
Inverse is Better! Fast and Accurate Prompt for Slot Tagging

Anonymous ACL submission

Abstract

Prompting methods recently achieve impres-001
sive success in few-shot learning. These meth-002
ods embed input samples with prompt sentence003
pieces and decode label-related tokens to map004
samples to the label. However, such a paradigm005
is very inefficient for the task of slot tagging.006
Because the slot tagging samples are multiple007
consecutive words in a sentence, the prompting008
methods have to enumerate all n-grams token009
span to find all the possible slots, which greatly010
slows down the prediction. To tackle this, we011
introduce an inverse paradigm for prompting.012
Different from the classic prompts map tokens013
to labels, we reversely predict slot values given014
slot types. Such inverse prompting only re-015
quires a one-turn prediction for each slot type016
and greatly speeds up the prediction. Besides,017
we propose a novel Iterative Prediction Strat-018
egy, from which the model learns to refine pre-019
dictions by considering the relations between020
different slot types. We find, somewhat surpris-021
ingly, the proposed method not only predicts022
faster, but also significantly improves the effect023
(improve over 6.1 F1-scores on 10-shot setting)024
and achieves new state-of-the-art performance.025

1 Introduction026

Few-shot learning (FSL) aims at learning a model027

from only a few examples and is regarded as one028

of the key steps toward more human-like artificial029

intelligence (Wang et al., 2020). Recently, prompt-030

based methods achieve impressive results and show031

promising prospects for few-shot learning of Natu-032

ral Language Processing (NLP) (Liu et al., 2021a;033

Zhao et al., 2021).034

Prompt-based methods reformulate a target task035

into the language modeling problem, which takes036

advantages of the powerful Pretrained Language037

Models (LM) (Devlin et al., 2019; Liu et al., 2019;038

Lewis et al., 2020; Brown et al., 2020). For exam-039

ple, when classifying the sentiment of the movie040

review “no reason to watch”, prompting methods041
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Figure 1: An example of normal (a) and inverse
(b) prompting methods for slot tagging. For normal
prompts, identifying all slots in the query sentence re-
quires enumeration of all spans, while inverse prompt
only needs 1-time prediction for each label.

