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Abstract

Prompting methods recently achieve impres-
sive success in few-shot learning. These meth-
ods embed input samples with prompt sentence
pieces and decode label-related tokens to map
samples to the label. However, such a paradigm
is very inefficient for the task of slot tagging.
Because the slot tagging samples are multiple
consecutive words in a sentence, the prompting
methods have to enumerate all n-grams token
span to find all the possible slots, which greatly
slows down the prediction. To tackle this, we
introduce an inverse paradigm for prompting.
Different from the classic prompts map tokens
to labels, we reversely predict slot values given
slot types. Such inverse prompting only re-
quires a one-turn prediction for each slot type
and greatly speeds up the prediction. Besides,
we propose a novel Iterative Prediction Strat-
egy, from which the model learns to refine pre-
dictions by considering the relations between
different slot types. We find, somewhat surpris-
ingly, the proposed method not only predicts
faster, but also significantly improves the effect
(improve over 6.1 Fl-scores on 10-shot setting)
and achieves new state-of-the-art performance.

1 Introduction

Few-shot learning (FSL) aims at learning a model
from only a few examples and is regarded as one
of the key steps toward more human-like artificial
intelligence (Wang et al., 2020). Recently, prompt-
based methods achieve impressive results and show
promising prospects for few-shot learning of Natu-
ral Language Processing (NLP) (Liu et al., 2021a;
Zhao et al., 2021).

Prompt-based methods reformulate a target task
into the language modeling problem, which takes
advantages of the powerful Pretrained Language
Models (LM) (Devlin et al., 2019; Liu et al., 2019;
Lewis et al., 2020; Brown et al., 2020). For exam-
ple, when classifying the sentiment of the movie
review “no reason to watch”, prompting methods
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Figure 1: An example of normal (a) and inverse
(b) prompting methods for slot tagging. For normal
prompts, identifying all slots in the query sentence re-
quires enumeration of all spans, while inverse prompt
only needs 1-time prediction for each label.

insert a piece of text "It was", i.e. prompts, to the
input examples, getting “No reason to watch. It
was __”. It is natural to expect a higher probability
from the LM to fill the template with "terrible" than
“great”, and the original task is then converted to a
language modeling task. Such conversion reduces
the gap between pretraining and target tasks, which
allows depending less on target task data and helps
to achieve better performance in low data scenarios
(Gao et al., 2021).

However, while achieving great success in
sentence-level tasks, prompting-based methods
show incompatibility for sequence labeling task,
such as slot tagging. Firstly, the aforementioned
prompting paradigm is quite inefficient for slot tag-
ging task. Different from the sentence-level tasks
that classify samples of whole sentences, slot tag-
ging samples are multiple consecutive words in
a sentence. Therefore, as shown in Figure 1, to
find all the possible slots, prompt-based methods
have to enumerate all n-gram word spans, and then



query LM for each of them, which greatly slows
down the prediction (Cui et al., 2021). Further, as a
structure prediction problem, slot tagging benefits
from taking the dependencies between labels into
account (Ma and Hovy, 2016; Hou et al., 2020) For
example in Figure 1, where to . Loc entity often
appear after from. Loc entity. Such label depen-
dency is hard to be captured by current prompting
methods, since they predict labels one-by-one in-
dependently.

To tackle the above issues, we introduce an in-
verse paradigm for prompting. Different from the
classic prompts map tokens to labels, we reversely
predict slot values given slot types. For the exam-
ple in Figure 1, we embed the input with an inverse
prompt as “book a flight from Beijing to New York
tomorrow morning. arrival refers to __”, and then
LM is able to decode multi-word span “New York”
at a time. Compared to the classic prompts that
require predictions for every n-gram word span
(55-times in Figure 1), we only need to perform de-
coding for V -times, where V' is the number of label
types (4-times in Figure 1), and therefore greatly
speed up the prediction. Surprisingly, experiments
show the proposed method not only predicts faster,
but also significantly improve the performance, in-
dicating that prompting LM reversely is a better
fit for the slot tagging task. Besides, to further im-
prove the prediction accuracy, we propose a novel
Iterative Prediction Strategy, from which the model
learns to refine predictions by considering the rela-
tions between different slot types.

