (HYP) depends both on θk and θk+ 1
2

, which would require
twice the memory of gradient descent. To avoid this, we replace sign(θk) with sign(θk+ 1

2
). We restate

the second HAM step actually deployed (HYP*) in §3.1. It also has benefits for the optimization
itself, promoting more stable sign flips, as we discuss in Appendix D and Figure 6. Building on recent
work on sign flips (Gadhikar et al., 2025), we argue that the sign should be aligned with the gradient
evaluation to assess whether the step should be accelerated or not, to promote meaningful sign flips.
This insight is tightly linked to our choice of sign(θk+ 1

2
) instead of sign(θk) in the (HYP*) step.

3.1 ALGORITHM: HYPERBOLIC AWARE MINIMIZATION (HAM)

We propose HAM (Algorithm 1), which alternates between any standard optimizer step and a
hyperbolic (signed) mirror map to improve the general trainability of neural networks. The proposed
method is inspired by recent sparsification methods, as theoretically justified in § 4. We next state the
main algorithmic innovations.

Hyperbolic step Let η > 0 denote the learning rate and α, β ≥ 0 be positive constants. The
hyperbolic step deployed with parameters θk ∈ Rn is given by

θk = θk+ 1
2
⊙ exp

(
−η
(
α sign(θk+ 1

2
)∇f(θk) + β

))
, (HYP*)

where θk+ 1
2

is the step of any other optimizer. α controls the convergence speed and hyperbolic
awareness of the method, and β induces an explicit regularization similar to that of PILoT (Jacobs &

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 HAM
Require: steps T , schedule η, initialization θinit, constants α, β ≥ 0.

for k ∈ 0 . . . T − 1 do
θk+ 1

2
= OptimizerStep(∇f(θk), η)

θk+1 = HyperbolicStep(θk+ 1
2
,∇f(θk), α, β, η) according to formula (HYP*)

end for
return Model weights θT

Burkholz, 2025). Note that we have replaced sign(θk) with sign(θk+ 1
2
), as mentioned in Remark

3.2. Our analysis of implicit bias § 4 still remains valid with this change, as we show in Appendix
Theorem B.6.

Memory and compute overhead HAM does not incur any memory overhead, as it reuses the
known gradient and current signs of the weights. In contrast, the pointwise overparameterization
m⊙w doubles the number of parameters, which would only be negligible in case of large batch sizes
—where activations dominate the memory requirements (Ziyin & Wang, 2022; Jacobs & Burkholz,
2025; Kolb et al., 2025). Moreover, the additional extra flops during training are negligible, as they
are linear in the number of parameters.

4 THEORY: GRADIENT FLOW ANALYSIS

Our theory (Eqs. (GD,HYP)) identifies the implicit bias of HAM’s Riemannian gradient flow in
parameter space (Thm. 4.2) and provides a convergence analysis (Thms. 4.3 and 4.5). Accordingly,
HAM solves the vanishing inverse metric problem of m ⊙ w, and thus converges faster, while
retaining the same asymptotic implicit sparsity bias. In this section, we assume that the objective
function f : Rn → R is continuously differentiable, i.e., f ∈ C1, and L−smooth1. Appendix E
proves that HAM also induces meaningful sign flips like m⊙w (Gadhikar et al., 2025). We focus
on the case β = 0 to simplify the exposition. Theorem 4.2 derives the flow for general β. The effects
of nonzero β are highlighted in Section B.1.

Riemannian gradient flows In order to concisely study the behavior of HAM, we consider a
gradient flow formulation. Gradient flow (flat) and m ⊙w (hyperbolic) flow can be described as
Riemannian gradient flows depending on a general metric g(θ):

dθt = −g−1(θt)∇f(θt)dt, θ0 = θinit.

We refer to the quantity g−1(θ) as the inverse metric. It is trivial for gradient flow, since g−1
GD(θ) = 1.

For m⊙w, Jacobs & Burkholz (2025) have derived g−1
m⊙w(θ) =

√
θ2 + γ2, where γ depends on

the initialization scale and can change due to noise and regularization. In contrast, the inverse metric
of HAM is not changed by these factors. To give an overview, the inverse metrics are also reported in
Table 2.

Table 2: Inverse metrics of gradient de-
scent, the overparameterization m⊙w,
and HAM.

GD m⊙w HAM

g−1(θ) 1
√
θ2 + γ2 1 + α|θ|

The vanishing inverse metric problem For small γ and
small weights θ, the inverse metric

√
θ2 + γ2 of m⊙w

can get much smaller than 1 (see Figure 1). This implies
that learning close to 0 is slowed down, which makes
transitions through 0 (and sign flips of θ) much harder,
slowing down convergence.

Theorem 4.1 If f is L−smooth (Definition A.1), satisfies
the PL-inequality (A.2) or is convex and argmin{f(θ) : θ ∈ Rn} is non-empty, then the iterates θt
converge to a minimizer of f for both metrics gGD and gm⊙w. Under the PL-inequality , the linear
convergence rates are respectively Λ and Λmini γi, where Λ > 0 is the PL-inequality constant.

Proof. We can apply Theorem A.3 in Jacobs & Burkholz (2025) (Thm. A.7 in the appendix) and
Theorem 4.14 in Li et al. (2022) (Thm. A.6 in the appendix). For the convergences rates it is sufficient
to bound the inverse metrics from below such that we have gGD ≥ 1 and gm⊙w ≥ mini γi. □

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Riemannian gradient flow of HAM In comparison, HAM speeds up learning around 0. To show
this and characterize HAM’s dynamics, we derive its gradient flow from Eqs. (GD;HYP) by writing
out the iterates in sum notation and taking the learning rate η → 0.

Theorem 4.2 The Riemannian gradient flow (η → 0) of Eqs. (GD;HYP) is:

dθt = − (1 + α|θt|)⊙∇f(θt)dt− βθtdt, θ0 = θinit, (4)

where | · | is applied pointwise. Moreover, if β = 0, the inverse metric is g−1
HAM(θ) = 1 + α|θ|.

Proof. This follows from writing out the sum update and then taking the limit to get an integral
equation. The gradient flow then follows from the Leibniz rule. See Theorem B.3 in the appendix. □

Convergence of HAM We analyze the inverse metric and convergence behavior of HAM when
β = 0. In this case, the inverse metric is given by gHAM(θ) = 1 + α|θ| (Table 2), indicating that
HAM can converge faster than gradient descent depending on α and the magnitude of the weights.
This stands in stark contrast with sparsification methods, where a decaying γ ≪ 1 slows down
movement. We formalize this behavior under the same conditions as Theorem 4.1:

Theorem 4.3 Under the same setting as Theorem 4.1, the iterates of HAM in Eq. (GD,HYP) with
β = 0, θt, converge to a minimizer of f . Moreover, the linear convergence rate is Λ under the
PL-inequality.

Proof. Similar as in Theorem 4.1 we again can lower bound g−1
HAM ≥ 1 for the convergence rate.

This proves that HAM avoids the vanishing inverse metric problem from the pointwise overparame-
terization m⊙w, while keeping the geometric benefits as we will see next. Furthermore, we discuss
the case for β > 0 in §B.1.

Implicit bias of HAM We characterize the implicit bias of HAM by analyzing its associated
Riemannian gradient flow. This confirms that HAM not only speeds up convergence with respect
to m ⊙ w and small γ, but also influences the nature of the solution. To show this, we compute
the Bregman function Rα (see Definition A.4) such that its Hessian yields the required metric, i.e.,
gHAM = ∇2Rα.

Lemma 4.4 The function Rα for α ∈ R is given by

Rα(θ) =
∑
i

(α |θi|+ 1) ln (α |θi|+ 1)− α |θi|
α2

− θi
sign(θi,0)

α
log(1 + α|θi,0|).

If α > 0, Rα is a Bregman function (Definition A.4).

Proof. See Lemma B.4 in the appendix. □

Concretely, we can use Lemma 4.4 to characterize the implicit bias for under-determined linear
regression. Let {(zi, yi)}di=1 ⊂ Rn×R be a dataset of size d. The output of a linear model θ on the i-
th data is zT

i θ. The goal therefore is to solve the regression for the target vector y = (y1, y2, . . . , yd)
T

and input vector Z = (z1, z2, . . . ,zd).

Theorem 4.5 Consider the same setting as Theorem 4.3 with β = 0. Then, if f(θ) := f(ZT θ − y),
the gradient flow of θt in Eq. (4) converges to the solution of the optimization problem: θ∞ =
argminZθ=y Rα(θ).

Proof. Apply the mirror flow part of Theorem 4.17 (Li et al., 2022) for Bregman functions. □

Theorem 4.5 provides an intuition about the type of solutions to which HAM converges. We are
particularly interested in the shape of Rα when θ0 = 0 (to understand sign flips). Note that the
gradient flow is well defined at θ0 if β = 0.

Theorem 4.6 Let θ0 = 0. Then, Rα ∼ ||θ||2L2
if α → 0, and Rα ∼ ||θ||L1

if α → ∞, where ∼
indicates proportionality, i.e., there exists some positive functions h1 : R → R and h2 : R → R in
the neighborhood of the limiting point such that for all θ ∈ Rn, limα→0 h1(α)Rα(θ) = ||θ||2L2

and
limα→∞ h2(α)Rα(θ) = ||θ||L1 .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proof. See proof of Theorem B.5 in the appendix. □

Theorem 4.6 is illustrated in Figure 2(b). Rα of HAM induces an implicit bias that interpolates
between L2 and L1, similarly to m⊙w (Jacobs & Burkholz, 2025).

Remark 4.7 In the α → ∞ setting, HAM induces an L1 bias. However, in practice, due to
discretizations, this setting would require a much smaller learning rate to ensure convergence. This
makes HAM less suited to fully induce sparsity on its own than the related sparsification methods.
Therefore, HAM is best used in combination with other methods to find sparse solutions, acting as a
guide for sparse geometry during training.

Remark 4.7 emphasizes that HAM needs a substantially large α to induce sparsity on its own. This is
in line with our takeaway from §3: Our hyperbolic step primarily contributes to learning the correct
magnitude of a weight and promotes sign flips. This differs from m⊙w overparameterization, where
sparsity emerges due to the inherently small inverse metric.

Remark 4.8 In practice, we apply additional weight decay with strength β > 0. This promotes
sparsity but does not change the inverse metric for HAM. In contrast, for m ⊙ w it worsens the
vanishing inverse metric problem (see Appendix F), as we learn from comparing gradient flows (Eq. 2
and Eq. 4). HAM has the advantage that we can freely tune α for the right amount of implicit sparsity.
For details on how β > 0 influences Thms 4.3 and 4.5 see §B.1.

