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ABSTRACT

Many real-world data are graphs, such as social networks and protein structures.
To fully utilize the information contained in graph data, graph neural networks
(GNNs) have been introduced. Previous studies have shown that machine learn-
ing models are vulnerable to privacy attacks. However, most of the current efforts
concentrate on ML models trained on images and texts. On the other hand, pri-
vacy risks stemming from GNNs remain largely unstudied. In this paper, we fill
the gap by performing the first comprehensive analysis of node-level member-
ship inference attacks against GNNs. We systematically define the threat models
and propose eight node-level membership inference attacks based on an adver-
sary’s background knowledge. Our evaluation on four GNN structures and four
benchmark datasets shows that GNNs are vulnerable to node-level membership
inference even when the adversary has minimal background knowledge. Besides,
we show that node degree, graph density, and feature similarity have major im-
pacts on the attack’s success. We further investigate three defense mechanisms
and show that differential privacy (DP) can better protect the membership privacy
while preserving the model’s utility.

1 INTRODUCTION

Many real-world data can be organized in the form of graphs, such as social relations and protein
structures. Effective graph analysis provides users a deeper understanding of what is behind the
data and can help to analyze many natural phenomena and build powerful commercial applications.
To fully utilize the rich information of graph data, a new family of machine learning (ML) models,
namely graph neural networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic
et al., 2018), has been introduced to address graph-related tasks in an end-to-end manner. GNN
models utilize both the feature of each sample and the features of the sample’s neighborhood to
represent the sample. In this way, a GNN learns to embed the structural connections among different
nodes in its training dataset.

Recent research has shown that ML models are vulnerable to privacy attacks (Shokri et al., 2017;
Salem et al., 2019; Fredrikson et al., 2015; Leino & Fredrikson, 2020; Carlini et al., 2019; Melis
et al., 2019; Song & Shmatikov, 2019; 2020). Most of the current efforts in this direction concen-
trate on ML models trained on sensitive non-structured data, such as images and texts. Meanwhile,
graph data, which is used to train GNNs, also contains sensitive information, such as social rela-
tions (Backstrom et al., 2007; Crandall et al., 2010; Jia et al., 2017) and mobility traces (Cho et al.,
2011; Backes et al., 2017). However, the potential privacy risks stemming from GNNs have been
largely understudied. There exists some preliminary work on node-level membership inference at-
tacks against GNNs (Duddu et al., 2020; Olatunji et al., 2021). However, the early demonstrations of
the attack’s vulnerability have a strong assumption whereby the adversary has the full neighborhood
information, which is a rather strong assumption that limits the scope of meaningful membership
inference attacks against GNNs.

In this paper, we investigate whether a GNN model is vulnerable to membership inference at-
tacks (Shokri et al., 2017; Salem et al., 2019; Song & Mittal, 2021), which are the major means
to assess ML models’ privacy risks. Specifically, an adversary aims to infer whether a target node is
used to train a target GNN. We concentrate on black-box membership inference, the most difficult
setting for the adversary (Shokri et al., 2017). As mentioned before, GNNs are designed for graph
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data that is not in the Euclidean space, which leads to some unique research questions for member-
ship inference attacks in this setting. First, an adversary needs background knowledge, such as the
target GNN’s architecture and a shadow dataset, to train their attack model. Also, different graphs
share many common properties, such as power-law degree distribution (Leskovec et al., 2014). This
motivates us to understand whether an adversary can have less constrained background knowledge
compared to previous membership inference attacks against other types of ML models. Second,
an adversary can query a node to a GNN with either the node’s feature alone or the node and its
neighborhood’s graph connections as well as their features. This means that one node can receive
different prediction outputs (posteriors) from the GNN. We are interested in which posteriors reveal
more information of the target node’s membership status and whether these posteriors can be com-
bined to achieve a more effective attack. To answer these research questions, we make the following
contributions in this paper.

We first systematically define the threat model of node-level membership inference attack against
GNNs by categorizing an adversary’s background knowledge along three dimensions, i.e., shadow
dataset, shadow model, and node topology. Following the different threat models based on node
topology, we propose four membership inference attack models, namely 0-hop, 1-hop, 2-hop, and
combined attacks. Different from previous work (Carlini et al., 2021; Watson et al., 2021), we
develop a new difficulty calibration method based on Jensen-Shannon distance (JS distance) which
can further facilitate our attacks and do not need extra reference models.

We perform an extensive evaluation on four popular GNN models with four benchmark datasets.
Experimental results show that our attacks achieve strong performance. More interestingly, we
discover that our 0-hop attack has better performance than the 1-hop and 2-hop attacks, which is
overlooked by previous work (Duddu et al., 2020; Olatunji et al., 2021). This is because a target
node’s 1-hop or 2-hop neighborhood contains a mixture of member and non-member nodes which
jeopardizes the attack model’s accuracy. Our combined attack is more effective by taking advantage
of the 0-hop, 1-hop, and 2-hop attacks. Also, the calibrated version of previous attacks can further
breach the node-level membership privacy. Moreover, we show that our attacks are still effective
when the adversary does not know the target model’s training dataset distribution or architecture.

