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Abstract

Spatial omics technologies provide rich insights into biological processes by jointly
capturing molecular profiles and the spatial organization of cells. The resulting
high-dimensional data can be naturally represented as graphs, where Graph Neural
Networks (GNNs) offer an effective framework to model interactions in the tis-
sue. Self-supervised pretraining methods leverage graph augmentations to build
invariances without costly labels. Yet, the design of augmentation strategies re-
mains underexplored, particularly in the context of spatial omics. In this work,
we investigate how different graph augmentations affect embedding quality and
downstream performance in spatial omics. We evaluate a suite of existing and novel
augmentations, including transformations tailored to biological variation, across
two representative tasks: unsupervised domain identification in healthy tissue and
supervised phenotype prediction in cancer tissue. Our results show that carefully
chosen augmentations substantially improve performance, whereas poorly aligned
or overly complex augmentations may fail to help or even degrade performance.

1 Introduction

Spatial omics technologies measure molecular profiles, such as RNA or protein expression, while
preserving the spatial context of cells in their natural environment. This modality provides a more
comprehensive view of biological processes compared to non-spatial single-cell methods [1]. Spatial
transcriptomics platforms use microscopy or in situ sequencing to generate spatial maps of RNA
expression. Complementary proteomics methods measure protein abundances with spatial resolution.

The complex and high-dimensional data produced by these technologies can be naturally represented
as graphs, where nodes correspond to cells and edges encode spatial proximity or molecular similarity
[2]. To exploit all available information from spatial omics data, graph-based methods like graph
neural networks (GNNs) often exhibit superior characteristics compared to traditional analysis
methods not taking spatial dependencies in the data into account [3, 4]. GNNs are well-suited
to analyze spatial omics data, as they explicitly model relationships between cells through graph
structures using a message-passing mechanism [3].

Pretraining enables GNNs to learn generalizable patterns from data before fine-tuning them for
specific tasks. Moreover, these approaches can introduce inductive biases, for instance via graph
augmentations, that help models prioritize biologically relevant features and improve robustness [5].

A central principle of contrastive self-supervision is that it enforces invariance to augmentations: two
different views of the same input are trained to have similar embeddings [6–8]. Recent work has
shown that in graph domains, augmentations explicitly inject desired invariances, such as robustness
to node/edge perturbations or feature corruption [5, 9].
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Several pretraining frameworks have operationalized these ideas in the graph setting. Deep Graph
Contrastive Representation Learning (GRACE) [9] builds invariance to structural and feature pertur-
bations via an InfoNCE-based contrastive loss. Bootstrapped Graph Latents (BGRL) [10] achieves
similar invariances without negative samples, relying instead on online–target encoder consistency.
While recent benchmarks such as scSSL-Bench [11] have evaluated self-supervised learning in a
biological context across diverse single-cell omics modalities, spatial omics remains underexplored.
Most existing applications of GNNs to spatial omics adopt generic augmentations from other domains
or do not leverage augmentation at all [2, 12, 13]. However, spatial omics graphs differ fundamen-
tally from social or molecular networks: their nodes represent spatially embedded cells, and edges
encode physical proximity rather than arbitrary connectivity. As a result, conventional augmentations
like random edge or feature drops can disrupt biologically meaningful tissue structure and spatial
organization [14]. Effective pretraining in this domain therefore requires augmentation strategies that
preserve spatial coherence while accounting for biological and experimental variability.

We explore how different graph augmentation strategies affect the performance of GNNs in spatial
omics data. We investigate existing graph augmentations and newly designed augmentations that
encode biologically meaningful inductive biases. Their effectiveness is evaluated on two downstream
tasks in spatial omics: unsupervised domain identification on healthy mouse brain tissue and super-
vised phenotype prediction in human lung cancer samples. These tasks differ not only in supervision
regime but also in biological complexity: domain identification on healthy tissue emphasizes sta-
ble spatial compartments, while phenotype prediction on cancer tissue must contend with tissue
heterogeneity and noisy clinical labels [15–17]. We aim to quantify how different augmentations
influence downstream performance. To our knowledge, this is the first systematic investigation of
graph augmentations in spatial omics.

2 Methods

Our study design consists of applying graph augmentations (baseline and advanced) to input graphs,
pretraining models using BGRL and GRACE, and evaluating on two downstream tasks: domain
identification and phenotype prediction.