5 EXPERIMENTS

Our main goal is to highlight the versatility of our novel optimizer step, HAM, and verify our
theoretical insights into its mechanisms. To this end, we compare HAM to two algorithms that
explicitly utilize the parameterization m⊙w: a) PiLoT (Jacobs & Burkholz, 2025), a continuous
sparsification method, and b) Sign-In (Gadhikar et al., 2025), an optimization approach designed
to improve training sparse masks (especially in the context of PaI). Sign-In promotes sign flips
complementary to dense training by rescaling γ to 1 in intervals, partially mitigating the vanishing
inverse metric problem but inducing frequent perturbations to the optimization (see Appendix F).

HAM, due to its implicit sparsity bias (Theorem 4.7) and improve plasticity, is particularly compatible
with sparse training methods, as we showcase in multiple scenarios. We choose hyperparameters
(α, β) based on a grid search for dense training (see Figure 11 and Figure 12). The chosen
hyperparameters are transferred to all dense and sparse training methods. For ImageNet and Vision
Transformers, we use (α, β) = (200, 1e− 3) and for CIFAR100 (α, β) = (200, 16e− 3).

HAM improves generalization in a way that is complementary to Sharpness Aware Minimization
(SAM) (Foret et al., 2021). We also apply HAM to other tasks such as pre-training vision transformers,
LLM fine-tuning and graph and node classification in Appendices G.3, G.5 and G.6. This demon-
strates the general utility of HAM as an optimization principle. In addition, Appendix G.1 verifies
the improved (sparse) implicit bias proven in Theorem 4.5 for underdetermined linear regression.

Dense training Table 3 demonstrates that HAM improves dense training for a ResNet50 on Ima-
geNet (Deng et al., 2009). Moreover, HAM works complementary to Sharpeness Aware Minimization
(SAM) (Foret et al., 2021). Combining both algorithms (SAM-HAM) achieves the best overall per-
formance. Table 3 further highlights that training HAM longer (using a similar compute budget as
SAM, whose iterations are twice as expensive) achieves a similar improvement. Figure 10 tracks the
total L1 norm of the parameters during training to illustrate the complementary mechanisms of HAM
and SAM. The same conclusions hold for similar experiments with the smaller vision benchmark
CIFAR100 (Krizhevsky et al., 2009) (see Table 7). Furthermore, Table 8 showcases performance
gains also for the transformer architecture DeiT (Touvron et al., 2021) trained on ImageNet with
AdamW. A grid search for HAM’s hyperparameters α and β on ImageNet (Deng et al., 2009) and
CIFAR100 (Krizhevsky et al., 2009) is visualized in Fig. 11 and 12. The best values for α are stable
across different tasks, while β needs tuning similar to weight decay.

Sparsification We demonstrate that HAM improves state-of-the-art pruning methods AC/DC and
RiGL, as well as random pruning at initialization with the same hyperparameter configuration used

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Interval

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

HAM
Baseline
Sign-In

(a) Sign flips during training.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

R
(

)

= 2
= 200
= 2 1015

(b) HAM’s Bregman function.

Figure 2: Demonstration of HAM’s mechanisms. (a) The percentage of sign flips during training for
Random PaI with sparsity level 90% trained for 100 epochs, where each interval correspond to ten
epochs. HAM is able to consistently perform more sign flips than both the baseline and Sign-In. (b)
Plot of the normalized Bregman function Rα, where increasing α leads to an L1 shape.

Table 3: HAM improves dense training of a ResNet50 on ImageNet.
100 epochs 200 epochs + SAM, 100 epochs + SAM, 200 epochs

Baseline 76.72± 0.19 77.27± 0.13 77.10± 0.21 77.94± 0.16
HAM 77.51± 0.11 77.86± 0.05 77.92± 0.15 78.56± 0.12

in dense training. Table 4 illustrates that dense-to-sparse training becomes significantly better with
HAM. Improvements are most significant for AC/DC, which uses dense training phases effectively.
We attribute this also to the fact that AC/DC turns on parameters indiscriminately, while RiGL does so
based on gradient information. The improvements over PILoT and Sign-In show that we successfully
extract the main beneficial mechanism of the hyperbolic geometry while mitigating the downsides.

Sign flip mechanism We show that HAM outperforms Sign-In (Gadhikar et al., 2025), which
promotes sign flips complementary to dense training and tries to mitigate the vanishing inverse
metric problem by repeated parameter rescaling. HAM still induces more sign flips than Sign-In and
standard training, as demonstrated by Figure 2(a), which is in line with our theory (see Appendix E).
Supporting this, we show in Appendix G.4 the improvement for training with various fixed masks.

Table 4: Dense-to-sparse training and pruning at initialization with HAM on ImageNet with ResNet50.
Pruning type Method s = 0.8 s = 0.9 s = 0.95

PaI
Random 73.87(±0.06) 71.56(±0.03) 68.72(±0.05)

Random + Sign-In 74.12(±0.09) 72.19(±0.18) 69.38(±0.1)
Random + HAM 74.84(±0.09) 72.72(±0.03) 70.05(±0.06)

DtS
AC/DC 75.83(±0.02) 74.75(±0.02) 72.59(±0.11)

AC/DC + Sign-In 75.9(±0.14) 74.74(±0.12) 72.88(±0.13)
AC/DC + HAM 77.2(±0.14) 76.66(±0.12) 75.45(±0.13)

DST RiGL 75.02(±0.1) 73.7(±0.2) 71.89(±0.07)
RiGL + Sign-In 75.02(±0.1) 74.27(±0.08) 73.07(±0.17)
RiGL + HAM 76.22(±0.07) 74.83(±0.08) 72.93(±0.1)

Cont. spars.
spred 72.64 71.84 69.47
PILoT 75.62 74.73 71.3
STR 75.49(±0.14) 72.4(±0.11) 64.94(±0.07)

STR + HAM 76.37(±0.18) 75.01(±0.02) 71.41(±0.1)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

We propose a new hyperbolic update step that can be combined with any first-order optimizer and
that improves generalization of dense and sparse training, making it suitable as a general purpose
optimizer. Our algorithm HAM (Hyperbolic Aware Minimization) mitigates the vanishing inverse
metric of the pointwise overparameterization m⊙w used in recent sparsification methods, while
inducing a similar implicit bias. Due to discretization, it is more suitable to control the strength and
shape of the bias—and accordingly improve generalization in general, especially for dense-to-sparse
training. The main mechanisms how HAM achieves this are an implicit bias towards sparsity and an
acceleration of learning that promotes parameter sign flips. It remains an interesting open question
if different mirror maps could create better task and optimizer-specific awareness. For example,
for some tasks one might want to take into account robustness; for the optimizer, it might be the
momentum or normalization. This could lead to more algorithmic advances to improve generalization
via implicit bias control and to new theory for understanding the success of deep learning algorithms.
In particular, optimizers with implicit biases that emulate the positive effects of other types of
overparameterization, without explicitly requiring huge models, may represent an important leap in
reducing the high computational costs associated with deep learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For the theory, detailed proofs have been provided for the main statements in Appendix B and used
previously known statements have been provided in Appendix A. For the experiments, the details are
provided in Appendix G with each experiment having its own subsection with accompanied specifics.
The code use for the experiments is also attached.

LLM STATEMENT

To improve fluency of the text sentence level editing has been done using large language models.

REFERENCES

Felipe Alvarez, Jérôme Bolte, and Olivier Brahic. Hessian riemannian gradient flows in convex
programming. SIAM Journal on Control and Optimization, 43(2):477–501, January 2004. ISSN
1095-7138. doi: 10.1137/s0363012902419977. URL http://dx.doi.org/10.1137/
S0363012902419977.

Shun-ichi Amari. Natural gradient works efficiently in learning. In Unsupervised Learning:
Foundations of Neural Computation. The MIT Press, 05 1999. ISBN 9780262288033. doi:
10.7551/mitpress/7011.003.0010. URL https://doi.org/10.7551/mitpress/7011.
003.0010.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003. ISSN 0167-6377.
doi: https://doi.org/10.1016/S0167-6377(02)00231-6. URL https://www.sciencedirect.
com/science/article/pii/S0167637702002316.

Jeremy Bernstein, Jiawei Zhao, Markus Meister, Ming-Yu Liu, Anima Anandkumar, and
Yisong Yue. Learning compositional functions via multiplicative weight updates. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 13319–13330. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/9a32ef65c42085537062753ec435750f-Paper.pdf.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. 2009. URL https://web.
stanford.edu/~boyd/cvxbook/.

Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3:1–122, 2011. URL https://api.semanticscholar.org/CorpusID:
51789432.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=F72ximsx7C1.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974–19988, 2021.

A. Cichocki, R. Zdunek, A.H. Phan, and S. Amari. Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, 2009.
ISBN 9780470747285. URL https://books.google.de/books?id=KaxssMiWgswC.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

11

http://dx.doi.org/10.1137/S0363012902419977
http://dx.doi.org/10.1137/S0363012902419977
https://doi.org/10.7551/mitpress/7011.003.0010
https://doi.org/10.7551/mitpress/7011.003.0010
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://proceedings.neurips.cc/paper_files/paper/2020/file/9a32ef65c42085537062753ec435750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/9a32ef65c42085537062753ec435750f-Paper.pdf
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://api.semanticscholar.org/CorpusID:51789432
https://api.semanticscholar.org/CorpusID:51789432
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://books.google.de/books?id=KaxssMiWgswC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s)gd over di-
agonal linear networks: Implicit bias, large stepsizes and edge of stability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 29406–29448. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv: Learning, 2018. URL https://api.semanticscholar.org/
CorpusID:53388625.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Advait Gadhikar and Rebekka Burkholz. Masks, signs, and learning rate rewinding. In Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=qODvxQ8TXW.

Advait Gadhikar, Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Sign-in to the lottery: Reparame-
terizing sparse training. In The Thirty-ninth Annual Conference on Neural Information Processing
Systems, 2025. URL https://openreview.net/forum?id=iwKT7MEZZw.

Advait Harshal Gadhikar and Rebekka Burkholz. Masks, signs, and learning rate rewinding. In
International Conference on Learning Representations, 2024b.

Advait Harshal Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all we
need to start sparse. In International Conference on Machine Learning, 2023.

Egor Gladin, Pavel Dvurechensky, Alexander Mielke, and Jia-Jie Zhu. Interaction-force transport
gradient flows. ArXiv, abs/2405.17075, 2024. URL https://api.semanticscholar.
org/CorpusID:270063137.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
Implicit regularization in matrix factorization, 2017a. URL https://arxiv.org/abs/
1705.09280.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and
Nati Srebro. Implicit regularization in matrix factorization. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017b. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1832–1841. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/gunasekar18a.html.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf
https://openreview.net/forum?id=6Tm1mposlrM
https://api.semanticscholar.org/CorpusID:53388625
https://api.semanticscholar.org/CorpusID:53388625
https://openreview.net/forum?id=qODvxQ8TXW
https://openreview.net/forum?id=qODvxQ8TXW
https://openreview.net/forum?id=iwKT7MEZZw
https://api.semanticscholar.org/CorpusID:270063137
https://api.semanticscholar.org/CorpusID:270063137
https://arxiv.org/abs/1705.09280
https://arxiv.org/abs/1705.09280
https://proceedings.neurips.cc/paper_files/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf
https://proceedings.mlr.press/v80/gunasekar18a.html
https://proceedings.mlr.press/v80/gunasekar18a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20,
Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
and Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. arXiv preprint arXiv:2304.01933, 2023.

Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=U47ymTS3ut.

Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Mirror, mirror of the flow: How does regularization
shape implicit bias? In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=MLiR9LS5PW.

Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning against
over-squashing and over-smoothing. In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https://openreview.net/forum?id=
EMkrwJY2de.

Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Pruning’s
effect on generalization through the lens of training and regularization. Advances in Neural
Information Processing Systems, 35:37947–37961, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Mohammad Emtiyaz Khan and H. Rue. The bayesian learning rule. J. Mach. Learn. Res., 24:281:1–
281:46, 2021. URL https://api.semanticscholar.org/CorpusID:235790670.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Jyrki Kivinen and Manfred Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Technical report, USA, 1994.

Chris Kolb, Tobias Weber, Bernd Bischl, and David Rügamer. Deep weight factorization: Sparse learn-
ing through the lens of artificial symmetries. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=vNdOHr7mn5.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In Proceedings of
the International Conference on Machine Learning, July 2020.

Denis Kuznedelev, Eldar Kurtic, Eugenia Iofinova, Elias Frantar, Alexandra Peste, and Dan Alistarh.
Accurate neural network pruning requires rethinking sparse optimization. Trans. Mach. Learn. Res.,
2024, 2023. URL https://api.semanticscholar.org/CorpusID:260611140.

Denis Kuznedelev, Eldar Kurtić, Elias Frantar, and Dan Alistarh. Cap: Correlation-aware pruning for
highly-accurate sparse vision models. 36, 2024.

13

https://openreview.net/forum?id=U47ymTS3ut
https://openreview.net/forum?id=U47ymTS3ut
https://openreview.net/forum?id=MLiR9LS5PW
https://openreview.net/forum?id=EMkrwJY2de
https://openreview.net/forum?id=EMkrwJY2de
https://api.semanticscholar.org/CorpusID:235790670
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=vNdOHr7mn5
https://api.semanticscholar.org/CorpusID:260611140

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Eren Mehmet Kıral, Thomas Möllenhoff, and Mohammad Emtiyaz Khan. The lie-group bayesian
learning rule. In International Conference on Artificial Intelligence and Statistics, 2023. URL
https://api.semanticscholar.org/CorpusID:257404948.

Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. Dynamic sparse training
with structured sparsity. arXiv preprint arXiv:2305.02299, 2023.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

Zhiyuan Li, Tianhao Wang, Jason D. Lee, and Sanjeev Arora. Implicit bias of gradient descent on
reparametrized models: On equivalence to mirror descent. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=k4KHXS6_zOV.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. In International Conference on Learning Representations,
2021a.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 6989–7000. PMLR, 18–24 Jul
2021b.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic GNNs are strong baselines: Reassessing GNNs
for node classification. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
xkljKdGe4E.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. GNN+: Can classic GNNs be strong baselines for
graph-level tasks? In International Conference on Machine Learning (ICML), 2025. URL
https://arxiv.org/abs/2502.09263.

Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul Grasman, and Eric-Jan Wagenmakers. A
tutorial on fisher information, 2017. URL https://arxiv.org/abs/1705.01064.

Bochen Lyu and Zhanxing Zhu. Implicit bias of (stochastic) gradient descent for rank-1 linear neural
network. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=PjBEUTVzoe.

Negin Majidi, Ehsan Amid, Hossein Talebi, and Manfred K. Warmuth. Exponentiated gradient
reweighting for robust training under label noise and beyond. ArXiv, abs/2104.01493, 2021. URL
https://api.semanticscholar.org/CorpusID:233024829.

James Martens. New insights and perspectives on the natural gradient method. J. Mach. Learn.
Res., 21:146:1–146:76, 2014. URL https://api.semanticscholar.org/CorpusID:
10284405.

Geoffrey J. McLachlan and Thriyambakam Krishnan. The em algorithm and extensions. 1996. URL
https://api.semanticscholar.org/CorpusID:122530182.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks, 2022. URL https://arxiv.org/abs/2007.02901.

14

https://api.semanticscholar.org/CorpusID:257404948
https://openreview.net/forum?id=k4KHXS6_zOV
https://openreview.net/forum?id=xkljKdGe4E
https://openreview.net/forum?id=xkljKdGe4E
https://arxiv.org/abs/2502.09263
https://arxiv.org/abs/1705.01064
https://openreview.net/forum?id=PjBEUTVzoe
https://api.semanticscholar.org/CorpusID:233024829
https://api.semanticscholar.org/CorpusID:10284405
https://api.semanticscholar.org/CorpusID:10284405
https://api.semanticscholar.org/CorpusID:122530182
https://arxiv.org/abs/2007.02901

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Alexander Mielke and Jia-Jie Zhu. Hellinger-kantorovich gradient flows: Global exponential decay
of entropy functionals. 2025. URL https://api.semanticscholar.org/CorpusID:
275932494.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse con-
nectivity inspired by network science. Nature Communications, 9(1), jun 2018. doi: 10.1038/
s41467-018-04316-3. URL https://doi.org/10.1038%2Fs41467-018-04316-3.

Sree Harsha Nelaturu, Advait Gadhikar, and Rebekka Burkholz. TurboPrune: High-Speed Distributed
Lottery Ticket Training. URL https://github.com/nelaturuharsha/TurboPrune.

Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239, January
2014. ISSN 2167-3888. doi: 10.1561/2400000003. URL https://doi.org/10.1561/
2400000003.

Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that learn
fast and generalize well without training data. In International Conference on Machine Learning,
pp. 8432–8442. PMLR, 2021.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=vvi7KqHQiA.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating com-
pressed/decompressed training of deep neural networks, 2021.

Hoang Pham, The-Anh Ta, Shiwei Liu, Lichuan Xiang, Dung D. Le, Hongkai Wen, and Long
Tran-Thanh. Towards data-agnostic pruning at initialization: What makes a good sparse mask?
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=xdOoCWCYaY.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tJbbQfw-5wv.

Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert,
and Christopher Morris. Probabilistically rewired message-passing neural networks. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Tj6Wcx7gVk.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2020.

Tyrrel R Rockafellar and Werner Fenchel. Convex Analysis. 1970. URL https://api.
semanticscholar.org/CorpusID:198120397.

Grant M. Rotskoff, Samy Jelassi, Joan Bruna, and Eric Vanden-Eijnden. Global convergence
of neuron birth-death dynamics. ArXiv, abs/1902.01843, 2019. URL https://api.
semanticscholar.org/CorpusID:59604449.

Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. GNNs getting comfy: Community
and feature similarity guided rewiring. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=g6v09VxgFw.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification,
2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation, 2019. URL https://arxiv.org/abs/1811.05868.

15

https://api.semanticscholar.org/CorpusID:275932494
https://api.semanticscholar.org/CorpusID:275932494
https://doi.org/10.1038%2Fs41467-018-04316-3
https://github.com/nelaturuharsha/TurboPrune
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://openreview.net/forum?id=vvi7KqHQiA
https://openreview.net/forum?id=xdOoCWCYaY
https://openreview.net/forum?id=xdOoCWCYaY
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=Tj6Wcx7gVk
https://openreview.net/forum?id=Tj6Wcx7gVk
https://api.semanticscholar.org/CorpusID:198120397
https://api.semanticscholar.org/CorpusID:198120397
https://api.semanticscholar.org/CorpusID:59604449
https://api.semanticscholar.org/CorpusID:59604449
https://openreview.net/forum?id=g6v09VxgFw
https://arxiv.org/abs/1811.05868

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio
Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas Möllenhoff.
Variational learning is effective for large deep networks. In International Conference on Machine
Learning (ICML), 2024. URL https://arxiv.org/abs/2402.17641.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent maximizes
generalized margin and can be implemented efficiently. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=0SVOleKNRAU.

Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information
Processing Systems, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Nisheeth K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021.

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Jacob Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pp. 3635–3673. PMLR, 09–12
Jul 2020. URL https://proceedings.mlr.press/v125/woodworth20a.html.

Fan Wu and Patrick Rebeschini. Implicit regularization in matrix sensing via mirror descent. In
Neural Information Processing Systems, 2021. URL https://api.semanticscholar.
org/CorpusID:235248126.

Yuling Yan, Kaizheng Wang, and Philippe Rigollet. Learning gaussian mixtures using the
wasserstein–fisher–rao gradient flow. The Annals of Statistics, 2024. URL https://api.
semanticscholar.org/CorpusID:273139387.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Liu Ziyin and Zihao Wang. spred: Solving l1 penalty with sgd. In International Conference
on Machine Learning, 2022. URL https://api.semanticscholar.org/CorpusID:
259075663.

16

https://arxiv.org/abs/2402.17641
https://openreview.net/forum?id=0SVOleKNRAU
https://proceedings.mlr.press/v125/woodworth20a.html
https://api.semanticscholar.org/CorpusID:235248126
https://api.semanticscholar.org/CorpusID:235248126
https://api.semanticscholar.org/CorpusID:273139387
https://api.semanticscholar.org/CorpusID:273139387
https://api.semanticscholar.org/CorpusID:259075663
https://api.semanticscholar.org/CorpusID:259075663

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A OPTIMIZATION DEFINITIONS AND RESULTS

In this section we recall some basic definitions from convex and non-convex optimization.

Definition A.1 (L−smooth) A differentiable function f : Rn → R is said to be L-smooth if its
gradient is Lipschitz continuous with constant L > 0. That is, for all θ, ξ ∈ Rn,

∥∇f(θ)−∇f(ξ)∥ ≤ L∥θ − ξ∥,

or equivalently,

f(ξ) ≤ f(θ) + ⟨∇f(θ), ξ − θ⟩+ L

2
∥ξ − θ∥2.

or equivalently,
1

2
∥∇f(θ)∥2 ≤ L (f(θ)− f∗) ,

where f∗ = minθ∈Rn f(θ).

Definition A.2 (PL-inequality) A differentiable function f : Rn → R satisfies the PL inequality with
parameter Λ > 0 if for all θ ∈ Rn,

1

2
∥∇f(θ)∥2 ≥ Λ (f(θ)− f∗) ,

where f∗ = minθ∈Rn f(θ).

Definition A.3 (Legendre function Definition 3.8 ((Li et al., 2022))) Let R : Rd → R ∪ {∞} be a
differentiable convex function. We say R is a Legendre function when the following holds:

• R is strictly convex on int(domR).

• For any sequence {θi}∞i=1 going to the boundary of domR, limi→∞ ||∇R(θi)||2L2
= ∞.

In order to recover the convergence result in Theorem 4.14 in (Li et al., 2022) the function R also
needs to be a Bregman function, which we define in Definition A.4. First, let us denote with DR

denote the Bregman divergence with respect to the generator function R:

DR(θ1,θ2) := R(θ1)−R(θ2)− ⟨∇R(θ2),θ1 − θ2⟩

for θ1,θ2 ∈ dom R.