To summarize the contribution of this work:

(1) We introduce the idea of inverse prediction
to prompting-methods for slot tagging task, which
greatly speeds up the prediction process.

(2) We propose an Iterative Prediction Strategy
for learning and prediction for slot tagging prompt,
which allows the prompting model to consider de-
pendency between different slot types and refine
prediction.

(3) We extensively evaluate the proposed method
in various few-shot settings, where the proposed
method brings significant improvements not only
for the speed, but also for the accuracy.

All code and data will be publicly available.

2 Background

In this part, we first present a formal definition
of the few shot slot tagging task in Section 2.1,
followed by an introduction of the conventional

sequence labeling approaches in Section 2.2 and
Sequence Labeling with Prompts in Section 2.3.

2.1 Few Shot Slot Tagging

We define sentence * = (x1,x2,...T,) as a se-
quence of words and y = (y1, 92, ..., Yn) as the
label sequence matching the sentence a, a domain
D = {(:13(2),y(’))}ijl\?1 is a set of (x,vy), and the
label set Lp = {I;},_;" is unique to each domain.

In few shot scenarios, there are a set of low-

resource domains {D(Ll), D(Lz)7 ...} called target do-
(4)

mains. Each target domain D L] only contains
a few labeled instances called support set S =
{(z®, y(i))}ij\; 5, which usually includes K exam-
ples (K-shot) for each of N labels (N-way). On
each target domain, given support set examples
as references, few shot slot tagging models are re-
quired to make predictions for query set samples.
Optionally, some few-shot settings also include a
set of optional rich-data domains {DS), Dg), o}
called source domains, which are used for pretrain-
ing of few-shot models.

2.2 Conventional Sequence Labeling
Approaches

Conventional approaches regard slot tagging as a
sequence labeling problem where each word in a
sentence is assigned with a BIO-based label. For
the example in the Figure 2, B—t ime is tagged to
the first word in a time slot, I-t ime is tagged to
a non-begin word within a time slot, and O label
refers to non-slot tokens. Few-shot slot tagging is
then defined as: given a K-shot support set S and
an input query sequence = (1, T2, ..., p), find
x’s best label sequence y*. As shown in Figure
2(a), this method can be formulated as:

hi.n, = Encoder(z1.y,),
p(Ye|x, S) = Softmax(Decoder(he)),
(cell,2,...,n]),
Yy = (1,42, - Yn) = argmaxp(ylz, 5),

where Encoder is usually a pretrained language
model such as BERT (Devlin et al., 2019), h1., is
the hidden state of the encoder with a dimension
dy,, Decoder can be a linear layer, a CRF layer or
any other parametric or non-parametric classifier.

2.3 Sequence Labeling with Prompts

Prompt-based methods have been proven effective
in many NLU tasks especially in few-shot settings,
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Figure 2: Illustration of conventional sequence labeling method (a) and classic prompting methods (b)

but things become complicated when it comes to
slot tagging tasks. In Cui et al. (2021), a slot S§~ =
{x;,...,x;} is a span starts from x; and ends with
x4, and they construct a template “/x;] [ sg Jisalz]
entity.” to predict [z] (e.g., person) corresponding
to an entity label (e.g., PERSON) after finetuned on
this kind of template support set. In their method,
to construct templates we need to traverse all the
n-gram spans s3,4, j € [1,n] in a sentence with
each label in the label set which is quite expensive
in time and compute resources.

3 Method

In this section, we propose a new paradigm for
few-shot slot tagging using an inverse prompt to
convert slot tagging into a generation task. We
first introduce how to create our reverse prompts
in Section 3.1, then show the inference details in
Section 3.2 and the Iterative Prediction Strategy in
Section 3.3, respectively.