Notations A graph is denoted by G = (X,A), where X ∈ RN×F is the node feature matrix
with N nodes and F features per node, and A ∈ RN×N is the binary adjacency matrix. Graph
augmentations generate a new view G̃ = (X̃, Ã) by modifying X, A, or both. Node positions
are encoded in a spatial matrix P ∈ RN×d, with d = 2, yielding P̃ after augmentation. The
neighborhood of node i, denoted N (i), is defined as the set of nodes directly connected to i in A.

2.1 Baseline augmentations

Two baseline augmentations were used: DropFeatures and DropEdges. Models trained with these
augmentations served as baselines for performance comparisons.

DropFeatures randomly masks features by setting entries in X to zero with probability p, resulting
in X̃ while keeping A unchanged. If X contains a cell type feature, it is masked out.

DropEdges randomly removes edges from A with probability p (Bernoulli sampling), resulting in Ã
while keeping X unchanged.

2.2 Advanced augmentations

Advanced augmentations include both published and novel methods. These were tested individually
and in combination to assess their effect on downstream tasks relative to baseline augmentations.

DropImportance drops features/edges with probabilities p derived from normalized log-degree
importance I . Inspired by prior work [18, 19], it is controlled by dropout rate µ and threshold λp. Let

I
(n)
i =

log(1 + degi)− d̄

maxj log(1 + degj)− d̄
, pi = min{(1− I

(n)
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where degi is the degree of node i and d̄ is the mean log-degree. For edges, we use endpoint-mean
importance and analogous dropout:

I
(e)
ij = 1

2
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i + I

(n)
j

)
, pij = min{(1− I

(e)
ij )µ, λp}.

This enforces invariance to removing less-informative node features and edges.

SpatialNoise adds Gaussian noise to spatial positions:

p̃i = pi + ϵi, ϵi ∼ N (0, σ2I). (1)

This models experimental imprecision in cell localization and enforces invariance to small spatial
perturbations. This augmentation is applicable only to domain identification.

FeatureNoise adds Gaussian noise to node features:

x̃i = xi + ϵi, ϵi ∼ N (0, σ2I). (2)

This simulates variability in molecular readouts and enforces robustness to fluctuations in expression.

SmoothFeatures applies a convex combination of each node’s features with the mean of its neighbors:

x̃i = (1− α)xi + α · 1
|N (i)|

∑
j∈N (i)

xj , (3)

where α ∈ [0, 1] controls the smoothing strength. This simulates transcript leakage [20] and enforces
invariance to local feature diffusion. This augmentation is used only for domain identification.

PhenotypeShift randomly mutates discrete cell-type features ci according to a transition mapM:

c̃i =

{
ci with probability 1− p,

sample(M[ci]) with probability p,
(4)

where M[ci] ⊆ C contains plausible phenotype alternatives. This models both plasticity (cell-
type switching) and misclassification noise, training robustness to annotation uncertainty. This
augmentation is used only for phenotype prediction. Details ofM are dataset-specific.

2.3 The task of domain identification

The first task employed to evaluate augmentations is unsupervised Domain Identification. The
objective is to detect and segment spatially coherent regions within healthy tissue based on molecular
data (e.g., gene expression) and spatial data (e.g., spatial relationships). These regions, or domains,
ideally reflect biologically relevant structures such as tissue compartments or functional zones.

We used three spatial transcriptomics datasets with expert domain annotations, obtained via the
benchmarking study of Schaub et al. (2025) [21]. Dataset 1 profiles 5 mouse brain samples via
MERFISH [22]. Dataset 2 contains STARmap data from mouse cortex [23], with expert annotations
by Li and Zhou (2022) [24]. Dataset 3 comprises BaristaSeq samples of mouse cortex tissue [25].
All datasets are publicly available [26].

Data preprocessing and graph construction Each sample is first preprocessed using a sequence of
filtering and normalization steps standard for spatial omics data [27]. Principal Component Analysis
(PCA) is subsequently applied to the processed expression matrix. Following preprocessing, one
spatial omics graph is constructed per sample. Each cell is represented as a node, with the top 50
principal components of gene expression serving as node features. Nodes are connected to their k
nearest neighbors in Euclidean space. Parameter k is optimized during hyperparameter search.

