

000 HYPERBOLIC AWARE MINIMIZATION: 001 002 IMPLICIT BIAS FOR SPARSITY 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Understanding the implicit bias of optimization algorithms is key to explaining
012 and improving the generalization of deep models. The hyperbolic implicit bias
013 induced by pointwise overparameterization promotes sparsity, but also yields a
014 small inverse Riemannian metric near zero, slowing down parameter movement and
015 impeding meaningful parameter sign flips. To overcome this obstacle, we propose
016 Hyperbolic Aware Minimization (HAM), which alternates a standard optimizer step
017 with a lightweight hyperbolic mirror step. The mirror step incurs less compute and
018 memory than pointwise overparameterization, reproduces its beneficial hyperbolic
019 geometry for feature learning, and mitigates the small-inverse-metric bottleneck.
020 Our characterization of the implicit bias in the context of underdetermined linear
021 regression provides insights into the mechanism how HAM consistently increases
022 performance—even in the case of dense training, as we demonstrate in experiments
023 with standard vision benchmarks. HAM is especially effective in combination with
024 different sparsification methods, advancing the state of the art.

025 1 INTRODUCTION

026 The success of modern deep learning relies on large amounts of overparameterization, which has
027 led to a computationally demanding trend to increase the size of models, and thus the number of
028 trainable parameters by orders of magnitude (Hoffmann et al., 2022; Kaplan et al., 2020). A common
029 explanation for this phenomenon are implicit biases that originate from a combination of the optimizer
030 and the overparameterization (Pesme et al., 2021; Gunasekar et al., 2017a; Woodworth et al., 2020),
031 which regularize the training dynamics and thus improve the generalization performance.

032 Training sparse models instead leads to suboptimal performance (Li et al., 2017; Frankle & Carbin,
033 2018). This fact has limited pruning at initialization (PaI) approaches (Tanaka et al., 2020; Lee et al.,
034 2019; Liu et al., 2021a) that aim to reduce the heavy computational and memory demands by masking
035 the network before training the remaining parameters. In contrast, state-of-the-art sparsification
036 methods utilize overparameterization in some capacity, as they either gradually prune parameters in
037 Dense-to-Sparse (DtS) training (Peste et al., 2021; Kuznedelev et al., 2024; Kusupati et al., 2020;
038 Jacobs & Burkholz, 2025; Kolb et al., 2025) or dynamically explore multiple sparse masks to find
039 high-performing sparse networks with Dynamic Sparse Training (DST) (Evci et al., 2020; Lasby
040 et al., 2023; Chen et al., 2021). Key observations regarding these algorithms are that a) mild sparsity
041 (which does not degrade performance relative to a dense baseline) (Jin et al., 2022) and b) longer
042 training with standard optimizers can improve generalization performance significantly. The latter
043 indicates that sparse models are difficult to train and take longer to converge (Kuznedelev et al., 2023).
044 Consequently, sparse training ideally leverages overparameterization to improve generalization.

045 A recent development to improve sparse training is the pointwise overparameterization proposed
046 in PILOt (Jacobs & Burkholz, 2025) and Sign-In (Gadhikar et al., 2025). All parameter weights
047 $\theta \in \mathbb{R}^n$ are replaced by a pointwise product of parameters $\mathbf{m} \odot \mathbf{w}$, with both $\mathbf{m}, \mathbf{w} \in \mathbb{R}^n$. This
048 changes the implicit bias of the optimization process and leads to substantial generalization benefits
049 for sparse training. In PILOt, a continuous sparsification method, the overparameterization is used to
050 jointly learn the mask \mathbf{m} . Meanwhile, the PaI method Sign-In uses it to increase the plasticity of
051 non-masked parameters and facilitate sign flips, which was shown to be a major obstacle in sparse
052 training (Gadhikar & Burkholz, 2024a). Both methods, PILOt and Sign-In, achieve state-of-the-art
053 results in their respective categories. However, on their own, they fall short of baseline methods of

	Implicit sparsity bias	Sign flips	No hard perturbations	No extra parameters
Dense training	✗	—	✓	✓
PILoT (Jacobs & Burkholz, 2025)	✓	✗	✓	✗
Sign-In (Gadhikar et al., 2025)	✓ (less strong)	✓	✗	✗
HAM (ours)	✓ (less strong)	✓	✓	✓

Table 1: HAM induces a **less strong implicit sparsity bias (moderating between L_2 and L_1)** and flips parameter signs more easily due to its inverse metric (see Fig. 1), which together lead to boosting sparse training without explicit overparameterization.

sparse training that **do not** utilize this form of overparameterization, such as AC/DC (Peste et al., 2021) and RiGL (Evci et al., 2020). To understand this gap, we investigate their training dynamics.

The dynamics of the overparameterization $\mathbf{m} \odot \mathbf{w}$ can be derived within the mirror flow (Li et al., 2022) or time-dependent mirror flow framework (Jacobs et al., 2025). It is associated with the hyperbolic mirror map (Woodworth et al., 2020) and, depending on initialization, learning rate, and regularization, it changes from an implicit L_2 (Dense) to L_1 (Sparse) bias during training. The mirror flow induced by $\mathbf{m} \odot \mathbf{w}$ can also be characterized by a Riemannian gradient flow with an associated metric (Li et al., 2022). Comparing these metrics highlights a problem: $\mathbf{m} \odot \mathbf{w}$ suffers from a small inverse metric $g^{-1}(\theta)$ near the origin, where g is a Riemannian metric tensor (Jacobs & Burkholz, 2025) (see Fig. 1 and Appendix F). As a consequence, parameters can get stuck at 0, preventing effective sign-flips. **Sign-In partially mitigates this issue by iteratively re-initializing \mathbf{m} and \mathbf{w} such that $\mathbf{m} \odot \mathbf{w}$ remains fixed.** We set $\gamma := (m^2 - w^2)^2 \gg 0$. However, the remedy is unstable and introduces a hard perturbation to the training dynamics, limiting its positive effects.

In this work, we propose to capture the essential structure of the two methods PILoT and Sign-In and thus the implicit bias of pointwise overparameterization $\mathbf{m} \odot \mathbf{w}$, which provably aids in finding generalizable sparse solutions. At the same time, we are able to avoid their drawbacks: their slow down near zero and their need for explicit overparameterization that negatively impacts memory and compute (see Table 1). We do this by deriving a plug-and-play hyperbolic optimization step, which we alternate with gradient descent or any other first-order optimizer. Our alternating method is called HAM: Hyperbolic Aware Minimization (§ 3, 3.1). HAM mitigates the small inverse metric problem of $\mathbf{m} \odot \mathbf{w}$ and keeps a similar but fully controllable implicit bias, as shown in § 4. We evaluate HAM on standard vision benchmarks and find that it consistently improves generalization, especially of sparse training (§ 5). Remarkably, HAM tends to enhance generalization complementary to sharpness aware minimization (SAM) (Foret et al., 2021), yet incurs only negligible computational overhead. These improvements can be explained by two major mechanisms: a) It accelerates training around 0, thus improving sign learning. This is facilitated by its geometry and a larger inverse metric. b) The implicit bias towards sparsity regularizes training **inducing a mild sparsity**. Both mechanisms boost generalization performance of sparsification techniques, such as AC/DC (Peste et al., 2021) and RiGL (Evci et al., 2020), and even of dense model training. In summary, our contributions are:

- We introduce HAM, a lightweight, plug-and-play **general purpose** optimization step that integrates with any optimizer at a negligible computational cost.
- We provide a theoretical analysis of HAM’s training dynamics using Riemannian gradient flow for linear regression (§ 4), characterizing its implicit bias and sign-flipping mechanism (Appendix E).

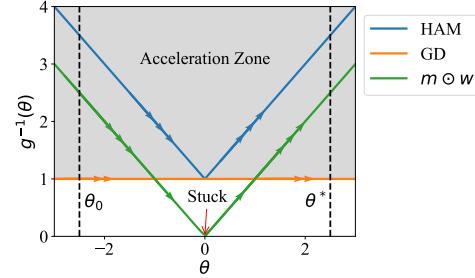


Figure 1: The inverse metric $g^{-1}(\theta)$ of HAM is above the one of gradient descent (GD), while the overparameterization $\mathbf{m} \odot \mathbf{w}$ is below **for small γ** . This enables moving from the initialization θ_0 to the optimum θ^* instead of getting stuck. Therefore, HAM fixes the vanishing inverse metric. Note the hyperbolic geometric structure of HAM and $\mathbf{m} \odot \mathbf{w}$ compared to the flatness of GD.

- 108 • HAM inherits the geometric benefits of recent sparsity parameterizations while mitigating their
109 vanishing inverse metric problem (see Figure 1 and Appendix F). **The benefits are a implicit sparsity
110 bias which facilitates a mild sparsity and complementary sign flips to those of dense training.**
- 111 • Empirically, HAM improves state-of-the-art sparsity methods (AC/DC, RiGL, STR), enhances
112 standard dense training, and is also compatible with optimizers like SAM.

114 2 RELATED WORK

116 **Sparsification** Sparse training methods can be categorized into three broad classes: Pruning at
117 Initialization (PaI), Dense-to-Sparse training (DtS), and Dynamic Sparse Training (DTS). PaI methods
118 identify a sparse mask at initialization and train the remaining parameters to convergence. They
119 include methods like SNIP (Lee et al., 2019), Synflow (Tanaka et al., 2020), NPB (Pham et al., 2023),
120 PHEW (Patil & Dovrolis, 2021), GraSP (Wang et al., 2020) and random pruning (Liu et al., 2021a;
121 Gadhikar et al., 2023). Their primary limitation is that standard optimizers do not find generalizable
122 solutions on these fixed masks, as they struggle to effectively learn parameter signs (Gadhikar &
123 Burkholz, 2024b; Gadhikar et al., 2025). In contrast, DtS methods learn the mask via a dense or denser
124 phase of training, followed by any kind of pruning step and possibly more training. This includes
125 iterative pruning methods like IMP (Frankle & Carbin, 2019), LRR (Renda et al., 2020; Han et al.,
126 2015), AC/DC (Peste et al., 2021), CAP (Kuznedelev et al., 2024), and WoodFisher (Singh & Alistarh,
127 2020). Continuous sparsification methods, which start from a dense network and gradually sparsify
128 it with a learnable mask, also fall under this category. They include PILoT (Jacobs & Burkholz,
129 2025), STR (Kusupati et al., 2020), CS (Savarese et al., 2021) and spred (Ziyin & Wang, 2022). The
130 third class of methods, Dynamic Sparse Training, start from an already sparse mask but dynamically
131 update it during training, and in this sense utilize a form of (dynamic) overparameterization (Liu
132 et al., 2021b). Examples include RiGL (Evci et al., 2020), MEST (Yuan et al., 2021), and SET
133 (Mocanu et al., 2018). While PaI methods cannot compete with the generalization performance
134 of DtS and DST methods, Sign-In (Gadhikar et al., 2025) improves on PaI by using the pointwise
135 overparameterization $\mathbf{m} \odot \mathbf{w}$, which leverages a hyperbolic mirror map to facilitate sign flips. In this
136 work, we propose instead a simpler, more powerful hyperbolic optimization step to leverage a similar
137 mirror map without doubling the number of parameters and solving an issue with an associated
138 inverse metric.

139 **Implicit bias and mirror flow** The implicit bias of neural networks is a well studied topic that
140 aims to explain the regularization benefits resulting from overparameterization (Woodworth et al.,
141 2020; Gunasekar et al., 2017b; 2018; Li et al., 2022). It is primarily characterized within the mirror
142 flow framework, a well-established concept in convex optimization (Alvarez et al., 2004; Beck &
143 Teboulle, 2003; Rockafellar & Fenchel, 1970; Boyd & Vandenberghe, 2009; Sun et al., 2022). A
144 mirror flow can be seen as a gradient flow on a Riemannian manifold (Li et al., 2022; Alvarez
145 et al., 2004) with the metric tensor being the Hessian of the Legendre function, which has also been
146 extended to cover stochastic gradient descent (SGD) (Pesme et al., 2021; Even et al., 2023; Lyu &
147 Zhu, 2023) and more recently to explicit regularization (Jacobs et al., 2025). This framework allows
148 us to characterize the implicit bias. The main observation is that large learning rates, stochastic noise
149 from SGD, and regularization can benefit generalization by implicitly inducing sparsity. However,
150 overparameterization can also lead to small inverse metrics, slowing down convergence and potentially
151 hampering generalization (Jacobs & Burkholz, 2025), which we can successfully avoid in HAM.

152 **Related optimizers** The mirror flow framework also enables us to view our algorithm HAM
153 through the lens of natural gradient descent. Accordingly, the inverse metric is adapted due to (an
154 approximation of) the Fisher information matrix, which captures second-order information (Martens,
155 2014; Amari, 1999). A more general Bayesian framework (Khan & Rue, 2021) has been used to
156 gain insights into invariant distributions by using Lie groups (Kıral et al., 2023) and to develop the
157 IVON optimizer (Shen et al., 2024). Within this framework, HAM, our proposal that alternates
158 exponential updates with gradient descent steps, can be interpreted as a mapping of the Fisher
159 information (metric) to a known posterior distribution, as derived in Appendix C. Moreover, our
160 proposed hyperbolic update is reminiscent of exponentiated gradient descent (Kivinen & Warmuth,
161 1994). Distinctly from HAM, it optimizes probability distributions and thus includes normalization
162 to stay on a probability simplex, as seen, for example, in Chapter 7 of Vishnoi (2021). Exponential
163 gradient descent, which has recently been applied to reweighting batches (Majidi et al., 2021) or

augmenting ADAM (Bernstein et al., 2020), also utilizes similar exponential updates but does not rely on an alternating scheme like HAM. This prevents it from facilitating more suitable sign flips than gradient descent. More advantages of HAM are analyzed in Appendix D and E.

Two-step and alternating schemes Various previous works have explored alternating training schemes including proximal methods, soft thresholding, ADMM, alternating least squares, and expectation maximization, among others (Parikh & Boyd, 2014; Boyd et al., 2011; Cichocki et al., 2009; McLachlan & Krishnan, 1996). The most related alternating algorithms to HAM are based on birth-death dynamics at a neuron level in two-layer neural network training (Rotskoff et al., 2019) or variational inference (Mielke & Zhu, 2025; Gladin et al., 2024; Yan et al., 2024). An important difference is that we work on a weight level while other approaches work on a neuron or distribution level and serve an entirely different purpose. Furthermore, one of the most well-known two-step approaches is sharpness aware minimization (SAM) (Foret et al., 2021), which promotes the search for flat solutions at the expense of almost doubling the compute of one optimization step. In contrast, HAM encourages an implicit sparsity bias and acceleration around 0, which are complementary mechanisms. Our experiments (Table 3) demonstrate that our proposed hyperbolic step can be effectively combined with SAM to further boost generalization.

3 MOTIVATION AND DERIVATION OF HAM

We derive our novel optimization step by building on insights from the implicit bias of recently developed sparse training methods. These methods have exploited a reparameterization of the neural network: They replace each weight θ with a product of two weights $\mathbf{m} \odot \mathbf{w}$, where \odot is the Hadamard product, i.e., a pointwise multiplication. For this reparameterization, it is known that stochastic noise and weight decay induce sparsity by an implicit L_1 penalty (Pesme et al., 2021; Jacobs & Burkholz, 2025). The next paragraphs restate the induced gradient flow of this reparameterization (where the learning rate $\eta \rightarrow 0$). Note that \mathbf{u}^2 abbreviates $\mathbf{u}^{\odot 2}$.

Gradient flow training Consider a continuously differentiable and L-smooth¹ loss function $f : \mathbb{R}^n \rightarrow \mathbb{R}$. It can be trained by means of gradient descent: $\theta_{k+1} = \theta_k - \eta \nabla f(\theta_k)$, initialized at $\theta_0 = \theta_{init}$, where $\eta > 0$ is the learning rate. Taking $\eta \rightarrow 0$, we obtain its gradient flow: $d\theta_t = -\nabla f(\theta_t)dt$. Its integral form is used in the mirror flow analysis and descriptions of the implicit bias: $\theta_t - \theta_0 = -\int_0^t \nabla f(\theta_s)ds$.

Reparameterized gradient flow Li et al. (2022) derive a similar formulation for the reparameterization $\mathbf{m} \odot \mathbf{w}$ trained with gradient descent, while [Theorem 2.1 in Jacobs & Burkholz \(2025\)](#) integrates weight decay with strength β in the analysis resulting of the following gradient flow:

$$\begin{cases} d\mathbf{m}_t = -\mathbf{w}_t \odot \nabla f(\theta_t)dt - 2\beta\mathbf{m}_tdt, & \mathbf{w}_0 = \mathbf{w}_{init}, \\ d\mathbf{w}_t = -\mathbf{m}_t \odot \nabla f(\theta_t)dt - 2\beta\mathbf{w}_tdt, & \mathbf{m}_0 = \mathbf{m}_{init}. \end{cases}$$

This corresponds to the integral equation for $\theta_t = \mathbf{m}_t \odot \mathbf{w}_t$:

$$\theta_t = \mathbf{u}_0^2 \odot \exp \left(-2 \int_0^t \nabla f(\theta_s)ds - 4\beta t \right) - \mathbf{v}_0^2 \odot \exp \left(2 \int_0^t \nabla f(\theta_s)ds - 4\beta t \right), \quad (1)$$

where $\mathbf{u}_0 := \frac{\mathbf{m}_0 + \mathbf{w}_0}{\sqrt{2}}$ and $\mathbf{v}_0 := \frac{\mathbf{m}_0 - \mathbf{w}_0}{\sqrt{2}}$ for $|\mathbf{w}_0| \leq \mathbf{m}_0$ are chosen such that $\mathbf{u}_0^2 - \mathbf{v}_0^2 = \theta_0$. $\beta > 0$ is the strength of weight decay. This results in a time varying Riemannian gradient flow for θ_t :

$$d\theta_t = \sqrt{\theta_t^2 + \gamma_t^2} \odot \nabla f(\theta_t)dt - 2\beta\theta_tdt, \quad \theta_0 = \theta_{init}, \quad (2)$$

where $\gamma_t = 4\mathbf{u}_0^2 \odot \mathbf{v}_0^2 \exp(-4\beta t)$. Eq. (2) implies that we cannot move through zero when $\gamma_t \rightarrow 0$.