3.1 Prompt Creation

We create the inverse prompt P and turn slot tag-
ging into a generation task by filling a template
combined with input text and slot labels. Our
prompt P consists of two parts, i,e., the label map-
ping and the inverse prompt template.

The label mapping is a one-to-one mapping func-
tion to convert the label set L = {iy,... Z|L|}
(e.g., lx = to. Loc) to a natural word set [, =
{lAl, . l|L|} (e.g. Iy = departure). And the in-
verse prompt templates are constructed by querying
each label in the label set for a given original sen-
tence. Specifically, given an input original sentence
s and a set of labels L = {I;}, for each label [; € L,
our prompted inputs are defined as:

“s” [ refers to __,

and the model requires to generate slot values natu-
rally. By guiding the language model to continue
generating slot values naturally, we leverage knowl-

edge from pretrained language models to our slot
tagging tasks.

3.2 Reverse Inference with Prompts

In this section, we will introduce how the genera-
tive slot tagging is conducted in the inference pro-
cedure with proposed inverse prompts.

The inference procedure can be concluded as
the following steps: (1) We use the label mapping
to map all labels {l1,...,{|z|} in the label set to
{lAl, - l\;ll}' (2) For each mapped label l}, we
sample one input sentence s; , then fill them in the
prepared template to get prompted input x;;. (3)
We use the fine-tuned pre-trained language model
to conduct a controlled generation procedure in
which generation word-list is constraint in the orig-
inal sentence along with structure control tokens
t € §; = 8; U {<NONE>, <SEP>, <END>}. Spe-
cially, for the control tokens, we use “none” as
<NONE> token if there’s no corresponding slot
value in s; we use “;” as <SEP> token to divide
more than one corresponding slot values and we
use “.” as <END> token to indicate the end of the
generation. For each prompted input x;;, the next
token tj, is determined by:

t, = argmaxlog(p(ti|Tij; t1:k—1))
tL€S;

As shown in Figure 3, given a sentence ‘book a
flight from beijing to new york tomorrow morning’
and a label set L = {from.Loc, to.Loc, Time,
Price}. (1) We map the label to a natural lan-
guage label set L = { departure, arrival,
time, price}. (2) Foreach [ € L, we fill them
into the template to get prompted inputs. (3) We
feed the prompted inputs into our model to gen-
erate corresponding slot values following the text-
generation procedure until reaching the max length
or having a full stop generated.

3.3 Iterative Prediction Strategy

The Iterative Prediction Strategy completes the
whole prediction process by revising the slot values
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Figure 3: Overview of propose method with Inverse Prediction and Iterative Prediction Strategy.

that were “none” in the first iteration. We assume
that different labels are interactive, so the predicted
slot values could be used as a hint to help predict
those “none” ones. For example, the model tends
to successfully generate the slot value of “arrival”
given the results of “departure” and “time” in the
first iteration (Figure 3). Motivated by this, we
construct another template for the Iterative Predic-
tion Strategy, which concatenates those predicted
prompts and places them before the unpredicted
prompted inputs. Below we introduce the strategy
for the inference and training stages in detail.

At the inference time, as shown in Figure 3,
we take the predicted slot labels in the first round
into inputs for models to process. We denote the
original input as s, and the i-th recognized labels
in the first iteration as I[; € Lpg , the j-th unpre-
dicted labels (whose slot values are “none’) as
5 e Ly(Ly = L \ Lg). So for unrecognized
slot label [%' the prompted inputs are constructed
as:

“s” ] refers to <slot_value,> . ... . l], refers to
<slot_value,> . l}‘ refers to__.

The model revises the unrecognized slots given the
above prompted inputs during the second iteration.