Model and training A two-layer Graph Convolutional Network (GCN) is used to compute node
embeddings for each sample-specific graph. The network is trained in a self-supervised manner
using both the BGRL and GRACE frameworks. To encourage spatial coherence in the learned
representations, a spatial regularization term is added. It penalizes high similarity in the embedding
space for nodes that are spatially distant. This discourages long-range spurious similarities. The
resulting overall loss function is defined as:

Ltotal = LSSL + γspatial · 1
N2

∑
i,j

D
(s)
i,j · (1−D

(z)
i,j ), (5)
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where D
(s)
i,j denotes the normalized Euclidean distance between cells i and j, and D

(z)
i,j denotes the

normalized distance between their embeddings in the latent space. The regularization strength is
controlled by the hyperparameter γspatial.

Training is conducted across all data samples. For model selection and evaluation, the dataset
is split into 40% validation and 60% test samples. All hyperparameters, including augmentation
hyperparameters, were tuned on validation sets over fixed ranges (see Section A.8 in the Appendix).

Clustering To obtain the final domain assignments for each node, the learned node embeddings are
clustered using the Leiden algorithm [28]. The resolution of the Leiden clustering is dynamically
adjusted to match the number of ground truth domains in each sample. The predicted domain labels
are evaluated against the ground truth annotations using clustering quality metrics (see Section A.5).
Metrics are calculated per sample and averaged across the test set to report the performance. Reported
means and standard deviations are computed over 5 independent runs with different random seeds.

2.4 The task of phenotype prediction

The second task used to evaluate augmentations is supervised Phenotype Prediction in human non-
small cell lung cancer (NSCLC) tissue. The objective is to predict biological or clinical phenotypes
directly from spatially resolved molecular data. Here, we predict cancer relapse after treatment.

The data used for phenotype prediction consists of one non-small cell lung cancer (NSCLC) spatial
proteomics dataset obtained by imaging mass cytometry [29]. Marker expression was quantified
in 1071 patients with at least 15 years follow-up, resulting in 1868 cancer samples. Each sample
includes clinical annotations, for instance cancer stage, relapse, clinical outcome, or cancer subtype.
The raw data can be downloaded from the resource provided by Cords et al. (2024) [29].

Data preprocessing and graph creation Graphs were constructed from segmented cells using
Delaunay triangulation. Node features included cell type (integer-encoded) and cell size. Edge
features consist of a binary “near/distant” category based on centroid-to-centroid distance, using
a threshold of 20 µm, reflecting the typical size of human cells. From each tissue graph, h-hop
subgraphs were extracted (h = 3 by default).

Model and training The phenotype prediction model is based on SPACE-GM [2]. An L-layer
Graph Isomorphism Network (GIN) with edge-feature extension [2] was used, with messages

m(ℓ)
vu = h(ℓ−1)

u + e(ℓ)vu , (6)

with e
(ℓ)
vu mapped via an embedding lookup. Subgraph embeddings were obtained by max-pooling

over final-layer node embeddings. The encoder was pretrained with BGRL and GRACE. For
classification, a 3-layer MLP was added and jointly fine-tuned with a weighted BCE loss.

Splits and optimization Pretraining used all samples without labels. For supervised fine-tuning,
1492 samples were used for training and 376 for evaluation, with evaluation split into 50% validation
and 50% test. The performance was evaluated against the ground truth patient labels using standard
classification quality metrics (see Section A.4 in the Appendix). Hyperparameters were tuned on
the validation set. Reported means and standard deviations are computed on the test set over 5
independent runs with different random seeds.

3 Results

3.1 Unsupervised domain identification in healthy mouse brain tissue

We evaluated the effect of augmentations on the task of identifying distinct domains in healthy mouse
brain tissue. Baseline models were trained with DropFeatures and DropEdges, and compared against
models with advanced augmentations or their combinations. The Noise augmentation denotes the
joint application of SpatialNoise and FeatureNoise.

Results with BGRL and GRACE are shown in Tables 1 and 2. Under BGRL, DropImportance
improved NMI from 0.61 (baseline) to 0.66, with the next-best performance achieved by combining
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all augmentations (0.65). Under GRACE, DropImportance again achieved the best result (0.66
compared to 0.65 baseline), and was the only augmentation regime that substantially improved over
the baseline. Across both frameworks, DropImportance provided the most consistent gains. With
BGRL, nearly all augmentation regimes improved upon the baseline, whereas in GRACE the gains
were smaller because the baseline was already comparatively strong.