Exponential gradient descent The hyperbolic gradient flow in Eq. (1) not only corresponds to the gradient flow of $\mathbf{m} \odot \mathbf{w}$, but also to exponential gradient descent. This is presented by Wu & Rebeschini (2021) for matrix forms in a matrix sensing task without regularization ($\beta = 0$). We use this connection to derive an update without the need for the reparameterization (or regularization). The update is captured by the following theorem:

¹See Definition A.1 in the appendix for a definition of L-smoothness.

216 **Theorem 3.1** If $m_0 = \text{sign}(\boldsymbol{\theta}_0)w_0 = \sqrt{|\boldsymbol{\theta}_0|}$, then

$$217 \quad 218 \quad \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k \exp(-\eta(2\text{sign}(\boldsymbol{\theta}_k)\nabla f(\boldsymbol{\theta}_k) + 4\beta)) \quad (3)$$

219 is equivalent to Eq. (1) up-to first order; i.e., the discretization error is $\mathcal{O}(\eta^2)$.

220 *Proof.* See proof of Theorem B.1 in the appendix. \square

222 Note that a more general update for a product of matrices is provided by Wu & Rebescini (2021).
 223 Their exponential update suffers from the same problem as the parameterization $\mathbf{m} \odot \mathbf{w}$, as it
 224 corresponds to $\gamma = \mathbf{0}$ and thus completely preventing sign flips (see Corollary B.2). Our proposal
 225 HAM overcomes this obstacle by alternating a gradient step with an exponential update step.

227 **Derivation of HAM** The novelty stems from alternating the new hyperbolic update in Eq. (3) with
 228 another optimizer. This forms the basis of our proposal HAM. We derive its explicit form for gradient
 229 descent as follows:

$$230 \quad \boldsymbol{\theta}_{k+\frac{1}{2}} = \boldsymbol{\theta}_k - \eta \nabla f(\boldsymbol{\theta}_k), \quad (\text{GD})$$

$$231 \quad \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_{k+\frac{1}{2}} \odot \exp(-\eta(\alpha \text{sign}(\boldsymbol{\theta}_k)\nabla f(\boldsymbol{\theta}_k) + \beta)). \quad (\text{HYP})$$

233 Note it is not necessary to use the same learning rate for gradient descent and for the exponential
 234 update. In fact, the learning rates control the strength of the implicit bias towards sparsity, for which
 235 we have introduced an additional hyperparameter $\alpha \in \mathbb{R}$. The exponential update now more closely
 236 resembles the hyperbolic gradient update in Eq. (1), as it can switch the sign in the exponential. § 4
 237 studies the resulting gradient flow.

238 **Interpretation** The exponential update (HYP) introduces a weight scaling which correspond to
 239 a metric $g(\boldsymbol{\theta}) = 1/|\boldsymbol{\theta}|$ for a Riemannian gradient flow, as we will see in §4. This changes how
 240 parameters evolve compared to standard gradient descent. When the sign of a parameter is correct, the
 241 update refines its magnitude. If the sign is incorrect, it drives the parameter exponentially fast toward
 242 zero. However, on its way to a sign flip, the parameter gets stuck in 0—because the parameter update
 243 is proportional to $\boldsymbol{\theta} = \mathbf{0}$ at the origin. To facilitate the sign flip, we need the intermediary gradient
 244 step (GD), which explains the advantages of HAM over pure exponential updates. In summary, our
 245 combined update can be interpreted as: *Learn the magnitude when the sign is correct; otherwise,
 246 move rapidly to zero to enable sign correction.* This mechanism is crucial for enabling sparse training
 247 (Gadhikar & Burkholz, 2024a; Gadhikar et al., 2025), as shown in our experiments (§ 5), where
 248 HAM significantly boosts performance compared to standard optimizers.

249 **Remark 3.2** Note that the second step (HYP) depends both on $\boldsymbol{\theta}_k$ and $\boldsymbol{\theta}_{k+\frac{1}{2}}$, which would require
 250 twice the memory of gradient descent. To avoid this, we replace $\text{sign}(\boldsymbol{\theta}_k)$ with $\text{sign}(\boldsymbol{\theta}_{k+\frac{1}{2}})$. We restate
 251 the second HAM step actually deployed (HYP*) in §3.1. It also has benefits for the optimization
 252 itself, promoting more stable sign flips, as we discuss in Appendix D and Figure 6. Building on recent
 253 work on sign flips (Gadhikar et al., 2025), we argue that the sign should be aligned with the gradient
 254 evaluation to assess whether the step should be accelerated or not, to promote meaningful sign flips.
 255 This insight is tightly linked to our choice of $\text{sign}(\boldsymbol{\theta}_{k+\frac{1}{2}})$ instead of $\text{sign}(\boldsymbol{\theta}_k)$ in the (HYP*) step.

257 3.1 ALGORITHM: HYPERBOLIC AWARE MINIMIZATION (HAM)

259 We propose HAM (Algorithm 1), which alternates between any standard optimizer step and a
 260 hyperbolic (signed) mirror map to improve the general trainability of neural networks. The proposed
 261 method is inspired by recent sparsification methods, as theoretically justified in § 4. We next state the
 262 main algorithmic innovations.

264 **Hyperbolic step** Let $\eta > 0$ denote the learning rate and $\alpha, \beta \geq 0$ be positive constants. The
 265 hyperbolic step deployed with parameters $\boldsymbol{\theta}_k \in \mathbb{R}^n$ is given by

$$266 \quad 267 \quad \boldsymbol{\theta}_k = \boldsymbol{\theta}_{k+\frac{1}{2}} \odot \exp\left(-\eta\left(\alpha \text{sign}(\boldsymbol{\theta}_{k+\frac{1}{2}})\nabla f(\boldsymbol{\theta}_k) + \beta\right)\right), \quad (\text{HYP}^*)$$

268 where $\boldsymbol{\theta}_{k+\frac{1}{2}}$ is the step of any other optimizer. α controls the convergence speed and hyperbolic
 269 awareness of the method, and β induces an explicit regularization similar to that of PILoT (Jacobs &

270 **Algorithm 1** HAM

271 **Require:** steps T , schedule η , initialization θ_{init} , constants $\alpha, \beta \geq 0$.
272 **for** $k \in 0 \dots T - 1$ **do**
273 $\theta_{k+\frac{1}{2}} = \text{OptimizerStep}(\nabla f(\theta_k), \eta)$
274 $\theta_{k+1} = \text{HyperbolicStep}(\theta_{k+\frac{1}{2}}, \nabla f(\theta_k), \alpha, \beta, \eta)$ according to formula (HYP*)
275 **end for**
276 **return** Model weights θ_T

279 Burkholz, 2025). Note that we have replaced $\text{sign}(\theta_k)$ with $\text{sign}(\theta_{k+\frac{1}{2}})$, as mentioned in Remark
280 3.2. Our analysis of implicit bias § 4 still remains valid with this change, as we show in Appendix
281 Theorem B.6.

283 **Memory and compute overhead** HAM does not incur any memory overhead, as it reuses the
284 known gradient and current signs of the weights. In contrast, the pointwise overparameterization
285 $m \odot w$ doubles the number of parameters, which would only be negligible in case of large batch sizes
286 —where activations dominate the memory requirements (Ziyin & Wang, 2022; Jacobs & Burkholz,
287 2025; Kolb et al., 2025). Moreover, the additional extra flops during training are negligible, as they
288 are linear in the number of parameters.

290 **4 THEORY: GRADIENT FLOW ANALYSIS**

292 Our theory (Eqs. (GD,HYP)) identifies the implicit bias of HAM’s Riemannian gradient flow in
293 parameter space (Thm. 4.2) and provides a convergence analysis (Thms. 4.3 and 4.5). Accordingly,
294 HAM solves the vanishing inverse metric problem of $m \odot w$, and thus converges faster, while
295 retaining the same asymptotic implicit sparsity bias. In this section, we assume that the objective
296 function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuously differentiable, i.e., $f \in C^1$, and L -smooth¹. Appendix E
297 proves that HAM also induces meaningful sign flips like $m \odot w$ (Gadhikar et al., 2025). **We focus**
298 **on the case $\beta = 0$ to simplify the exposition. Theorem 4.2 derives the flow for general β . The effects**
299 **of nonzero β are highlighted in Section B.1.**

300 **Riemannian gradient flows** In order to concisely study the behavior of HAM, we consider a
301 gradient flow formulation. Gradient flow (flat) and $m \odot w$ (hyperbolic) flow can be described as
302 Riemannian gradient flows depending on a general metric $g(\theta)$:

304
$$d\theta_t = -g^{-1}(\theta_t)\nabla f(\theta_t)dt, \quad \theta_0 = \theta_{init}.$$

305 We refer to the quantity $g^{-1}(\theta)$ as the inverse metric. It is trivial for gradient flow, since $g_{GD}^{-1}(\theta) = 1$.
306 For $m \odot w$, Jacobs & Burkholz (2025) have derived $g_{m \odot w}^{-1}(\theta) = \sqrt{\theta^2 + \gamma^2}$, where γ depends on
307 the initialization scale and can change due to noise and regularization. **In contrast, the inverse metric**
308 **of HAM is not changed by these factors.** To give an overview, the inverse metrics are also reported in
309 Table 2.

311 **The vanishing inverse metric problem** For small γ and
312 small weights θ , the inverse metric $\sqrt{\theta^2 + \gamma^2}$ of $m \odot w$
313 can get much smaller than 1 (see Figure 1). This implies
314 that learning close to 0 is slowed down, which makes
315 transitions through 0 (and sign flips of θ) much harder,
316 slowing down convergence.

317 Table 2: Inverse metrics of gradient de-
318 scent, the overparameterization $m \odot w$,
319 and HAM.

	GD	$m \odot w$	HAM
$g^{-1}(\theta)$	1	$\sqrt{\theta^2 + \gamma^2}$	$1 + \alpha \theta $

320 **Theorem 4.1** *If f is L -smooth (Definition A.1), satisfies
321 the PL-inequality (A.2) or is convex and $\arg \min\{f(\theta) : \theta \in \mathbb{R}^n\}$ is non-empty, then the iterates θ_t
322 converge to a minimizer of f for both metrics g_{GD} and $g_{m \odot w}$. Under the PL-inequality, the linear
323 convergence rates are respectively Λ and $\Lambda \min_i \gamma_i$, where $\Lambda > 0$ is the PL-inequality constant.*

324 *Proof.* We can apply Theorem A.3 in Jacobs & Burkholz (2025) (Thm. A.7 in the appendix) and
325 Theorem 4.14 in Li et al. (2022) (Thm. A.6 in the appendix). For the convergences rates it is sufficient
326 to bound the inverse metrics from below such that we have $g_{GD} \geq 1$ and $g_{m \odot w} \geq \min_i \gamma_i$. \square

324 **Riemannian gradient flow of HAM** In comparison, HAM speeds up learning around 0. To show
 325 this and characterize HAM’s dynamics, we derive its gradient flow from Eqs. (GD;HYP) by writing
 326 out the iterates in sum notation and taking the learning rate $\eta \rightarrow 0$.
 327

328 **Theorem 4.2** *The Riemannian gradient flow ($\eta \rightarrow 0$) of Eqs. (GD;HYP) is:*

$$329 \quad d\theta_t = -(1 + \alpha|\theta_t|) \odot \nabla f(\theta_t) dt - \beta \theta_t dt, \quad \theta_0 = \theta_{init}, \quad (4)$$

330 where $|\cdot|$ is applied pointwise. Moreover, if $\beta = 0$, the inverse metric is $g_{HAM}^{-1}(\theta) = 1 + \alpha|\theta|$.
 331

332 *Proof.* This follows from writing out the sum update and then taking the limit to get an integral
 333 equation. The gradient flow then follows from the Leibniz rule. See Theorem B.3 in the appendix. \square
 334

335 **Convergence of HAM** We analyze the inverse metric and convergence behavior of HAM when
 336 $\beta = 0$. In this case, the inverse metric is given by $g_{HAM}(\theta) = 1 + \alpha|\theta|$ (Table 2), indicating that
 337 HAM can converge faster than gradient descent depending on α and the magnitude of the weights.
 338 This stands in stark contrast with sparsification methods, where a decaying $\gamma \ll 1$ slows down
 339 movement. We formalize this behavior under the same conditions as Theorem 4.1:
 340

341 **Theorem 4.3** *Under the same setting as Theorem 4.1, the iterates of HAM in Eq. (GD;HYP) with
 342 $\beta = 0$, θ_t , converge to a minimizer of f . Moreover, the linear convergence rate is Λ under the
 343 PL-inequality.*

344 *Proof.* Similar as in Theorem 4.1 we again can lower bound $g_{HAM}^{-1} \geq 1$ for the convergence rate.
 345

346 This proves that HAM avoids the vanishing inverse metric problem from the pointwise overpara-
 347 meterization $\mathbf{m} \odot \mathbf{w}$, while keeping the geometric benefits as we will see next. [Furthermore, we discuss](#)
 348 [the case for \$\beta > 0\$ in §B.1](#).

349 **Implicit bias of HAM** We characterize the implicit bias of HAM by analyzing its associated
 350 Riemannian gradient flow. This confirms that HAM not only speeds up convergence [with respect](#)
 351 to $\mathbf{m} \odot \mathbf{w}$ and small γ , but also influences the nature of the solution. To show this, we compute
 352 the Bregman function R_α (see Definition A.4) such that its Hessian yields the required metric, i.e.,
 353 $g_{HAM} = \nabla^2 R_\alpha$.
 354

355 **Lemma 4.4** *The function R_α for $\alpha \in \mathbb{R}$ is given by*

$$356 \quad R_\alpha(\theta) = \sum_i \frac{(\alpha|\theta_i| + 1) \ln(\alpha|\theta_i| + 1) - \alpha|\theta_i|}{\alpha^2} - \theta_i \frac{\text{sign}(\theta_{i,0})}{\alpha} \log(1 + \alpha|\theta_{i,0}|).$$

357 If $\alpha > 0$, R_α is a Bregman function (Definition A.4).
 358

359 *Proof.* See Lemma B.4 in the appendix. \square

360 Concretely, we can use Lemma 4.4 to characterize the implicit bias for under-determined linear
 361 regression. Let $\{(\mathbf{z}_i, y_i)\}_{i=1}^d \subset \mathbb{R}^n \times \mathbb{R}$ be a dataset of size d . The output of a linear model θ on the i -
 362 th data is $\mathbf{z}_i^T \theta$. The goal therefore is to solve the regression for the target vector $\mathbf{y} = (y_1, y_2, \dots, y_d)^T$
 363 and input vector $\mathbf{Z} = (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_d)$.
 364

365 **Theorem 4.5** *Consider the same setting as Theorem 4.3 with $\beta = 0$. Then, if $f(\theta) := f(\mathbf{Z}^T \theta - \mathbf{y})$,
 366 the gradient flow of θ_t in Eq. (4) converges to the solution of the optimization problem: $\theta_\infty =$
 367 $\arg \min_{\mathbf{Z} \theta = \mathbf{y}} R_\alpha(\theta)$.*

368 *Proof.* Apply the mirror flow part of Theorem 4.17 (Li et al., 2022) for Bregman functions. \square

369 Theorem 4.5 provides an intuition about the type of solutions to which HAM converges. We are
 370 particularly interested in the shape of R_α when $\theta_0 = \mathbf{0}$ (to understand sign flips). Note that the
 371 gradient flow is well defined at θ_0 if $\beta = 0$.
 372

373 **Theorem 4.6** *Let $\theta_0 = \mathbf{0}$. Then, $R_\alpha \sim \|\theta\|_{L_2}^2$ if $\alpha \rightarrow 0$, and $R_\alpha \sim \|\theta\|_{L_1}$ if $\alpha \rightarrow \infty$, where \sim
 374 indicates proportionality, i.e., there exists some positive functions $h_1 : \mathbb{R} \rightarrow \mathbb{R}$ and $h_2 : \mathbb{R} \rightarrow \mathbb{R}$ in
 375 the neighborhood of the limiting point such that for all $\theta \in \mathbb{R}^n$, $\lim_{\alpha \rightarrow 0} h_1(\alpha)R_\alpha(\theta) = \|\theta\|_{L_2}^2$ and
 376 $\lim_{\alpha \rightarrow \infty} h_2(\alpha)R_\alpha(\theta) = \|\theta\|_{L_1}$.*

378 *Proof.* See proof of Theorem B.5 in the appendix. \square
 379

380 Theorem 4.6 is illustrated in Figure 2(b). R_α of HAM induces an implicit bias that interpolates
 381 between L_2 and L_1 , similarly to $\mathbf{m} \odot \mathbf{w}$ (Jacobs & Burkholz, 2025).

382 **Remark 4.7** *In the $\alpha \rightarrow \infty$ setting, HAM induces an L_1 bias. However, in practice, due to
 383 discretizations, this setting would require a much smaller learning rate to ensure convergence. This
 384 makes HAM less suited to fully induce sparsity on its own than the related sparsification methods.
 385 Therefore, HAM is best used in combination with other methods to find sparse solutions, acting as a
 386 guide for sparse geometry during training.*

388 Remark 4.7 emphasizes that HAM needs a substantially large α to induce sparsity on its own. This is
 389 in line with our takeaway from §3: Our hyperbolic step primarily contributes to learning the correct
 390 magnitude of a weight and promotes sign flips. This differs from $\mathbf{m} \odot \mathbf{w}$ overparameterization, where
 391 sparsity emerges due to the inherently small inverse metric.