During the training time, we simulate the cases
where the slots are not recognized so as to enable
the model to revise the none slot values. We do
this by manually constructing none slot value ex-
amples. Specifically, for each original sentence s,
we randomly select some occurred labels [° (e.g.,
“arrival” in Fig. 3) and combine them with the non-
occurred labels (e.g., “price” in Fig. 3) to construct
the unrecognized set Lgr. The rest of the occurred
labels (e.g., “departure” and “time” in Fig. 3) form
the recognized set L.

Given the i-th recognized slot label I] € Lg

and the j-th unrecognized slot label [} € Ly, the
prompted inputs are constructed as follows:

“s” [ refers to <slot_value1> . ... . I} refers to
<slot_value,> . l}ﬁ refers to__
The model outputs “none” if I3 is from the non-
occurred labels. It outputs the corresponding slot
values if [7 is the selected label /* (If multiple slot
values are generated, we separate them with “;”).

4 Experiment

We evaluate the performance of the proposed
method on two types of few-shot learning bench-
marks: (1) Setting with Only In-domain data,
where all training data are only a few labeled sup-
port data. (2) Setting with Meta Source Tasks,
where some additional data-rich source domains
are available for pretraining.

Evaluation To directly compare with conven-
tional sequence labeling methods, we need to label
tokens reversely. After generation, we first sepa-
rate outputs into slot values. For each slot value,
we label tokens in the source sentence with three
principles: (1) Slot value is complete: only if the
whole slot value matches a span in the source sen-
tence, we label it with the corresponding label. (2)
Choose the first overlap predicted slot span: if any
token in the source sentence has been labeled, we
do not relabel this token even when it matches an-
other slot value. (3) Use BIO labels: add ’B-’ to
the beginning token of the slot span, add ’I-’ to the
non-begin token of the slot span and label non-slot
tokens with O’. After labeling tokens reversely, we
evaluate F1 scores within each few-shot episode.!

'For each episode, we calculate the F1 score on
query samples with conlleval script: https:
//www.clips.uantwerpen.be/conl112000/
chunking/conlleval.txt


https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt

4.1 Setting with Only In-domain data

Datasets To evaluate our proposed method in
only few-shot in-domain data without source do-
main knowledge transfer, we conduct experiments
on three few-shot datasets: MIT-Restaurant Re-
view (Liu et al., 2013), MIT-Movie Review (Liu
et al., 2013) and MIT-Movie-Hard. 2 Each dataset
has 10 episodes, and each episode consists of a
different k-shot support set and the same query set.

Implements We conduct experiments with K €
{10, 20, 50, 100, 200, 500} shot few-shot settings
to fully evaluate the performance of our method in
all three datasets. Our proposed method employs
GPT2-small (Radford et al., 2019) pre-trained
model as the base model for fine-tuning, and no
new parameters are introduced. Besides, we set
the learning rate=6.25e — 5 and batch size=2 for
few-shot training. For all our experiments, we fine-
tune the model only on few-shot support set for
2~4 epochs with the AdamW optimizer and linear
decaying scheduler.

Baselines In our experiments, we provide com-
petitive conventional sequence labeling method,
forward template-based method and some methods
pretrained on data-rich source domains.

e Sequence Labeling BERT (Devlin et al., 2019)
can be seen as a BERT-based sequence labeling
baseline which fine-tunes the BERT model with a
token-level linear classifier head.

e Template-based BART (Cui et al., 2021) uses
BART to encode the source sentence and decodes
the template constructed by querying each possible
span in a sentence with each class separately.

e NNShot and StructShot (Yang and Katiyar,
2020) are two metric-based few-shot learning ap-
proaches for slot tagging and NER. NNShot is an
instance-level nearest neighbor classifier for few-
shot prediction, and StructShot promotes NNShot
with a Viterbi algorithm during decoding.

e EntLM (Ma et al., 2021b) is a prompt-based
method using one pass language model replacing
label words with pre-selected slot values.