Table 1: Performance on domain identification task using BGRL. Clustering performance on
healthy mouse brain tissue using different augmentation strategies. Reported as mean ± standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations NMI HOM COM

Baseline 0.6145 ± 0.0195 0.6188 ± 0.0234 0.6121 ± 0.0175
Baseline + Noise 0.6488 ± 0.0083 0.6419 ± 0.0093 0.6576 ± 0.0074
DropImportance 0.6585 ± 0.0033 0.6552 ± 0.0065 0.6635 ± 0.0008
DropImportance + Noise 0.6488 ± 0.0166 0.6507 ± 0.0135 0.6498 ± 0.0217
SmoothFeatures 0.6497 ± 0.0065 0.6465 ± 0.0097 0.6538 ± 0.0061
DropImp. + Noise + SmoothFeat. 0.6540 ± 0.0104 0.6507 ± 0.0110 0.6579 ± 0.0103

Table 2: Performance on domain identification task using GRACE. Clustering performance on
healthy mouse brain tissue using different augmentation strategies. Reported as mean ± standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations NMI HOM COM

Baseline 0.6470 ± 0.0081 0.6475 ± 0.0081 0.6484 ± 0.0110
Baseline + Noise 0.6405 ± 0.0221 0.6390 ± 0.0157 0.6438 ± 0.0271
DropImportance 0.6639 ± 0.0056 0.6569 ± 0.0082 0.6726 ± 0.0046
DropImportance + Noise 0.6477 ± 0.0125 0.6409 ± 0.0120 0.6557 ± 0.0127
SmoothFeatures 0.6460 ± 0.0100 0.6423 ± 0.0115 0.6509 ± 0.0085
DropImp. + Noise + SmoothFeat. 0.6412 ± 0.0058 0.6336 ± 0.0050 0.6502 ± 0.0080

Qualitative results of the models trained using BGRL are shown in Figure 1 for a representative
MERFISH sample. Different augmentation strategies produce visibly different domain segmentations,
broadly consistent with the quantitative metrics.

Figure 1: Predicted and ground-truth domains in MERFISH tissue. Visualization of a representa-
tive mouse brain sample. The left-most panel shows expert-annotated ground truth; remaining panels
display predicted domains under different augmentation strategies. Augmentations strongly influence
segmentation quality, broadly consistent with the quantitative results.
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3.2 Supervised phenotype prediction in human cancer tissue

We evaluated augmentation strategies on relapse prediction in NSCLC samples, with performance
measured by F1 score and AUROC (Tables 3 and 4). Models were trained with baseline augmentations
(DropFeatures and DropEdges) and compared against advanced augmentations. In PhenotypeShift,
we incorporated biologically motivated cell state transitions (see Section A.6 in the Appendix).

Under BGRL, the baseline achieved F1 = 0.59 and AUROC = 0.60. FeatureNoise improved AUROC
to 0.61, while DropImportance alone decreased performance. The best F1 was obtained with
PhenotypeShift (0.64), while the best AUROC was achieved by FeatureNoise (0.61). Combining all
augmentations yielded intermediate gains (F1 = 0.62, AUROC = 0.60).

Under GRACE, the results showed similar patterns. The best F1 score was obtained with DropImpor-
tance + FeatureNoise (0.63), while the best AUROC was achieved with Baseline + FeatureNoise
(0.59). The second best scores were achieved using PhenotypeShift for both metrics (F1 score 0.63,
AUROC 0.59). Adding all augmentations together did not improve over single strategies.

Table 3: Performance on phenotype prediction task using BGRL. Relapse prediction in NSCLC
samples using BGRL pretraining with different augmentation strategies. Reported as mean± standard
deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations F1 Score AUROC

Baseline 0.5896 ± 0.0213 0.5986 ± 0.0142
Baseline + FeatureNoise 0.6265 ± 0.0155 0.6084 ± 0.0097
DropImportance 0.6171 ± 0.0245 0.5848 ± 0.0031
DropImportance + FeatureNoise 0.6277 ± 0.0011 0.5665 ± 0.0106
PhenotypeShift 0.6375 ± 0.0090 0.6006 ± 0.0098
DropImp. + FeatNoise + PhenotypeShift 0.6218 ± 0.0291 0.6030 ± 0.0100

Table 4: Performance on phenotype prediction task using GRACE. Relapse prediction in NSCLC
samples using GRACE pretraining with different augmentation strategies. Reported as mean ±
standard deviation across 5 random seeds. The best and second-best results by mean are highlighted.