392 **Remark 4.8** *In practice, we apply additional weight decay with strength $\beta > 0$. This promotes
 393 sparsity but does not change the inverse metric for HAM. In contrast, for $\mathbf{m} \odot \mathbf{w}$ it worsens the
 394 vanishing inverse metric problem (see Appendix F), as we learn from comparing gradient flows (Eq. 2
 395 and Eq. 4). HAM has the advantage that we can freely tune α for the right amount of implicit sparsity.
 396 For details on how $\beta > 0$ influences Thms 4.3 and 4.5 see §B.1.*

398 5 EXPERIMENTS

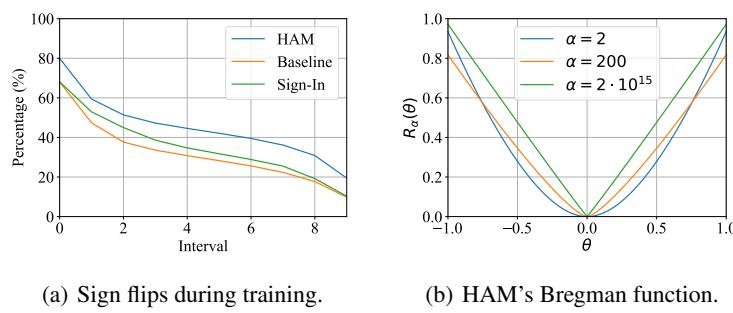
401 Our main goal is to highlight the versatility of our novel optimizer step, HAM, and verify our
 402 theoretical insights into its mechanisms. To this end, we compare HAM to two algorithms that
 403 explicitly utilize the parameterization $\mathbf{m} \odot \mathbf{w}$: a) PiLoT (Jacobs & Burkholz, 2025), a continuous
 404 sparsification method, and b) Sign-In (Gadhikar et al., 2025), an optimization approach designed
 405 to improve training sparse masks (especially in the context of PaI). Sign-In promotes sign flips
 406 complementary to dense training by rescaling γ to 1 in intervals, partially mitigating the vanishing
 407 inverse metric problem but inducing frequent perturbations to the optimization (see Appendix F).

408 HAM, due to its [implicit sparsity bias](#) (Theorem 4.7) and improve plasticity, is particularly compatible
 409 with sparse training methods, as we showcase in multiple scenarios. [We choose hyperparameters](#)
 410 (α, β) [based on a grid search for dense training](#) (see [Figure 11](#) and [Figure 12](#)). The chosen
 411 hyperparameters are transferred to all dense and sparse training methods. For ImageNet and Vision
 412 Transformers, we use $(\alpha, \beta) = (200, 1e-3)$ and for CIFAR100 $(\alpha, \beta) = (200, 16e-3)$.

413 HAM improves generalization in a way that is complementary to Sharpness Aware Minimization
 414 (SAM) (Foret et al., 2021). We also apply HAM to other tasks such as pre-training vision transformers,
 415 LLM fine-tuning and graph and node classification in Appendices G.3, G.5 and G.6. This demon-
 416 strates the general utility of HAM as an optimization principle. In addition, Appendix G.1 verifies
 417 the improved (sparse) implicit bias proven in Theorem 4.5 for underdetermined linear regression.

418 **Dense training** Table 3 demonstrates that HAM improves dense training for a ResNet50 on Image-
 419 Net (Deng et al., 2009). Moreover, HAM works complementary to Sharpness Aware Minimization
 420 (SAM) (Foret et al., 2021). Combining both algorithms (SAM-HAM) achieves the best overall per-
 421 formance. Table 3 further highlights that training HAM longer (using a similar compute budget as
 422 SAM, whose iterations are twice as expensive) achieves a similar improvement. Figure 10 tracks the
 423 total L_1 norm of the parameters during training to illustrate the complementary mechanisms of HAM
 424 and SAM. The same conclusions hold for similar experiments with the smaller vision benchmark
 425 CIFAR100 (Krizhevsky et al., 2009) (see Table 7). Furthermore, Table 8 showcases performance
 426 gains also for the transformer architecture DeiT (Touvron et al., 2021) trained on ImageNet with
 427 AdamW. A grid search for HAM’s hyperparameters α and β on ImageNet (Deng et al., 2009) and
 428 CIFAR100 (Krizhevsky et al., 2009) is visualized in Fig. 11 and 12. The best values [for \$\alpha\$ are](#) stable
 429 across different tasks, [while \$\beta\$ needs tuning similar to weight decay](#).

430 **Sparsification** We demonstrate that HAM improves state-of-the-art pruning methods AC/DC and
 431 RiGL, as well as random pruning at initialization with the same hyperparameter configuration used



(a) Sign flips during training.

(b) HAM's Bregman function.

Figure 2: Demonstration of HAM’s mechanisms. (a) The percentage of sign flips during training for Random PaI with sparsity level 90% trained for 100 epochs, where each interval correspond to ten epochs. HAM is able to consistently perform more sign flips than both the baseline and Sign-In. (b) Plot of the normalized Bregman function R_α , where increasing α leads to an L_1 shape.

Table 3: HAM improves dense training of a ResNet50 on ImageNet.

	100 epochs	200 epochs	+ SAM, 100 epochs	+ SAM, 200 epochs
Baseline	76.72 ± 0.19	77.27 ± 0.13	77.10 ± 0.21	77.94 ± 0.16
HAM	77.51 ± 0.11	77.86 ± 0.05	77.92 ± 0.15	78.56 ± 0.12

in dense training. Table 4 illustrates that dense-to-sparse training becomes significantly better with HAM. Improvements are most significant for AC/DC, which uses dense training phases effectively. We attribute this also to the fact that AC/DC turns on parameters indiscriminately, while RiGL does so based on gradient information. The improvements over PILoT and Sign-In show that we successfully extract the main beneficial mechanism of the hyperbolic geometry while mitigating the downsides.

Sign flip mechanism We show that HAM outperforms Sign-In (Gadhikar et al., 2025), which promotes sign flips complementary to dense training and tries to mitigate the vanishing inverse metric problem by repeated parameter rescaling. HAM still induces more sign flips than Sign-In and standard training, as demonstrated by Figure 2(a), which is in line with our theory (see Appendix E). Supporting this, we show in Appendix G.4 the improvement for training with various fixed masks.

Table 4: Dense-to-sparse training and pruning at initialization with HAM on ImageNet with ResNet50.

Pruning type	Method	$s = 0.8$	$s = 0.9$	$s = 0.95$
PaI	Random	$73.87(\pm 0.06)$	$71.56(\pm 0.03)$	$68.72(\pm 0.05)$
	Random + Sign-In	$74.12(\pm 0.09)$	$72.19(\pm 0.18)$	$69.38(\pm 0.1)$
	Random + HAM	$74.84(\pm 0.09)$	$72.72(\pm 0.03)$	$70.05(\pm 0.06)$
DtS	AC/DC	$75.83(\pm 0.02)$	$74.75(\pm 0.02)$	$72.59(\pm 0.11)$
	AC/DC + Sign-In	$75.9(\pm 0.14)$	$74.74(\pm 0.12)$	$72.88(\pm 0.13)$
	AC/DC + HAM	$77.2(\pm 0.14)$	$76.66(\pm 0.12)$	$75.45(\pm 0.13)$
DST	RiGL	$75.02(\pm 0.1)$	$73.7(\pm 0.2)$	$71.89(\pm 0.07)$
	RiGL + Sign-In	$75.02(\pm 0.1)$	$74.27(\pm 0.08)$	$73.07(\pm 0.17)$
	RiGL + HAM	$76.22(\pm 0.07)$	$74.83(\pm 0.08)$	$72.93(\pm 0.1)$
Cont. spars.	spred	72.64	71.84	69.47
	PILoT	75.62	74.73	71.3
	STR	$75.49(\pm 0.14)$	$72.4(\pm 0.11)$	$64.94(\pm 0.07)$
	STR + HAM	$76.37(\pm 0.18)$	$75.01(\pm 0.02)$	$71.41(\pm 0.1)$

486 6 CONCLUSION
487488 We propose a new hyperbolic update step that can be combined with any first-order optimizer and
489 that improves generalization of dense and sparse training, **making it suitable as a general purpose**
490 **optimizer**. Our algorithm HAM (Hyperbolic Aware Minimization) mitigates the vanishing inverse
491 metric of the pointwise overparameterization $\mathbf{m} \odot \mathbf{w}$ used in recent sparsification methods, while
492 inducing a similar implicit bias. Due to discretization, it is more suitable to control the strength and
493 shape of the bias—and accordingly improve generalization **in general**, especially for dense-to-sparse
494 training. The main mechanisms how HAM achieves this are an implicit bias towards sparsity and an
495 acceleration of learning that promotes parameter sign flips. It remains an interesting open question
496 if different mirror maps could create better task and optimizer-specific awareness. For example,
497 for some tasks one might want to take into account robustness; for the optimizer, it might be the
498 momentum or normalization. This could lead to more algorithmic advances to improve generalization
499 via implicit bias control and to new theory for understanding the success of deep learning algorithms.
500 In particular, optimizers with implicit biases that emulate the positive effects of other types of
501 overparameterization, without explicitly requiring huge models, may represent an important leap in
502 reducing the high computational costs associated with deep learning.
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY STATEMENT
541

542 For the theory, detailed proofs have been provided for the main statements in Appendix B and used
543 previously known statements have been provided in Appendix A. For the experiments, the details are
544 provided in Appendix G with each experiment having its own subsection with accompanied specifics.
545 The code use for the experiments is also attached.

546
547 LLM STATEMENT
548

549 To improve fluency of the text sentence level editing has been done using large language models.
550

551 REFERENCES
552

553 Felipe Alvarez, Jérôme Bolte, and Olivier Brahic. Hessian riemannian gradient flows in convex
554 programming. *SIAM Journal on Control and Optimization*, 43(2):477–501, January 2004. ISSN
555 1095-7138. doi: 10.1137/s0363012902419977. URL <http://dx.doi.org/10.1137/S0363012902419977>.

556 Shun-ichi Amari. Natural gradient works efficiently in learning. In *Unsupervised Learning: Foundations of Neural Computation*. The MIT Press, 05 1999. ISBN 9780262288033. doi:
557 10.7551/mitpress/7011.003.0010. URL <https://doi.org/10.7551/mitpress/7011.003.0010>.

558 Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
559 convex optimization. *Operations Research Letters*, 31(3):167–175, 2003. ISSN 0167-6377.
560 doi: [https://doi.org/10.1016/S0167-6377\(02\)00231-6](https://doi.org/10.1016/S0167-6377(02)00231-6). URL <https://www.sciencedirect.com/science/article/pii/S0167637702002316>.

561 Jeremy Bernstein, Jiawei Zhao, Markus Meister, Ming-Yu Liu, Anima Anandkumar, and
562 Yisong Yue. Learning compositional functions via multiplicative weight updates. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 13319–13330. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/9a32ef65c42085537062753ec435750f-Paper.pdf.

563 Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. 2009. URL <https://web.stanford.edu/~boyd/cvxbook/>.

564 Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
565 and statistical learning via the alternating direction method of multipliers. *Found. Trends Mach. Learn.*, 3:1–122, 2011. URL <https://api.semanticscholar.org/CorpusID:51789432>.

566 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=F72ximsx7C1>.

567 Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
568 in vision transformers: An end-to-end exploration. *Advances in Neural Information Processing Systems*, 34:19974–19988, 2021.

569 A. Cichocki, R. Zdunek, A.H. Phan, and S. Amari. *Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation*. Wiley, 2009.
570 ISBN 9780470747285. URL <https://books.google.de/books?id=KaxssMiWgswC>.

571 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
572 Image Database. In *CVPR09*, 2009.

573 Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
574 Making all tickets winners. In *International Conference on Machine Learning*, pp. 2943–2952.
575 PMLR, 2020.

594 Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s)gd over di-
 595 agonal linear networks: Implicit bias, large stepsizes and edge of stability. In A. Oh,
 596 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
 597 ral Information Processing Systems*, volume 36, pp. 29406–29448. Curran Associates, Inc.,
 598 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5da6ce80e97671b70c01a2e703b868b3-Paper-Conference.pdf.

600 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 601 for efficiently improving generalization. In *International Conference on Learning Representations*,
 602 2021. URL <https://openreview.net/forum?id=6Tm1mposlrM>.

603

604 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
 605 neural networks. *arXiv: Learning*, 2018. URL <https://api.semanticscholar.org/CorpusID:53388625>.

606

607 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 608 networks. In *International Conference on Learning Representations*, 2019.

609

610 Advait Gadhikar and Rebekka Burkholz. Masks, signs, and learning rate rewinding. In *Twelfth
 611 International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=qODvxQ8TXW>.

612

613 Advait Gadhikar, Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Sign-in to the lottery: Reparame-
 614 terizing sparse training. In *The Thirty-ninth Annual Conference on Neural Information Processing
 615 Systems*, 2025. URL <https://openreview.net/forum?id=iwKT7MEZZw>.

616

617 Advait Harshal Gadhikar and Rebekka Burkholz. Masks, signs, and learning rate rewinding. In
 618 *International Conference on Learning Representations*, 2024b.

619

620 Advait Harshal Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all we
 621 need to start sparse. In *International Conference on Machine Learning*, 2023.

622

623 Egor Gladin, Pavel Dvurechensky, Alexander Mielke, and Jia-Jie Zhu. Interaction-force transport
 624 gradient flows. *ArXiv*, abs/2405.17075, 2024. URL <https://api.semanticscholar.org/CorpusID:270063137>.

625

626 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 627 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 628 models. *arXiv preprint arXiv:2407.21783*, 2024.

629

630 Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
 631 Implicit regularization in matrix factorization, 2017a. URL <https://arxiv.org/abs/1705.09280>.

632

633 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and
 634 Nati Srebro. Implicit regularization in matrix factorization. In I. Guyon, U. Von
 635 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 636 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 637 2017b. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/58191d2a914c6dae66371c9dc91b41-Paper.pdf.

638

639 Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
 640 in terms of optimization geometry. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of
 641 the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine
 642 Learning Research*, pp. 1832–1841. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/gunasekar18a.html>.

643

644 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
 645 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
 646 nett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Asso-
 647 ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

648 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
 649 efficient neural network. *Advances in neural information processing systems*, 28, 2015.

650

651 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 652 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 653 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

654

655 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 656 and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In *Proceed-
 657 ings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20,
 658 Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

659

660 Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
 661 and Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
 662 language models. *arXiv preprint arXiv:2304.01933*, 2023.

663

664 Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification. In *The Thirteenth
 665 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=U47ymTS3ut>.

666

667 Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Mirror, mirror of the flow: How does regularization
 668 shape implicit bias? In *Forty-second International Conference on Machine Learning*, 2025. URL
<https://openreview.net/forum?id=MLiR9LS5PW>.

669

670 Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning against
 671 over-squashing and over-smoothing. In *The Thirty-eighth Annual Conference on Neural In-
 672 formation Processing Systems*, 2024. URL <https://openreview.net/forum?id=EMkrwJY2de>.

673

674 Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Pruning's
 675 effect on generalization through the lens of training and regularization. *Advances in Neural
 676 Information Processing Systems*, 35:37947–37961, 2022.

677

678 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 679 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

680

681 Mohammad Emtiyaz Khan and H. Rue. The bayesian learning rule. *J. Mach. Learn. Res.*, 24:281:1–
 682 281:46, 2021. URL <https://api.semanticscholar.org/CorpusID:235790670>.

683

684 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 685 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

686

687 Jyrki Kivinen and Manfred Warmuth. Exponentiated gradient versus gradient descent for linear
 688 predictors. Technical report, USA, 1994.

689

690 Chris Kolb, Tobias Weber, Bernd Bischl, and David Rügamer. Deep weight factorization: Sparse learn-
 691 ing through the lens of artificial symmetries. In *The Thirteenth International Conference on Learn-
 692 ing Representations*, 2025. URL <https://openreview.net/forum?id=vNdOHr7mn5>.

693

694 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

695

696 Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
 697 and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In *Proceedings of
 698 the International Conference on Machine Learning*, July 2020.

699

700 Denis Kuznedelev, Eldar Kurtić, Eugenia Iofinova, Elias Frantar, Alexandra Peste, and Dan Alistarh.
 701 Accurate neural network pruning requires rethinking sparse optimization. *Trans. Mach. Learn. Res.*,
 702 2024, 2023. URL <https://api.semanticscholar.org/CorpusID:260611140>.

703

704 Denis Kuznedelev, Eldar Kurtić, Elias Frantar, and Dan Alistarh. Cap: Correlation-aware pruning for
 705 highly-accurate sparse vision models. 36, 2024.

702 Eren Mehmet Kiral, Thomas Möllenhoff, and Mohammad Emtiyaz Khan. The lie-group bayesian
 703 learning rule. In *International Conference on Artificial Intelligence and Statistics*, 2023. URL
 704 <https://api.semanticscholar.org/CorpusID:257404948>.

705

706 Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. Dynamic sparse training
 707 with structured sparsity. *arXiv preprint arXiv:2305.02299*, 2023.

708

709 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network pruning
 710 based on connection sensitivity. In *International Conference on Learning Representations*, 2019.

711

712 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
 713 efficient convnets. In *International Conference on Learning Representations*, 2017.

714

715 Zhiyuan Li, Tianhao Wang, Jason D. Lee, and Sanjeev Arora. Implicit bias of gradient descent on
 716 reparametrized models: On equivalence to mirror descent. In Alice H. Oh, Alekh Agarwal, Danielle
 717 Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.
 718 URL https://openreview.net/forum?id=k4KHXS6_zOV.

719

720 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 721 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first
 722 International Conference on Machine Learning*, 2024.

723

724 Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
 725 and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
 726 naive baseline for sparse training. In *International Conference on Learning Representations*,
 727 2021a.

728

729 Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
 730 dense over-parameterization? in-time over-parameterization in sparse training. In Marina Meila
 731 and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*,
 732 volume 139 of *Proceedings of Machine Learning Research*, pp. 6989–7000. PMLR, 18–24 Jul
 733 2021b.

734

735 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic GNNs are strong baselines: Reassessing GNNs
 736 for node classification. In *The Thirty-eight Conference on Neural Information Processing Systems
 737 Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=xk1jKdGe4E>.