We also perform an in-depth analysis of what kind of node is more vulnerable to the attack. Our
experiments reveal that a node with higher degree is more robust to membership inference as the
GNN aggregates more neighbor’s information this reduce the “exposure” of the node itself. Also, a
node with a higher subgraph density is more prone to membership inference, since a dense subgraph
drives the node to participate more in the aggregation process of the GNN training, which amplifies
the node’s influence in the target GNN model. Besides, it is easier for the adversary to mount their
attack if a node shares similar features with its neighbors (see Section 4.2). To mitigate the attacks,
we evaluate three defense mechanisms, i.e., random edge addition, label-only output, and differential
privacy (DP). Empirical evaluation shows that DP can achieve a better trade-off between the model
utility and the membership privacy.

2 PRELIMINARY

Notations. We define a graph dataset as D = (G,X ,Y). Here, G = (V, E) represents a graph with
V denoting the graph’s set of nodes and E representing the set of edges connecting these nodes.
Each node is denoted by v ∈ V and euv ∈ E represents an edge linking two nodes u and v.
X = {x1, x2, ..., x|V|} and Y = {y1, y2, ..., y|V|} represent the features and labels for all the nodes
in G, respectively. Node v’s l-hop neighborhood is denoted by N l(v), which contains a set of
nodes at a distance less than or equal to l from v in G. For convenience, we abbreviate the 1-hop
neighborhood of v as N (v). The l-hop subgraph of node v, denoted by gl(v), contains v, its l-hop
neighborhood N l(v), edges among these nodes, and features of these nodes.

GNN Architecture. Basically, a GNN contains multiple graph convolution layers that itera-
tively update a node v’s representation by aggregating the representation of nodes in v’s neigh-
borhood. Formally, each graph convolution layer of a GNN model can be defined as: z

(t)
v =

AGGREGATE(h
(t−1)
v , {h(t−1)

u : u ∈ N (v)}) and h
(t)
v = UPDATE(z

(t)
v ). Here N (v) is the neigh-

borhood of v. t represents the t-th layer of the GNN. z(t)v and h
(t)
v denote the hidden state and the

representation vector of node v at layer t. In the first step, we initialize v’s representation h
(0)
v as
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its feature xv . AGGREGATE(·) and UPDATE(·) are the aggregation and update functions, respec-
tively. Given a node v, the aggregation function is used to generate the current hidden state z

(t)
v

using a combination of its previous representation and the aggregated representation from its neigh-
borhood N (v). The update function then conducts non-linear transformation on the current hidden
state z

(t)
v and produces the representation vector h(t)

v . In this paper, we focus on four representa-
tive GNN architectures, i.e., GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018),
GIN (Xu et al., 2019), and GCN (Kipf & Welling, 2017).

GNN Prediction. In this paper, we focus on node classification tasks. In the training phase, an
inductive GNN learns the parameters of aggregation and update functions in different layers over a
training dataset. Then, to get a precise prediction of an unseen node v in a t-layer GNN, we can
feed v’s t-hop subgraph, i.e., gt(v), to the GNN and obtain the prediction posteriors pv . Note that
the t-hop subgraph of v is not a necessary condition to acquire the posteriors pv . We can obtain
posteriors pv by only querying the target node v’s feature to the GNN model. Our evaluation shows
that even in this case, the GNN model can achieve better performance than MLP, i.e., a model that
does not consider graph structural information (see Figure 8 in Appendix).

3 NODE-LEVEL MEMBERSHIP INFERENCE ATTACKS

3.1 PROBLEM DEFINITION

The adversary aims to determine whether a given node is used to train a target GNN model
or not. More formally, given a target node v, a target GNN model MT, and the adversary’s
background knowledge K, node-level membership inference attack A can be defined as: A :
v,MT,K 7→ {member, non-member}. Successful membership inference attacks can cause severe
privacy risks (Shokri et al., 2017; Salem et al., 2019). In the setting of GNNs, membership threat
is related to graph data, such as inferring a user being a member of a sensitive social network or
a patient network (e.g., AIDS/COVID contact trace network), a transaction being part of a trans-
action graph, etc. Consequently, successful membership inference can reveal sensitive information
(sexual orientation, spending behavior, etc) when the GNN model is trained on data from a specific
subgroup of the population.

3.2 THREAT MODEL

Our target model MT is an inductive GNN model. First, we assume that the adversary only has
black-box access to the target model, i,e, they can only query the target model and obtain the pos-
teriors. As mentioned by previous work (Shokri et al., 2017; Salem et al., 2019; He et al., 2021),
black-box setting is the most challenging scenario for the adversary. We then categorize the adver-
sary’s background knowledge K along three dimensions, i.e., shadow dataset, shadow model, and
node topology.

Shadow Dataset. We assume that the adversary has a shadow dataset DShadow which contains its
own graph structure as well as node features and labels. Following the previous work (Shokri et al.,
2017), the shadow dataset DShadow can come from the same distribution of the target model’s train-
ing dataset. However, our empirical evaluation shows that this assumption can be relaxed (see
Section 4.4). Note that in both cases, the shadow dataset has no node and edge intersection with the
target dataset.

Shadow Model. With the shadow dataset, the adversary can train a shadow GNN model MS to
mimic the target model MT. We can assume that the shadow model shares the same architecture
as the target model (Shokri et al., 2017; Salem et al., 2019). However, our experimental results
show that an adversary can use a different GNN architecture from the target model to establish their
shadow model (see Section 4.4).