Definition A.4 (Bregman function Definition 4.1 (Alvarez et al., 2004)) A function R is called a
Bregman function if it satisfies the following properties:

• domR is closed. R is strictly convex and continuous on domR. R is C1 on int(domR)).

• For any θ ∈ domR and γ ∈ R, {ξ ∈ domR|DR(θ, ξ) ≤ γ} is bounded.

• For any θ ∈ domR and sequence {θi}∞i=1 ⊂ int(domR) such that limi→∞ θi = θ, it
holds that limi→∞ DR(θ,θi) → 0.

Theorem A.5 (Theorem 4.7 Alvarez et al. (2004)) If R is a Legendre function with domR = Rn,
then if the domain of the convex conjugate domR∗ = Rn implies that R is a Bregman function

From now on let R be a Bregman function A.4. Consider the Riemannian gradient flow:

dθt = −∇2R−1(θt)∇f(θt)dt, θ0 = θinit.

This covers all settings considered in the main text: gradient descent, m⊙w and HAM as shown in
Lemma B.4.

Theorem A.6 (Theorem 4.14 (Li et al., 2022)) Assume that R is a Bregman function and that f is
quasi-convex, ∇f is locally Lipschitz and argmin{f(θ)|θ ∈ Rn} is non-empty. Then as t → ∞, θt
converges to some critical point θ∗. Moreover, if f is convex θt converges to a minimizer of f .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem A.7 (Theorem A.3 (Jacobs & Burkholz, 2025)) Consider the same setting as Theorem A.6.
Assume R satisfies for all θ ∈ Rn,

zT
(
∇2R(θ)

)−1
z ≥ σ||z||2L2

∀z ∈ Rn. (5)

Furthermore, assume f satisfies the PL-inequality (A.2). Then θt converges to a minimizer of f .
Furthermore, the loss converges linearly with rate σΛ.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B PROOFS OF THEORETICAL STATEMENTS

Here we provide detailed proofs of the main statements in the paper. The theorems correspondence
is:

• The proof of Theorem 3.1 is in B.1.

• The proof of Theorem 4.2 is in B.3.

• The proof of Lemma 4.4 is in B.4.

• The proof of Theorem 4.6 is in B.5.

Theorem B.1 (Theorem 3.1) If m0 = sign(θ0)w0 =
√
|θ0|, then

θk+1 = θk exp (−η (2 sign(θk)∇f(θk) + 4β)) (6)

is equivalent to Eq. (1) up-to first order Taylor approximation.

First we use the Taylor approximation of the exponential function exp z ≃ 1 + z +O(z2) to get the
update:

θk+1 ≃ θk − 2η|θk|∇f(θk)− 4ηβθk +O(η2).

We show this is equivalent up to first order to the gradient descent of the overparameterization:

θk+1 = mk+1 ⊙wk+1 ≃ θk − η
(
m2

k +w2
k

)
∇f(θk)− 4ηβθk.

To do so, we show that m2
k + w2

k = 2|θk| for all k ∈ [T] up to zeroth-order approximation by
induction. For k = 0, the statement holds per assumption on the initialization. The induction step is:

m2
k+1 +w2

k+1 = m2
k +w2

k − 4θkη∇f(θk)− 4ηβθk + η2
(
m2

k +w2
k

)
∇f(θk)

2 ≃ 2|θk|+O(η).

This concludes the induction and the proof. □

Corollary B.2 Exponential gradient descent can not move through zero, preventing sign flips.

Proof. The operation exp(·) is always non-negative. Therefore multiplying with it will always keep
the same sign since the sign operator is pointwise distributive:

sign(θk+1) = sign(θk) exp (−η (2 sign(θk)∇f(θk) + 4β)))

= sign(θk)sign (exp (−η (2 sign(θk)∇f(θk) + 4β)))

= sign(θk).

Note we use L−smoothness and sufficient small learning rate to ensure bounded gradient preventing
∇f(θk) → ∞. If the gradient explodes we still can only end up in zero leading to sign(θk+1) = 0
so also no sign flip in that case. □

Theorem B.3 (Theorem 4.2) The gradient flow (η → 0) of Eqs. (GD;HYP) is given by:

dθt = −∇f(θt)dt− |θt| (α∇f(θt) + sign(θt)β) dt, θ0 = θinit.

Writing out the computation of iterates θk give us:

θk = θ0 exp

k−1∑
j=0

−ηα sign(θj)∇f(θj)− ηβ

−
k−1∑
j=0

η∇f(θj) exp

−
k−1∑
l=j

ηα sign(θl)∇f(θl)− ηβ

.

This allows use to take η → 0 and get an integral equation for the dynamics:

θt = θ0 exp

(
−
∫ t

0

α sign(θs)∇f(θs) + βds

)
−
∫ t

0

∇f(θs) exp

(
−
∫ t

s

α sign(θc)∇f(θc) + βdc

)
ds.

(7)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Differentiating the first term under the Leibniz rule gives:

d

dt
θ0 exp

(
−
∫ t

0

α sign(θs)∇f(θs) + βds

)
=

θ0 exp

(
−
∫ t

0

α sign(θs)∇f(θs)− βds

)
(−α sign(θt)∇f(θt) + β)

Next, differentiate the second term under the Leibniz rule:

d

dt

(
−
∫ t

0

∇f(θs) exp

(
−
∫ t

s

α sign(θc)∇f(θc) + βdc

)
ds

)
=

−∇f(θt)−
∫ t

0

d

dt
∇f(θs) exp

(
−
∫ t

s

α sign(θc)∇f(θc) + βdc

)
ds =

−∇f(θt)dt−
∫ t

0

∇f(θs) exp

(
−
∫ t

s

α sign(θc)∇f(θc) + βdc

)
ds (−α sign(θt)∇f(θt)− β)

Combining gives by noticing the form of θt:

dθt = −∇f(θt)dt− θt (α sign(θt)∇f(θt) + β) dt

= −∇f(θt)dt− |θt| (α∇f(θt) + sign(θt)β) dt

□

Lemma B.4 (Lemma 4.4) The Bregman function Rα for α > 0 is given by:

Rα(θ) =
∑
i

(α |θi|+ 1) ln (α |θi|+ 1)− α |θi|
α2

− θi
sign(θi,0)

α
log(1 + α|θi,0|)

Proof.

We first construct the mirror map Rα by using the corresponding Hessian gHAM . Next we check that
Rα is a Bregman function. The Hessian of the mirror map Rα(θ) is:

∇2Rα(θ) =
1

1 + α|θ|
Moreover we need ∇Rα(θ0) = 0. Therefore by integrating twice, Rα for α > 0 is given by:

Rα(θ) =
∑
i

(α |θi|+ 1) ln (α |θi|+ 1)− α |θi|
α2

− θ
sign(θi,0)

α
log(1 + α|θi,0|)

It remains to be checked if Rα is Bregman. For this we use a relationship between Legendre and
Bregman functions. We first show that Rα is Legendre and its convex conjugate as well. Then it
follows from Theorem A.5 that Rα is Bregman for α > 0.

Note that we have domRα = int(domRα) = Rn. Rα is strictly convex as for all θ ∈ Rn the
Hessian is positive definite. This shows the first statement. Next, since Rα is separable we can show
the second statement for each parameter separately. Take a sequence {θi,j}∞i=1 for coordinate j ∈ [n]
such that |θi,j | → ∞ then by construction of Rα we have

lim
i→∞

∂jRα(θi,j)
2 = ∞

as | · | and log(·) are increasing functions. Therefore Rα is Legendre.

The convex conjugate gradient dom∇R∗
α = (range∇Rα)

−1 = Rn. Therefore since Rn =
dom∇R∗

α ⊂ domR∗
α we can apply Theorem A.5. This concludes the result. □

Theorem B.5 (Theorem 4.6) Let θ0 = 0, then Rα ∼ ||θ||2L2
if α → 0 and Rα ∼ ||θ||L1

if α → ∞,
where ∼ indicates proportionality i.e. there exists some positive functions h1 : R → R and h2 : R →
R in the neighborhood of the limiting point such that for all θ ∈ Rn, limα→0 h1(α)Rα(θ) = ||θ||2L2

and limα→∞ h2(α)Rα(θ) = ||θ||L1 .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. The first statement follows from the Taylor approximation:

Rα ≃
∑
i

θ2i +
1

α
|θi| −

1

α
|θi| ≃ ||θ||2L2

which is valid if |θi| << 1
α so h1(α) = 1.

For large α > 0 we have that Rα ≃
∑

i
|θi|
α log(α|θi|). Therefore, we have

α

log(α)
Rα(θ) ≃

∑
i

|θi| = ||θ||L1
,

so h2 = α
log(α) , which is positive α > 1. This concludes the proof. □

The proof of Theorem B.5 follows similar steps as that of Woodworth et al. (2020).

Sign discrepancy In our implemented HAM algorithm (HYP*) we use sign(θk+ 1
2
) instead of

sign(θk) from the derived step (HYP). We now argue why this does not change the implications of
our theory, as their gradient flows are equivalent. We show in Thm. B.6 that, in continuous time, the
iterates (GD;HYP*) follow a jump process. For this jump process, the jump vanishes in the flow
setting, leading to no discrepancy between using either version. In discrete time, however, this may
not be the case. We provide an explanation for the effect in discrete time in Appendix D. The main
implication of the flow being the same is that at the end of training the implicit bias is the same, as
the end corresponds to smaller learning rates.

Theorem B.6 Initialize θinit ̸= 0. Then the gradient flow of HAM i.e. Eqs. (GD;HYP*) (η → 0) is
given by:

dθ̃t = −∇f(θ̃t)dt− |θ̃t|
(
α∇f(θ̃t) + sign(θ̃t)β

)
dt θ̃0 = θinit. (8)

Proof. The statement follows from making the observation: Sign flips can only occur near zero;
further away the processes are equivalent.

Let θ̃t denote the resulting process with η → 0 and θt the signed gradient flow. θ̃t does not have to
be gradient flow as it can have discontinuous jumps due to the sign inconsistency. We can write the
update as follows:

θ̃k = θ̃0 exp

k−1∑
j=0

−ηα sign(θ̃j)∇f(θ̃j)− ηβ − ηα
(
sign(θ̃j+ 1

2
)− sign(θ̃j)

)
∇f(θ̃j)

−

k−1∑
j=0

η∇f(θj) exp

−
k−1∑
l=j

ηα sign(θl)∇f(θl)− ηβ − ηα
(
sign(θ̃j+ 1

2
)− sign(θ̃j)

)
∇f(θ̃j)

.

Then the discrepancy
(
sign(θ̃j+ 1

2
)− sign(θ̃j)

)
between the signs becomes a δ : Rn → Rn function

i.e.