738

739 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. GNN+: Can classic GNNs be strong baselines for
 740 graph-level tasks? In *International Conference on Machine Learning (ICML)*, 2025. URL
 741 <https://arxiv.org/abs/2502.09263>.

742

743 Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul Grasman, and Eric-Jan Wagenmakers. A
 744 tutorial on fisher information, 2017. URL <https://arxiv.org/abs/1705.01064>.

745

746 Bochen Lyu and Zhanxing Zhu. Implicit bias of (stochastic) gradient descent for rank-1 linear neural
 747 network. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 748 <https://openreview.net/forum?id=PjBEUTVzoe>.

749

750 Negin Majidi, Ehsan Amid, Hossein Talebi, and Manfred K. Warmuth. Exponentiated gradient
 751 reweighting for robust training under label noise and beyond. *ArXiv*, abs/2104.01493, 2021. URL
 752 <https://api.semanticscholar.org/CorpusID:233024829>.

753

754 James Martens. New insights and perspectives on the natural gradient method. *J. Mach. Learn.
 755 Res.*, 21:146:1–146:76, 2014. URL <https://api.semanticscholar.org/CorpusID:10284405>.

756

757 Geoffrey J. McLachlan and Thriyambakam Krishnan. The em algorithm and extensions. 1996. URL
 758 <https://api.semanticscholar.org/CorpusID:122530182>.

759

760 Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
 761 networks, 2022. URL <https://arxiv.org/abs/2007.02901>.

756 Alexander Mielke and Jia-Jie Zhu. Hellinger-kantorovich gradient flows: Global exponential decay
 757 of entropy functionals. 2025. URL [https://api.semanticscholar.org/CorpusID:
 758 275932494](https://api.semanticscholar.org/CorpusID:275932494).

759

760 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
 761 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
 762 connectivity inspired by network science. *Nature Communications*, 9(1), jun 2018. doi: 10.1038/
 763 s41467-018-04316-3. URL <https://doi.org/10.1038%2Fs41467-018-04316-3>.

764

765 Sree Harsha Nelaturu, Advait Gadhiran, and Rebekka Burkholz. TurboPrune: High-Speed Distributed
 766 Lottery Ticket Training. URL <https://github.com/nelaturuharsha/TurboPrune>.

767

768 Neal Parikh and Stephen Boyd. Proximal algorithms. *Found. Trends Optim.*, 1(3):127–239, January
 769 2014. ISSN 2167-3888. doi: 10.1561/2400000003. URL [https://doi.org/10.1561/
 769 2400000003](https://doi.org/10.1561/2400000003).

770

771 Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Constructing sparse networks that learn
 772 fast and generalize well without training data. In *International Conference on Machine Learning*,
 773 pp. 8432–8442. PMLR, 2021.

774

775 Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
 776 linear networks: a provable benefit of stochasticity. In A. Beygelzimer, Y. Dauphin, P. Liang, and
 777 J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL
 778 <https://openreview.net/forum?id=vvi7KqHQiA>.

779

780 Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating com-
 781 pressed/decompressed training of deep neural networks, 2021.

782

783 Hoang Pham, The-Anh Ta, Shiwei Liu, Lichuan Xiang, Dung D. Le, Hongkai Wen, and Long
 784 Tran-Thanh. Towards data-agnostic pruning at initialization: What makes a good sparse mask?
 785 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=xdOoCWCYaY>.

786

787 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
 788 A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
 789 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=tJbbQfw-5wv>.

790

791 Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert,
 792 and Christopher Morris. Probabilistically rewired message-passing neural networks. In *The Twelfth
 793 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Tj6Wcx7gVk>.

794

795 Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
 796 network pruning. In *International Conference on Learning Representations*, 2020.

797

798 Tyrrel R Rockafellar and Werner Fenchel. *Convex Analysis*. 1970. URL <https://api.semanticscholar.org/CorpusID:198120397>.

799

800 Grant M. Rotskoff, Samy Jelassi, Joan Bruna, and Eric Vanden-Eijnden. Global convergence
 801 of neuron birth-death dynamics. *ArXiv*, abs/1902.01843, 2019. URL <https://api.semanticscholar.org/CorpusID:59604449>.

802

803 Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. GNNs getting comfy: Community
 804 and feature similarity guided rewiring. In *The Thirteenth International Conference on Learning
 805 Representations*, 2025. URL <https://openreview.net/forum?id=g6v09VxgFw>.

806

807 Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification,
 808 2021.

809

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 of graph neural network evaluation, 2019. URL <https://arxiv.org/abs/1811.05868>.

810 Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio
 811 Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas Möllenhoff.
 812 Variational learning is effective for large deep networks. In *International Conference on Machine
 813 Learning (ICML)*, 2024. URL <https://arxiv.org/abs/2402.17641>.

814 Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
 815 network compression. *Advances in Neural Information Processing Systems*, 33:18098–18109,
 816 2020.

817 Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent maximizes
 818 generalized margin and can be implemented efficiently. In Alice H. Oh, Alekh Agarwal, Danielle
 819 Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.
 820 URL <https://openreview.net/forum?id=OSV0leKNRAU>.

821 Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural networks
 822 without any data by iteratively conserving synaptic flow. In *Advances in Neural Information
 823 Processing Systems*, 2020.

824 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 825 Jégou. Training data-efficient image transformers & distillation through attention. In *International
 826 conference on machine learning*, pp. 10347–10357. PMLR, 2021.

827 Nisheeth K. Vishnoi. *Algorithms for Convex Optimization*. Cambridge University Press, 2021.

828 Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by
 829 preserving gradient flow. In *International Conference on Learning Representations*, 2020.

830 Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 831 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 832 Jacob Abernethy and Shivani Agarwal (eds.), *Proceedings of Thirty Third Conference on Learning
 833 Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp. 3635–3673. PMLR, 09–12
 834 Jul 2020. URL <https://proceedings.mlr.press/v125/woodworth20a.html>.

835 Fan Wu and Patrick Rebeschini. Implicit regularization in matrix sensing via mirror descent. In
 836 *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:235248126>.

837 Yuling Yan, Kaizheng Wang, and Philippe Rigollet. Learning gaussian mixtures using the
 838 wasserstein–fisher–rao gradient flow. *The Annals of Statistics*, 2024. URL <https://api.semanticscholar.org/CorpusID:273139387>.

839 Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
 840 Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
 841 framework on the edge. *Advances in Neural Information Processing Systems*, 34:20838–20850,
 842 2021.

843 Liu Ziyin and Zihao Wang. spred: Solving l_1 penalty with sgd. In *International Conference
 844 on Machine Learning*, 2022. URL <https://api.semanticscholar.org/CorpusID:259075663>.

845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 A OPTIMIZATION DEFINITIONS AND RESULTS
865866 In this section we recall some basic definitions from convex and non-convex optimization.
867868 **Definition A.1** (*L-smooth*) A differentiable function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be L-smooth if its
869 gradient is Lipschitz continuous with constant $L > 0$. That is, for all $\theta, \xi \in \mathbb{R}^n$,

870
$$\|\nabla f(\theta) - \nabla f(\xi)\| \leq L\|\theta - \xi\|,$$

871

872 or equivalently,

873
$$f(\xi) \leq f(\theta) + \langle \nabla f(\theta), \xi - \theta \rangle + \frac{L}{2}\|\xi - \theta\|^2.$$

874

875 or equivalently,

876
$$\frac{1}{2}\|\nabla f(\theta)\|^2 \leq L(f(\theta) - f^*),$$

877

878 where $f^* = \min_{\theta \in \mathbb{R}^n} f(\theta)$.
879880 **Definition A.2** (*PL-inequality*) A differentiable function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ satisfies the PL inequality with
881 parameter $\Lambda > 0$ if for all $\theta \in \mathbb{R}^n$,

882
$$\frac{1}{2}\|\nabla f(\theta)\|^2 \geq \Lambda(f(\theta) - f^*),$$

883

884 where $f^* = \min_{\theta \in \mathbb{R}^n} f(\theta)$.
885886 **Definition A.3** (*Legendre function Definition 3.8 ((Li et al., 2022))*) Let $R : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\}$ be a
887 differentiable convex function. We say R is a Legendre function when the following holds:
888889

- R is strictly convex on $\text{int}(\text{dom } R)$.
- For any sequence $\{\theta_i\}_{i=1}^{\infty}$ going to the boundary of $\text{dom } R$, $\lim_{i \rightarrow \infty} \|\nabla R(\theta_i)\|_{L_2}^2 = \infty$.

890891 In order to recover the convergence result in Theorem 4.14 in (Li et al., 2022) the function R also
892 needs to be a Bregman function, which we define in Definition A.4. First, let us denote with D_R
893 denote the Bregman divergence with respect to the generator function R :

894
$$D_R(\theta_1, \theta_2) := R(\theta_1) - R(\theta_2) - \langle \nabla R(\theta_2), \theta_1 - \theta_2 \rangle$$

895

896 for $\theta_1, \theta_2 \in \text{dom } R$.
897898 **Definition A.4** (*Bregman function Definition 4.1 (Alvarez et al., 2004)*) A function R is called a
899 Bregman function if it satisfies the following properties:
900901

- $\text{dom } R$ is closed. R is strictly convex and continuous on $\text{dom } R$. R is C^1 on $\text{int}(\text{dom } R)$.
- For any $\theta \in \text{dom } R$ and $\gamma \in \mathbb{R}$, $\{\xi \in \text{dom } R \mid D_R(\theta, \xi) \leq \gamma\}$ is bounded.
- For any $\theta \in \text{dom } R$ and sequence $\{\theta_i\}_{i=1}^{\infty} \subset \text{int}(\text{dom } R)$ such that $\lim_{i \rightarrow \infty} \theta_i = \theta$, it
905 holds that $\lim_{i \rightarrow \infty} D_R(\theta, \theta_i) \rightarrow 0$.

906 **Theorem A.5** (*Theorem 4.7 Alvarez et al. (2004)*) If R is a Legendre function with $\text{dom } R = \mathbb{R}^n$,
907 then if the domain of the convex conjugate $\text{dom } R^* = \mathbb{R}^n$ implies that R is a Bregman function
908909 From now on let R be a Bregman function A.4. Consider the Riemannian gradient flow:
910

911
$$d\theta_t = -\nabla^2 R^{-1}(\theta_t) \nabla f(\theta_t) dt, \quad \theta_0 = \theta_{\text{init}}.$$

912

913 This covers all settings considered in the main text: gradient descent, $\mathbf{m} \odot \mathbf{w}$ and HAM as shown in
914 Lemma B.4.
915916 **Theorem A.6** (*Theorem 4.14 (Li et al., 2022)*) Assume that R is a Bregman function and that f is
917 quasi-convex, ∇f is locally Lipschitz and $\text{argmin}\{f(\theta) \mid \theta \in \mathbb{R}^n\}$ is non-empty. Then as $t \rightarrow \infty$, θ_t
918 converges to some critical point θ^* . Moreover, if f is convex θ_t converges to a minimizer of f .
919

918 **Theorem A.7** (*Theorem A.3 (Jacobs & Burkholz, 2025)*) Consider the same setting as Theorem A.6.
 919 Assume R satisfies for all $\theta \in \mathbb{R}^n$,

$$921 \quad \mathbf{z}^T (\nabla^2 R(\theta))^{-1} \mathbf{z} \geq \sigma \|\mathbf{z}\|_{L_2}^2 \quad \forall z \in \mathbb{R}^n. \quad (5)$$

922 Furthermore, assume f satisfies the PL-inequality (A.2). Then θ_t converges to a minimizer of f .
 923 Furthermore, the loss converges linearly with rate $\sigma\Lambda$.

925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **B PROOFS OF THEORETICAL STATEMENTS**
973

974 Here we provide detailed proofs of the main statements in the paper. The theorems correspondence
975 is:
976

977

978 - The proof of Theorem 3.1 is in B.1.
979 - The proof of Theorem 4.2 is in B.3.
980 - The proof of Lemma 4.4 is in B.4.
981 - The proof of Theorem 4.6 is in B.5.
982

983 **Theorem B.1** (*Theorem 3.1*) *If $\mathbf{m}_0 = \text{sign}(\boldsymbol{\theta}_0)\mathbf{w}_0 = \sqrt{|\boldsymbol{\theta}_0|}$, then*

984
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k \exp(-\eta(2\text{sign}(\boldsymbol{\theta}_k)\nabla f(\boldsymbol{\theta}_k) + 4\beta)) \quad (6)$$

985 *is equivalent to Eq. (1) up-to first order Taylor approximation.*

986 First we use the Taylor approximation of the exponential function $\exp z \simeq 1 + z + \mathcal{O}(z^2)$ to get the
987 update:

988
$$\boldsymbol{\theta}_{k+1} \simeq \boldsymbol{\theta}_k - 2\eta|\boldsymbol{\theta}_k|\nabla f(\boldsymbol{\theta}_k) - 4\eta\beta\boldsymbol{\theta}_k + \mathcal{O}(\eta^2).$$

989 We show this is equivalent up to first order to the gradient descent of the overparameterization:

990
$$\boldsymbol{\theta}_{k+1} = \mathbf{m}_{k+1} \odot \mathbf{w}_{k+1} \simeq \boldsymbol{\theta}_k - \eta(\mathbf{m}_k^2 + \mathbf{w}_k^2)\nabla f(\boldsymbol{\theta}_k) - 4\eta\beta\boldsymbol{\theta}_k.$$

991 To do so, we show that $\mathbf{m}_k^2 + \mathbf{w}_k^2 = 2|\boldsymbol{\theta}_k|$ for all $k \in [T]$ up to zeroth-order approximation by
992 induction. For $k = 0$, the statement holds per assumption on the initialization. The induction step is:

993
$$\mathbf{m}_{k+1}^2 + \mathbf{w}_{k+1}^2 = \mathbf{m}_k^2 + \mathbf{w}_k^2 - 4\theta_k\eta\nabla f(\boldsymbol{\theta}_k) - 4\eta\beta\boldsymbol{\theta}_k + \eta^2(\mathbf{m}_k^2 + \mathbf{w}_k^2)\nabla f(\boldsymbol{\theta}_k)^2 \simeq 2|\boldsymbol{\theta}_k| + \mathcal{O}(\eta).$$

994 This concludes the induction and the proof. \square

1000 **Corollary B.2** *Exponential gradient descent can not move through zero, preventing sign flips.*

1001 Proof. The operation $\exp(\cdot)$ is always non-negative. Therefore multiplying with it will always keep
1002 the same sign since the sign operator is pointwise distributive:

1003
$$\begin{aligned} \text{sign}(\boldsymbol{\theta}_{k+1}) &= \text{sign}(\boldsymbol{\theta}_k) \exp(-\eta(2\text{sign}(\boldsymbol{\theta}_k)\nabla f(\boldsymbol{\theta}_k) + 4\beta)) \\ &= \text{sign}(\boldsymbol{\theta}_k) \text{sign}(\exp(-\eta(2\text{sign}(\boldsymbol{\theta}_k)\nabla f(\boldsymbol{\theta}_k) + 4\beta))) \\ &= \text{sign}(\boldsymbol{\theta}_k). \end{aligned}$$

1004 Note we use L -smoothness and sufficient small learning rate to ensure bounded gradient preventing
1005 $\nabla f(\boldsymbol{\theta}_k) \rightarrow \infty$. If the gradient explodes we still can only end up in zero leading to $\text{sign}(\boldsymbol{\theta}_{k+1}) = \mathbf{0}$
1006 so also no sign flip in that case. \square

1007 **Theorem B.3** (*Theorem 4.2*) *The gradient flow ($\eta \rightarrow 0$) of Eqs. (GD;HYP) is given by:*

1008
$$d\boldsymbol{\theta}_t = -\nabla f(\boldsymbol{\theta}_t)dt - |\boldsymbol{\theta}_t|(\alpha\nabla f(\boldsymbol{\theta}_t) + \text{sign}(\boldsymbol{\theta}_t)\beta)dt, \quad \boldsymbol{\theta}_0 = \boldsymbol{\theta}_{init}.$$

1009 Writing out the computation of iterates $\boldsymbol{\theta}_k$ give us:

1010
$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_0 \exp\left(\sum_{j=0}^{k-1} -\eta\alpha \text{sign}(\boldsymbol{\theta}_j)\nabla f(\boldsymbol{\theta}_j) - \eta\beta\right) - \sum_{j=0}^{k-1} \eta\nabla f(\boldsymbol{\theta}_j) \exp\left(-\sum_{l=j}^{k-1} \eta\alpha \text{sign}(\boldsymbol{\theta}_l)\nabla f(\boldsymbol{\theta}_l) - \eta\beta\right).$$

1011 This allows use to take $\eta \rightarrow 0$ and get an integral equation for the dynamics:

1012
$$\boldsymbol{\theta}_t = \boldsymbol{\theta}_0 \exp\left(-\int_0^t \alpha \text{sign}(\boldsymbol{\theta}_s)\nabla f(\boldsymbol{\theta}_s) + \beta ds\right) - \int_0^t \nabla f(\boldsymbol{\theta}_s) \exp\left(-\int_s^t \alpha \text{sign}(\boldsymbol{\theta}_c)\nabla f(\boldsymbol{\theta}_c) + \beta dc\right) ds. \quad (7)$$

1026 Differentiating the first term under the Leibniz rule gives:
 1027

$$1028 \quad \frac{d}{dt} \theta_0 \exp \left(- \int_0^t \alpha \operatorname{sign}(\theta_s) \nabla f(\theta_s) + \beta ds \right) = \\ 1029 \\ 1030 \quad \theta_0 \exp \left(- \int_0^t \alpha \operatorname{sign}(\theta_s) \nabla f(\theta_s) - \beta ds \right) (-\alpha \operatorname{sign}(\theta_t) \nabla f(\theta_t) + \beta)$$

1031
 1032
 1033 Next, differentiate the second term under the Leibniz rule:

$$1034 \quad \frac{d}{dt} \left(- \int_0^t \nabla f(\theta_s) \exp \left(- \int_s^t \alpha \operatorname{sign}(\theta_c) \nabla f(\theta_c) + \beta dc \right) ds \right) = \\ 1035 \\ 1036 \quad -\nabla f(\theta_t) - \int_0^t \frac{d}{dt} \nabla f(\theta_s) \exp \left(- \int_s^t \alpha \operatorname{sign}(\theta_c) \nabla f(\theta_c) + \beta dc \right) ds = \\ 1037 \\ 1038 \quad -\nabla f(\theta_t) dt - \int_0^t \nabla f(\theta_s) \exp \left(- \int_s^t \alpha \operatorname{sign}(\theta_c) \nabla f(\theta_c) + \beta dc \right) ds (-\alpha \operatorname{sign}(\theta_t) \nabla f(\theta_t) - \beta)$$

1039
 1040
 1041 Combining gives by noticing the form of θ_t :

$$1042 \quad d\theta_t = -\nabla f(\theta_t) dt - \theta_t (\alpha \operatorname{sign}(\theta_t) \nabla f(\theta_t) + \beta) dt \\ 1043 \\ 1044 \quad = -\nabla f(\theta_t) dt - |\theta_t| (\alpha \nabla f(\theta_t) + \operatorname{sign}(\theta_t) \beta) dt$$

1045
 1046 \square

1047
 1048 **Lemma B.4** (Lemma 4.4) The Bregman function R_α for $\alpha > 0$ is given by:

$$1049 \quad R_\alpha(\theta) = \sum_i \frac{(\alpha |\theta_i| + 1) \ln(\alpha |\theta_i| + 1) - \alpha |\theta_i|}{\alpha^2} - \theta_i \frac{\operatorname{sign}(\theta_{i,0})}{\alpha} \log(1 + \alpha |\theta_{i,0}|)$$

1050
 1051
 1052 Proof.