insert a piece of text "It was", i.e. prompts, to the 042

input examples, getting “No reason to watch. It 043

was __”. It is natural to expect a higher probability 044

from the LM to fill the template with "terrible" than 045

“great”, and the original task is then converted to a 046

language modeling task. Such conversion reduces 047

the gap between pretraining and target tasks, which 048

allows depending less on target task data and helps 049

to achieve better performance in low data scenarios 050

(Gao et al., 2021). 051

However, while achieving great success in 052

sentence-level tasks, prompting-based methods 053

show incompatibility for sequence labeling task, 054

such as slot tagging. Firstly, the aforementioned 055

prompting paradigm is quite inefficient for slot tag- 056

ging task. Different from the sentence-level tasks 057

that classify samples of whole sentences, slot tag- 058

ging samples are multiple consecutive words in 059

a sentence. Therefore, as shown in Figure 1, to 060

find all the possible slots, prompt-based methods 061

have to enumerate all n-gram word spans, and then 062

1



query LM for each of them, which greatly slows063

down the prediction (Cui et al., 2021). Further, as a064

structure prediction problem, slot tagging benefits065

from taking the dependencies between labels into066

account (Ma and Hovy, 2016; Hou et al., 2020) For067

example in Figure 1, where to.Loc entity often068

appear after from.Loc entity. Such label depen-069

dency is hard to be captured by current prompting070

methods, since they predict labels one-by-one in-071

dependently.072

To tackle the above issues, we introduce an in-073

verse paradigm for prompting. Different from the074

classic prompts map tokens to labels, we reversely075

predict slot values given slot types. For the exam-076

ple in Figure 1, we embed the input with an inverse077

prompt as “book a flight from Beijing to New York078

tomorrow morning. arrival refers to __”, and then079

LM is able to decode multi-word span “New York”080

at a time. Compared to the classic prompts that081

require predictions for every n-gram word span082

(55-times in Figure 1), we only need to perform de-083

coding for V -times, where V is the number of label084

types (4-times in Figure 1), and therefore greatly085

speed up the prediction. Surprisingly, experiments086

show the proposed method not only predicts faster,087

but also significantly improve the performance, in-088

dicating that prompting LM reversely is a better089

fit for the slot tagging task. Besides, to further im-090

prove the prediction accuracy, we propose a novel091

Iterative Prediction Strategy, from which the model092

learns to refine predictions by considering the rela-093

tions between different slot types.094

To summarize the contribution of this work:095

(1) We introduce the idea of inverse prediction096

to prompting-methods for slot tagging task, which097

greatly speeds up the prediction process.098

(2) We propose an Iterative Prediction Strategy099

for learning and prediction for slot tagging prompt,100

which allows the prompting model to consider de-101

pendency between different slot types and refine102

prediction.103

(3) We extensively evaluate the proposed method104

in various few-shot settings, where the proposed105

method brings significant improvements not only106

for the speed, but also for the accuracy.107

All code and data will be publicly available.108

2 Background109

In this part, we first present a formal definition110

of the few shot slot tagging task in Section 2.1,111

followed by an introduction of the conventional112

sequence labeling approaches in Section 2.2 and 113

Sequence Labeling with Prompts in Section 2.3. 114

2.1 Few Shot Slot Tagging 115

We define sentence x = (x1, x2, ...xn) as a se- 116

quence of words and y = (y1, y2, ..., yn) as the 117

label sequence matching the sentence x, a domain 118

D = {(x(i),y(i))}ND
i=1 is a set of (x,y), and the 119

label set LD = {li}
NLD
i=1 is unique to each domain. 120

In few shot scenarios, there are a set of low- 121

resource domains {D(1)
L , D

(2)
L , ...} called target do- 122

mains. Each target domain D
(j)
L only contains 123

a few labeled instances called support set S = 124

{(x(i),y(i))}NS
i=1, which usually includes K exam- 125

ples (K-shot) for each of N labels (N-way). On 126

each target domain, given support set examples 127

as references, few shot slot tagging models are re- 128

quired to make predictions for query set samples. 129

Optionally, some few-shot settings also include a 130

set of optional rich-data domains {D(1)
H , D

(2)
H , ...} 131

called source domains, which are used for pretrain- 132

ing of few-shot models. 133

2.2 Conventional Sequence Labeling 134

Approaches 135

Conventional approaches regard slot tagging as a 136

sequence labeling problem where each word in a 137

sentence is assigned with a BIO-based label. For 138

the example in the Figure 2, B-time is tagged to 139

the first word in a time slot, I-time is tagged to 140

a non-begin word within a time slot, and O label 141

refers to non-slot tokens. Few-shot slot tagging is 142

then defined as: given a K-shot support set S and 143

an input query sequence x = (x1, x2, ..., xn), find 144

x’s best label sequence y∗. As shown in Figure 145

2(a), this method can be formulated as: 146

h1:n = Encoder(x1:n), 147

p(yc|x, S) = Softmax(Decoder(hc)), 148

(c ∈ [1, 2, ..., n]), 149

y∗ = (y1, y2, ..., yn) = argmax
y

p(y|x, S), 150

where Encoder is usually a pretrained language 151

model such as BERT (Devlin et al., 2019), h1:n is 152

the hidden state of the encoder with a dimension 153

dh, Decoder can be a linear layer, a CRF layer or 154

any other parametric or non-parametric classifier. 155

2.3 Sequence Labeling with Prompts 156

Prompt-based methods have been proven effective 157

in many NLU tasks especially in few-shot settings, 158
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Figure 2: Illustration of conventional sequence labeling method (a) and classic prompting methods (b)