δ(θ) =


0 if θi ̸= 0

2 if θi = 0+

−2 if θi = 0−
, for i ∈ [n]

The process for θ̃t with η → 0 can be written as

θt = θ0 exp

(
−
∫ t

0

α sign(θs)∇f(θs) + β − αδ(θ̃s)∇f(θ̃s)ds

)
−
∫ t

0

∇f(θs) exp

(
−
∫ t

s

α sign(θc)∇f(θc) + β − αδ(θ̃c)∇f(θ̃c)dc

)
ds.

Differentiating under the Leibniz rule gives:

dθ̃t = −∇f(θ̃t)dt− |θ̃t|
(
α∇f(θ̃t) + sign(θ̃t)β + αδ∇f(θ̃t)

)
dt θ̃0 = θ̃init.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where δ : Rn → Rn is a delta function for every coordinate. Therefore, the jumps vanish as they are
multiplied with |θ̃| we have that

dθ̃t = −∇f(θ̃t)dt− |θ̃t|
(
α∇f(θ̃t) + sign(θ̃t)β

)
dt θ̃0 = θ̃init.

which is equivalent to the gradient flow of Theorem B.3. □

B.1 THE EFFECT OF NON-ZERO β

The convergence and implicit bias results Thms 4.3 and 4.5 focus on the case β = 0. In the follow,
we discuss general the case of β ≥ 0. First, the flow takes the general form:

dθt = −g−1
t (θt)∇f(θt)dt− βθtdt, θ0 = θinit. (9)

We have for m⊙w that g−1
t,m⊙w(θt) =

√
θ2
t + γ2

t and for HAM we have g−1
HAM (θt) = 1+α|θt| in

line with Table 2. For β > 0, we can define the on-manifold-regularization. This quantity determines
the corresponding explicit regularization.

Definition B.7 For a time varying Riemannian gradient flow with off manifold weight decay Eq. (9),
the on-manifold-regularization is given by

Mt(θ) :=
∑
i∈[n]

∫ θi

gt,i(zi)zidzi

where gt,i is the i-th component of the seperable metric tensor.

Using Definition B.7, we can compute Mt in both cases. This gives

Mt,m⊙w(θ) =
∑
i∈[n]

√
θ2i + γ2

t,i and MHAM(θ) =
∑
i∈[n]

α |θi| − ln (|α |θi|+ 1|)
α2

. (10)

Knowing this, we can adapt the convergence result. As both on-manifold-regularizations are convex,
we converge to the minimizer of the objective function f + βM , assuming that there exists an M
such that Mt → M for t → ∞. Note that, for m⊙w, we have that Mt → || · ||L1

for t → ∞. This
matches the LASSO optimization objective derived in spred (Ziyin & Wang, 2022). Additionally for
HAM, we have that αMHAM → || · ||L1

for α → ∞, indicating that we induce less sparsity, as we
rescale with α. Concretely, for a fixed β and large α, we approximately solve the LASSO objective
with regularization coefficient β/α. Note that for large α, the explicit regularization strength decays
while the implicit regularization gets closer to L1.

Furthermore, to obtain the implicit bias result, we use the mirror flow formulation. We know from
(Jacobs & Burkholz, 2025) that m⊙w corresponds to a time-varying mirror flow for which we need
β → 0 to recover optimality. In contrast, for HAM we get the following mirror flow:

d∇Rα(θt) = −
(
∇f(θt) + β

θt
1 + α|θt|

)
dt, θ0 = θinit.

This follows from the new objective function f + βMHAM. To fulfill the optimality condition in the
implicit bias result for linear regression, we would need to show that the mirror flow is in the span of
ZT to satisfy the KKT condition. This can only be guaranteed when the regularization is turned off.
Therefore, similarly to m⊙w, we would need to turn-off the regularization at the end of training to
obtain optimality.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C FISHER INFORMATION DERIVATIONS

Our algorithm can be interpreted through the lens of natural gradient descent (Amari, 1999; Martens,
2014). Each optimizer step corresponds to a natural gradient update θk+1 = θk − ηg−1(θk)∇f(θk),
with g is now the Fisher information. The key insight is that parameters follow a known parameterized
distribution that is learned by the optimizer. For gradient descent, gGD(θ) = 1, which corresponds
to a normally distributed random variable θ with unit variance and learnable mean; i.e., θ = E[X].
Thus we can interpret θ as the mean of a normal distribution whose position is learned.

In contrast, the hyperbolic step (HYP) on its own corresponds to gHYP(θ) := 1/|θ|, which directly
follows from the first order approximation of the exponential function. Similarly, we can match
a random variables Fisher information to the metric gHYP(θ). It corresponds to a random variable
X parameterized as a normal distribution with unit variance: N (2

√
|θ|, I). In this view, weights

are recovered via θ = 1
4 sign(θ)E[X]2, by using E[X] = 2

√
|θ|. This means that we learn the

magnitude of the expected position. Furthermore, if the sign is not correct, the hyperbolic step
(HYP) will move the parameter exponentially fast towards zero, facilitating its sign flip. We provide
derivations in next paragraph. To summarize, our combined update can be interpreted as follows:

Learn the position (GD), and then the magnitude if the sign is correct; else move fast to zero (HYP).

This mechanism is crucial to facilitate sparse training (Gadhikar & Burkholz, 2024a; Gadhikar et al.,
2025), as portrayed in our experiments (§ 5), where HAM considerably boosts its performance.

Derivations of the Fisher information We provide here the Fisher information I := g calculations
for one dimensional random variables N (θ, 1) and N (

√
|θ|, 1). The Fisher information is defined as

see for example Definition 1.1 in (Ly et al., 2017):

I(θ) = EX

[(
∂

∂θ
log f(X; θ)

)2
]

(11)

where f is the probability density function of the random variable X and E is the expectation with
respect to the random variable.

Let X ∼ N (θ, 1), where θ ∈ R is the mean parameter. The likelihood function is:

f(X; θ) =
1√
2π

exp

(
−1

2
(X − θ)2

)
Taking the natural logarithm:

ℓ(θ) = log f(X; θ) = −1

2
log(2π)− 1

2
(X − θ)2

The score function is:
dℓ

dθ
= (X − θ)

Then the Fisher Information is given by:

IGD(θ) = E

[(
dℓ

dθ

)2
]
= E[(X − θ)2] = Var(X) = 1

Let X ∼ N (2
√
|θ|, 1). The likelihood function is:

f(X; θ) =
1√
2π

exp

(
−1

2
(X − 2

√
|θ|)2

)
The log-likelihood function is:

ℓ(θ) = −1

2
log(2π)− 1

2
(X − 2

√
|θ|)2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Differentiate to get the score function:

dℓ

dθ
= (X − 2

√
|θ|) ·

(
− sign(θ)√

|θ|

)
= −sign(θ)

X − 2
√
θ√

θ

Now square the score and take the expectation:

IHYP(θ) = E

[(
dℓ

dθ

)2
]
= E

(X − 2
√
|θ|√

|θ|

)2
 =

1

|θ|
E[(X − 2

√
|θ|)2] = 1

|θ|
V ar(X) =

1

|θ|

Note that instead of being part of the exponential family of distributions this distribution is part of the
curved exponential family distributions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D DIFFERENT SIGNS IN THE EXPONENTIAL UPDATE

In this section, we show that using the updated signs sign(θt+ 1
2
) in the hyperbolic step (HYP) instead

of the original ones sign(θt) is actually beneficial for performance. The main difference occurs when
a sign flip takes place due to the gradient step (that is, sign(θt+ 1

2
) ̸= sign(θt)), which can lead to

a discrepancy in discrete time. Then, updating the sign leads to an acceleration away from zero,
as the gradient ∇f(θt) does not change and still points in the same direction. This further aids in
preventing parameters getting stuck at zero, apart from the benefits of the hyperbolic step on its own.
We present the different cases in Figure 3.

GD step
Sign flip?

sign(θk+ 1
2
)

?
= sign(θk)

Different
sign(θk+ 1

2
) ̸= sign(θk)

(at start of training)
Sign used in HYP

Accelerate away from 0

Decelerate

Same
sign(θk+ 1

2
) = sign(θk)

(at end of training)
Same implicit bias (Thm. B.6)

yes

new sign(θk+ 1
2
)

old sign(θk)

no

Figure 3: The difference between using sign(θk+ 1
2
) and sign(θk) in HYP. The main change we

incur by using the new sign is that it accelerates away from zero when a sign flip occurs. Thus, when
parameters are small, we can be more certain that they are actually redundant. Furthermore, when
sign flips become less frequent due to decreasing learning rate at the end of training, we get the same
implicit bias regardless, as shown in Theorem B.6.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E ONE-NEURON TOY EXAMPLE SIGN FLIPS

We show with a similar arguments as in (Gadhikar et al., 2025) that HAM allows for sign flips in a
one neuron toy example. For this argument we similarly set β = 0 and we have to use a layerwise
different α. In the same vein we argue that in presence of more overparameterization using the same
α constant is fine. This is also empirically substantiated by observing more sign flips with HAM.

One dimensional neuron Consider a Gaussian i.i.d. data set zi ∼ N (0, 1) with i ∈ [d]. Let
f : R× R → R be our objective function described by:

f(a,w) =
1

2d

d∑
i=1

(yi − aσ(wzi))
2

where σ(·) = max{0, ·} is the Rectified Linear Unit (ReLU). We want to learn a target one dimen-
sional neuron ãσ(w̃·), which generates the outputs yi for i ∈ [d]. Then gradient flow dynamics for
HAM is described by:{

dat = − (α1|at|+ 1) ∂af(at, wt)dt, a0 = ainit

dwt = − (α2|wt|+ 1) ∂w1f(at, wt)dt, w0 = winit.
(12)

Note that standard gradient flow would get stuck at zero, as it has to satisfy a balance equation in
Lemma E.1, which is based on Theorem 2.1 in (Gadhikar et al., 2025). The balance equation implies
that if a20 − w2

0 = C, then for all t ≥ 0 we have that a2t − w2
t = C (In our case: C = 0). In order

that the student with parameters (a,w) learn the ground truth, the parameters have to be able to sign
flip when they don’t match the ground truth’s sign. This can be divided into four cases, i.e. the total
amount of sign cases. In the balanced setting for gradient flow, the ground truth is recoverable only if
the parameter signs align. Results of these four cases are shown in Figure 4.

✓✗

✗ ✗

Sparse
w

a
✓✗

✗ ✓

Dense
w

a
✓✓

✗ ✗

Sparse
+ Sign-In
w

a
✓✓

✓ ✓

Dense
+ Sign-In
w

a

Figure 4: (Figure 2 from Gadhikar et al. (2025)), showing sign flipping benefits achieved with
pointwise overparameterization m ⊙ w, for the sparse and dense case on a single-hidden neuron
model.

Lemma E.1 Let g̃(a,w) = ãσ(w̃·) with w̃ > 0 be the teacher and f be the student network objective
such that a and w follow the gradient flow dynamics in Eq. (12) with a random balanced parameter
initialization. For α1 = α2 = 0 (standard gradient flow) the student only can learn one of four cases
i.e. when winit > 0 and sign(ainit) = sign(ã).