Augmentations F1 Score AUROC

Baseline 0.6157 ± 0.0125 0.5759 ± 0.0194
Baseline + FeatureNoise 0.6208 ± 0.0142 0.5932 ± 0.0090
DropImportance 0.6137 ± 0.0355 0.5707 ± 0.0074
DropImportance + FeatureNoise 0.6338 ± 0.0052 0.5545 ± 0.0122
PhenotypeShift 0.6318 ± 0.0096 0.5897 ± 0.0167
DropImp. + FeatNoise + PhenotypeShift 0.6070 ± 0.0409 0.5870 ± 0.0088

4 Discussion

We systematically evaluated the role of graph augmentations in self-supervised GNN pretraining
for spatial omics, using both BGRL [10] and GRACE [9] across two tasks: domain identification
and phenotype prediction. While the absolute performance scores are modest, this primarily reflects
the intrinsic difficulty and noise of these tasks in spatial omics data. Our models nonetheless reach
performance levels comparable to recent state-of-the-art approaches, demonstrating the validity of the
setup. The results show that augmentation choice has a decisive impact on downstream performance.
In line with prior contrastive learning work [6–8], we find that well-aligned augmentations can
enhance representations by encoding task-relevant invariances, whereas overly strong or misaligned
transformations can degrade performance.

Domain identification benefited most from structural perturbations, with DropImportance improving
performance by removing structurally redundant nodes and edges, albeit at the cost of additional
computational overhead due to the need to compute and rank node and edge importance scores.
In contrast, phenotype prediction showed limited gains from structural perturbations and instead
improved with noise-based and biologically motivated augmentations such as FeatureNoise and
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PhenotypeShift. Composing these augmentations provided only limited additional benefit or even hurt
performance. A likely explanation is that the combined perturbations either dilute informative signal
or exceed the capacity of the model to leverage additional invariances in this noisy, small-sample
setting.

This study was limited to two downstream tasks and a curated set of augmentations. Moreover,
the two tasks differed both in supervision regime and biological complexity, making it difficult
to disentangle whether augmentation effectiveness depends primarily on task type (unsupervised
vs. supervised) or tissue context (healthy vs. cancerous). Future work could address this by including
supervised tasks on healthy tissue and unsupervised tasks on cancer tissue.

In summary, augmentation design is a critical factor in self-supervised learning on spatial omics
graphs. Effective augmentations encode biologically plausible invariances, improving model robust-
ness and downstream accuracy, while misaligned ones can add cost without benefit. Our results
reinforce the view that augmentation choice is not incidental but a central design decision in graph
contrastive learning.
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A Appendix / supplemental material

A.1 Bootstrapped Graph Latents (BGRL)

Bootstrapped Graph Latents (BGRL) [10] is a self-supervised graph representation learning method
used in this project. It avoids labels and negative samples by predicting alternate augmentations of
the same input graph.

10

https://www.cell.com/cancer-cell/fulltext/S1535-6108(23)00449-X
https://www.cell.com/cancer-cell/fulltext/S1535-6108(23)00449-X
http://dx.doi.org/10.1038/s41392-023-01332-8
http://dx.doi.org/10.1084/jem.20140692
http://dx.doi.org/10.1038/nrc.2016.73
http://dx.doi.org/10.1038/nrc.2016.73
http://dx.doi.org/10.1152/physrev.00048.2019
http://dx.doi.org/10.1182/blood-2008-05-078154
http://dx.doi.org/10.1038/nri3862
http://dx.doi.org/10.1038/nri3307
http://dx.doi.org/10.1038/ncomms14049
https://github.com/facebookresearch/hydra


A graph G = (X,A) is first augmented into two alternate views G1 = (X̃1, Ã1) and G2 =

(X̃2, Ã2) via graph augmentation functions T1 and T2, respectively. An online encoder Eθ with pa-
rameters θ then produces an online representation from the first augmented view, H̃1 := Eθ(X̃1, Ã1),
and a target encoder Eϕ with parameters ϕ produces a target representation from the second aug-
mented view, H̃2 := Eϕ(X̃2, Ã2). A prediction of the target representation, Z̃1 := pθ(H̃1), is
obtained by feeding the online representation into a node-level predictor pθ.