Results Table 1 shows the results of the proposed
method only finetuned on few-shot in-domain data
and baselines under few-shot setting. Among these
methods, we can observe that:

MIT-Movie Review has two datasets, the simple and the
complex. We regard the simple one as MIT-Movie and com-
bine both as MIT-Movie-Hard.

(1) Our proposed method performs consistently
better than all the baseline methods on all three
datasets. It outperforms the strongest baseline
Template-based BART which uses BART-large by
average F1 scores on three datasets of 11.96 in 10-
shot setting even with a 40% smaller pretrained
language model GPT2-small.

(2) Our proposed method is even comparable or
outperforms those baselines with data-rich domain
pretrained.

(3) Our proposed method performs much better
than baselines in fewer labeled samples settings, es-
pecially in 10 and 20 shot settings, which indicates
our method can leverage information from limited
labeled data more efficiently.

(4) Our method significantly outperformed Se-
quence Labeling BERT whose performance is quite
poor on 10 and 20 shot settings, which indicates
that the number of labeled data under the few-shot
setting is scarce for conventional sequence labeling
task, and proves that the prompt-based method is
effective in few-shot slot tagging tasks.

(5) The proposed Iterative Prediction Strategy
improves our method by average F1 score on three
datasets of 2.23 and 1.44 in 10 and 20 shot setting
respectively and even sees improvements in 200
and 500 shot settings, which proves the effective-
ness of the Iterative Prediction Strategy in very few
labeled data settings and it may still work in middle
size labeled data scenarios.

4.2 Setting with Meta Source Task

Datasets To evaluate the transferability from
data-rich domains to unseen few-shot domains of
our proposed model, we conduct experiments on
SNIPS (Coucke et al., 2018) dataset. Following
the data split provided by Hou et al. (2020), we
construct 5-shot SNIPS datasets from the origi-
nal SNIPS datasets. The few-shot SNIPS dataset
consists of 7 domains with different label sets:
GetWeather (We), Music (Mu), PlayList (P1), Rate-
Book (Bo), SearchScreenEvent (Se), BookRestau-
rant (Re) and SearchCreativeWork (Cr). Each do-
main contains 100 episodes, and each episode con-
sists of a support set with a batch of labeled samples
and query samples to evaluate.

Implements Following Henderson and Vulic
(2021), we conduct our cross-domain experiments
with 5-shot few-shot settings to evaluate the ability
of our model to transfer from rich-data domains
to unseen few-shot domains. For our proposed



MIT-Restaurant

Model
10 20 50 100 200 500
Wiseman and Stratos (2019) + PT 4.1 3.6 4.0 4.6 5.5 8.1
Ziyadi et al. (2020) + PT 27.6 29.5 31.2 33.7 34.5 34.6
Huang et al. (2020) + PT 46.1 482  49.6 50.0  50.1
Sequence Labeling BART + PT 8.8 11.1 42.7 45.3 47.8 58.2
Sequence Labeling BERT + PT 27.2 40.9 56.3 57.4 58.6 75.3
Template-based BART + PT 53.1 60.3 64.1 67.3 72.2 75.7
~ Sequence Labeling BERT ~~~ 21.8 394 527 535 574 613
Template-based BART 46.0 57.1 58.7 60.1 62.8 65.0
Ours 4935 6048 6534 7041 7369 76.13
Ours + Iterative 5210 6149 66.83 7098 7397 76.37
Model MIT-Movie-Hard
10 20 50 100 200 500
Wiseman and Stratos (2019) + PT 3.1 4.5 4.1 5.3 54 8.6
Ziyadi et al. (2020) + PT 40.1 39.5 40.2 40.0  40.0 39.5
Huang et al. (2020) + PT 36.4 36.8 38.0 38.2 354 383
Sequence Labeling BART + PT 13.6 304 47.8 49.1 55.8 66.9
Sequence Labeling BERT + PT 28.3 45.2 500 524 607 76.8
Template-based BART + PT 424 54.2 59.6 653 69.6 80.3
" Sequence Labeling BERT ~ 252 422 49.64 507 593 744
Template-based BART 37.3 48.5 52.2 56.3 62.0 74.9
Ours 52.07 59.11 6563 6935 7236 75.03
Ours + Iterative 53.31 60.19 66.13 69.63 7245 74.83
Model MIT-Movie
10 20 50 100 200 500
Sequence Labeling BERT 50.60 59.34 71.33 - - -
NNShot 5047 5894 71.17 - - -
StructShot 53.19 6142 7207 - - -
Template-based BART 4930 59.09 65.13 - - -
EntLM 4930 59.09 65.13 - - -
Ours 57.04 67.86 76.81 80.28 82.43 84.55
Ours + Iterative 59.74 70.09 77.60 80.63 82.64 84.51