Node Topology. To get the posteriors for v from MT, we consider three cases. In the first case, we
assume that the adversary only has v’s feature xv . As the input to a GNN needs to be in the form
of a graph, we add a self-loop for v (Kipf & Welling, 2017) and query the target model. We refer to
this case as a node’s 0-hop query. In the second case, we assume that the adversary knows the target
node v’s 1-hop subgraph g1(v), which can be directly fed to the target model. We refer to this case
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as a node’s 1-hop query. In the third case, similar to the second one, we assume that the adversary
knows the target node v’s 2-hop subgraph g2(v). We name this scenario as a node’s 2-hop query.
Note that the subgraph does not need to be the complete subgraph of v as the adversary may only
have a partial view of the dataset. Besides, nodes in the subgraph can be a mixture of members and
non-members for the target GNN. This is more realistic as the adversary does not know any other
nodes’ membership status. The goal is to infer the membership status of v. In general, we consider
the 0-hop, 1-hop, and 2-hop queries in this paper. Note that the adversary can choose k-hop query
with k > 2. However, most of the state-of-the-art GNNs follow a two-layer structure due to the
fact that real-world graphs normally exhibit small-world phenomenon (Easley & Kleinberg, 2010),
and in this case, 2-hop query is the upper bound for the query depth. In another way, k-hop query
(k > 2) will be considered as a 2-hop query for a two-layer GNN. Moreover, previous empirical
results (Hamilton et al., 2017) show that deeper GNN architecture does not further improve the
classification performance. Therefore, we only consider k-hop query (k ≤ 2) in this paper and leave
k-hop query (k > 2) as the future work.

3.3 ATTACK METHODOLOGY

Following the standard process of membership inference attacks against ML models (Shokri et al.,
2017), our attack can be divided into three stages, i.e., shadow model training, attack model training,
and membership inference. Figure 9 (in Appendix A) provides a schematic overview of the attack
process.

Shadow Model Training. Given a shadow dataset DShadow, the adversary first splits its node set
VShadow into two disjoint sets VTrain

Shadow and VTest
Shadow. Then, the adversary derives their shadow training

(DTrain
Shadow) and testing (DTest

Shadow) datasets by involving all the features, labels, and edges within VTrain
Shadow

and VTest
Shadow, respectively. After that, DTrain

Shadow is used to train a shadow GNN model MS.

Attack Model Training. The attack model is a binary classifier and its input is derived from a
node’s posteriors provided by a GNN. To obtain the training dataset for the attack model, the ad-
versary needs to query MS with all the nodes in VShadow (both VTrain

Shadow and VTest
Shadow) and gets the

corresponding prediction posteriors. As mentioned before, depending on their knowledge of node
topology, the adversary can perform 0-hop query, 1-hop query, or 2-hop query. For a node v, we
refer to its posteriors obtained by k-hop query as k-hop posteriors. Inspired by previous work (Car-
lini et al., 2021; Watson et al., 2021), we propose a new difficulty calibration method to facilitate
membership inference attacks but without extra reference models. Concretely, given a model where
v belongs to its training dataset, we need a reference model where v does not belong to its training
dataset. Instead of training multiple reference models (Carlini et al., 2021; Watson et al., 2021), we
consider the shadow model and target model as each other’s reference model since their training
datasets have no intersection. Then we define the JS distance between the posteriors obtained from
both models as the difficulty level of v. The intuition is that v is an easy-to-predict node if both
model predict v with very high similarity.

In this paper, we first consider four types of attack model input summarized from posteriors which
leads to four attack models, namely 0-hop attack A0, 1-hop attack A1, 2-hop attack A2, and com-
bined attack Ac. For each attack model A, we then consider an calibrated version Acal by adding
the difficulty level into the input as well. In total, we have eight attack models.

0/1/2-hop Attacks (A0/A1/A2). The 0/1/2-hop attack models are essentially MLPs, which take v’s
largest two1 values (ranked) in its 0/1/2-hop posteriors as the input.

Combined Attack (Ac). The combined attack model considers both the inputs for the 0-hop, 1-hop,
and the 2-hop attack by first feeding them separately to different linear layers. Then, the attack
model concatenates the three embeddings and feeds them to an MLP.

Calibrated Attack (Acal). The calibrated attack model follows the same architecture as the previous
attacks but add also the difficulty level into the input. E.g., for the combined attack Ac, its calibrated
version Acal

c consider the difficulty level for 0/1/2-hop posteriors simultaneously.

Note that A0 and A1 are practically important. For instance, social networks such as Instagram or
Tinder do not reveal social relationships of (private) user accounts. However, an adversary can crawl

1Classification tasks considered in this paper have at least two classes.
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users’ profile information without or with limited social relations. They can still launch membership
inference attacks (i.e., A0 and A1). Besides, if the adversary can perform 2-hop attack of a given
node, they can also perform 0-hop and 1-hop attack. Therefore, the combined attack requires the
same background knowledge as the 2-hop attack. In all cases, if v ∈ VTrain

Shadow, we label it as a
member, otherwise as a non-member. In the end, the adversary constructs an attack training dataset,
which they use to train their attack model.