1053 We first construct the mirror map R_α by using the corresponding Hessian g_{HAM} . Next we check that
 1054 R_α is a Bregman function. The Hessian of the mirror map $R_\alpha(\theta)$ is:

$$1055 \quad \nabla^2 R_\alpha(\theta) = \frac{1}{1 + \alpha |\theta|}$$

1056 Moreover we need $\nabla R_\alpha(\theta_0) = 0$. Therefore by integrating twice, R_α for $\alpha > 0$ is given by:
 1057

$$1058 \quad R_\alpha(\theta) = \sum_i \frac{(\alpha |\theta_i| + 1) \ln(\alpha |\theta_i| + 1) - \alpha |\theta_i|}{\alpha^2} - \theta_i \frac{\operatorname{sign}(\theta_{i,0})}{\alpha} \log(1 + \alpha |\theta_{i,0}|)$$

1059 It remains to be checked if R_α is Bregman. For this we use a relationship between Legendre and
 1060 Bregman functions. We first show that R_α is Legendre and its convex conjugate as well. Then it
 1061 follows from Theorem A.5 that R_α is Bregman for $\alpha > 0$.

1062 Note that we have $\operatorname{dom} R_\alpha = \operatorname{int}(\operatorname{dom} R_\alpha) = \mathbb{R}^n$. R_α is strictly convex as for all $\theta \in \mathbb{R}^n$ the
 1063 Hessian is positive definite. This shows the first statement. Next, since R_α is separable we can show
 1064 the second statement for each parameter separately. Take a sequence $\{\theta_{i,j}\}_{i=1}^\infty$ for coordinate $j \in [n]$
 1065 such that $|\theta_{i,j}| \rightarrow \infty$ then by construction of R_α we have

$$1066 \quad \lim_{i \rightarrow \infty} \partial_j R_\alpha(\theta_{i,j})^2 = \infty$$

1067 as $|\cdot|$ and $\log(\cdot)$ are increasing functions. Therefore R_α is Legendre.

1068 The convex conjugate gradient $\operatorname{dom} \nabla R_\alpha^* = (\operatorname{range} \nabla R_\alpha)^{-1} = \mathbb{R}^n$. Therefore since $\mathbb{R}^n =$
 1069 $\operatorname{dom} \nabla R_\alpha^* \subset \operatorname{dom} R_\alpha^*$ we can apply Theorem A.5. This concludes the result. \square

1070
 1071
 1072
 1073
 1074 **Theorem B.5** (Theorem 4.6) Let $\theta_0 = \mathbf{0}$, then $R_\alpha \sim \|\theta\|_{L_2}^2$ if $\alpha \rightarrow 0$ and $R_\alpha \sim \|\theta\|_{L_1}$ if $\alpha \rightarrow \infty$,
 1075 where \sim indicates proportionality i.e. there exists some positive functions $h_1 : \mathbb{R} \rightarrow \mathbb{R}$ and $h_2 : \mathbb{R} \rightarrow \mathbb{R}$ in the neighborhood of the limiting point such that for all $\theta \in \mathbb{R}^n$, $\lim_{\alpha \rightarrow 0} h_1(\alpha) R_\alpha(\theta) = \|\theta\|_{L_2}^2$
 1076 and $\lim_{\alpha \rightarrow \infty} h_2(\alpha) R_\alpha(\theta) = \|\theta\|_{L_1}$.

1080 *Proof.* The first statement follows from the Taylor approximation:
 1081

$$1082 \quad R_\alpha \simeq \sum_i \theta_i^2 + \frac{1}{\alpha} |\theta_i| - \frac{1}{\alpha} |\theta_i| \simeq \|\boldsymbol{\theta}\|_{L_2}^2$$

$$1083$$

1084 which is valid if $|\theta_i| << \frac{1}{\alpha}$ so $h_1(\alpha) = 1$.
 1085

1086 For large $\alpha > 0$ we have that $R_\alpha \simeq \sum_i \frac{|\theta_i|}{\alpha} \log(\alpha|\theta_i|)$. Therefore, we have
 1087

$$1088 \quad \frac{\alpha}{\log(\alpha)} R_\alpha(\boldsymbol{\theta}) \simeq \sum_i |\theta_i| = \|\boldsymbol{\theta}\|_{L_1},$$

$$1089$$

1090 so $h_2 = \frac{\alpha}{\log(\alpha)}$, which is positive $\alpha > 1$. This concludes the proof. \square
 1091

1092 The proof of Theorem B.5 follows similar steps as that of Woodworth et al. (2020).
 1093

1094 **Sign discrepancy** In our implemented HAM algorithm (HYP*) we use $\text{sign}(\boldsymbol{\theta}_{k+\frac{1}{2}})$ instead of
 1095 $\text{sign}(\boldsymbol{\theta}_k)$ from the derived step (HYP). We now argue why this does not change the implications of
 1096 our theory, as their gradient flows are equivalent. We show in Thm. B.6 that, in continuous time, the
 1097 iterates (GD;HYP*) follow a jump process. For this jump process, the jump vanishes in the flow
 1098 setting, leading to no discrepancy between using either version. In discrete time, however, this may
 1099 not be the case. We provide an explanation for the effect in discrete time in Appendix D. The main
 1100 implication of the flow being the same is that at the end of training the implicit bias is the same, as
 1101 the end corresponds to smaller learning rates.
 1102

1103 **Theorem B.6** Initialize $\boldsymbol{\theta}_{init} \neq 0$. Then the gradient flow of HAM i.e. Eqs. (GD;HYP*) ($\eta \rightarrow 0$) is
 1104 given by:
 1105

$$1104 \quad d\tilde{\boldsymbol{\theta}}_t = -\nabla f(\tilde{\boldsymbol{\theta}}_t) dt - |\tilde{\boldsymbol{\theta}}_t| \left(\alpha \nabla f(\tilde{\boldsymbol{\theta}}_t) + \text{sign}(\tilde{\boldsymbol{\theta}}_t) \beta \right) dt \quad \tilde{\boldsymbol{\theta}}_0 = \boldsymbol{\theta}_{init}. \quad (8)$$

1106 *Proof.* The statement follows from making the observation: Sign flips can only occur near zero;
 1107 further away the processes are equivalent.
 1108

1109 Let $\tilde{\boldsymbol{\theta}}_t$ denote the resulting process with $\eta \rightarrow 0$ and $\boldsymbol{\theta}_t$ the signed gradient flow. $\tilde{\boldsymbol{\theta}}_t$ does not have to
 1110 be gradient flow as it can have discontinuous jumps due to the sign inconsistency. We can write the
 1111 update as follows:
 1112

$$1113 \quad \tilde{\boldsymbol{\theta}}_k = \tilde{\boldsymbol{\theta}}_0 \exp \left(\sum_{j=0}^{k-1} -\eta \alpha \text{sign}(\tilde{\boldsymbol{\theta}}_j) \nabla f(\tilde{\boldsymbol{\theta}}_j) - \eta \beta - \eta \alpha \left(\text{sign}(\tilde{\boldsymbol{\theta}}_{j+\frac{1}{2}}) - \text{sign}(\tilde{\boldsymbol{\theta}}_j) \right) \nabla f(\tilde{\boldsymbol{\theta}}_j) \right) -$$

$$1114$$

$$1115 \quad \sum_{j=0}^{k-1} \eta \nabla f(\boldsymbol{\theta}_j) \exp \left(- \sum_{l=j}^{k-1} \eta \alpha \text{sign}(\boldsymbol{\theta}_l) \nabla f(\boldsymbol{\theta}_l) - \eta \beta - \eta \alpha \left(\text{sign}(\tilde{\boldsymbol{\theta}}_{j+\frac{1}{2}}) - \text{sign}(\tilde{\boldsymbol{\theta}}_j) \right) \nabla f(\tilde{\boldsymbol{\theta}}_j) \right).$$

$$1116$$

$$1117$$

$$1118$$

1119 Then the discrepancy $\left(\text{sign}(\tilde{\boldsymbol{\theta}}_{j+\frac{1}{2}}) - \text{sign}(\tilde{\boldsymbol{\theta}}_j) \right)$ between the signs becomes a $\delta : \mathbb{R}^n \rightarrow \mathbb{R}^n$ function
 1120 i.e.
 1121

$$1122 \quad \delta(\boldsymbol{\theta}) = \begin{cases} 0 & \text{if } \theta_i \neq 0 \\ 2 & \text{if } \theta_i = 0^+ \\ -2 & \text{if } \theta_i = 0^- \end{cases}, \quad \text{for } i \in [n]$$

$$1123$$

$$1124$$

1125 The process for $\tilde{\boldsymbol{\theta}}_t$ with $\eta \rightarrow 0$ can be written as
 1126

$$1127 \quad \boldsymbol{\theta}_t = \boldsymbol{\theta}_0 \exp \left(- \int_0^t \alpha \text{sign}(\boldsymbol{\theta}_s) \nabla f(\boldsymbol{\theta}_s) + \beta - \alpha \delta(\tilde{\boldsymbol{\theta}}_s) \nabla f(\tilde{\boldsymbol{\theta}}_s) ds \right)$$

$$1128$$

$$1129 \quad - \int_0^t \nabla f(\boldsymbol{\theta}_s) \exp \left(- \int_s^t \alpha \text{sign}(\boldsymbol{\theta}_c) \nabla f(\boldsymbol{\theta}_c) + \beta - \alpha \delta(\tilde{\boldsymbol{\theta}}_c) \nabla f(\tilde{\boldsymbol{\theta}}_c) dc \right) ds.$$

$$1130$$

$$1131$$

1132 Differentiating under the Leibniz rule gives:
 1133

$$1133 \quad d\tilde{\boldsymbol{\theta}}_t = -\nabla f(\tilde{\boldsymbol{\theta}}_t) dt - |\tilde{\boldsymbol{\theta}}_t| \left(\alpha \nabla f(\tilde{\boldsymbol{\theta}}_t) + \text{sign}(\tilde{\boldsymbol{\theta}}_t) \beta + \alpha \delta \nabla f(\tilde{\boldsymbol{\theta}}_t) \right) dt \quad \tilde{\boldsymbol{\theta}}_0 = \tilde{\boldsymbol{\theta}}_{init}.$$

1134 where $\delta : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a delta function for every coordinate. Therefore, the jumps vanish as they are
 1135 multiplied with $|\tilde{\theta}|$ we have that
 1136

$$1137 \quad d\tilde{\theta}_t = -\nabla f(\tilde{\theta}_t)dt - |\tilde{\theta}_t| \left(\alpha \nabla f(\tilde{\theta}_t) + \text{sign}(\tilde{\theta}_t) \beta \right) dt \quad \tilde{\theta}_0 = \tilde{\theta}_{init}. \\ 1138$$

1139 which is equivalent to the gradient flow of Theorem B.3. \square
 1140

1141 B.1 THE EFFECT OF NON-ZERO β

1142 The convergence and implicit bias results Thms 4.3 and 4.5 focus on the case $\beta = 0$. In the follow,
 1143 we discuss general the case of $\beta \geq 0$. First, the flow takes the general form:
 1144

$$1145 \quad d\theta_t = -g_t^{-1}(\theta_t) \nabla f(\theta_t)dt - \beta \theta_t dt, \quad \theta_0 = \theta_{init}. \quad (9) \\ 1146$$

1147 We have for $m \odot w$ that $g_{t,m \odot w}^{-1}(\theta_t) = \sqrt{\theta_t^2 + \gamma_t^2}$ and for HAM we have $g_{HAM}^{-1}(\theta_t) = 1 + \alpha |\theta_t|$ in
 1148 line with Table 2. For $\beta > 0$, we can define the on-manifold-regularization. This quantity determines
 1149 the corresponding explicit regularization.

1150 **Definition B.7** For a time varying Riemannian gradient flow with off manifold weight decay Eq. (9),
 1151 the on-manifold-regularization is given by
 1152

$$1153 \quad M_t(\theta) := \sum_{i \in [n]} \int_{\theta_i}^{\theta_i} g_{t,i}(z_i) z_i dz_i \\ 1154 \\ 1155$$

1156 where $g_{t,i}$ is the i -th component of the separable metric tensor.
 1157

1158 Using Definition B.7, we can compute M_t in both cases. This gives
 1159

$$1160 \quad M_{t,m \odot w}(\theta) = \sum_{i \in [n]} \sqrt{\theta_i^2 + \gamma_{t,i}^2} \text{ and } M_{HAM}(\theta) = \sum_{i \in [n]} \frac{\alpha |\theta_i| - \ln(|\alpha |\theta_i| + 1|)}{\alpha^2}. \quad (10) \\ 1161$$

1162 Knowing this, we can adapt the convergence result. As both on-manifold-regularizations are convex,
 1163 we converge to the minimizer of the objective function $f + \beta M$, assuming that there exists an M
 1164 such that $M_t \rightarrow M$ for $t \rightarrow \infty$. Note that, for $m \odot w$, we have that $M_t \rightarrow \|\cdot\|_{L_1}$ for $t \rightarrow \infty$. This
 1165 matches the LASSO optimization objective derived in spred (Ziyin & Wang, 2022). Additionally for
 1166 HAM, we have that $\alpha M_{HAM} \rightarrow \|\cdot\|_{L_1}$ for $\alpha \rightarrow \infty$, indicating that we induce less sparsity, as we
 1167 rescale with α . Concretely, for a fixed β and large α , we approximately solve the LASSO objective
 1168 with regularization coefficient β/α . Note that for large α , the explicit regularization strength decays
 1169 while the implicit regularization gets closer to L_1 .

1170 Furthermore, to obtain the implicit bias result, we use the mirror flow formulation. We know from
 1171 (Jacobs & Burkholz, 2025) that $m \odot w$ corresponds to a time-varying mirror flow for which we need
 1172 $\beta \rightarrow 0$ to recover optimality. In contrast, for HAM we get the following mirror flow:
 1173

$$1174 \quad d\nabla R_\alpha(\theta_t) = - \left(\nabla f(\theta_t) + \beta \frac{\theta_t}{1 + \alpha |\theta_t|} \right) dt, \quad \theta_0 = \theta_{init}. \\ 1175$$

1176 This follows from the new objective function $f + \beta M_{HAM}$. To fulfill the optimality condition in the
 1177 implicit bias result for linear regression, we would need to show that the mirror flow is in the span of
 1178 Z^T to satisfy the KKT condition. This can only be guaranteed when the regularization is turned off.
 1179 Therefore, similarly to $m \odot w$, we would need to turn-off the regularization at the end of training to
 1180 obtain optimality.

1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **C FISHER INFORMATION DERIVATIONS**
 1189

1190 Our algorithm can be interpreted through the lens of natural gradient descent (Amari, 1999; Martens,
 1191 2014). Each optimizer step corresponds to a natural gradient update $\theta_{k+1} = \theta_k - \eta g^{-1}(\theta_k) \nabla f(\theta_k)$,
 1192 with g is now the Fisher information. The key insight is that parameters follow a known parameterized
 1193 distribution that is learned by the optimizer. For gradient descent, $g_{\text{GD}}(\theta) = \mathbf{1}$, which corresponds
 1194 to a normally distributed random variable θ with unit variance and learnable mean; i.e., $\theta = \mathbb{E}[X]$.
 1195 Thus we can interpret θ as the mean of a normal distribution whose *position* is learned.