but things become complicated when it comes to159

slot tagging tasks. In Cui et al. (2021), a slot sij =160

{xi, ..., xj} is a span starts from xi and ends with161

xj , and they construct a template “[xi] [sji ] is a [z]162

entity.” to predict [z] (e.g., person) corresponding163

to an entity label (e.g., PERSON) after finetuned on164

this kind of template support set. In their method,165

to construct templates, we need to traverse all the166

n-gram spans sij , i, j ∈ [1, n] in a sentence with167

each label in the label set which is quite expensive168

in time and compute resources.169

3 Method170

In this section, we propose a new paradigm for171

few-shot slot tagging using an inverse prompt to172

convert slot tagging into a generation task. We173

first introduce how to create our reverse prompts174

in Section 3.1, then show the inference details in175

Section 3.2 and the Iterative Prediction Strategy in176

Section 3.3, respectively.177

3.1 Prompt Creation178

We create the inverse prompt P and turn slot tag-179

ging into a generation task by filling a template180

combined with input text and slot labels. Our181

prompt P consists of two parts, i,e., the label map-182

ping and the inverse prompt template.183

The label mapping is a one-to-one mapping func-184

tion to convert the label set L = {l1, ..., l|L|}185

(e.g., lk = to.Loc) to a natural word set L̂ =186

{l̂1, ..., ˆl|L|} (e.g. l̂k = departure). And the in-187

verse prompt templates are constructed by querying188

each label in the label set for a given original sen-189

tence. Specifically, given an input original sentence190

s and a set of labels L̂ = {l̂i}, for each label l̂i ∈ L̂,191

our prompted inputs are defined as:192

“s” l̂i refers to __,193

and the model requires to generate slot values natu-194

rally. By guiding the language model to continue195

generating slot values naturally, we leverage knowl-196

edge from pretrained language models to our slot 197

tagging tasks. 198

3.2 Reverse Inference with Prompts 199

In this section, we will introduce how the genera- 200

tive slot tagging is conducted in the inference pro- 201

cedure with proposed inverse prompts. 202

The inference procedure can be concluded as 203

the following steps: (1) We use the label mapping 204

to map all labels {l1, ..., l|L|} in the label set to 205

{l̂1, ..., ˆl|L|}. (2) For each mapped label l̂j , we 206

sample one input sentence si , then fill them in the 207

prepared template to get prompted input xij . (3) 208

We use the fine-tuned pre-trained language model 209

to conduct a controlled generation procedure in 210

which generation word-list is constraint in the orig- 211

inal sentence along with structure control tokens 212

t ∈ ŝi = si ∪ {<NONE>, <SEP>, <END>}. Spe- 213

cially, for the control tokens, we use “none” as 214

<NONE> token if there’s no corresponding slot 215

value in s; we use “;” as <SEP> token to divide 216

more than one corresponding slot values and we 217

use “.” as <END> token to indicate the end of the 218

generation. For each prompted input xij , the next 219

token tk is determined by: 220

tk = argmax
tk∈ŝi

log(p(tk|xij ; t1:k−1)) 221

As shown in Figure 3, given a sentence ‘book a 222

flight from beijing to new york tomorrow morning’ 223

and a label set L = {from.Loc, to.Loc, Time, 224

Price}. (1) We map the label to a natural lan- 225

guage label set L̂ = { departure, arrival, 226

time, price}. (2) For each l̂ ∈ L̂, we fill them 227

into the template to get prompted inputs. (3) We 228

feed the prompted inputs into our model to gen- 229

erate corresponding slot values following the text- 230

generation procedure until reaching the max length 231

or having a full stop generated. 232

3.3 Iterative Prediction Strategy 233

The Iterative Prediction Strategy completes the 234

whole prediction process by revising the slot values 235
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Figure 3: Overview of propose method with Inverse Prediction and Iterative Prediction Strategy.