Table 1: F1 scores of few-shot slot tagging task on three different datasets.10 indicates 10 instances for each entity types. +PT
denotes using model are pretrained on additional datasets. +Iterative denotes enhance model with Iterative Prediction Strategy.

method, same as in-domain settings, we use GPT2-
small pre-trained model as the base model for pre-
training in source domain and fine-tuning in target
few-shot domain, and no new parameters are intro-
duced. We set learning rate=6.25e — 5 and batch
size=16 for pretraining and batch size=2 for 5-shot
finetuning. During finetuning, we use the same
AdamW optimizer and linear decaying scheduler.
The hyper-parameters are decided according to per-
formance on the dev set.

Baselines We provided competitive strong base-
lines, including traditional methods, finetune-based
methods and advanced few-shot learning methods.
e Bi-LSTM (Schuster and Paliwal, 1997) uses
GLoVe (Pennington et al., 2014) embedding for
slot tagging. Train on the support sets and test on
the query examples.

e SimBERT is a metric-based method using orig-
inal BERT to label tokens with the most similar
token’s label in cosine similarity.

e Matching Network (MN) (Vinyals et al., 2016)
A few-shot sequence labeling model employing
the matching network with BERT embedding for
token-level classification.

o TransferBERT is a domain transfer conventional
NER model using BERT, pretrained on source do-
mains and fine-tuned on target domain support set
and performs on the test set

e WPZ (Fritzler et al., 2019) is a metric-based few-
shot slot tagging method using the prototypical
network (Snell et al., 2017). It pre-trains a proto-
typical network on source domains, and utilizes the
network to do word-level classification on target
domains without training.

e TapNet+CDT, L-TapNet+CDT, L-WPZ+CDT
(Hou et al., 2020) are advanced metric-based few-
shot learning methods, using a CRF framework
based on source domain pretrained BERT to predict
label in target domain without further training.

e ConVEx (Henderson and Vulic, 2021) is a fine-
tuning based method that models slot tagging as a



5-shot Slot Tagging

Model

We Mu Pl Bo Se Re Cr Ave.
Bi-LSTM 2544 39.69 4536 73.58 55.03 4030 4049 45.70
SimBERT 53.46 54.13 4281 7554 57.10 5530 3238 5296
TransferBERT 56.01 43.85 50.65 14.19 23.89 3699 1429 34.27
MN 38.80 3798 5197 70.61 3724 3429 7234 49.03
WPZ+BERT 69.06 57.97 4444 7197 7462 5101 69.22 62.61
TapNet+CDT 67.83 6872 7374 8694 7212 69.19 6654 72.15
L-WPZ+CDT 7823 6236 59.74 76.19 83.66 69.69 71.51 71.62
L-TapNet+CDT 69.58 64.09 7493 8537 83.76 69.89 73.80 74.49
ConVEx* 71.5 77.6 79.0 84.5 84.0 73.8 67.4 76.8
Ours 7044 71.63 78.67 8737 8138 T1.77 7442 76.53
Ours + Iterative  70.63  71.97 78.73 87.34 81.95 72.07 74.44 76.73

Table 2: F1 score results on 5-shot Snips. Our methods achieve the best performance. * denotes using additional Reddit data for

pretraining.

cloze task first pre-trained on Reddit data to learn
general span extraction ability, then fine-tuned on
few-shot slot tagging data. Note that the Reddit
data is not used by our method and other baselines
during the experiment.