1196 In contrast, the hyperbolic step (HYP) on its own corresponds to $g_{\text{HYP}}(\theta) := 1/|\theta|$, which directly
 1197 follows from the first order approximation of the exponential function. Similarly, we can match
 1198 a random variables Fisher information to the metric $g_{\text{HYP}}(\theta)$. It corresponds to a random variable
 1199 X parameterized as a normal distribution with unit variance: $\mathcal{N}(2\sqrt{|\theta|}, \mathbf{I})$. In this view, weights
 1200 are recovered via $\theta = \frac{1}{4} \text{sign}(\theta) \mathbb{E}[X]^2$, by using $\mathbb{E}[X] = 2\sqrt{|\theta|}$. This means that we learn the
 1201 *magnitude* of the expected position. Furthermore, if the sign is not correct, the hyperbolic step
 1202 (HYP) will move the parameter exponentially fast towards zero, facilitating its sign flip. We provide
 1203 derivations in next paragraph. To summarize, our combined update can be interpreted as follows:
 1204

1205 *Learn the position (GD), and then the magnitude if the sign is correct; else move fast to zero (HYP).*

1206 This mechanism is crucial to facilitate sparse training (Gadhikar & Burkholz, 2024a; Gadhikar et al.,
 1207 2025), as portrayed in our experiments (§ 5), where HAM considerably boosts its performance.
 1208

1209 **Derivations of the Fisher information** We provide here the Fisher information $\mathcal{I} := g$ calculations
 1210 for one dimensional random variables $\mathcal{N}(\theta, 1)$ and $\mathcal{N}(\sqrt{|\theta|}, 1)$. The Fisher information is defined as
 1211 see for example Definition 1.1 in (Ly et al., 2017):
 1212

$$1213 \quad 1214 \quad \mathcal{I}(\theta) = \mathbb{E}_X \left[\left(\frac{\partial}{\partial \theta} \log f(X; \theta) \right)^2 \right] \quad (11)$$

1215 where f is the probability density function of the random variable X and \mathbb{E} is the expectation with
 1216 respect to the random variable.
 1217

1218 Let $X \sim \mathcal{N}(\theta, 1)$, where $\theta \in \mathbb{R}$ is the mean parameter. The likelihood function is:
 1219

$$1220 \quad 1221 \quad f(X; \theta) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}(X - \theta)^2 \right)$$

1222 Taking the natural logarithm:
 1223

$$1224 \quad 1225 \quad \ell(\theta) = \log f(X; \theta) = -\frac{1}{2} \log(2\pi) - \frac{1}{2}(X - \theta)^2$$

1226 The score function is:
 1227

$$1228 \quad \frac{d\ell}{d\theta} = (X - \theta)$$

1229 Then the Fisher Information is given by:
 1230

$$1231 \quad 1232 \quad \mathcal{I}_{\text{GD}}(\theta) = \mathbb{E} \left[\left(\frac{d\ell}{d\theta} \right)^2 \right] = \mathbb{E}[(X - \theta)^2] = \text{Var}(X) = 1$$

1233 Let $X \sim \mathcal{N}(2\sqrt{|\theta|}, 1)$. The likelihood function is:
 1234

$$1235 \quad 1236 \quad f(X; \theta) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}(X - 2\sqrt{|\theta|})^2 \right)$$

1237 The log-likelihood function is:
 1238

$$1239 \quad 1240 \quad \ell(\theta) = -\frac{1}{2} \log(2\pi) - \frac{1}{2}(X - 2\sqrt{|\theta|})^2$$

1242 Differentiate to get the score function:
 1243

1244
$$\frac{d\ell}{d\theta} = (X - 2\sqrt{|\theta|}) \cdot \left(-\frac{\text{sign}(\theta)}{\sqrt{|\theta|}} \right) = -\text{sign}(\theta) \frac{X - 2\sqrt{\theta}}{\sqrt{\theta}}$$

 1245
 1246

1247 Now square the score and take the expectation:
 1248

1249
$$\mathcal{I}_{\text{HYP}}(\theta) = \mathbb{E} \left[\left(\frac{d\ell}{d\theta} \right)^2 \right] = \mathbb{E} \left[\left(\frac{X - 2\sqrt{|\theta|}}{\sqrt{|\theta|}} \right)^2 \right] = \frac{1}{|\theta|} \mathbb{E}[(X - 2\sqrt{|\theta|})^2] = \frac{1}{|\theta|} \text{Var}(X) = \frac{1}{|\theta|}$$

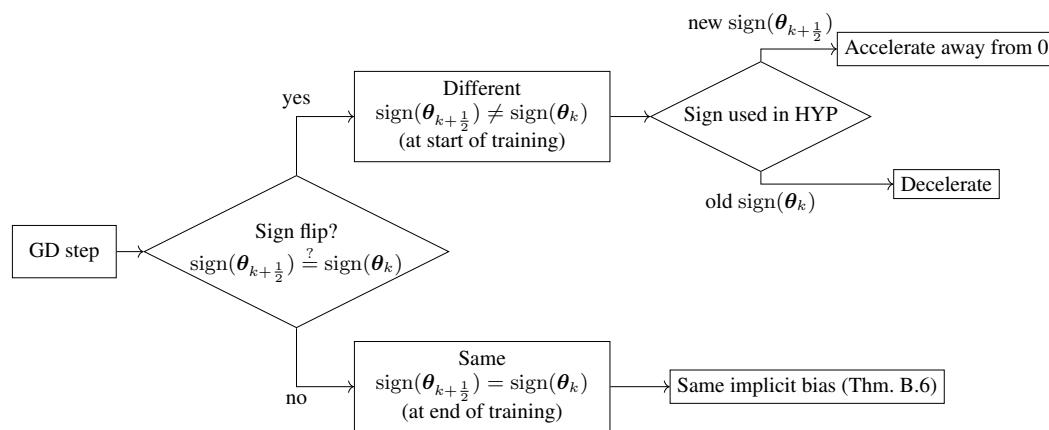
 1250
 1251

1252 Note that instead of being part of the exponential family of distributions this distribution is part of the
 1253 curved exponential family distributions.
 1254

1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **D DIFFERENT SIGNS IN THE EXPONENTIAL UPDATE**
1297

1298 In this section, we show that using the updated signs $\text{sign}(\theta_{t+\frac{1}{2}})$ in the hyperbolic step (HYP) instead
1299 of the original ones $\text{sign}(\theta_t)$ is actually beneficial for performance. The main difference occurs when
1300 a sign flip takes place due to the gradient step (that is, $\text{sign}(\theta_{t+\frac{1}{2}}) \neq \text{sign}(\theta_t)$), which can lead to
1301 a discrepancy in discrete time. Then, updating the sign leads to an acceleration away from zero,
1302 as the gradient $\nabla f(\theta_t)$ does not change and still points in the same direction. This further aids in
1303 preventing parameters getting stuck at zero, apart from the benefits of the hyperbolic step on its own.
1304 We present the different cases in Figure 3.



1320 Figure 3: The difference between using $\text{sign}(\theta_{k+\frac{1}{2}})$ and $\text{sign}(\theta_k)$ in HYP. The main change we
1321 incur by using the new sign is that it accelerates away from zero when a sign flip occurs. Thus, when
1322 parameters are small, we can be more certain that they are actually redundant. Furthermore, when
1323 sign flips become less frequent due to decreasing learning rate at the end of training, we get the same
1324 implicit bias regardless, as shown in Theorem B.6.

1350 E ONE-NEURON TOY EXAMPLE SIGN FLIPS
1351

1352 We show with a similar arguments as in (Gadhikar et al., 2025) that HAM allows for sign flips in a
1353 one neuron toy example. For this argument we similarly set $\beta = 0$ and we have to use a layerwise
1354 different α . In the same vein we argue that in presence of more overparameterization using the same
1355 α constant is fine. This is also empirically substantiated by observing more sign flips with HAM.
1356

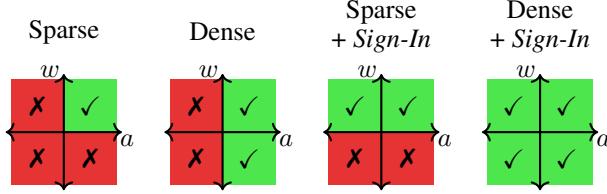
1357 **One dimensional neuron** Consider a Gaussian i.i.d. data set $z_i \sim \mathcal{N}(0, 1)$ with $i \in [d]$. Let
1358 $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be our objective function described by:
1359

$$1360 \quad f(a, w) = \frac{1}{2d} \sum_{i=1}^d (y_i - a\sigma(wz_i))^2
1361$$

1362 where $\sigma(\cdot) = \max\{0, \cdot\}$ is the Rectified Linear Unit (ReLU). We want to learn a target one dimen-
1363 sional neuron $\tilde{a}\sigma(\tilde{w}\cdot)$, which generates the outputs y_i for $i \in [d]$. Then gradient flow dynamics for
1364 HAM is described by:
1365

$$1366 \quad \begin{cases} da_t = -(\alpha_1|a_t| + 1) \partial_a f(a_t, w_t) dt, & a_0 = a_{\text{init}} \\ dw_t = -(\alpha_2|w_t| + 1) \partial_w f(a_t, w_t) dt, & w_0 = w_{\text{init}} \end{cases} \quad (12)
1367$$

1368 Note that standard gradient flow would get stuck at zero, as it has to satisfy a balance equation in
1369 Lemma E.1, which is based on Theorem 2.1 in (Gadhikar et al., 2025). The balance equation implies
1370 that if $a_0^2 - w_0^2 = C$, then for all $t \geq 0$ we have that $a_t^2 - w_t^2 = C$ (In our case: $C = 0$). In order
1371 that the student with parameters (a, w) learn the ground truth, the parameters have to be able to sign
1372 flip when they don't match the ground truth's sign. This can be divided into four cases, i.e. the total
1373 amount of sign cases. In the balanced setting for gradient flow, the ground truth is recoverable only if
1374 the parameter signs align. Results of these four cases are shown in Figure 4.
1375



1383 Figure 4: (Figure 2 from Gadhikar et al. (2025)), showing sign flipping benefits achieved with
1384 pointwise overparameterization $m \odot w$, for the sparse and dense case on a single-hidden neuron
1385 model.
1386

1387 **Lemma E.1** Let $\tilde{g}(a, w) = \tilde{a}\sigma(\tilde{w}\cdot)$ with $\tilde{w} > 0$ be the teacher and f be the student network objective
1388 such that a and w follow the gradient flow dynamics in Eq. (12) with a random balanced parameter
1389 initialization. For $\alpha_1 = \alpha_2 = 0$ (standard gradient flow) the student only can learn one of four cases
1390 i.e. when $w_{\text{init}} > 0$ and $\text{sign}(a_{\text{init}}) = \text{sign}(\tilde{a})$.
1391

1392 Proof. If w_{init} is negative then it needs to flip its sign which is prevented by the ReLU activation. We
1393 know from the balance equation that for $t \geq 0$:

$$1394 \quad |a_t| = |w_t|.
1395$$

1396 This implies that if $a_t = 0$ then $w_t = 0$ implying we can also not recover the case where $\text{sign}(a_{\text{init}}) \neq$
1397 $\text{sign}(\tilde{a})$. \square

1398 We now show that Eq. (12) can find the ground truth, even if the sign of a is misaligned, similarly as
1399 in (Gadhikar et al., 2025) for the $m \odot w$ reparameterization.

1400 **Theorem E.2** Let $\tilde{g}(a, w) = \tilde{a}\sigma(\tilde{w}\cdot)$ with $\tilde{w} > 0$ be the teacher and f be the student network
1401 objective such that a and w follow the gradient flow dynamics in Eq. (12) with a random balanced
1402 parameter initialization. Moreover, let $\alpha_1 > \alpha_2 > 0$. If $w_{\text{init}} > 0$, then f can learn the correct
1403 target with probability $1 - (\frac{1}{2})^d$. In the other case ($w_{\text{init}} \leq 0$) learning fails.
1404

Proof. The proof idea is to show that for a balanced initialization with $w_{init} > 0$ the flow for $t > 0$ always enters the open set

$$\Gamma_0 := \{(a, w) \in \mathbb{R}^2 : a < -w, w > 0\}.$$

Furthermore, we show that the flow stays in the open set Γ_0 . The system is a Riemannian gradient flow which implies that the flow converges towards a stationary point in Γ_0 . It remains to be shown that the stationary point at the origin is a saddle and the stable manifold of the origin is not in Γ_0 . Thus, the remaining stationary points are the global optimizers.

First we show that for balanced initializations $|a_{init}| = w_{init} > 0$ enter the region Γ_0 , **which can be divided into two cases**. In case $a_{init} = w_{init} > 0$, we have $(a_{init}, w_{init}) \in \Gamma_0$. In case $-a_{init} = w_{init} > 0$, we have that $(a_{init}, w_{init}) \in \Gamma_0 \setminus \Gamma_0$ i.e. the boundary of Γ_0 . Therefore, we need to show the gradient field at (a_{init}, w_{init}) points into Γ_0 .

The balanced initialization implies that

$$\partial_a f(a_{init}, w_{init}) = -\partial_w f(a_{init}, w_{init}).$$

Moreover, since $\tilde{a} > 0$, $\partial_a f(a_{init}, w_{init}) > 0$. Using that $\alpha_1 > \alpha_2 > 0$ we have that the gradient field satisfies:

$$\begin{aligned} da_{init} &= -(\alpha_1|a_{init}| + 1) \partial_a f(a_{init}, w_{init}) dt \\ &= (\alpha_1|w_{init}| + 1) \partial_w f(a_{init}, w_{init}) dt \\ &< (\alpha_2|w_{init}| + 1) \partial_w f(a_{init}, w_{init}) dt = -dw_{init} \end{aligned}$$

Therefore there is a $t_0 > 0$ such that $a_{t_0} < -w_{t_0} < 0$. Thus there is a $t_0 > 0$ such that $(a_{t_0}, w_{t_0}) \in \Gamma_0$.

We have entered the set Γ_0 , we have to show that we cannot leave the set Γ_0 . This can be shown by computing the gradient field at the boundaries. The boundary can be split up into three cases:

- $B_1 := \{(a, w) \in \mathbb{R}^2 : -a = w > 0\}$
- $B_2 := \{(a, w) \in \mathbb{R}^2 : w = 0, a > 0\}$
- The origin $\{(0, 0)\}$

The first case of B_1 is covered by the balanced initialization. For the second case of B_2 we can compute the gradient field again. We now only need that $dw_t > 0$. We linearize dw_t :

$$dw_t = Ca_t dt > 0,$$

where $C = \frac{1}{d} \sum_{i=1}^d \max\{0, z_i\}^2 > 0$ with probability $1 - (\frac{1}{2})^d$. The last case is the saddle point at the origin which we show is not possible to be reached from the open set Γ_0 . Thus for all $(a_{init}, w_{init}) \in \Gamma_0$ we have that for all $t \geq 0$, $(a_t, w_t) \in \Gamma_0$ or $\lim_{t \rightarrow \infty} (a_t, w_t) = (0, 0)$.

In the case that $w > 0$ the flow can be written as a dynamical system on a Riemannian manifold. This allows us to guarantee convergence to a stationary point. The flow is given by

$$\begin{cases} da_t = -C(\alpha_1|a_t| + 1)(a_t w_t^2 - w_t) dt & a_0 = a_{init} \\ dw_t = -C(\alpha|w_t| + 1)(a_t^2 w_t - a_t) dt & w_0 = w_{init}, \end{cases}$$

where $C = \frac{1}{d} \sum_{i=1}^d \max\{0, z_i\}^2 > 0$ with probability $1 - (\frac{1}{2})^d$. This dynamical system has stationary points at the origin and the set $aw = 1$. The dynamical system is a Riemannian gradient flow system therefore the flow converges to a stationary point. The stationary point at the origin is a saddle point. Therefore, the only way of getting stuck at the origin is when we initialize on the associated stable manifold. We show that this is not possible for the balanced initialization. We calculate the linearization of the stable manifold and use that the balanced initialization stays in Γ_0 . The linearization at the origin $(0, 0)$ is given by

$$\begin{cases} da_t = Cw_t dt \\ dw_t = Ca_t dt. \end{cases}$$

By a direct calculation of the eigen vectors the linearization of the stable manifold is given by the vector $(-1, 1)$. This is the exact boundary of Γ_0 , for which we showed that for finite w_{init} and a_{init}

1458 we enter Γ_0 . Suppose that from Γ_0 the stable manifold is reachable. Then there is a continuous
 1459 differentiable curve γ_t with initialization $\gamma_0 = (a_{init}, w_{init}) \in \Gamma_0$ such that $\lim_{t \rightarrow \infty} \gamma_t = (0, 0)$.
 1460 This is not possible as it violates the gradient field at the boundaries of Γ_0 . Thus, the flow does
 1461 not converge to the stationary point at the origin. This concludes the first part, since the only set of
 1462 stationary points are the set of global optima.

1463 The other two remaining cases fail as the boundary at $w = 0$ is not differentiable and the gradient
 1464 flow stops there. \square
 1465

1466 Theorem E.2 highlights a benefit of HAM over gradient flow. A key difference with the proof in
 1467 (Gadhikar et al., 2025) is that now the stable manifold is exactly the boundary at Γ_0 . Therefore, we
 1468 are relying on the non-linearity of the model to push us into the open set Γ_0 . A similarity between the
 1469 proofs is that we rely on $\alpha_1 > \alpha_2 > 0$. In the next part we argue that for multidimensional inputs
 1470 this is not necessary and we can use a single constant α .

1471 **Multidimensional neuron** We can consider the gradient field at a balanced initialization for a
 1472 multidimensional input case. Then we have the following inequality:
 1473

$$1474 \quad (\alpha|a_{init}| + 1) = (\alpha\|\mathbf{w}_{init}\|_{L_2} + 1) \geq \frac{1}{\sqrt{n}} (\alpha\|\mathbf{w}_{init}\|_{L_1} + 1) \geq \frac{1}{n} \sum_{i=1}^n (\alpha|w_{in,i}| + 1) \quad (13)$$

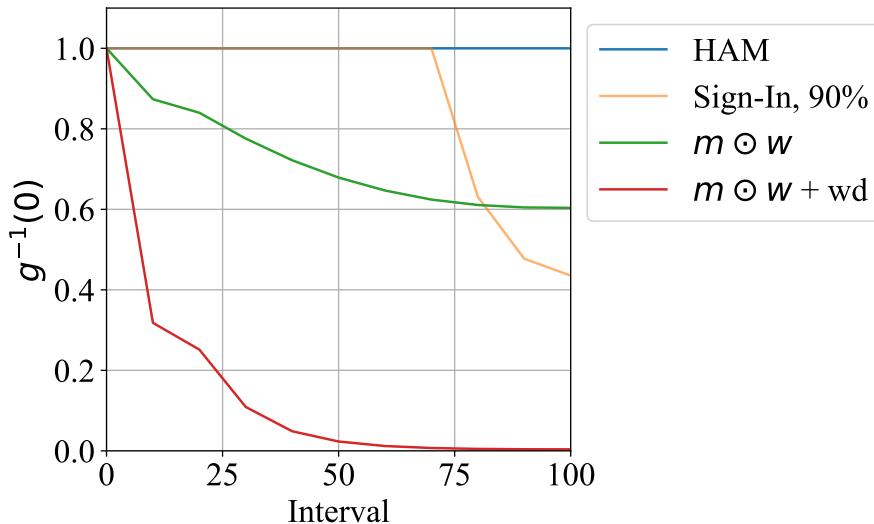
1477 where we used the relation between the L_1 and L_2 norm. Note that now there is a significant gap
 1478 due to switching between \sqrt{n} and n . This inequality ensures that at initialization the gradient field is
 1479 pointing in a similar direction as for the one dimensional case, promoting useful sign flips (Gadhikar
 1480 et al., 2025).