that were “none” in the first iteration. We assume236

that different labels are interactive, so the predicted237

slot values could be used as a hint to help predict238

those “none” ones. For example, the model tends239

to successfully generate the slot value of “arrival”240

given the results of “departure” and “time” in the241

first iteration (Figure 3). Motivated by this, we242

construct another template for the Iterative Predic-243

tion Strategy, which concatenates those predicted244

prompts and places them before the unpredicted245

prompted inputs. Below we introduce the strategy246

for the inference and training stages in detail.247

At the inference time, as shown in Figure 3,248

we take the predicted slot labels in the first round249

into inputs for models to process. We denote the250

original input as s, and the i-th recognized labels251

in the first iteration as lri ∈ LR , the j-th unpre-252

dicted labels (whose slot values are “none”) as253

luj ∈ LU (LU = L̂ \ LR). So for unrecognized254

slot label luj the prompted inputs are constructed255

as:256

“s” lr1 refers to <slot_value1> . ... . lrn refers to257

<slot_valuen> . luj refers to__.258

The model revises the unrecognized slots given the259

above prompted inputs during the second iteration.260

During the training time, we simulate the cases261

where the slots are not recognized so as to enable262

the model to revise the none slot values. We do263

this by manually constructing none slot value ex-264

amples. Specifically, for each original sentence s,265

we randomly select some occurred labels ls (e.g.,266

“arrival” in Fig. 3) and combine them with the non-267

occurred labels (e.g., “price” in Fig. 3) to construct268

the unrecognized set LU . The rest of the occurred269

labels (e.g., “departure” and “time” in Fig. 3) form270

the recognized set LR.271

Given the i-th recognized slot label lri ∈ LR272

and the j-th unrecognized slot label luj ∈ LU , the 273

prompted inputs are constructed as follows: 274

“s” lr1 refers to <slot_value1> . ... . lrn refers to 275

<slot_valuen> . luj refers to__ 276

The model outputs “none” if luj is from the non- 277

occurred labels. It outputs the corresponding slot 278

values if luj is the selected label ls (If multiple slot 279

values are generated, we separate them with “;” ). 280

4 Experiment 281

We evaluate the performance of the proposed 282

method on two types of few-shot learning bench- 283

marks: (1) Setting with Only In-domain data, 284

where all training data are only a few labeled sup- 285

port data. (2) Setting with Meta Source Tasks, 286

where some additional data-rich source domains 287

are available for pretraining. 288

Evaluation To directly compare with conven- 289

tional sequence labeling methods, we need to label 290

tokens reversely. After generation, we first sepa- 291

rate outputs into slot values. For each slot value, 292

we label tokens in the source sentence with three 293

principles: (1) Slot value is complete: only if the 294

whole slot value matches a span in the source sen- 295

tence, we label it with the corresponding label. (2) 296

Choose the first overlap predicted slot span: if any 297

token in the source sentence has been labeled, we 298

do not relabel this token even when it matches an- 299

other slot value. (3) Use BIO labels: add ’B-’ to 300

the beginning token of the slot span, add ’I-’ to the 301

non-begin token of the slot span and label non-slot 302

tokens with ’O’. After labeling tokens reversely, we 303

evaluate F1 scores within each few-shot episode.1 304

1For each episode, we calculate the F1 score on
query samples with conlleval script: https:
//www.clips.uantwerpen.be/conll2000/
chunking/conlleval.txt
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4.1 Setting with Only In-domain data305

Datasets To evaluate our proposed method in306

only few-shot in-domain data without source do-307

main knowledge transfer, we conduct experiments308

on three few-shot datasets: MIT-Restaurant Re-309

view (Liu et al., 2013), MIT-Movie Review (Liu310

et al., 2013) and MIT-Movie-Hard. 2 Each dataset311

has 10 episodes, and each episode consists of a312

different k-shot support set and the same query set.313

Implements We conduct experiments with K ∈314

{10, 20, 50, 100, 200, 500} shot few-shot settings315

to fully evaluate the performance of our method in316

all three datasets. Our proposed method employs317

GPT2-small (Radford et al., 2019) pre-trained318

model as the base model for fine-tuning, and no319

new parameters are introduced. Besides, we set320

the learning rate=6.25e − 5 and batch size=2 for321

few-shot training. For all our experiments, we fine-322

tune the model only on few-shot support set for323

2~4 epochs with the AdamW optimizer and linear324

decaying scheduler.325

Baselines In our experiments, we provide com-326

petitive conventional sequence labeling method,327

forward template-based method and some methods328

pretrained on data-rich source domains.329

• Sequence Labeling BERT (Devlin et al., 2019)330

can be seen as a BERT-based sequence labeling331

baseline which fine-tunes the BERT model with a332

token-level linear classifier head.333

• Template-based BART (Cui et al., 2021) uses334

BART to encode the source sentence and decodes335

the template constructed by querying each possible336

span in a sentence with each class separately.337

• NNShot and StructShot (Yang and Katiyar,338

2020) are two metric-based few-shot learning ap-339

proaches for slot tagging and NER. NNShot is an340

instance-level nearest neighbor classifier for few-341

shot prediction, and StructShot promotes NNShot342

with a Viterbi algorithm during decoding.343

• EntLM (Ma et al., 2021b) is a prompt-based344

method using one pass language model replacing345

label words with pre-selected slot values.346

Results Table 1 shows the results of the proposed347

method only finetuned on few-shot in-domain data348

and baselines under few-shot setting. Among these349

methods, we can observe that:350

2MIT-Movie Review has two datasets, the simple and the
complex. We regard the simple one as MIT-Movie and com-
bine both as MIT-Movie-Hard.