Proof. If winit is negative then it needs to flip its sign which is prevented by the ReLU activation. We
know from the balance equation that for t ≥ 0:

|at| = |wt|.
This implies that if at = 0 then wt = 0 implying we can also not recover the case where sign(ainit) ̸=
sign(ã). □

We now show that Eq. (12) can find the ground truth, even if the sign of a is misaligned, similarly as
in (Gadhikar et al., 2025) for the m⊙ w reparameterization.

Theorem E.2 Let g̃(a,w) = ãσ(w̃·) with w̃ > 0 be the teacher and f be the student network
objective such that a and w follow the gradient flow dynamics in Eq. (12) with a random balanced
parameter initialization. Moreover, let α1 > α2 > 0. If winit > 0, then f can learn the correct
target with probability 1−

(
1
2

)d
. In the other case (winit ≤ 0) learning fails.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proof. The proof idea is to show that for a balanced initialization with winit > 0 the flow for t > 0
always enters the open set

Γ0 := {(a,w) ∈ R2 : a < −w,w > 0}.
Furthermore, we show that the flow stays in the open set Γ0. The system is a Riemannian gradient
flow which implies that the flow converges towards a stationary point in Γ0. It remains to be shown
that the stationary point at the origin is a saddle and the stable manifold of the origin is not in Γ0.
Thus, the remaining stationary points are the global optimizers.

First we show that for balanced initializations |ainit| = winit > 0 enter the region Γ0, which
can be divided into two cases. In case ainit = winit > 0, we have (ainit, winit) ∈ Γ0. In case
−ainit = winit > 0, we have that (ainit, winit) ∈ Γ̄0 \ Γ0 i.e. the boundary of Γ0. Therefore, we
need to show the gradient field at (ainit, winit) points into Γ0.

The balanced initialization implies that

∂af(ainit, winit) = −∂wf(ainit, winit).

Moreover, since ã > 0, ∂af(ainit, winit) > 0. Using that α1 > α2 > 0 we have that the gradient
field satisfies:

dainit = − (α1|ainit|+ 1) ∂af(ainit, winit)dt

= (α1|winit|+ 1) ∂wf(ainit, winit)dt

< (α2|winit|+ 1) ∂wf(ainit, winit)dt = −dwinit

Therefore there is a t0 > 0 such that at0 < −wt0 < 0. Thus there is a t0 > 0 such that (at0 , wt0) ∈
Γ0.

We have entered the set Γ0, we have to show that we cannot leave the set Γ0. This can be shown by
computing the gradient field at the boundaries. The boundary can be split up into three cases:

• B1 := {(a,w) ∈ R2 : −a = w > 0}
• B2 := {(a,w) ∈ R2 : w = 0, a > 0}
• The origin {(0, 0)}

The first case of B1 is covered by the balanced initialization. For the second case of B2 we can
compute the gradient field again. We now only need that dwt > 0. We linearize dwt:

dwt = Catdt > 0,

where C = 1
d

∑d
i=1 max{0, zi}2 > 0 with probability 1 −

(
1
2

)d
. The last case is the saddle point

at the origin which we show is not possible to be reached from the open set Γ0. Thus for all
(ainit, winit) ∈ Γ0 we have that for all t ≥ 0, (at, wt) ∈ Γ0 or limt→∞(at, wt) = (0, 0).

In the case that w > 0 the flow can be written as a dynamical system on a Riemannian manifold.
This allows us to guarantee convergence to a stationary point. The flow is given by{

dat = −C (α1|at|+ 1)
(
atw

2
t − wt

)
dt a0 = ainit

dwt = −C (α|wt|+ 1)
(
a2twt − at

)
dt w0 = winit,

where C = 1
d

∑d
i=1 max{0, zi}2 > 0 with probability 1 −

(
1
2

)d
. This dynamical system has

stationary points at the origin and the set aw = 1. The dynamical system is a Riemannian gradient
flow system therefore the flow converges to a stationary point. The stationary point at the origin
is a saddle point. Therefore, the only way of getting stuck at the origin is when we initialize on
the associated stable manifold. We show that this not possible for the balanced initialization. We
calculate the linearization of the stable manifold and use that the balanced initialization stays in Γ0.
The linearization at the origin (0, 0) is given by{

dat = Cwtdt

dwt = Catdt.

By a direct calculation of the eigen vectors the linearization of the stable manifold is given by the
vector (−1, 1). This is the exact boundary of Γ0, for which we showed that for finite winit and ainit

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

we enter Γ0. Suppose that from Γ0 the stable manifold is reachable. Then there is a continuous
differentiable curve γt with initialization γ0 = (ainit, winit) ∈ Γ0 such that limt→∞ γt = (0, 0).
This is not possible as it violates the gradient field at the boundaries of Γ0. Thus, the flow does
not converge to the stationary point at the origin. This concludes the first part, since the only set of
stationary points are the set of global optima.

The other two remaining cases fail as the boundary at w = 0 is not differentiable and the gradient
flow stops there. □

Theorem E.2 highlights a benefit of HAM over gradient flow. A key difference with the proof in
(Gadhikar et al., 2025) is that now the stable manifold is exactly the boundary at Γ0. Therefore, we
are relying on the non-linearity of the model to push us into the open set Γ0. A similarity between the
proofs is that we rely on α1 > α2 > 0. In the next part we argue that for multidimensional inputs
this is not necessary and we can use a single constant α.

Multidimensional neuron We can consider the gradient field at a balanced initialization for a
multidimensional input case. Then we have the following inequality:

(α|ainit|+ 1) = (α||winit||L2 + 1) ≥ 1√
n
(α||winit||L1

+ 1) ≥ 1

n

n∑
i=1

(α|win,i|+ 1) (13)

where we used the relation between the L1 and L2 norm. Note that now there is a significant gap
due to switching between

√
n and n. This inequality ensures that at initialization the gradient field is

pointing in a similar direction as for the one dimensional case, promoting useful sign flips (Gadhikar
et al., 2025).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F ILLUSTRATION OF VANISHING INVERSE METRIC

We track the average inverse metric coefficient at θ = 0. This implies for HAM we get g−1(0) = 1
by definition of its inverse metric. For m ⊙w we get g−1(0) = m2 −w2. We track the average
during training in the first layer of a ResNet50 trained on Imagenet. We consider 4 scenarios: HAM,
Sign-In for 90% sparsity according to (Gadhikar et al., 2025), dense training m⊙w with and without
weight decay. The weight decay selected for m ⊙ w is set to 2e − 5, which is less than half of
the strength it would be in case of dense training. Note that in both cases a Frobenius decay i.e.
||m⊙w||2L2

is applied in accordance with (Jacobs & Burkholz, 2025).

In Figure 5 we observe that the inverse metrics of m ⊙w decays severely when weight decay is
applied. For the reparameterization, weight decay is needed to induce sparsity, so in order to use
it for sparsity it needs to be used. Furthermore, note that even though Sign-In manually resets the
rescaling at the start of training the metric decays at the end of training.

0 25 50 75 100
Interval

0.0

0.2

0.4

0.6

0.8

1.0

g
1 (

0)

HAM
Sign-In, 90%
m w
m w + wd

Figure 5: The first layer of a Resnet50’s average inverse metric at zero reported at every tenth epoch.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

100 101 102 103

Steps

10 1

100

||x
x

* |
| L2 GD

HAM
HAM signed

Figure 6: Gradient flow simulation of HAM, HAM with corrected sign and gradient descent. Observe
the slight benefit of using sign(θk+ 1

2
) instead of sign(θk).

G EXPERIMENTAL DETAILS

We present the additional hyper parameters and other details of the experimental setup. Furthermore
we provide ablations on various setups. In general HAM is applied to all layers except the batchnorm
or layernorm layers.

G.1 OVERPARAMETERIZED LINEAR REGRESSION

We illustrate Theorem 4.5 by considering a under-determined linear regression setup, similar to that
of Pesme et al. (2021); Jacobs & Burkholz (2025). We consider a sparse groundtruth θ∗ and initialize
at θ0 = 0. Moreover, we use the mean squared error loss function. We generate data by sampling
zi ∼ N (0, I) i.i.d. for i ∈ [d], with d = 40 and n = 100. We compare gradient descent with
and without HAM. Moreover we also show what happens if we replace sign(θk+ 1

2
) with sign(θk)

denoted with HAM signed. The learning rate is set η = 10−4, and both algorithms are run for 10e+6
steps. We track the distance to the ground truth during training. In Figure 6 we observe that HAM
gets closer to the ground truth and converges faster then both gradient descent and HAM signed,
where we set α = 1000. This corresponds to a less strong sparse implicit bias than L1.

In the same setting, we illustrate why we need both steps (GD;HYP*). We do this with an ablation,
i.e., by using the hyperbolic step (HYP*) and gradient descent (GD) on their own. We initialize
ϵ = −10e − 5 · 1. This means we initialize with the opposite signs compared with the ground
truth. In Figure 7, we observe that HAM reaches close to the ground truth, while the exponential
step diverges, as it can not reach the ground truth due to having no sparse implicit bias. Moreover,
gradient descent can also not reach the ground truth on its own. Therefore, both the hyperbolic and
the gradient steps are necessary.

Furthermore, if we increase α and decrease the learning rate η, we can recover the ground truth
solution. Concretely, consider HAM with the following configurations (α, η) = (103+j , 10−4−j) for
j ∈ [3]. In Figure 8, we observe that we get closer to the ground truth.

G.2 DENSE AND SPARSE TRAINING ON VISION TASKS AND ABLATION

We provide additional results on CIFAR100 (Krizhevsky et al., 2009) in Table 7. Furthermore, we
train a small DeiT (Touvron et al., 2021) with AdamW in Table 8. All results are for 3 seeds. We
provide the hyperparameter grid search for CIFAR 100 and Imagenet (Deng et al., 2009) in Figures
11 and 12. We find that the grid search is consistent i.e. there is a global best configuration. This
implies it is easy to tune for specific tasks. We illustrate the convergence and implicit bias behaviour
by tracking the training loss and L1 norm in Figure 9. We also track the L1 norm when comparing
with SAM to show that SAM and HAM exploit different principles in Figure 10. The additional
hyper-parameters of the experiments can be found in Table 5. The same parameters are used for the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

100 101 102 103 104

Steps

10 4

10 2

100

102

||x
x

* |
| L2

GD
HAM
Hyp

Figure 7: HAM vs hyperbolic step (HYP*) under the incorrect sign initializations.