1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512 F ILLUSTRATION OF VANISHING INVERSE METRIC
1513

1514 We track the average inverse metric coefficient at $\theta = 0$. This implies for HAM we get $g^{-1}(0) = 1$
 1515 by definition of its inverse metric. For $\mathbf{m} \odot \mathbf{w}$ we get $g^{-1}(0) = \mathbf{m}^2 - \mathbf{w}^2$. We track the average
 1516 during training in the first layer of a ResNet50 trained on Imagenet. We consider 4 scenarios: HAM,
 1517 Sign-In for 90% sparsity according to (Gadhikar et al., 2025), dense training $\mathbf{m} \odot \mathbf{w}$ with and without
 1518 weight decay. The weight decay selected for $\mathbf{m} \odot \mathbf{w}$ is set to $2e - 5$, which is less than half of
 1519 the strength it would be in case of dense training. Note that in both cases a Frobenius decay i.e.
 1520 $\|\mathbf{m} \odot \mathbf{w}\|_{L_2}^2$ is applied in accordance with (Jacobs & Burkholz, 2025).

1521 In Figure 5 we observe that the inverse metrics of $\mathbf{m} \odot \mathbf{w}$ decays severely when weight decay is
 1522 applied. For the reparameterization, weight decay is needed to induce sparsity, so in order to use
 1523 it for sparsity it needs to be used. Furthermore, note that even though Sign-In manually resets the
 1524 rescaling at the start of training the metric decays at the end of training.



1545 Figure 5: The first layer of a Resnet50’s average inverse metric at zero reported at every tenth epoch.
 1546

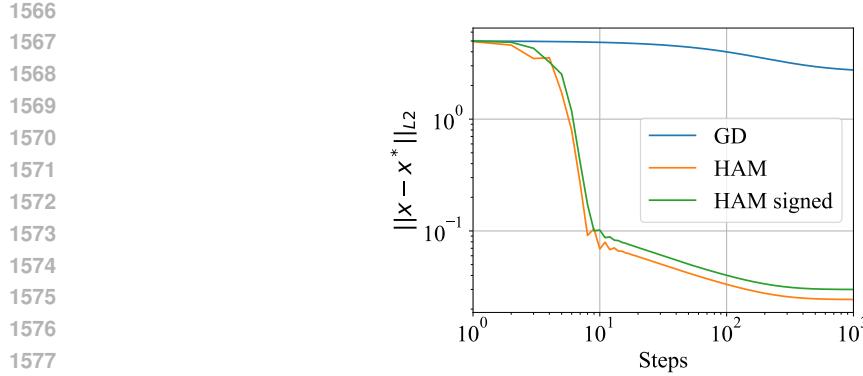


Figure 6: Gradient flow simulation of HAM, HAM with corrected sign and gradient descent. Observe the slight benefit of using $\text{sign}(\theta_{k+\frac{1}{2}})$ instead of $\text{sign}(\theta_k)$.

G EXPERIMENTAL DETAILS

We present the additional hyper parameters and other details of the experimental setup. Furthermore we provide ablations on various setups. In general HAM is applied to all layers except the batchnorm or layernorm layers.

G.1 OVERPARAMETERIZED LINEAR REGRESSION

We illustrate Theorem 4.5 by considering a under-determined linear regression setup, similar to that of Pesme et al. (2021); Jacobs & Burkholz (2025). We consider a sparse groundtruth θ^* and initialize at $\theta_0 = \mathbf{0}$. Moreover, we use the mean squared error loss function. We generate data by sampling $z_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ i.i.d. for $i \in [d]$, with $d = 40$ and $n = 100$. We compare gradient descent with and without HAM. Moreover we also show what happens if we replace $\text{sign}(\theta_{k+\frac{1}{2}})$ with $\text{sign}(\theta_k)$ denoted with HAM signed. The learning rate is set $\eta = 10^{-4}$, and both algorithms are run for $10e+6$ steps. We track the distance to the ground truth during training. In Figure 6 we observe that HAM gets closer to the ground truth and converges faster then both gradient descent and HAM signed, where we set $\alpha = 1000$. This corresponds to a less strong sparse implicit bias than L_1 .

In the same setting, we illustrate why we need both steps (GD;HYP*). We do this with an ablation, i.e., by using the hyperbolic step (HYP*) and gradient descent (GD) on their own. We initialize $\epsilon = -10e-5 \cdot \mathbf{1}$. This means we initialize with the opposite signs compared with the ground truth. In Figure 7, we observe that HAM reaches close to the ground truth, while the exponential step diverges, as it can not reach the ground truth due to having no sparse implicit bias. Moreover, gradient descent can also not reach the ground truth on its own. Therefore, both the hyperbolic and the gradient steps are necessary.

Furthermore, if we increase α and decrease the learning rate η , we can recover the ground truth solution. Concretely, consider HAM with the following configurations $(\alpha, \eta) = (10^{3+j}, 10^{-4-j})$ for $j \in [3]$. In Figure 8, we observe that we get closer to the ground truth.

G.2 DENSE AND SPARSE TRAINING ON VISION TASKS AND ABLATION

We provide additional results on CIFAR100 (Krizhevsky et al., 2009) in Table 7. Furthermore, we train a small DeiT (Touvron et al., 2021) with AdamW in Table 8. All results are for 3 seeds. We provide the hyperparameter grid search for CIFAR 100 and Imagenet (Deng et al., 2009) in Figures 11 and 12. We find that the grid search is consistent i.e. there is a global best configuration. This implies it is easy to tune for specific tasks. We illustrate the convergence and implicit bias behaviour by tracking the training loss and L_1 norm in Figure 9. We also track the L_1 norm when comparing with SAM to show that SAM and HAM exploit different principles in Figure 10. The additional hyper-parameters of the experiments can be found in Table 5. The same parameters are used for the

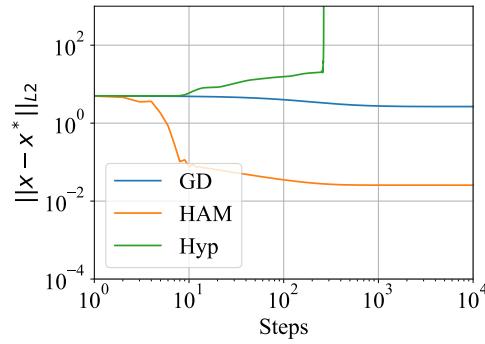
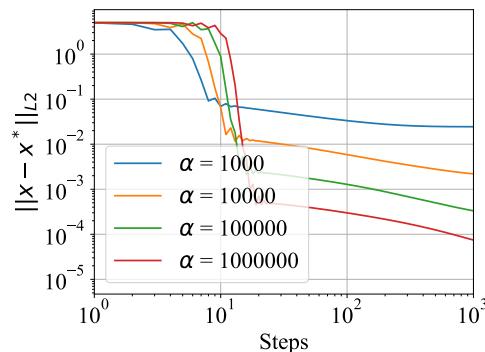


Figure 7: HAM vs hyperbolic step (HYP*) under the incorrect sign initializations.

Figure 8: Gradient flow simulation of HAM with corrected sign for different α . Larger α leads to closer ground truth recovery.

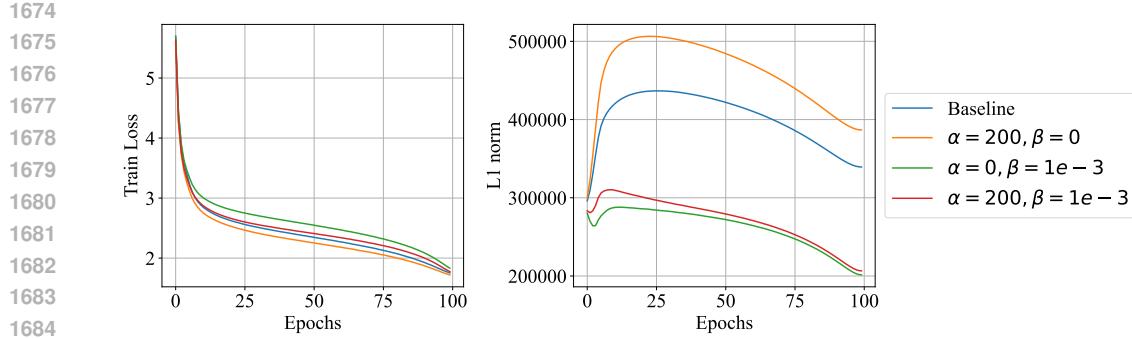


Figure 9: Training dynamics of HAM compared to the baseline for a ResNet 50 on Imagenet. Observe in the first figure (left) that the average training loss converges faster with higher α given the same β . This illustrates the convergence speed up predicted by our developed theory. Moreover, in the second figure (right) the average L_1 norm decays more due the regularization constant β , whereas larger α leads to a larger initial increase in the average L_1 norm it decays faster in the end. This is in line with being more uncertain about the sign of the weights in the beginning of training.

sparse training setup. To reproduce sparse training methods including AC/DC, RiGL and STR we use hyperparameters prescribed by the authors. Each experiment was run on 4 A100 GPUS. The code used is based on TurboPrune as in (Nelaturu et al.).

Parameters for $\mathbf{m} \odot \mathbf{w}$ The $\mathbf{m} \odot \mathbf{w}$ parameterization is not regularized with weight decay for the dense scenario, as this induces sparsity. Instead, weight decay is applied on the product $\|\mathbf{m} \odot \mathbf{w}\|_{L_2}^2$ with strength $5e - 5$, the same strength as for dense training (Gadhikar et al., 2025).

HAM optimization To optimize with HAM for dense and sparse training setups on vision tasks, we use $\alpha = 200$ and $\beta = 1e - 3$ based on our grid search in Figure 12. Additionally, we clamp the exponent in the HAM step (see Equation HYP*) between $[-5, 5]$ to avoid exploding gradients. Note, in all experiments, (HYP*) is not applied to BatchNorm or LayerNorm layers.

Table 5: Training Details for the dense vision experiments presented in the paper.

Dataset	Model	LR	Weight Decay	Epochs	Batch Size	Optim	LR Schedule
CIFAR100	ResNet18	0.2	$1e - 4$	150	512	SGD, $m = 0.9$, SAM	Triangular
ImageNet	ResNet50	0.25	$5e - 5$	100, 200	1024	SGD, $m = 0.9$, SAM	Triangular
	DeiT Small	0.005	$1e - 1$	300	1024	AdamW	Triangular

Table 6: HAM improves dense training of a ResNet50 on Imagenet (Deng et al., 2009).

Dataset	Baseline (no HAM)	$\alpha = 0, \beta = 1e - 3$	$\alpha = 200, \beta = 0$	$\alpha = 200, \beta = 1e - 3$
HAM, 100 epchs	76.72 ± 0.19	77.01 ± 0.14	76.72 ± 0.07	77.51 ± 0.11
HAM, 200 epchs	77.27 ± 0.13	77.48 ± 0.09	77.24 ± 0.09	77.86 ± 0.05
SAM-HAM, 100 epchs	77.10 ± 0.21	77.53 ± 0.16	77.21 ± 0.09	77.92 ± 0.15
SAM-HAM, 200 epchs	77.94 ± 0.16	78.17 ± 0.16	77.60 ± 0.03	78.56 ± 0.12

Table 7: Dense training with HAM on the CIFAR100 vision benchmarks.

Dataset	Baseline	$\alpha = 0, \beta = 16e - 3$	$\alpha = 200, \beta = 0$	$\alpha = 200, \beta = 16e - 3$
HAM	75.25 ± 0.24	75.36 ± 0.04	75.31 ± 0.30	76.12 ± 0.27
SAM-HAM	75.12 ± 0.68	76.30 ± 0.11	75.25 ± 0.20	76.65 ± 0.23

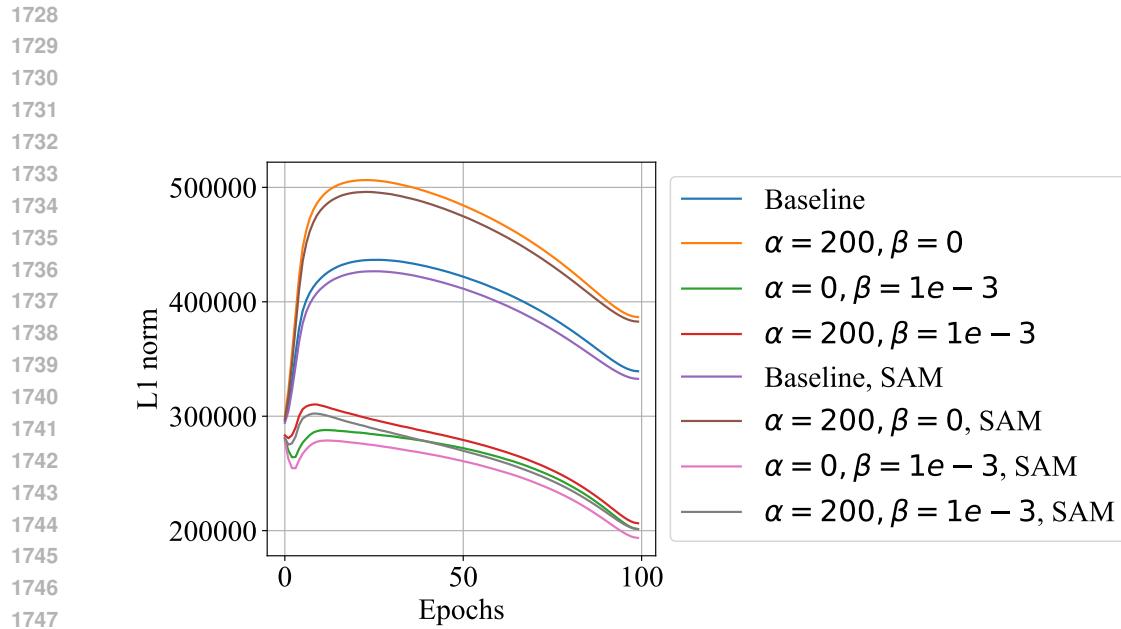


Figure 10: Training dynamics of HAM with and without SAM for a ResNet50 on Imagenet. Observe that the choice of our hyperparameters α and β determine the general trend of the average L_1 norm while the choice between SGD and SAM make less of a difference. This provides additional evidence for their complementary working.

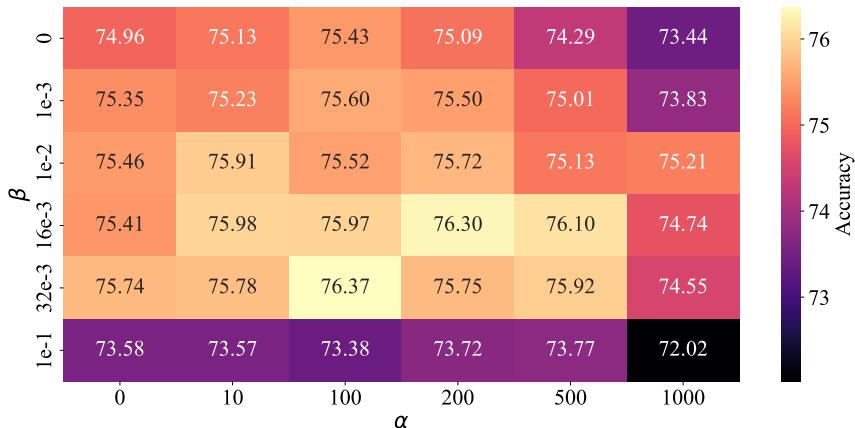


Figure 11: One seed hyperparameter search for a ResNet18 on CIFAR100.

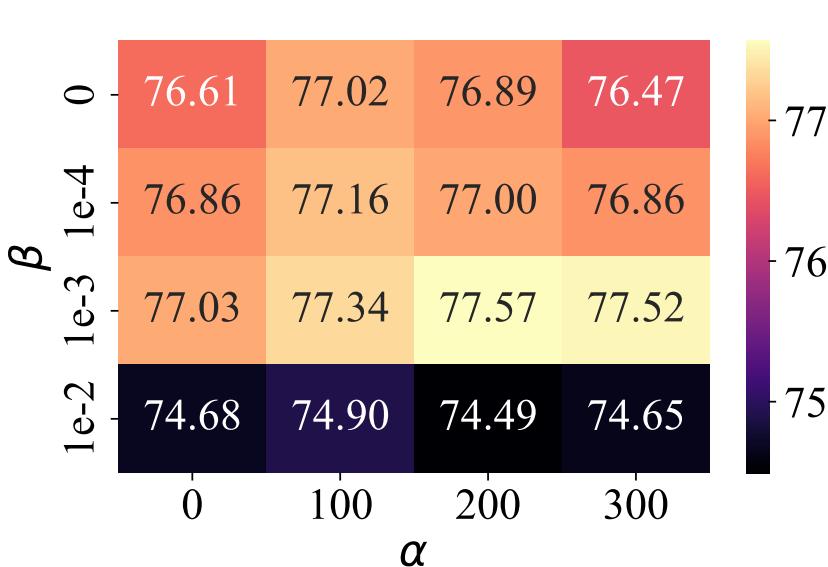


Figure 12: One seed hyperparameter search for a Resnet 50 on Imagenet.