To update the online encoder’s parameters θ, the gradient of the cosine similarity of the predicted
target representation Z̃1 and the true target representation H̃2 is computed with respect to θ:

l(θ, ϕ) = − 2

N

N−1∑
i=0

Z̃(1,i)H̃
T
(2,i)∥∥∥Z̃(1,i)

∥∥∥∥∥∥H̃(2,i)

∥∥∥ (7)

θ ←− optimize(θ, η, ∂θl(θ, ϕ)). (8)
Here, η is the learning rate and in practice, the loss is symmetrized by also predicting the target
representation of the first view with the online representation of the second view.

The target encoder’s parameters ϕ are updated as an exponentially moving average with decay rate τ
of the online encoder’s parameters θ:

ϕ←− τϕ+ (1− τ)θ. (9)

A.2 Deep Graph Contrastive Representation Learning (GRACE)

Deep Graph Contrastive Representation Learning (GRACE) [9] is a self-supervised method for
unsupervised graph representation learning. Unlike methods relying on global readouts, GRACE
directly contrasts node-level embeddings across two randomly corrupted views of the same graph.

Formally, given a graph G = (X,A), GRACE generates two augmented views G1 = (X̃1, Ã1) and
G2 = (X̃2, Ã2) by applying stochastic corruption functions T1, T2 to features and edges. Specifically,
GRACE uses (i) edge removal with probability pr and (ii) feature masking with probability pm to
generate diverse contexts.

A shared GNN encoder fθ then computes node embeddings U = fθ(X̃1, Ã1) and V = fθ(X̃2, Ã2).
For a node i, the embeddings (ui,vi) from the two views form a positive pair, while embeddings
from other nodes act as negatives. The similarity between two embeddings is estimated by a critic

θ(u,v) =
g(u)⊤g(v)

∥g(u)∥ ∥g(v)∥
, (10)

where g(·) is a two-layer projection head and the similarity is scaled by a temperature τ .

The contrastive loss for node i is defined as

ℓ(ui,vi) = − log
exp(θ(ui,vi)/τ)

exp(θ(ui,vi)/τ) +
∑

k ̸=i exp(θ(ui,vk)/τ) +
∑

k ̸=i exp(θ(ui,uk)/τ)
. (11)

The final symmetric objective averages over all nodes:

J =
1

2N

N∑
i=1

[
ℓ(ui,vi) + ℓ(vi,ui)

]
. (12)

A.3 Augmentation benchmark

To assess the computational costs associated with different augmentations and combinations of
augmentations, they were applied to synthetic graphs of varying sizes while measuring runtime and
memory usage.

For augmentations relevant to domain identification, synthetic graphs were generated to mimic the
structure of real domain identification data. These graphs consisted of nodes with 50 numerical
features, with feature similarities reflecting group structures, i.e., nodes within a group had more
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similar features than those in different groups. For phenotype prediction augmentations, graphs were
designed to contain nodes annotated with a cell type feature and a cell size feature. Additionally,
edges were annotated with a binary indicator distinguishing "near" from "distant" connections.

All individual augmentations applicable to either domain identification or phenotype prediction were
tested on their respective synthetic graph types. Furthermore, combinations of augmentations, corre-
sponding to those evaluated in the main experiments, were also benchmarked. Each augmentation or
combination was applied to synthetic graphs of increasing size, with each experiment repeated three
times on a single GPU. For each run, both the runtime and peak GPU memory usage were recorded.
The mean values across the three replicates were reported as the final result.

The results for domain identification augmentations are shown in Figure 2. Augmentation modes
using DropImportance exhibit higher runtime compared to baseline augmentations (DropFeatures and
DropEdges) and noise-based augmentations (SpatialNoise and FeatureNoise), though still running
for 1 second or less for all graph sizes. Smoothing exhibits the highest memory usage of all the
augmentations.
Note: The relatively high runtime observed for smaller graphs primarily reflects fixed computational
overheads (e.g., data loading, graph construction, and GPU initialization), which dominate when
per-graph computation is fast. These effects diminish as graph size increases, where runtime scales
more proportionally with the number of nodes and edges.