100 101 102 103

Steps

10 5

10 4

10 3

10 2

10 1

100

||x
x

* |
| L2

 = 1000
 = 10000
 = 100000
 = 1000000

Figure 8: Gradient flow simulation of HAM with corrected sign for different α. Larger α leads to
closer ground truth recovery.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 25 50 75 100
Epochs

2

3

4

5
Tr

ai
n

Lo
ss

0 25 50 75 100
Epochs

200000

300000

400000

500000

L1
 n

or
m

Baseline
= 200, = 0
= 0, = 1e 3
= 200, = 1e 3

Figure 9: Training dynamics of HAM compared to the baseline for a ResNet 50 on Imagenet. Observe
in the first figure (left) that the average training loss converges faster with higher α given the same β.
This illustrates the convergence speed up predicted by our developed theory. Moreover, in the second
figure (right) the average L1 norm decays more due the regularization constant β, whereas larger α
leads to a larger initial increase in the average L1 norm it decays faster in the end. This is in line with
being more uncertain about the sign of the weights in the beginning of training.

sparse training setup. To reproduce sparse training methods including AC/DC, RiGL and STR we use
hyperparameters prescribed by the authors. Each experiment was run on 4 A100 GPUS. The code
used is based on TurboPrune as in (Nelaturu et al.).

Parameters for m⊙w The m⊙w parameterization is not regularized with weight decay for the
dense scenario, as this induces sparsity. Instead, weight decay is applied on the product ||m⊙w||2L2

with strength 5e− 5, the same strength as for dense training (Gadhikar et al., 2025).

HAM optimization To optimize with HAM for dense and sparse training setups on vision tasks,
we use α = 200 and β = 1e− 3 based on our grid search in Figure 12. Additionally, we clamp the
exponent in the HAM step (see Equation HYP*) between [−5, 5] to avoid exploding gradients. Note,
in all experiments, (HYP*) is not applied to BatchNorm or LayerNorm layers.

Table 5: Training Details for the dense vision experiments presented in the paper.
Dataset Model LR Weight Decay Epochs Batch Size Optim LR Schedule
CIFAR100 ResNet18 0.2 1e− 4 150 512 SGD, m = 0.9, SAM Triangular

ImageNet ResNet50 0.25 5e− 5 100, 200 1024 SGD, m = 0.9, SAM Triangular
DeIT Small 0.005 1e− 1 300 1024 AdamW Triangular

Table 6: HAM improves dense training of a ResNet50 on Imagenet (Deng et al., 2009).
Dataset Baseline (no HAM) α = 0, β = 1e− 3 α = 200, β = 0 α = 200, β = 1e− 3

HAM, 100 epchs 76.72± 0.19 77.01± 0.14 76.72± 0.07 77.51± 0.11
HAM, 200 epchs 77.27± 0.13 77.48± 0.09 77.24± 0.09 77.86± 0.05
SAM-HAM, 100 epchs 77.10± 0.21 77.53± 0.16 77.21± 0.09 77.92± 0.15
SAM-HAM, 200 epchs 77.94± 0.16 78.17± 0.16 77.60± 0.03 78.56± 0.12

Table 7: Dense training with HAM on the CIFAR100 vision benchmarks.
Dataset Baseline α = 0, β = 16e− 3 α = 200, β = 0 α = 200, β = 16e− 3

HAM 75.25± 0.24 75.36± 0.04 75.31± 0.30 76.12± 0.27
SAM-HAM 75.12± 0.68 76.30± 0.11 75.25± 0.20 76.65± 0.23

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0 50 100
Epochs

200000

300000

400000

500000

L1
 n

or
m

Baseline
= 200, = 0
= 0, = 1e 3
= 200, = 1e 3

Baseline, SAM
= 200, = 0, SAM
= 0, = 1e 3, SAM
= 200, = 1e 3, SAM

Figure 10: Training dynamics of HAM with and without SAM for a ResNet50 on Imagenet. Observe
that the choice of our hyperparameters α and β determine the general trend of the average L1 norm
while the choice between SGD and SAM make less of a difference. This provides additional evidence
for their complementary working.

0 10 100 200 500 1000

0
1e

-3
1e

-2
16

e-
3

32
e-

3
1e

-1

74.96 75.13 75.43 75.09 74.29 73.44

75.35 75.23 75.60 75.50 75.01 73.83

75.46 75.91 75.52 75.72 75.13 75.21

75.41 75.98 75.97 76.30 76.10 74.74

75.74 75.78 76.37 75.75 75.92 74.55

73.58 73.57 73.38 73.72 73.77 72.02

73

74

75

76

A
cc

ur
ac

y

Figure 11: One seed hyperparameter search for a ResNet18 on CIFAR100.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 100 200 300

0
1e

-4
1e

-3
1e

-2

76.61 77.02 76.89 76.47

76.86 77.16 77.00 76.86

77.03 77.34 77.57 77.52

74.68 74.90 74.49 74.65 75

76

77

Figure 12: One seed hyperparameter search for a Resnet 50 on Imagenet.

G.3 HAM FOR VISION TRANSFORMERS

We also verify that HAM can boost pre-training performance for ViTs trained with AdamW, for both
dense training as well as sparse training with AC/DC as shown in Table 8 and Table 9 respectively.
We use the same hyperparameters as for the ResNet-50 trained on Imagenet: (α, β) = (200, 1e− 3).

Table 8: Pre-training a vision transformer from scratch for 300 epochs on ImageNet.
Setup AdamW + HAM AdamW

ImageNet+ DeiT Small 72.62±0.22 72.31±0.09

Table 9: Sparse pre-training of a vision transformer with AC/DC for 300 epochs on ImageNet at 50%
sparsity.

Setup AC/DC + HAM AC/DC

ImageNet+ DeiT Small 73.24±0.45 72.5±0.16

G.4 TRAINING WITH HAM AND DIFFERENT SPARSE MASKS.

HAM can be used to optimize sparse networks with different mask topologies. We train the nonzero
weights of sparse mask topologies identified by different sparse methods including AC/DC, RiGL,
STR and PaI masks. The weights are randomly initialized and optimized with HAM. Note, this is
equivalent to pruning at initialization with the mask obtained from the listed methods. We see a
consistent improvement across all topologies with HAM except the SNIP mask, which was unstable
to train also without HAM. HAM performs best for sparse masks identified by RiGL and random
pruning, potentially due to better trainability and good layerwise sparsity ratios identified by these
methods, which influences performance when the mask does not change during training. Results are
provided in Table 10.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 10: HAM with different masks for a ResNet50 trained on ImageNet with 90% sparsity and
random initialization. (∗ denotes a single run, as the runs for other seeds crashed.)

Mask Init

Base Sign-In HAM

AC/DC 70.66±0.12 70.96±0.09 71.84±0.17

RiGL 72.02±0.23 72.48±0.19 73.31±0.01

STR 68.36±0.17 67.81±0.34 68.75±0.16

Snip 52.9∗ 54.27∗ 44.48±0.57

Synflow 60.66±0.2 60.59±0.07 62.4±0.03

Random 71.56±0.03 72.19±0.18 72.72±0.03

G.5 FINETUNING LLMS

As we show, HAM can also boost the performance of LLM finetuning. We evaluate on the common-
sense reasoning benchmark (Hu et al., 2023) to finetune LlaMA 3.2 models (Grattafiori et al., 2024)
and report accuracies across eight benchmarks in Table 11. On average, HAM improves on this task,
demonstrating its compatibility with the optimizer ADAM and the LoRA architecture.

Table 11: Performance of LoRA + HAM on the commonsense reasoning (Hu et al., 2023) benchmark.
LlaMa 3.2 Size HS WG PQ AE AC OB SQ BQ Avg

LoRA 1B 63.8 65.8 74.04 67.63 55.88 63.6 70.98 64.25 65.74
LoRA + HAM 1B 64.8 68.35 74.21 68.39 51.79 65.8 71.2 62.17 65.83

LoRA 3B 88.8 80.66 83.73 82.65 66.89 76.8 78.19 69.44 78.39
LoRA + HAM 3B 89.40 80.58 82.69 81.77 68.43 80.2 78.25 69.48 78.85

Experimental details Each experiment was run on 4 A100 GPUs. We use th experimental setup of
DoRA Liu et al. (2024) to finetune LlaMA 3.2 models of size 1B and 3B with α = 200, β = 1e−3 and
α = 100, β = 1e− 4 respectively. We find that larger models benefit from less strong regularization
which is consistent with our different regularization strengths β for ResNet18 and ResNet50.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G.6 GRAPH AND NODE CLASSIFICATION

We report the experimental details of the 4 graph classification benchmarks from Table 12. We also
include results on 13 node classification benchmarks, and an ablation on α < 0. Each experiment
was run on an A100. We consider 4 graph classification tasks on the GCN architecture (Kipf &
Welling, 2017) in Table 12, and 13 node classification tasks on GCN, GATv2 (Brody et al., 2022),
and GraphSAGE (Hamilton et al., 2017) in Tables 14, 15. We also include the hyperparameter grid
search, as well as an ablation on negative α. The success of negative values indicates that node
classification prefers a different type of implicit bias. Nonetheless, we see consistent improvements
across almost all datasets and architectures with α > 0.

Table 12: Evaluation of HAM on 4 graph classification benchmarks from OGB (Hu et al., 2020).
Dataset ogbg-ppa ogbg-molpcba ogbg-molhiv ogbg-code2

Metric Accuracy ↑ Avg. Precision ↑ AUROC ↑ F1 score ↑
GCN 75.48 ± 0.15 27.57 ± 0.04 82.37 ± 0.29 13.89 ± 2.11
GCN + HAM 75.72 ± 0.24 27.81 ± 0.22 82.50 ± 0.69 13.96 ± 2.06

G.6.1 GRAPH CLASSIFICATION

We report the performance of HAM on four graph classification datasets from Open Graph Benchmark
(OGB) (Hu et al., 2020). The code to run these benchmarks is based on (Luo et al., 2025), using their
choice of hyperparameters and ADAM as the optimizer. We use their GCN+ architecture, which
is a GCN equipped with edge features, normalization, dropout, residual connections, feed-forward
networks, and positional encodings. In order to implement HAM in combination with dropout, we
mask the regularization term β with (grad ̸= 0). We only apply HAM on the weights and biases
associated with the convolutional layers. The results, shown in Table 12, are averaged over 3 seeds.
We report the best validation metric for the best values of α and β for HAM, the selection of which is
displayed in Table 13. The tuning range is α ∈ {1, 10, 100, 200}, and β ∈ {0, 0.01, 0.1}. Table 13
also includes the size of the datasets in terms of number of graphs. Note that for three datasets, α is
the same as for the vision tasks.