Membership Inference. To determine whether a target node is used to train the target model MT,
the adversary first conducts k-hop query to the target model depending on their background knowl-
edge and obtains the corresponding posteriors. Then, the adversary queries the attack model with
the posteriors to get the node’s membership prediction.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Dataset. We conduct experiments on four public datasets, including Cora (Kipf & Welling,
2017), Citeseer (Kipf & Welling, 2017), Cora-full (Bojchevski & Günnemann, 2018), and LastFM
Asia (Rozemberczki & Sarkar, 2020) (abbreviated as Lastfm). Cora and Citeseer are citation graphs
whose nodes represent papers and edges reflect citation relationships among papers. Cora-full is
an extended Cora dataset. Lastfm is a social network dataset with its nodes being users and edges
representing users’ mutual following relationships. All datasets contain node features and labels.
Dataset statistics are summarized in Table 1 in Appendix A.

Dataset Configuration. The dataset configuration process is depicted in Figure 9. For each dataset,
we first randomly split its nodes by half. The first half (including the nodes, the edges among the
nodes, and the nodes’ features and labels) is used to construct the target dataset, i.e., DTarget. The
other half is treated as the shadow dataset, i.e., DShadow. Note that the target dataset and shadow
dataset are disjoint as mentioned in Section 3. For the target dataset DTarget, we further randomly
split it by half creating the target training dataset DTrain

Target and the target testing dataset DTest
Target. The

target training dataset is used to train the target model, and the target testing dataset is used to test the
target model’s performance with respect to its original classification task. Both DTrain

Target and DTest
Target

are used to test membership inference. Nodes in DTrain
Target are considered as members and nodes in

DTest
Target as non-members. As mentioned in Section 3.2, for the 2-hop query scenario, each node’s

2-hop subgraph can contain a mixture of member and non-member nodes.

We apply the same processing procedure on the shadow dataset to generate the shadow training
dataset DTrain

Shadow and the shadow testing dataset DTest
Shadow. DTrain

Shadow is used to train the shadow model.
Both DTrain

Shadow and DTest
Shadow are used to derive the training dataset for the attack model. We use accu-

racy as our evaluation metric for both target model’s performance and attack model’s performance
as it is widely used in node classification tasks (Kipf & Welling, 2017; Velickovic et al., 2018; Xu
et al., 2019) as well as membership inference attacks (Shokri et al., 2017; Salem et al., 2019). We
consider 2-hop attack as the baseline attack as Duddu et al. (2020) and Olatunji et al. (2021) lever-
age 2-hop attack as their attack methodology. The training details of target and attack models are
summarized in Section A.1.

4.2 0-HOP, 1-HOP, 2-HOP, AND COMBINED ATTACKS

We first show the membership inference attack performance of the combined, 0-hop, 1-hop, and
2-hop attacks in Figure 1. We find that compared to the 1-hop and 2-hop attacks, the 0-hop attack
achieves higher membership inference accuracy. Also, the 1-hop attack performs better than the 2-
hop attack. For instance, the baseline attack (2-hop) on GraphSAGE trained on Cora only achieves
0.671 accuracy while the accuracy of the corresponding 1-hop and 0-hop attack are 0.681 and 0.754,
respectively. Such observations reveal that a node’s 0-hop or 1-hop query to the target GNN leaks
more membership information of the node although such a query leverage less information com-
pared to the 2-hop query, which is overlooked by previous work (Duddu et al., 2020; Olatunji et al.,
2021).
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Figure 1: The performance of combined, 0-hop, 1-hop, and 2-hop attacks for different GNN archi-
tectures on four different datasets.
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Figure 2: The entropy distribution of posteriors from 0-hop,
1-hop, and 2-hop queries for GraphSAGE on Citeseer.

To investigate the reason behind
this, we visualize the entropy dis-
tribution of posteriors from 0/1/2-
hop queries for GrapgSage on Cite-
seer and the results are summarized
in Figure 2. We observe that, com-
pared to 1-hop or 2-hop queries,
the entropy from 0-hop query is
distributed more separately. For
instance, the JS-Divergence be-
tween member and non-member’s
entropy distribution of posteriors are 0.325, 0.233, and 0.232 from 0-hop, 1-hop, and 2-hop queries.
A larger value indicates a lower difficulty to differentiate them. It is reasonable since if a target
node is a member, its 1-hop or 2-hop subgraph may contain some non-member nodes, which yields
a less confident prediction and makes it harder to be separated from non-members. Note that You
et al. (2021) also show that the target node’s information is less pronounced in a GNN’s aggregated
outputs.

This can also be credited to different overfitting level of the target model (the gap between training
and testing accuracy). Given the overfitting level g, a lower bound of membership inference attack
accuracy is 1+g

2 (see Theorem A.1 in Appendix). Since 0-hop query has a larger overfitting level
(Figure 8 in Appendix), it should have larger attack accuracy.