(1) Our proposed method performs consistently 351

better than all the baseline methods on all three 352

datasets. It outperforms the strongest baseline 353

Template-based BART which uses BART-large by 354

average F1 scores on three datasets of 11.96 in 10- 355

shot setting even with a 40% smaller pretrained 356

language model GPT2-small. 357

(2) Our proposed method is even comparable or 358

outperforms those baselines with data-rich domain 359

pretrained. 360

(3) Our proposed method performs much better 361

than baselines in fewer labeled samples settings, es- 362

pecially in 10 and 20 shot settings, which indicates 363

our method can leverage information from limited 364

labeled data more efficiently. 365

(4) Our method significantly outperformed Se- 366

quence Labeling BERT whose performance is quite 367

poor on 10 and 20 shot settings, which indicates 368

that the number of labeled data under the few-shot 369

setting is scarce for conventional sequence labeling 370

task, and proves that the prompt-based method is 371

effective in few-shot slot tagging tasks. 372

(5) The proposed Iterative Prediction Strategy 373

improves our method by average F1 score on three 374

datasets of 2.23 and 1.44 in 10 and 20 shot setting 375

respectively and even sees improvements in 200 376

and 500 shot settings, which proves the effective- 377

ness of the Iterative Prediction Strategy in very few 378

labeled data settings and it may still work in middle 379

size labeled data scenarios. 380

4.2 Setting with Meta Source Task 381

Datasets To evaluate the transferability from 382

data-rich domains to unseen few-shot domains of 383

our proposed model, we conduct experiments on 384

SNIPS (Coucke et al., 2018) dataset. Following 385

the data split provided by Hou et al. (2020), we 386

construct 5-shot SNIPS datasets from the origi- 387

nal SNIPS datasets. The few-shot SNIPS dataset 388

consists of 7 domains with different label sets: 389

GetWeather (We), Music (Mu), PlayList (Pl), Rate- 390

Book (Bo), SearchScreenEvent (Se), BookRestau- 391

rant (Re) and SearchCreativeWork (Cr). Each do- 392

main contains 100 episodes, and each episode con- 393

sists of a support set with a batch of labeled samples 394

and query samples to evaluate. 395

Implements Following Henderson and Vulic 396

(2021), we conduct our cross-domain experiments 397

with 5-shot few-shot settings to evaluate the ability 398

of our model to transfer from rich-data domains 399

to unseen few-shot domains. For our proposed 400
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Model MIT-Restaurant

10 20 50 100 200 500

Wiseman and Stratos (2019) + PT 4.1 3.6 4.0 4.6 5.5 8.1
Ziyadi et al. (2020) + PT 27.6 29.5 31.2 33.7 34.5 34.6
Huang et al. (2020) + PT 46.1 48.2 49.6 50.0 50.1

Sequence Labeling BART + PT 8.8 11.1 42.7 45.3 47.8 58.2
Sequence Labeling BERT + PT 27.2 40.9 56.3 57.4 58.6 75.3
Template-based BART + PT 53.1 60.3 64.1 67.3 72.2 75.7
Sequence Labeling BERT 21.8 39.4 52.7 53.5 57.4 61.3
Template-based BART 46.0 57.1 58.7 60.1 62.8 65.0
Ours 49.35 60.48 65.34 70.41 73.69 76.13
Ours + Iterative 52.10 61.49 66.83 70.98 73.97 76.37

Model MIT-Movie-Hard

10 20 50 100 200 500

Wiseman and Stratos (2019) + PT 3.1 4.5 4.1 5.3 5.4 8.6
Ziyadi et al. (2020) + PT 40.1 39.5 40.2 40.0 40.0 39.5
Huang et al. (2020) + PT 36.4 36.8 38.0 38.2 35.4 38.3