Table 13: α and β best values for the graph classification tasks.
Dataset ogbg-ppa ogbg-molpcba ogbg-molhiv ogbg-code2

graphs 158,100 437,929 452,741 41,127

α 200 200 200 1
β 0.1 0.1 0.1 0.01

G.6.2 NODE CLASSIFICATION

We furthermore report the performance of HAM on thirteen node classification datasets: Cora,
CiteSeer, and PubMed (Kipf & Welling, 2017), Wiki-CS (Mernyei & Cangea, 2022), Coauthor-CS,
Coauthor-Physics, Amazon-Computers, and Amazon-Photo (Shchur et al., 2019) (homophilic);
Amazon-Ratings, Squirrel, Chameleon, Minesweeper, and Roman-Empire (Platonov et al., 2023)
(heterophilic). We evaluate over GCN, GATv2, and GraphSAGE. We only apply HAM on the weights
and biases associated with the convolutional layers and on the attention parameters. The code to run
these benchmarks is based on (Luo et al., 2024), using their choice of hyperparameters and ADAM
as the optimizer. The results, shown in Tables 14 (homophilic) and 15 (heterophilic), are averaged
over different runs according to the original setup. We report the best validation accuracy for the best
values of α and β for HAM, the selection of which is displayed in Table 16. The tuning range is
α ∈ {1, 10, 100, 200}, and β ∈ {0, 0.01, 0.1}. The best value per architecture is in bold, and ties are
underlined. Tables 14 and 15 also include the size of the datasets in terms of number of nodes and
edges.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 14: Evaluation of HAM on 8 homophilic node classification benchmarks.
Dataset cora citeseer pubmed wikics coauthor-cs coauthor-physics amazon-computer amazon-photo

nodes 2,708 3,327 19,717 11,701 18,333 34,493 13,752 7,650
edges 5,278 4,522 44,324 216,123 81,894 247,962 245,861 119,081

GCN 81.32 ± 0.30 68.60 ± 0.94 77.96 ± 0.46 80.71 ± 0.29 95.32 ± 0.12 97.17 ± 0.01 83.47 ± 0.70 94.33 ± 0.61
GCN+HAM 81.44 ± 0.43 68.64 ± 0.97 78.16 ± 0.65 80.84 ± 0.27 95.32 ± 0.04 97.18 ± 0.02 83.93 ± 0.58 95.33 ± 0.23
GAT 81.24 ± 0.68 68.68 ± 0.30 79.00 ± 0.95 82.35 ± 0.39 95.33 ± 0.07 97.15 ± 0.01 83.67 ± 0.23 94.47 ± 0.31
GAT+HAM 81.56 ± 0.67 68.92 ± 0.27 79.08 ± 0.88 82.47 ± 0.38 95.33 ± 0.07 97.16 ± 0.01 84.40 ± 0.92 94.60 ± 0.69
SAGE 80.44 ± 1.03 67.44 ± 0.26 79.36 ± 0.67 81.72 ± 0.46 95.50 ± 0.08 97.01 ± 0.10 83.07 ± 0.90 95.33 ± 0.31
SAGE+HAM 80.60 ± 0.63 67.48 ± 0.18 79.96 ± 0.62 81.78 ± 0.41 95.58 ± 0.09 97.03 ± 0.08 83.60 ± 1.11 95.40 ± 0.40

Table 15: Evaluation of HAM on 5 heterophilic node classification benchmarks.
Dataset amazon-ratings squirrel chameleon minesweeper roman-empire

nodes 24,492 2,223 890 10,000 22,662
edges 93,050 46,998 8,854 39,402 32,927

GCN 53.23 ± 0.54 44.52 ± 1.12 46.12 ± 2.38 97.46 ± 0.24 90.96 ± 0.33
GCN+HAM 53.43 ± 0.44 44.55 ± 1.28 46.78 ± 2.22 97.78 ± 0.53 91.22 ± 0.40
GAT 55.47 ± 0.20 42.22 ± 1.73 45.84 ± 3.02 97.98 ± 0.21 90.58 ± 0.91
GAT+HAM 55.58 ± 0.47 43.17 ± 1.37 46.37 ± 3.32 98.37 ± 0.46 90.83 ± 0.89
SAGE 55.05 ± 0.50 40.91 ± 1.27 42.80 ± 2.90 97.02 ± 0.59 90.51 ± 0.33
SAGE+HAM 55.50 ± 0.55 40.85 ± 1.16 43.07 ± 2.84 97.77 ± 0.16 90.57 ± 0.44

Table 16: α and β best values for the node classification tasks.
GCN GAT SAGE

Dataset ↓ α β α β α β

cora 200 0.1 200 0.1 200 0.1
citeseer 1 0.01 10 0 200 0.01
pubmed 200 0.1 100 0 10 0.01
wikics 10 0.01 1 0.1 1 0.1
coauthor-cs 1 0.1 10 0.1 10 0.1
coauthor-physics 10 0 10 0.01 1 0
amazon-computer 10 0.01 10 0 200 0
amazon-photo 10 0.01 10 0 1 0.01
amazon-ratings 10 0.01 200 0.01 200 0
squirrel 10 0.01 200 0 200 0.1
chameleon 200 0 200 0 200 0.1
minesweeper 200 0.1 100 0.1 1 0.01
roman-empire 10 0.1 10 0.1 10 0.1

Node classification with α < 0 We perform an ablation on the node classification tasks by
assigning negative values to α, denoted as nHAM. Tables 17 (homophilic) and 18 (heterophilic) show
the results of this ablation, while Table 19 displays the optimal pair of (α < 0, β) hyperparameters.
Note that the baselines never perform better than HAM or nHAM. Surprisingly, heterophilic datasets
appear to be able to benefit more consistently from nHAM, especially for GCN and GraphSAGE.
In homophilic datasets and GATs, it still provides consistent but smaller improvements, or matches
the best performance of α > 0. This intriguing phenomenon requires further investigation, as it may
indicate the need for a different kind of implicit bias in certain graph-based architectures. Other
methods particularly effective in heterophilic settings, such as modifying the adjacency matrix (Qian
et al., 2024; Jamadandi et al., 2024; Rubio-Madrigal et al., 2025), may offer insight into these results.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 17: HAM (α>0) compared to nHAM (α<0) on 8 homophilic node classification benchmarks.
Dataset cora citeseer pubmed wikics coauthor-cs coauthor-physics amazon-computer amazon-photo

GCN 81.32 ± 0.30 68.60 ± 0.94 77.96 ± 0.46 80.71 ± 0.29 95.32 ± 0.12 97.17 ± 0.01 83.47 ± 0.70 94.33 ± 0.61
GCN+HAM 81.44 ± 0.43 68.64 ± 0.97 78.16 ± 0.65 80.84 ± 0.27 95.32 ± 0.04 97.18 ± 0.02 83.93 ± 0.58 95.33 ± 0.23
GCN+nHAM 81.44 ± 0.26 68.68 ± 0.99 78.08 ± 0.58 80.89 ± 0.30 95.34 ± 0.09 97.17 ± 0.00 84.20 ± 0.40 95.27 ± 0.50

GAT 81.24 ± 0.68 68.68 ± 0.30 79.00 ± 0.95 82.35 ± 0.39 95.33 ± 0.07 97.15 ± 0.01 83.67 ± 0.23 94.47 ± 0.31
GAT+HAM 81.56 ± 0.67 68.92 ± 0.27 79.08 ± 0.88 82.47 ± 0.38 95.33 ± 0.07 97.16 ± 0.01 84.40 ± 0.92 94.60 ± 0.69
GAT+nHAM 81.56 ± 0.43 68.92 ± 0.18 79.08 ± 0.88 82.45 ± 0.41 95.33 ± 0.07 97.16 ± 0.01 83.93 ± 0.31 94.80 ± 0.72
SAGE 80.44 ± 1.03 67.44 ± 0.26 79.36 ± 0.67 81.72 ± 0.46 95.50 ± 0.08 97.01 ± 0.10 83.07 ± 0.90 95.33 ± 0.31
SAGE+HAM 80.60 ± 0.63 67.48 ± 0.18 79.96 ± 0.62 81.78 ± 0.41 95.58 ± 0.09 97.03 ± 0.08 83.60 ± 1.11 95.40 ± 0.40
SAGE+nHAM 81.00 ± 0.35 67.48 ± 0.23 79.84 ± 0.93 81.82 ± 0.45 95.56 ± 0.12 97.02 ± 0.10 83.60 ± 1.04 95.67 ± 0.61

Table 18: HAM (α>0) compared to nHAM (α<0) on 5 heterophilic node classification benchmarks.
Dataset amazon-ratings squirrel chameleon minesweeper roman-empire

GCN 53.23 ± 0.54 44.52 ± 1.12 46.12 ± 2.38 97.46 ± 0.24 90.96 ± 0.33
GCN+HAM 53.43 ± 0.44 44.55 ± 1.28 46.78 ± 2.22 97.78 ± 0.53 91.22 ± 0.40
GCN+nHAM 53.43 ± 0.25 44.58 ± 1.09 46.78 ± 1.85 97.85 ± 0.10 91.23 ± 0.36
GAT 55.47 ± 0.20 42.22 ± 1.73 45.84 ± 3.02 97.98 ± 0.21 90.58 ± 0.91
GAT+HAM 55.58 ± 0.47 43.17 ± 1.37 46.37 ± 3.32 98.37 ± 0.46 90.83 ± 0.89
GAT+nHAM 55.76 ± 0.55 42.84 ± 1.25 46.23 ± 2.91 98.53 ± 0.25 90.74 ± 0.82

SAGE 55.05 ± 0.50 40.91 ± 1.27 42.80 ± 2.90 97.02 ± 0.59 90.51 ± 0.33
SAGE+HAM 55.50 ± 0.55 40.85 ± 1.16 43.07 ± 2.84 97.77 ± 0.16 90.57 ± 0.44
SAGE+nHAM 55.25 ± 1.00 41.11 ± 1.61 43.32 ± 2.92 97.81 ± 0.14 90.64 ± 0.56

Table 19: α and β best values for the node classification tasks with α < 0.
GCN GAT SAGE

Dataset ↓ α β α β α β

cora -10 0.01 -10 0 -200 0.01
citeseer -1 0.01 -10 0 -100 0
pubmed -100 0.01 -100 0 -1 0.1
wikics -100 0.1 -10 0.01 -10 0.01
coauthor-cs -10 0.01 -100 0.01 -100 0.01
coauthor-physics -1 0.1 -1 0.01 -100 0.1
amazon-computer -200 0 -1 0.01 -1 0.01
amazon-photo -200 0 -200 0 -1 0.01
amazon-ratings -10 0 -200 0.1 -1 0
squirrel -100 0 -200 0.01 -200 0.1
chameleon -200 0 -100 0 -200 0.1
minesweeper -100 0.1 -10 0.1 -200 0.1
roman-empire -200 0.1 -10 0.1 -1 0.1

38

	Introduction
	Related work
	Motivation and derivation of HAM
	Algorithm: Hyperbolic Aware Minimization (HAM)

	Theory: Gradient flow analysis
	Experiments
	Conclusion
	Optimization definitions and results
	Proofs of theoretical statements
	The effect of non-zero

	Fisher information derivations
	Different signs in the exponential update
	One-neuron toy example sign flips
	Illustration of vanishing inverse metric
	Experimental details
	Overparameterized linear regression
	Dense and sparse training on vision tasks and ablation
	HAM for Vision Transformers
	Training with HAM and different sparse masks.
	Finetuning LLMs
	Graph and node classification
	Graph classification
	Node classification