Results Table 2 shows the results of the cross-
domain few-shot setting. Among these methods in
the table, we can observe that:

(1) Our proposed method outperforms all the
baselines except ConVEx which uses extra Reddit
data in cross-domain 5-shot setting.

(2) We outperform TransferBERT by 42.36 F1
scores which strongly proved that prompt-based
method can transfer more knowledge from source
domain and more data-efficient than conventional
methods. Noting that we can directly compare
with TransferBERT for both our methods first pre-
trained on source domains and then finetuned on
each few-shot domain respectively without any few-
shot learning tricks.

(3) Our method outperforms some metric-based
few-shot learning baselines, for example, 2.24 F1
scores higher than L-TapNet+CDT, which demon-
strate the effectiveness of prompt method in the
slot tagging task.

(4) Our Iterative Prediction Strategy improved
Our method by about 0.5 F1 scores, demonstrating
its effectiveness under cross-domain scenarios.

4.3 Analysis

Effects of Iterative Prediction Learning As
shown in Table 1, the proposed Iterative Predic-
tion Learning brings consistent improvement ,espe-
cially in low-resource settings. It works by revising
predictions with a second-round query to recognize
those missing slots, which can bring an increase in
recall score. To confirm that, we make our analysis

Model Restaurant Movie
P R F P R F
Ours 677 424 521 84.0 464 59.7
10  w/o Iter 69.4 383 494 859 427 570
w/o Joint 68.8 38.9 49.7 856 43.0 572
Ours 70.1 547 615 835 604 70.1
20  w/o Iter 71.6 523 605 863 559 679
w/o Joint 70.92 5345 61.0 856 569 68.3
50 Ours 73.6 612 668 836 724 77.6
w/o Iter 754 576 653 859 695 768
w/oJoint 743 59.2 657 847 708 77.1
Ours 76.1 66,5 71.0 844 772 80.6
100 w/o Iter 78.0 642 704 863 750 803
w/oJoint 767 66.0 71.0 850 76.5 80.5
Ours 778 705 740 854 80.0 82.6
200 w/o Iter 79.5 687 737 87.1 782 824
w/o Joint 78.0 70.1 73.8 85.1 799 824
Ours 794 735 764 863 828 845
500 w/o Iter 810 71.8 761 879 814 84.6
w/oJoint 79.6 734 764 86.6 82.1 84.3

Table 3: Ablation analysis Iterative Prediction Strategy w/o
Iter denotes removing iterative strategy and w/o joint denotes
using two separate models for the two iterative steps.

about precision score (P), recall score (R) and F1
score (F), as shown in Table 3.

When Iterative Revise Learning is added, we can
get a rise in recall score about 4 percent in 10-shot,
2~4 percent in 20 shot and more than 1 percent in
other shot settings in exchange for a slight precision
drop, resulting in a rise in overall F1 score by about
2 percent in 10 and 20 shots.

We further explore whether a sequential jointly
trained model from first-round training or a from-
scratch training model in Iterative Prediction Strat-
egy training time performs better by conducting
experiment training from scratch. As shown in
Table 3, without jointly training, the revised perfor-
mance drops, but still brings improvements, which
further proves the effectiveness of proposed Itera-
tive Prediction Strategy.



Model Movie Restaurant
Baseline (Normal Prompt) ~ 408.0 236.0
Ours 51.2 33.2
Ours + Iterative 119.4 714

Table 4: Comparison of the decoding time (s).