Figure 2: Benchmark of domain identification augmentations. Runtime (left) and peak GPU
memory usage (right) for domain identification augmentations across increasing graph sizes. Each
line represents either an individual augmentation or a combination of augmentations.

The results for phenotype prediction augmentations are shown in Figure 3. The runtime scaling trends
are similar to those in the domain identification results. Augmentation modes using DropImportance
scale worse than baseline and noise-based augmentations in both runtime and memory usage.

Overall, the benchmark highlights substantial variability in the computational efficiency of different
augmentation strategies. Especially more complex augmentations, such as DropImportance and
Smoothing, significantly increase runtime and memory consumption on large graphs, which also
introduces considerable computational overhead during model training.

A.4 Classification metrics

To assess the performance of the phenotype prediction model, several binary classification metrics
were used. These were computed from the predicted logits z ∈ RN and the ground truth binary labels
y ∈ {0, 1}N for all N samples.
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Figure 3: Benchmark of phenotype prediction augmentations. Runtime (left) and peak GPU
memory usage (right) for phenotype prediction augmentations across increasing graph sizes. Each
line represents either an individual augmentation or a combination of augmentations.

First, the predicted logits were transformed into probabilities using the sigmoid function:

p̂ = σ(z) =
1

1 + e−z
(13)

A threshold τ ∈ [0, 1] was applied to convert probabilities into binary predictions:

ŷ = I[p̂ ≥ τ ] (14)

During validation, the threshold τ was chosen to maximize the F1 score across a set of candidate
thresholds. Once the optimal threshold was selected, the following metrics were computed:

• AUROC (Area Under the Receiver Operating Characteristic Curve): The AUROC
quantifies the probability that a randomly chosen positive sample is ranked higher than a
randomly chosen negative sample by the model’s scoring function. Formally, if s(x) denotes
the prediction score, then

AUROC = P
(
s(x+) > s(x−)

)
,

where x+ and x− are independent draws from the positive and negative classes, respectively.
Equivalently, AUROC corresponds to the area under the curve tracing the true positive rate
(TPR) against the false positive rate (FPR) as the classification threshold is varied:

TPR(t) =
TP(t)

TP(t) + FN(t)
, FPR(t) =

FP(t)
FP(t) + TN(t)

,

where TP, FP, TN, FN denote true/false positives/negatives at threshold t. A value of 0.5
corresponds to random guessing, while 1.0 indicates perfect class separability.

• Precision: Fraction of predicted positives that are correct:

Precision =
TP

TP + FP
(15)

• Recall (Sensitivity): Fraction of actual positives that are correctly identified:

Recall =
TP

TP + FN
(16)

• F1 Score: Harmonic mean of precision and recall, balancing both metrics:

F1 = 2 · Precision · Recall
Precision + Recall

(17)
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A.5 Clustering evaluation metrics

To evaluate the quality of clustering results obtained, three metrics were employed: Normalized
Mutual Information (NMI), Homogeneity, and Completeness. These metrics assess how well the
predicted clustering aligns with ground truth domain labels.

NMI measures the mutual dependence between the predicted clustering C and the ground truth labels
Y , normalized by the entropy of both. It is defined as:

NMI(C, Y ) =
2 · I(C;Y )

H(C) +H(Y )
(18)

where I(C;Y ) is the mutual information between C and Y , and H(·) denotes entropy. Mutual
information is given by:

I(C;Y ) =
∑
c∈C

∑
y∈Y

P (c, y) log

(
P (c, y)

P (c)P (y)

)
(19)

Here, P (c, y) is the joint probability of a sample being in cluster c and class y, while P (c) and P (y)
are the marginal probabilities.

Homogeneity assesses whether each cluster contains only data points that belong to a single class. It
is defined as:

HOM(C, Y ) =

{
1 if H(Y |C) = 0

1− H(Y |C)
H(Y ) otherwise

(20)

where H(Y |C) is the conditional entropy of the ground truth labels given the cluster assignments,
and H(Y ) is the entropy of the ground truth.

Completeness measures whether all members of a given class are assigned to the same cluster. It is
defined as:

COM(C, Y ) =

{
1 if H(C|Y ) = 0

1− H(C|Y )
H(C) otherwise

(21)

where H(C|Y ) is the conditional entropy of the predicted cluster assignments given the true class
labels.