Sequence Labeling BART + PT 13.6 30.4 47.8 49.1 55.8 66.9
Sequence Labeling BERT + PT 28.3 45.2 50.0 52.4 60.7 76.8
Template-based BART + PT 42.4 54.2 59.6 65.3 69.6 80.3
Sequence Labeling BERT 25.2 42.2 49.64 50.7 59.3 74.4
Template-based BART 37.3 48.5 52.2 56.3 62.0 74.9
Ours 52.07 59.11 65.63 69.35 72.36 75.03
Ours + Iterative 53.31 60.19 66.13 69.63 72.45 74.83

Model MIT-Movie

10 20 50 100 200 500

Sequence Labeling BERT 50.60 59.34 71.33 - - -
NNShot 50.47 58.94 71.17 - - -
StructShot 53.19 61.42 72.07 - - -
Template-based BART 49.30 59.09 65.13 - - -
EntLM 49.30 59.09 65.13 - - -
Ours 57.04 67.86 76.81 80.28 82.43 84.55
Ours + Iterative 59.74 70.09 77.60 80.63 82.64 84.51

Table 1: F1 scores of few-shot slot tagging task on three different datasets.10 indicates 10 instances for each entity types. +PT
denotes using model are pretrained on additional datasets. +Iterative denotes enhance model with Iterative Prediction Strategy.

method, same as in-domain settings, we use GPT2-401

small pre-trained model as the base model for pre-402

training in source domain and fine-tuning in target403

few-shot domain, and no new parameters are intro-404

duced. We set learning rate=6.25e − 5 and batch405

size=16 for pretraining and batch size=2 for 5-shot406

finetuning. During finetuning, we use the same407

AdamW optimizer and linear decaying scheduler.408

The hyper-parameters are decided according to per-409

formance on the dev set.410

Baselines We provided competitive strong base-411

lines, including traditional methods, finetune-based412

methods and advanced few-shot learning methods.413

• Bi-LSTM (Schuster and Paliwal, 1997) uses414

GLoVe (Pennington et al., 2014) embedding for415

slot tagging. Train on the support sets and test on416

the query examples.417

• SimBERT is a metric-based method using orig-418

inal BERT to label tokens with the most similar419

token’s label in cosine similarity.420

• Matching Network (MN) (Vinyals et al., 2016) 421

A few-shot sequence labeling model employing 422

the matching network with BERT embedding for 423

token-level classification. 424

• TransferBERT is a domain transfer conventional 425

NER model using BERT, pretrained on source do- 426

mains and fine-tuned on target domain support set 427

and performs on the test set 428

• WPZ (Fritzler et al., 2019) is a metric-based few- 429

shot slot tagging method using the prototypical 430

network (Snell et al., 2017). It pre-trains a proto- 431

typical network on source domains, and utilizes the 432

network to do word-level classification on target 433

domains without training. 434

• TapNet+CDT, L-TapNet+CDT, L-WPZ+CDT 435

(Hou et al., 2020) are advanced metric-based few- 436

shot learning methods, using a CRF framework 437

based on source domain pretrained BERT to predict 438

label in target domain without further training. 439

• ConVEx (Henderson and Vulic, 2021) is a fine- 440

tuning based method that models slot tagging as a 441
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Model 5-shot Slot Tagging

We Mu Pl Bo Se Re Cr Ave.

Bi-LSTM 25.44 39.69 45.36 73.58 55.03 40.30 40.49 45.70
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
TransferBERT 56.01 43.85 50.65 14.19 23.89 36.99 14.29 34.27
MN 38.80 37.98 51.97 70.61 37.24 34.29 72.34 49.03
WPZ+BERT 69.06 57.97 44.44 71.97 74.62 51.01 69.22 62.61
TapNet+CDT 67.83 68.72 73.74 86.94 72.12 69.19 66.54 72.15
L-WPZ+CDT 78.23 62.36 59.74 76.19 83.66 69.69 71.51 71.62
L-TapNet+CDT 69.58 64.09 74.93 85.37 83.76 69.89 73.80 74.49
ConVEx* 71.5 77.6 79.0 84.5 84.0 73.8 67.4 76.8

Ours 70.44 71.63 78.67 87.37 81.38 71.77 74.42 76.53
Ours + Iterative 70.63 71.97 78.73 87.34 81.95 72.07 74.44 76.73

Table 2: F1 score results on 5-shot Snips. Our methods achieve the best performance. * denotes using additional Reddit data for
pretraining.