The combined attack takes the inputs of the 0/1/2-hop attack models as its input and the result is
summarized in Figure 1a. We find that the combined attack achieves higher attack performance
since it takes the advantage of 0/1/2-hop attacks. For instance, when the target model is GCN
trained on Citeseer, the membership inference accuracy is 0.823 for the combined attack, while only
0.795/0.691/0.684 for the 0/1/2-hop attacks.
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Figure 3: AUC for 0-hop, 1-hop, 2-hop, and combined attacks
on different groups of nodes categorized by degree, ego den-
sity, and feature similarity on Cora-full. The architecture of both
target and shadow model is GraphSAGE. The x-axis represents
different groups, e.g, 0-25 for degree means the group of nodes
whose degrees are in the lowest 25% of the dataset. The y-axis
represents the AUC.

Node Property. We next in-
vestigate which kinds of member
nodes are more prone to mem-
bership inference. To this end,
we calculate three metrics for
each member node, i.e., degree,
ego density, and feature similar-
ity. The first two are related to
a node’s graph property and the
last one focuses on the node’s
feature. For a given node v, the
degree of the node is defined as
the number of edges connected
to it. Ego density measures the
graph density of a node v’s 2-hop
subgraph g2(v). Feature similar-
ity measures how similar a node
v’s feature to nodes’ features in its 2-hop subgraph g2(v). Specifically, we calculate the similarity
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(cosine similarity) between the feature of v and the feature of each node in g2(v). Then, we average
all the similarity.

We categorize all the nodes in DTrain
Target into four different groups (as the positive cases) based on

their degrees, ego density, and feature similarity, respectively. Nodes in DTest
Target are considered as the

negative cases for each group. We summarize the results when both target and shadow model are
GraphSAGE trained on Cora-full in Figure 3 (see also Section A.4 for the results on other datasets).
Note that the distribution of member and non-member nodes in each group is not uniform, thus we
utilize AUC (area under the ROC curve) to measure the attack performance in each group as AUC
is not sensitive to imbalanced classes (Backes et al., 2017; Fredrikson et al., 2014).

In general, we find that higher degree leads to lower AUC score for all attacks (see Fig-
ure 3a). For instance, the 0-hop attack’s AUC is 0.853 on nodes in the lowest 25% degree
group while the AUC is 0.764 in the highest 25% degree group. Recall that during the training
process, each GNN layer generates a node’s representation by aggregating its neighbor nodes’
representation. With a higher degree, more neighbor nodes are involved, which may reduce
the “exposure” of the target node itself, thus lesser membership inference risk. In Figure 3b,
we find that larger ego density implies higher attack performance. For instance, for Graph-
SAGE trained on Cora-full, the 1-hop attack achieves 0.781 AUC on nodes with less than 0.25
ego density while the AUC increases to 0.810 for nodes with larger than 0.75 ego density.
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Figure 4: Prediction probability of being a
member for the combined attack Ac and its
calibrated version Acal

c when target model is
GraphSAGE trained on Citeseer.

The reason behind this can be credited to the ag-
gregation function of GNN models. Higher density
enables a node to participate more times in the ag-
gregation process during training, which results in
the model memorizing more information about the
node. Also, such observation is rooted in the social
homophily theory (Easley & Kleinberg, 2010), i.e.,
nodes in higher density subgraphs are more likely
to share similar features. This makes the aggrega-
tion output of a node become more similar to the
node feature itself which makes the node easier to be
memorized by the target model. We further measure
the relation between attack performance and feature
similarity (see Figure 3c). Our finding reveals that
membership inference is indeed more effective when the target node has a larger feature similarity
with its neighbors. For GraphSAGE trained on Cora-full, the 2-hop attack’s AUC increases from
0.766 to 0.814 when the feature similarity increase from less than 0.25 to larger than 0.75.

4.3 CALIBRATED ATTACKS

We summarize the performance of calibrated attacks in Figure 5. An observation is that the cali-
brated version of attacks in general achieves better performance. For instance, when the target model
is GraphSAGE trained on Citeseer, the 1-hop attack A1 achieves 0.694 accuracy (Figure 1c) while
its calibrated version reaches 0.747 accuracy (Figure 5c). To better illustrate this, take the Graph-
SAGE trained on Citeseer as an example, we summarize the probability of being a member for the
combined attack Ac and its calibrated version Acal

c in Figure 4. We observe that, when the attack
model is trained with calibration, the overlap between members and non-members is smaller, which
indicates that the attack model can better separate members from non-members.

4.4 RELAX ASSUMPTIONS

We further investigate whether the two key assumptions for our attacks (see Section 3.2) can be
relaxed: 1) the adversary has a shadow dataset that comes from the same distribution as the target
dataset, 2) the adversary has a shadow model with the same architecture as the target model. For
instance, in Figure 7a, when the target model is GraphSAGE trained on Citeseer, the attack accuracy
is 0.818 (0.806) with Citeseer (Cora) as the shadow dataset. This shows that even the adversary does
not have the same distribution shadow dataset, they can still launch effective membership inference.

Different Shadow Dataset Distribution. The first row of Figure 7 shows the attack results when
the shadow model is trained on a dataset from a different distribution. We observe that our calibrated
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Figure 5: The performance of calibrated attacks for combined, 0-hop, 1-hop, and 2-hop attacks for
different GNN architectures on four different datasets.
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Figure 7: Attack performance of Acal
c when using: 1) different distribution shadow datasets to train

the shadow models (the first row) and 2) different architectures to establish the shadow models (the
second row).

version of combined attack can still achieve similar performance compared to the same distribution
shadow dataset. To further investigate the reason behind, we extract the embeddings of members and
non-members from two calibrated version of combined attack models (one corresponds to the same
distribution shadow dataset, the other corresponds to the different distribution shadow dataset), and
project the embeddings into a 2-dimensional space using t-SNE (van der Maaten & Hinton, 2008).