G.3 HAM FOR VISION TRANSFORMERS

We also verify that HAM can boost pre-training performance for ViTs trained with AdamW, for both dense training as well as sparse training with AC/DC as shown in Table 8 and Table 9 respectively. [We use the same hyperparameters as for the ResNet-50 trained on Imagenet: \$\(\alpha, \beta\) = \(200, 1e-3\)\$.](#)

Table 8: Pre-training a vision transformer from scratch for 300 epochs on ImageNet.

Setup	AdamW + HAM	AdamW
ImageNet ₊ DeiT Small	72.62_{±0.22}	72.31 _{±0.09}

Table 9: Sparse pre-training of a vision transformer with AC/DC for 300 epochs on ImageNet at 50% sparsity.

Setup	AC/DC + HAM	AC/DC
ImageNet ₊ DeiT Small	73.24_{±0.45}	72.5 _{±0.16}

G.4 TRAINING WITH HAM AND DIFFERENT SPARSE MASKS.

HAM can be used to optimize sparse networks with different mask topologies. We train the nonzero weights of sparse mask topologies identified by different sparse methods including AC/DC, RiGL, STR and PaI masks. The weights are randomly initialized and optimized with HAM. [Note, this is equivalent to pruning at initialization with the mask obtained from the listed methods.](#) We see a consistent improvement across all topologies with HAM except the SNIP mask, which was unstable to train also without HAM. [HAM performs best for sparse masks identified by RiGL and random pruning, potentially due to better trainability and good layerwise sparsity ratios identified by these methods, which influences performance when the mask does not change during training.](#) Results are provided in Table 10.

1836

1837 Table 10: HAM with different masks for a ResNet50 trained on ImageNet with 90% sparsity and
1838 random initialization. (* denotes a single run, as the runs for other seeds crashed.)

Mask	Init		
	Base	Sign-In	HAM
AC/DC	70.66 ± 0.12	70.96 ± 0.09	71.84 ± 0.17
RiGL	72.02 ± 0.23	72.48 ± 0.19	73.31 ± 0.01
STR	68.36 ± 0.17	67.81 ± 0.34	68.75 ± 0.16
Snip	52.9*	54.27*	44.48 ± 0.57
Synflow	60.66 ± 0.2	60.59 ± 0.07	62.4 ± 0.03
Random	71.56 ± 0.03	72.19 ± 0.18	72.72 ± 0.03

1848

1849 **G.5 FINETUNING LLMs**

1850

1851 As we show, HAM can also boost the performance of LLM finetuning. We evaluate on the common-
1852 sense reasoning benchmark (Hu et al., 2023) to finetune LLaMA 3.2 models (Grattafiori et al., 2024)
1853 and report accuracies across eight benchmarks in Table 11. On average, HAM improves on this task,
1854 demonstrating its compatibility with the optimizer ADAM and the LoRA architecture.

1855

1856

1857 Table 11: Performance of LoRA + HAM on the commonsense reasoning (Hu et al., 2023) benchmark.

LLaMa 3.2	Size	HS	WG	PQ	AE	AC	OB	SQ	BQ	Avg
LoRA	1B	63.8	65.8	74.04	67.63	55.88	63.6	70.98	64.25	65.74
LoRA + HAM	1B	64.8	68.35	74.21	68.39	51.79	65.8	71.2	62.17	65.83
LoRA	3B	88.8	80.66	83.73	82.65	66.89	76.8	78.19	69.44	78.39
LoRA + HAM	3B	89.40	80.58	82.69	81.77	68.43	80.2	78.25	69.48	78.85

1863

1864

1865 **Experimental details** Each experiment was run on 4 A100 GPUs. We use the experimental setup of
1866 DoRA Liu et al. (2024) to finetune LLaMA 3.2 models of size 1B and 3B with $\alpha = 200$, $\beta = 1e-3$ and
1867 $\alpha = 100$, $\beta = 1e-4$ respectively. We find that larger models benefit from less strong regularization
1868 which is consistent with our different regularization strengths β for ResNet18 and ResNet50.

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890
1891

G.6 GRAPH AND NODE CLASSIFICATION

1892
1893
1894
1895
1896
1897
1898
1899

We report the experimental details of the 4 graph classification benchmarks from Table 12. We also include results on 13 node classification benchmarks, and an ablation on $\alpha < 0$. Each experiment was run on an A100. We consider 4 graph classification tasks on the GCN architecture (Kipf & Welling, 2017) in Table 12, and 13 node classification tasks on GCN, GATv2 (Brody et al., 2022), and GraphSAGE (Hamilton et al., 2017) in Tables 14, 15. We also include the hyperparameter grid search, as well as an ablation on negative α . The success of negative values indicates that node classification prefers a different type of implicit bias. Nonetheless, we see consistent improvements across almost all datasets and architectures with $\alpha > 0$.

1900

1901
1902
1903
1904
1905
1906
1907

Table 12: Evaluation of HAM on 4 graph classification benchmarks from OGB (Hu et al., 2020).

Dataset	ogbg-ppa	ogbg-molpcba	ogbg-molhiv	ogbg-code2
Metric	Accuracy \uparrow	Avg. Precision \uparrow	AUROC \uparrow	F1 score \uparrow
GCN	75.48 ± 0.15	27.57 ± 0.04	82.37 ± 0.29	13.89 ± 2.11
GCN + HAM	75.72 ± 0.24	27.81 ± 0.22	82.50 ± 0.69	13.96 ± 2.06

1908
1909
1910

G.6.1 GRAPH CLASSIFICATION

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921

We report the performance of HAM on four graph classification datasets from Open Graph Benchmark (OGB) (Hu et al., 2020). The code to run these benchmarks is based on (Luo et al., 2025), using their choice of hyperparameters and ADAM as the optimizer. We use their GCN+ architecture, which is a GCN equipped with edge features, normalization, dropout, residual connections, feed-forward networks, and positional encodings. In order to implement HAM in combination with dropout, we mask the regularization term β with $(\text{grad} \neq 0)$. We only apply HAM on the weights and biases associated with the convolutional layers. The results, shown in Table 12, are averaged over 3 seeds. We report the best validation metric for the best values of α and β for HAM, the selection of which is displayed in Table 13. The tuning range is $\alpha \in \{1, 10, 100, 200\}$, and $\beta \in \{0, 0.01, 0.1\}$. Table 13 also includes the size of the datasets in terms of number of graphs. Note that for three datasets, α is the same as for the vision tasks.

1922
1923Table 13: α and β best values for the graph classification tasks.

Dataset	ogbg-ppa	ogbg-molpcba	ogbg-molhiv	ogbg-code2
# graphs	158,100	437,929	452,741	41,127
α	200	200	200	1
β	0.1	0.1	0.1	0.01

1929
1930

G.6.2 NODE CLASSIFICATION

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

We furthermore report the performance of HAM on thirteen node classification datasets: Cora, CiteSeer, and PubMed (Kipf & Welling, 2017), Wiki-CS (Mernyei & Cangea, 2022), Coauthor-CS, Coauthor-Physics, Amazon-Computers, and Amazon-Photo (Shchur et al., 2019) (homophilic); Amazon-Ratings, Squirrel, Chameleon, Minesweeper, and Roman-Empire (Platonov et al., 2023) (heterophilic). We evaluate over GCN, GATv2, and GraphSAGE. We only apply HAM on the weights and biases associated with the convolutional layers and on the attention parameters. The code to run these benchmarks is based on (Luo et al., 2024), using their choice of hyperparameters and ADAM as the optimizer. The results, shown in Tables 14 (homophilic) and 15 (heterophilic), are averaged over different runs according to the original setup. We report the best validation accuracy for the best values of α and β for HAM, the selection of which is displayed in Table 16. The tuning range is $\alpha \in \{1, 10, 100, 200\}$, and $\beta \in \{0, 0.01, 0.1\}$. The best value per architecture is in bold, and ties are underlined. Tables 14 and 15 also include the size of the datasets in terms of number of nodes and edges.

1944

1945

Table 14: Evaluation of HAM on 8 homophilic node classification benchmarks.

Dataset	cora	citeseer	pubmed	wikics	coauthor-cs	coauthor-physics	amazon-computer	amazon-photo
# nodes	2,708	3,327	19,717	11,701	18,333	34,493	13,752	7,650
# edges	5,278	4,522	44,324	216,123	81,894	247,962	245,861	119,081
GCN	81.32 ± 0.30	68.60 ± 0.94	77.96 ± 0.46	80.71 ± 0.29	95.32 ± 0.12	97.17 ± 0.01	83.47 ± 0.70	94.33 ± 0.61
GCN+HAM	81.44 ± 0.43	68.64 ± 0.97	78.16 ± 0.65	80.84 ± 0.27	95.32 ± 0.04	97.18 ± 0.02	83.93 ± 0.58	95.33 ± 0.23
GAT	81.24 ± 0.68	68.68 ± 0.30	79.00 ± 0.95	82.35 ± 0.39	95.33 ± 0.07	97.15 ± 0.01	83.67 ± 0.23	94.47 ± 0.31
GAT+HAM	81.56 ± 0.67	68.92 ± 0.27	79.08 ± 0.88	82.47 ± 0.38	95.33 ± 0.07	97.16 ± 0.01	84.40 ± 0.92	94.60 ± 0.69
SAGE	80.44 ± 1.03	67.44 ± 0.26	79.36 ± 0.67	81.72 ± 0.46	95.50 ± 0.08	97.01 ± 0.10	83.07 ± 0.90	95.33 ± 0.31
SAGE+HAM	80.60 ± 0.63	67.48 ± 0.18	79.96 ± 0.62	81.78 ± 0.41	95.58 ± 0.09	97.03 ± 0.08	83.60 ± 1.11	95.40 ± 0.40

1952

1953

1954

Table 15: Evaluation of HAM on 5 heterophilic node classification benchmarks.

Dataset	amazon-ratings	squirrel	chameleon	minesweeper	roman-empire
# nodes	24,492	2,223	890	10,000	22,662
# edges	93,050	46,998	8,854	39,402	32,927
GCN	53.23 ± 0.54	44.52 ± 1.12	46.12 ± 2.38	97.46 ± 0.24	90.96 ± 0.33
GCN+HAM	53.43 ± 0.44	44.55 ± 1.28	46.78 ± 2.22	97.78 ± 0.53	91.22 ± 0.40
GAT	55.47 ± 0.20	42.22 ± 1.73	45.84 ± 3.02	97.98 ± 0.21	90.58 ± 0.91
GAT+HAM	55.58 ± 0.47	43.17 ± 1.37	46.37 ± 3.32	98.37 ± 0.46	90.83 ± 0.89
SAGE	55.05 ± 0.50	40.91 ± 1.27	42.80 ± 2.90	97.02 ± 0.59	90.51 ± 0.33
SAGE+HAM	55.50 ± 0.55	40.85 ± 1.16	43.07 ± 2.84	97.77 ± 0.16	90.57 ± 0.44

1966

1967

1968

Table 16: α and β best values for the node classification tasks.

Dataset ↓	GCN		GAT		SAGE	
	α	β	α	β	α	β
cora	200	0.1	200	0.1	200	0.1
citeseer	1	0.01	10	0	200	0.01
pubmed	200	0.1	100	0	10	0.01
wikics	10	0.01	1	0.1	1	0.1
coauthor-cs	1	0.1	10	0.1	10	0.1
coauthor-physics	10	0	10	0.01	1	0
amazon-computer	10	0.01	10	0	200	0
amazon-photo	10	0.01	10	0	1	0.01
amazon-ratings	10	0.01	200	0.01	200	0
squirrel	10	0.01	200	0	200	0.1
chameleon	200	0	200	0	200	0.1
minesweeper	200	0.1	100	0.1	1	0.01
roman-empire	10	0.1	10	0.1	10	0.1

1984

1985

Node classification with $\alpha < 0$ We perform an ablation on the node classification tasks by assigning negative values to α , denoted as nHAM. Tables 17 (homophilic) and 18 (heterophilic) show the results of this ablation, while Table 19 displays the optimal pair of $(\alpha < 0, \beta)$ hyperparameters. Note that the baselines never perform better than HAM or nHAM. Surprisingly, heterophilic datasets appear to be able to benefit more consistently from nHAM, especially for GCN and GraphSAGE. In homophilic datasets and GATs, it still provides consistent but smaller improvements, or matches the best performance of $\alpha > 0$. This intriguing phenomenon requires further investigation, as it may indicate the need for a different kind of implicit bias in certain graph-based architectures. Other methods particularly effective in heterophilic settings, such as modifying the adjacency matrix (Qian et al., 2024; Jamadandi et al., 2024; Rubio-Madrigal et al., 2025), may offer insight into these results.

1995

1996

1997

1998
1999
2000

2001
2002
2003
2004
2005
2006
2007
2008
2009

2010
2011
2012
2013
2014

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027

2028
2029
2030
2031
2032
2033

2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Table 17: HAM ($\alpha > 0$) compared to nHAM ($\alpha < 0$) on 8 homophilic node classification benchmarks.

Dataset	cora	citeseer	pubmed	wikics	coauthor-cs	coauthor-physics	amazon-computer	amazon-photo
GCN	81.32 \pm 0.30	68.60 \pm 0.94	77.96 \pm 0.46	80.71 \pm 0.29	95.32 \pm 0.12	97.17 \pm 0.01	83.47 \pm 0.70	94.33 \pm 0.61
GCN+HAM	81.44 \pm 0.43	68.64 \pm 0.97	78.16 \pm 0.65	80.84 \pm 0.27	95.32 \pm 0.04	97.18 \pm 0.02	83.93 \pm 0.58	95.33 \pm 0.23
GCN+nHAM	81.44 \pm 0.26	68.68 \pm 0.99	78.08 \pm 0.58	80.89 \pm 0.30	95.34 \pm 0.09	97.17 \pm 0.00	84.20 \pm 0.40	95.27 \pm 0.50
GAT	81.24 \pm 0.68	68.68 \pm 0.30	79.00 \pm 0.95	82.35 \pm 0.39	95.33 \pm 0.07	97.15 \pm 0.01	83.67 \pm 0.23	94.47 \pm 0.31
GAT+HAM	81.56 \pm 0.67	68.92 \pm 0.27	79.08 \pm 0.88	82.47 \pm 0.38	95.33 \pm 0.07	97.16 \pm 0.01	84.40 \pm 0.92	94.60 \pm 0.69
GAT+nHAM	81.56 \pm 0.43	68.92 \pm 0.18	79.08 \pm 0.88	82.45 \pm 0.41	95.33 \pm 0.07	97.16 \pm 0.01	83.93 \pm 0.31	94.80 \pm 0.72
SAGE	80.44 \pm 1.03	67.44 \pm 0.26	79.36 \pm 0.67	81.72 \pm 0.46	95.50 \pm 0.08	97.01 \pm 0.10	83.07 \pm 0.90	95.33 \pm 0.31
SAGE+HAM	80.60 \pm 0.63	67.48 \pm 0.18	79.96 \pm 0.62	81.78 \pm 0.41	95.58 \pm 0.09	97.03 \pm 0.08	83.60 \pm 1.11	95.40 \pm 0.40
SAGE+nHAM	81.00 \pm 0.35	67.48 \pm 0.23	79.84 \pm 0.93	81.82 \pm 0.45	95.56 \pm 0.12	97.02 \pm 0.10	83.60 \pm 1.04	95.67 \pm 0.61

Table 18: HAM ($\alpha > 0$) compared to nHAM ($\alpha < 0$) on 5 heterophilic node classification benchmarks.

Dataset	amazon-ratings	squirrel	chameleon	minesweeper	roman-empire
GCN	53.23 \pm 0.54	44.52 \pm 1.12	46.12 \pm 2.38	97.46 \pm 0.24	90.96 \pm 0.33
GCN+HAM	53.43 \pm 0.44	44.55 \pm 1.28	46.78 \pm 2.22	97.78 \pm 0.53	91.22 \pm 0.40
GCN+nHAM	53.43 \pm 0.25	44.58 \pm 1.09	46.78 \pm 1.85	97.85 \pm 0.10	91.23 \pm 0.36
GAT	55.47 \pm 0.20	42.22 \pm 1.73	45.84 \pm 3.02	97.98 \pm 0.21	90.58 \pm 0.91
GAT+HAM	55.58 \pm 0.47	43.17 \pm 1.37	46.37 \pm 3.32	98.37 \pm 0.46	90.83 \pm 0.89
GAT+nHAM	55.76 \pm 0.55	42.84 \pm 1.25	46.23 \pm 2.91	98.53 \pm 0.25	90.74 \pm 0.82
SAGE	55.05 \pm 0.50	40.91 \pm 1.27	42.80 \pm 2.90	97.02 \pm 0.59	90.51 \pm 0.33
SAGE+HAM	55.50 \pm 0.55	40.85 \pm 1.16	43.07 \pm 2.84	97.77 \pm 0.16	90.57 \pm 0.44
SAGE+nHAM	55.25 \pm 1.00	41.11 \pm 1.61	43.32 \pm 2.92	97.81 \pm 0.14	90.64 \pm 0.56

Table 19: α and β best values for the node classification tasks with $\alpha < 0$.

Dataset \downarrow	GCN		GAT		SAGE	
	α	β	α	β	α	β
cora	-10	0.01	-10	0	-200	0.01
citeseer	-1	0.01	-10	0	-100	0
pubmed	-100	0.01	-100	0	-1	0.1
wikics	-100	0.1	-10	0.01	-10	0.01
coauthor-cs	-10	0.01	-100	0.01	-100	0.01
coauthor-physics	-1	0.1	-1	0.01	-100	0.1
amazon-computer	-200	0	-1	0.01	-1	0.01
amazon-photo	-200	0	-200	0	-1	0.01
amazon-ratings	-10	0	-200	0.1	-1	0
squirrel	-100	0	-200	0.01	-200	0.1
chameleon	-200	0	-100	0	-200	0.1
minesweeper	-100	0.1	-10	0.1	-200	0.1
roman-empire	-200	0.1	-10	0.1	-1	0.1