cloze task first pre-trained on Reddit data to learn442

general span extraction ability, then fine-tuned on443

few-shot slot tagging data. Note that the Reddit444

data is not used by our method and other baselines445

during the experiment.446

Results Table 2 shows the results of the cross-447

domain few-shot setting. Among these methods in448

the table, we can observe that:449

(1) Our proposed method outperforms all the450

baselines except ConVEx which uses extra Reddit451

data in cross-domain 5-shot setting.452

(2) We outperform TransferBERT by 42.36 F1453

scores which strongly proved that prompt-based454

method can transfer more knowledge from source455

domain and more data-efficient than conventional456

methods. Noting that we can directly compare457

with TransferBERT for both our methods first pre-458

trained on source domains and then finetuned on459

each few-shot domain respectively without any few-460

shot learning tricks.461

(3) Our method outperforms some metric-based462

few-shot learning baselines, for example, 2.24 F1463

scores higher than L-TapNet+CDT, which demon-464

strate the effectiveness of prompt method in the465

slot tagging task.466

(4) Our Iterative Prediction Strategy improved467

Our method by about 0.5 F1 scores, demonstrating468

its effectiveness under cross-domain scenarios.469

4.3 Analysis470

Effects of Iterative Prediction Learning As471

shown in Table 1, the proposed Iterative Predic-472

tion Learning brings consistent improvement ,espe-473

cially in low-resource settings. It works by revising474

predictions with a second-round query to recognize475

those missing slots, which can bring an increase in476

recall score. To confirm that, we make our analysis477

Model Restaurant Movie

P R F P R F

10
Ours 67.7 42.4 52.1 84.0 46.4 59.7
w/o Iter 69.4 38.3 49.4 85.9 42.7 57.0
w/o Joint 68.8 38.9 49.7 85.6 43.0 57.2

20
Ours 70.1 54.7 61.5 83.5 60.4 70.1
w/o Iter 71.6 52.3 60.5 86.3 55.9 67.9
w/o Joint 70.92 53.45 61.0 85.6 56.9 68.3

50 Ours 73.6 61.2 66.8 83.6 72.4 77.6
w/o Iter 75.4 57.6 65.3 85.9 69.5 76.8
w/o Joint 74.3 59.2 65.7 84.7 70.8 77.1

100
Ours 76.1 66.5 71.0 84.4 77.2 80.6
w/o Iter 78.0 64.2 70.4 86.3 75.0 80.3
w/o Joint 76.7 66.0 71.0 85.0 76.5 80.5

200
Ours 77.8 70.5 74.0 85.4 80.0 82.6
w/o Iter 79.5 68.7 73.7 87.1 78.2 82.4
w/o Joint 78.0 70.1 73.8 85.1 79.9 82.4

500
Ours 79.4 73.5 76.4 86.3 82.8 84.5
w/o Iter 81.0 71.8 76.1 87.9 81.4 84.6
w/o Joint 79.6 73.4 76.4 86.6 82.1 84.3

Table 3: Ablation analysis Iterative Prediction Strategy w/o
Iter denotes removing iterative strategy and w/o joint denotes
using two separate models for the two iterative steps.

about precision score (P), recall score (R) and F1 478

score (F), as shown in Table 3. 479

When Iterative Revise Learning is added, we can 480

get a rise in recall score about 4 percent in 10-shot, 481

2~4 percent in 20 shot and more than 1 percent in 482

other shot settings in exchange for a slight precision 483

drop, resulting in a rise in overall F1 score by about 484

2 percent in 10 and 20 shots. 485

We further explore whether a sequential jointly 486

trained model from first-round training or a from- 487

scratch training model in Iterative Prediction Strat- 488

egy training time performs better by conducting 489

experiment training from scratch. As shown in 490

Table 3, without jointly training, the revised perfor- 491

mance drops, but still brings improvements, which 492

further proves the effectiveness of proposed Itera- 493

tive Prediction Strategy. 494
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Model Movie Restaurant

Baseline (Normal Prompt) 408.0 236.0
Ours 51.2 33.2
Ours + Iterative 119.4 71.4

Table 4: Comparison of the decoding time (s).