Member

Non-member

(a) DShadow: Cora (b) DShadow: Citeseer

Figure 6: The embeddings of 100 ran-
domly selected member and non-member
nodes obtained from the combined at-
tack’s hidden layer. We project them into a
2-dimensional space using t-SNE. The tar-
get model is GraphSAGE trained on Cora.
The two shadow models are GraphSAGE
trained on Cora or Citeseer.

The results are shown in Figure 6. We observe that
if we use different distribution shadow dataset to train
the attack model, the embeddings of members and non-
members might be distributed differently. For instance,
the member nodes lie in the bottom left area in Fig-
ure 6a, while in the top left area in Figure 6b. However,
for both of them, member and non-member nodes are
easily separable, which indicate that the posteriors of
members and non-members have different patterns and
can be distinguished by the attack model.

Different Shadow Model Architecture. The results
for the attack using different shadow model architec-
tures are summarized in the second row of Figure 7.
We see that a shadow model with a different architec-
ture from the target model still yields good attack per-
formance. For instance, in Figure 7e, for GraphSAGE
trained on Cora, the attack accuracy is 0.771 when the
shadow model architecture is GIN while the original
attack accuracy is 0.787. This indicates that the intrinsic difference between members and non-
members is model agnostic and can be leveraged to perform effective attacks. Note that we also
show the combined, 0-hop, 1-hop, and 2-hop attacks’ performance in Section A.5 and the trends

8



Under review as a conference paper at ICLR 2023

are similar. In summary, both assumptions can be relaxed, which further demonstrates the severe
membership privacy risks of GNNs.

4.5 POSSIBLE DEFENSES

To mitigate the membership inference attacks, we investigate three possible defense mechanisms,
namely random edge addition, DP, and label-only output. We find that DP can better preserve the
membership privacy while maintaining the performance on the original tasks. Section A.6 contains
further details.

5 DISCUSSION

We acknowledge that our attack methodology is similar to Olatunji et al. (2021) (which is the 2-hop
attack mentioned in our paper). However, we empirically show that with this technology, an attacker
can achieve better performance with limited information (0-hop and 1-hop attacks). Moreover, we
propose a new calibrated attack that does not require multiple reference models, which is more query
efficient. The results demonstrate that our proposed calibrated attack is more effective than the 0/1/2-
hop attacks. In this paper, our attacks mainly focus on the node level. However, our calibrated attack
can also be easily transferred into graph level to enhance the performance as well.

6 RELATED WORK

Membership inference attacks aim at inferring membership of individual training samples of a tar-
get model to which an adversary has black-box access through a prediction API (Shokri et al., 2017;
Salem et al., 2019; Nasr et al., 2018; Yeom et al., 2018; Hayes et al., 2019; Nasr et al., 2019; Chen
et al., 2018; Song & Shokri, 2020; Carlini et al., 2019; Li & Zhang, 2021). Most of the existing
attacks focus on deep learning models that are trained on sensitive data from non-structured data,
such as images and texts. Shokri et al. (2017) propose the first membership inference attack against
machine learning models in the black-box setting. Salem et al. (2019) further relax several key as-
sumptions from (Shokri et al., 2017), such as knowledge of the target model architecture, shadow
dataset from the same distribution. Yeom et al. (2018) discuss the relationship between overfitting
and membership attacks. Nasr et al. (2019) conduct a comprehensive study for membership in-
ference attacks in both black-box and white-box settings. Duddu et al. (2020) and Olatunji et al.
(2021) have performed 2-hop attacks against GNNs. However, we empirically demonstrate that our
proposed 1-hop and 0-hop attacks can perform better while requiring less information. We addition-
ally propose combined attacks and the calibrated version of all attacks to further improve the attack
performance.

7 CONCLUSION

In this paper, we perform a comprehensive privacy risk assessment of GNNs through the lens of
node-level membership inference attacks. We systematically define the threat model along three
dimensions, including shadow dataset, shadow model, and node topology, and propose eight dif-
ferent attack models. We conduct extensive experiments on four popular GNN models over four
benchmark datasets. Our evaluation results show that GNNs are indeed vulnerable to membership
inference attacks even with minimal background knowledge of an adversary. Also, our newly pro-
posed calibrated attacks can further breach the membership privacy. Moreover, our analysis reveals
that a node’s degree, ego density, and feature similarity have a large impact to the attack perfor-
mance. We further show that the attacks are still effective even the adversary does not have the same
distribution shadow dataset or same architecture shadow model. To mitigate the attacks, we pro-
pose three defense mechanisms and discuss their trade-offs between membership privacy and model
utility. We point out that the node-level membership inference attack can be launched in a more
restricted scenario (i.e., 0-hop query) and we hope our work can inspire the community to develop
stronger defenses based on our comprehensive analysis.
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Table 1: Dataset statistics.