Efficiency Study Unlike Template-based BART,
querying every n-gram span in the source sentence
with each label with O(n? x m) (where n is the
length of source sentence and m is the size of the
label set) time complexity, our proposed method
queries labels in label set and directly generate slots
with O(n * m) time complexity at top. In theory,
our method is much faster than Template-based
BART, especially dealing with long sentences with
sparse slots. To prove this, we conduct efficiency
experiments by calculating the decoding time of
each method on a TiTan XP GPU with batch size=8,
and we set our max generation length at 40. As
shown in Table 4, our method is about 8 times as
fast as Template-based BART method, even more
than 3 times as fast as theirs with Iterative Predic-
tion Strategy. It is worth pointing that most slots
are short and sparse in a sentence, which means our
average generation length is short and with careful
controlling when to end decoding, the time com-
plexity of our method can be very close to the lower
boundary o(n).

5 Related Work

Prompt-based learning Prompt-based learning
approaches have been a broadly discussed topic
since large language models like GPT mod-
els (Brown et al., 2020) are hard to fine-tune in low-
resource scenarios. Schick and Schiitze (2021a,b)
introduce manually prompts to text classification
tasks. For natural language understanding (NLU)
tasks, automatically searching discrete prompts
methods are proposed such as Jiang et al. (2020);
Shin et al. (2020); Gao et al. (2021). Meanwhile,
due to the continuity of parameters in neural net-
works, continuous prompts for both text classifica-
tion and generation tasks (Li and Liang, 2021; Liu
et al., 2021b; Han et al., 2021) have been proposed.
Unlike sentence-level tasks, prompting method is
very complicated for slot tagging and NER tasks.
Cui et al. (2021) proposes a template-based method
querying every slot span with each label which is
expensive for decoding. Different from them, we
introduce an inverse paradigm for prompting slot
tagging task. Note that inverse prompting (Zou

et al., 2021) has a similar name to our work but is
entirely different in method and task. They aim to
generate prompt templates inversely. Amendable
generation (Tian et al., 2021) share a similar idea
of using Iterative Prediction Strategy to generate
and revise dialog state. By contrast, we focus on a
different task sequence labeling and first to intro-
duce an Iterative Prediction Strategy to prompting
models. There are also generation-based methods
for sequence labeling (Yan et al., 2021), which is
not a prompting method, since it re-initializes de-
coding layers and learns a generative model from
scratch.

Few-shot slot tagging Previous few-shot slot
tagging methods focus on metric learning based
methods, which classify tokens with word-label
similarity (Snell et al., 2017; Vinyals et al., 2016).
Hou et al. (2020) leverage label name semantics
to get better label representation and model label
dependency in few-shot setting. Yang and Katiyar
(2020) uses make a prediction based on the near-
est neighbor sample instead of the nearest label
representation. Besides, some works also explore
training a model with additional data from non-slot-
tagging task (Huang et al., 2020; Henderson and
Vulic, 2021). Different from directly learning the
few-shot slot tagging model, some researches ex-
plore to reformulate the slot tagging into other NLP
tasks, Ma et al. (2021a) reforms slot tagging into a
reading comprehension task, Yu et al. (2021) treats
slot tagging as a retrieval task, Coope et al. (2020)
uses span extracting task to extract slot and predict
corresponding label and Cui et al. (2021) leverages
prompts for few-shot NER. Different from those
methods above, we are the first to reformulate slot
tagging task into a prompt-based generation task.

6 Conclusion

In this paper, to liberate the prompting methods
from burdensome prediction of slot-tagging tasks,
we introduce a novel inverse prediction manner to
prompting methods of slot-tagging, which signifi-
cantly improves both the efficiency and accuracy.
To further improve performance, we propose an
Iterative Prediction Strategy for learning, which en-
able the prompting model to consider dependency
between labels and refine prediction. Extensive ex-
periments verify the effectiveness of the proposed
method in various few-shot settings, indicating in-
verse prediction is a better fit for prompting of slot
tagging task.
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