Efficiency Study Unlike Template-based BART,495

querying every n-gram span in the source sentence496

with each label with O(n2 ∗m) (where n is the497

length of source sentence and m is the size of the498

label set) time complexity, our proposed method499

queries labels in label set and directly generate slots500

with O(n ∗m) time complexity at top. In theory,501

our method is much faster than Template-based502

BART, especially dealing with long sentences with503

sparse slots. To prove this, we conduct efficiency504

experiments by calculating the decoding time of505

each method on a TiTan XP GPU with batch size=8,506

and we set our max generation length at 40. As507

shown in Table 4, our method is about 8 times as508

fast as Template-based BART method, even more509

than 3 times as fast as theirs with Iterative Predic-510

tion Strategy. It is worth pointing that most slots511

are short and sparse in a sentence, which means our512

average generation length is short and with careful513

controlling when to end decoding, the time com-514

plexity of our method can be very close to the lower515

boundary o(n).516

5 Related Work517

Prompt-based learning Prompt-based learning518

approaches have been a broadly discussed topic519

since large language models like GPT mod-520

els (Brown et al., 2020) are hard to fine-tune in low-521

resource scenarios. Schick and Schütze (2021a,b)522

introduce manually prompts to text classification523

tasks. For natural language understanding (NLU)524

tasks, automatically searching discrete prompts525

methods are proposed such as Jiang et al. (2020);526

Shin et al. (2020); Gao et al. (2021). Meanwhile,527

due to the continuity of parameters in neural net-528

works, continuous prompts for both text classifica-529

tion and generation tasks (Li and Liang, 2021; Liu530

et al., 2021b; Han et al., 2021) have been proposed.531

Unlike sentence-level tasks, prompting method is532

very complicated for slot tagging and NER tasks.533

Cui et al. (2021) proposes a template-based method534

querying every slot span with each label which is535

expensive for decoding. Different from them, we536

introduce an inverse paradigm for prompting slot537

tagging task. Note that inverse prompting (Zou538

et al., 2021) has a similar name to our work but is 539

entirely different in method and task. They aim to 540

generate prompt templates inversely. Amendable 541

generation (Tian et al., 2021) share a similar idea 542

of using Iterative Prediction Strategy to generate 543

and revise dialog state. By contrast, we focus on a 544

different task sequence labeling and first to intro- 545

duce an Iterative Prediction Strategy to prompting 546

models. There are also generation-based methods 547

for sequence labeling (Yan et al., 2021), which is 548

not a prompting method, since it re-initializes de- 549

coding layers and learns a generative model from 550

scratch. 551

Few-shot slot tagging Previous few-shot slot 552

tagging methods focus on metric learning based 553

methods, which classify tokens with word-label 554

similarity (Snell et al., 2017; Vinyals et al., 2016). 555

Hou et al. (2020) leverage label name semantics 556

to get better label representation and model label 557

dependency in few-shot setting. Yang and Katiyar 558

(2020) uses make a prediction based on the near- 559

est neighbor sample instead of the nearest label 560

representation. Besides, some works also explore 561

training a model with additional data from non-slot- 562

tagging task (Huang et al., 2020; Henderson and 563

Vulic, 2021). Different from directly learning the 564

few-shot slot tagging model, some researches ex- 565

plore to reformulate the slot tagging into other NLP 566

tasks, Ma et al. (2021a) reforms slot tagging into a 567

reading comprehension task, Yu et al. (2021) treats 568

slot tagging as a retrieval task, Coope et al. (2020) 569

uses span extracting task to extract slot and predict 570

corresponding label and Cui et al. (2021) leverages 571

prompts for few-shot NER. Different from those 572

methods above, we are the first to reformulate slot 573

tagging task into a prompt-based generation task. 574

6 Conclusion 575

In this paper, to liberate the prompting methods 576

from burdensome prediction of slot-tagging tasks, 577

we introduce a novel inverse prediction manner to 578

prompting methods of slot-tagging, which signifi- 579

cantly improves both the efficiency and accuracy. 580

To further improve performance, we propose an 581

Iterative Prediction Strategy for learning, which en- 582

able the prompting model to consider dependency 583

between labels and refine prediction. Extensive ex- 584

periments verify the effectiveness of the proposed 585

method in various few-shot settings, indicating in- 586

verse prediction is a better fit for prompting of slot 587

tagging task. 588
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