Dataset #. Node #. Edge #. Feature #. Class

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Cora-full 19,793 65,311 8,710 70
Lastfm 7,624 27,806 7,842 18

A APPENDIX

A.1 TRAINING DETAILS OF TARGET AND ATTACK MODELS

Target Models. We leverage four GNN architectures, i.e., GraphSAGE, GAT, GIN, and GCN, to
construct our target models and shadow models. For each target model, we set the number of layers
to 2 and the number of neurons to 32 in the hidden layer. Additionally, GAT models require the
specification of the number of heads in the multi-head attention mechanism. We set the number of
heads for the first layer and the second layer to 2 and 1, respectively. We also use dropout in all
hidden layers to reduce overfitting, and the dropout rate is 0.5. We adopt cross-entropy as the loss
function and Adam as the optimizer. The learning rate is set to 0.003. The target and shadow models
are both trained for 200 epochs.

Baseline Model. We leverage a 2-layer MLP as the baseline model to perform the same task as the
target model’s original task. Each hidden layer has 32 neurons with ReLU as its activation function.
Loss function, optimizer, epochs, and learning rate are identical to those of the target GNN models.

Attack Models. For 0-hop, 1-hop, and 2-hop attacks, a 2-layer MLP is utilized as the attack model
and the number of neurons in the hidden layer is set to 128. Regarding the combined attack, the
inputs of 0-hop, 1-hop, and 2-hop attacks are first fed into three separated linear layers (with 64,
32, and 32 neurons) simultaneously. We then concatenate the three embeddings (128 dimensions
in total) and feed them to another linear layer for membership inference. ReLU is adopted as the
activation function for all the attack models. Also, the loss function and optimizer are the same as
the target model. We set the learning rate to 0.001 and the training epochs to 500.

Implementation. Our code is currently implemented in Python 3.9.12 with PyTorch 1.10 and DGL
0.7.1, and run on an NVIDIA DGX-A100 server with Ubuntu 18.04.

A.2 TARGET MODEL PERFORMANCE
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Figure 8: The performance of original classifi-
cation tasks when the target model’s architecture
is MLP or GraphSAGE (0-hop, 1-hop and 2-hop
query). The x-axis represents different datasets.
The y-axis represents the original classification
tasks’ accuracy.

We show the performance of the target mod-
els with respect to their original classification
tasks in Figure 8. To get the posteriors of a
given node, we consider three query scenarios
for each target model, i.e., 0-hop, 1-hop, and 2-
hop query. For comparison, we only consider
a node’s feature as the input to each baseline
model (i.e., a 2-layer MLP) and perform the
same classification task as the target model.

Due to space limitations, we only show the re-
sults for GraphSAGE. Other GNN models ex-
hibit similar trends. First of all, compared to
MLP, we observe that GNN has higher perfor-
mance in the original task when using 2-hop
queries. For instance, on the Cora dataset, the
baseline MLP achieves 0.684 accuracy while
the GraphSAGE (2-hop) achieves 0.790 accu-
racy. This demonstrates the efficacy of GNN
models that consider nodes’ features as well as
their neighborhood information jointly for classification. Second and more interestingly, 1-hop or
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Figure 9: A schematic overview of node-level membership inference attack against GNNs. Note
that for the combined attack, we conduct 0-hop, 1-hop, and 2-hop query to obtain the inputs of the
attack model.
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Figure 10: AUC for 0-hop, 1-hop, 2-hop, and combined attacks on different groups of nodes cate-
gorized by degree, ego density, and feature similarity on Cora. The architecture of both target and
shadow model is GraphSAGE. The x-axis represents different groups, e.g, 0-25 for degree means
the group of nodes whose degrees are in the lowest 25% of the dataset. The y-axis represents the
AUC.

even 0-hop query on GraphSAGE also achieves better performance than MLP in most of the cases.
This indicates that the graph information used during the training phase can be generalized to boost
the performance of a GNN model even when it is queried with only a node’s feature (0-hop query)
or incomplete neighborhood information (1-hop query).

A.3 ATTACK PIPELINE

Figure 9 shows a schematic overview of node-level membership inference attack against GNNs.

A.4 THE EFFECT OF NODE PROPERTY ON ATTACK PERFORMANCE

Figure 10c, Figure 11c, and Figure 12c summarize the results on Cora, Citeseer, and Lastfm.

A.5 RELAX ASSUMPTIONS

The combined, 0-hop, 1-hop, and 2-hop attack’s performance when using different distribution
shadow datasets to train the shadow models are shown in Figure 13, Figure 14, Figure 15, and
Figure 16, respectively. The combined, 0-hop, 1-hop, and 2-hop attack’s performance when using
different architectures to establish the shadow models are shown in Figure 17, Figure 18, Figure 19,
and Figure 20, respectively.
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Figure 11: AUC for 0-hop, 1-hop, 2-hop, and combined attacks on different groups of nodes catego-
rized by degree, ego density, and feature similarity on Citeseer. The architecture of both target and
shadow model is GraphSAGE. The x-axis represents different groups, e.g, 0-25 for degree means
the group of nodes whose degrees are in the lowest 25% of the dataset. The y-axis represents the
AUC.
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Figure 12: AUC for 0-hop, 1-hop, 2-hop, and combined attacks on different groups of nodes cate-
gorized by degree, ego density, and feature similarity on Lastfm. The architecture of both target and
shadow model is GraphSAGE. The x-axis represents different groups, e.g, 0-25 for degree means
the group of nodes whose degrees are in the lowest 25% of the dataset. The y-axis represents the
AUC.
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Figure 13: Attack performance of Ac when using different distribution shadow datasets to train the
shadow models. The caption for each sub-figure denotes the target and shadow models’ architec-
tures.
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Figure 14: Attack performance of A0 when using different distribution shadow datasets to train the
shadow models. The caption for each sub-figure denotes the target and shadow models’ architec-
tures.