A.6 Possible cell type transitions for the PhenotypeShift augmentation

We allow a restricted set of biologically motivated cell type transitions, reflecting known plasticity
and differentiation processes in the tumor microenvironment:

• Tumor adaptation: Tumor cells (normal) can transition to hypoxic tumor states [30].
• Fibroblast (CAF) plasticity: Collagen CAFs may become myofibroblastic CAFs (mCAFs)

or adapt to hypoxia; mCAFs can further switch into SMA+ CAFs, PDPN+ CAFs, vascular
CAFs, or hypoxic CAFs; iCAFs can adopt PDPN+ or IDO+ states; IDO+ CAFs can also
adapt to hypoxia; tumor-promoting CAFs (tCAFs) can transition to hypoxic tCAFs [31–33].

• CD4+ T cell differentiation: CD4 T cells can give rise to regulatory T cells (Tregs), PD1+
exhausted cells, IDO+ subsets, proliferative (Ki67+) states, or TCF1/7+ progenitor-like
cells [34, 35].

• CD8+ T cell differentiation: CD8 T cells can give rise to IDO+ subsets, proliferative
(Ki67+) states, or TCF1/7+ progenitor exhausted cells [35, 36].

• Myeloid refinement: Myeloid cells can be further refined into neutrophil identities, reflect-
ing annotation resolution rather than a true biological transition [37].

A.7 Hyperparameter Search.

We conducted automated hyperparameter optimization using Optuna [38] with the Hydra [39] sweeper
integration. For the domain identification task, we ran 100 trials per configuration, optimizing for
validation NMI. For the phenotype prediction task, we ran 10 trials, optimizing for validation F1.
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Both model and augmentation hyperparameters were tuned jointly, ensuring fair comparisons across
different augmentation regimes. All searches were performed exclusively on validation splits, with
the test set kept untouched until final evaluation. Each experiment was repeated with 5 random seeds,
and reported means and standard deviations capture variability across seeds rather than across search
trials. To ensure fairness, all augmentation regimes were allocated identical search budgets and
evaluated under the same conditions.

All searches were executed on ETH’s LeoMed cluster using NVIDIA RTX 4090 GPUs (24GB) with
6–16 CPU cores and 16–96 GB RAM, depending on the task. Domain identification runs completed
within approximately 30 minutes per trial, while phenotype prediction runs required up to 4 hours per
trial.

A.8 Hyperparameter ranges used for tuning augmentations

Table 5: Hyperparameter search ranges for graph augmentations. For each augmentation, the
tuned hyperparameters and their respective ranges are listed. Intervals denote uniform sampling from
the specified range.

Augmentation Hyperparameter Range
DropEdges p [0.1, 0.4]

DropFeatures p [0.1, 0.4]

DropImportance λp [0.4, 0.6]
µ [0.1, 0.4]

SpatialNoise σspatial [2.0, 30.0]

FeatureNoise σfeature [0.05, 1.0]

SmoothFeatures α [0.0, 0.5]

PhenotypeShift pshift [0.0, 0.3]
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paper’s contributions and scope?
Answer: [Yes]
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• If applicable, the authors should discuss possible limitations of their approach to
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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results. The architectures, loss functions, preprocessing pipelines, and training procedures
are fully described. Hyperparameter search spaces are reported in the appendix for com-
pleteness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used are publicly available with citations to the original sources.
Code is provided as Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies dataset splits, preprocessing steps, model architectures,
training procedures, optimizers, and hyperparameter search ranges, with full details included
in the appendix for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports mean metrics and 1-sigma error bars calculated over 5 runs
of each experiment using different random seeds. This is indicated in the main text of the
paper and table captions themselves,
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All compute resources used are indicated in the appendix of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work relies solely on publicly available datasets and complies with ethical
standards for data usage and research integrity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The paper discusses potential positive impacts, such as advancing spatial omics
analysis for biomedical research and clinical application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets are publicly available and properly cited in the paper. Where li-
censes or terms of use are specified (e.g., CC-BY for NSCLC IMC data), they were followed;
where not explicitly specified, datasets were used in line with the original publications’
terms for academic research.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The provided code is properly documented and the documentation is provided
in the code repository in Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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