A.6 POSSIBLE DEFENSES

Random Edge Addition. In the first defense, we perturb the target training dataset’s graph structure
by randomly adding edges. For the adversary, the shadow model is trained on the original shadow
training dataset. We evaluate the target models’ performance with respect to the original classifica-
tion task, i.e., utility, and the membership inference attack performance using the combined attacks.
Due to space limitations, we only show the results when both the target and shadow models use
GraphSAGE as their architecture in Figure 21. Other models exhibit similar trends.
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Figure 15: Attack performance of A1 when using different distribution shadow datasets to train the
shadow models. The caption for each sub-figure denotes the target and shadow models’ architec-
tures.
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Figure 16: Attack performance of A2 when using different distribution shadow datasets to train the
shadow models. The caption for each sub-figure denotes the target and shadow models’ architec-
tures.
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Figure 17: Attack performance of Ac when using different architectures to establish the shadow
models. The caption for each sub-figure denotes the target and shadow datasets.
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Figure 18: Attack performance of A0 when using different architectures to establish the shadow
models. The caption for each sub-figure denotes the target and shadow datasets.
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Figure 19: Attack performance of A1 when using different architectures to establish the shadow
models. The caption for each sub-figure denotes the target and shadow datasets.

In Figure 21d, we observe that with more random edges added, the attack performance indeed drops.
For instance, the membership inference accuracy is 0.802 on the original Citeseer dataset, while the
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Figure 20: Attack performance of A2 when using different architectures to establish the shadow
models. The caption for each sub-figure denotes the target and shadow datasets.
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Figure 21: The performance of the target model’s original task and membership inference attacks
when applying random edge addition as the defense. The x-axis represents different proportions of
edges added. Here, 2× means randomly adding in total 2 times more edges in the target training
dataset. The y-axis represents the accuracy of the target models’ original classification tasks or
membership inference attacks. Note that we only show the results when GraphSAGE is used as the
architecture for both target and shadow models.
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Figure 22: The performance of membership inference attacks when applying label-only output as
the defense. The x-axis represents different target models’ architectures. The y-axis represents the
accuracy of membership inference attacks.

accuracy drops to 0.660 when 20 times more edges are added. This indicates that adding random
edges to the target training dataset can protect nodes’ membership privacy. As shown in Figure 10a,
nodes with higher degree suffer less membership leakage risks, since the aggregation function of
GNN during training aggregates more neighbor nodes’ information and “memorize” less about the
target node itself. On the other hand, the target models also suffer large utility loss as shown in
Figure 21a and Figure 21c. For instance, the accuracy of the original classification task is 0.819 on
the original Lastfm dataset using 2-hop query, while the accuracy decreases to 0.733 when 20 times
more edges are added (the corresponding attack accuracy drops from 0.687 to 0.584).

Label-Only Output. For the second defense, we let the target model only return the prediction label
instead of posteriors. In this case, we assume that the adversary knows the total number of classes
of the target model. The adversary first converts the prediction labels derived from the 0-hop, 1-hop,
and 2-hop queries into three one-hot vectors, respectively. Then, the three vectors serve as the input
to train the combined attack model Ac.

The performance of membership inference attacks against different target models is shown in Fig-
ure 22. We observe that on all the target models, membership inference attack accuracy decreases
significantly, which is close to the random guess baseline (50%). For instance, on Cora-full, when
both the target and shadow models’ architectures are GraphSAGE, the membership inference accu-
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Table 2: Utility and Attack performance against DP-GCN (ϵ = 8).

Dataset Target Performance

GraphSage GAT GIN GCN

Cora 0.774 (-0.016) 0.765 (-0.041) 0.775 (-0.023) 0.802 (-0.010)
Citeseer 0.729 (-0.005) 0.721 (-0.014) 0.722 (+0.001) 0.744 (+0.006)
Cora-full 0.632 (-0.004) 0.634 (+0.008) 0.621 (+0.008) 0.632 (+0.000)
Lastfm 0.807 (-0.008) 0.794 (-0.008) 0.813 (-0.014) 0.816 (-0.009)

Dataset Attack Performance

GraphSage GAT GIN GCN

Cora 0.690 (-0.079) 0.696 (-0.040) 0.640 (-0.107) 0.693 (-0.081)
Citeseer 0.721 (-0.088) 0.736 (-0.091) 0.649 (-0.153) 0.716 (-0.107)
Cora-full 0.757 (-0.009) 0.717 (-0.018) 0.723 (-0.019) 0.729 (-0.024)
Lastfm 0.636 (-0.052) 0.615 (-0.029) 0.628 (-0.024) 0.613 (-0.067)

racy of the original combined attack is 0.769, while the accuracy drops to 0.523 after applying the
label-only output defense. The defense is more effective since it decreases the attack performance
while preserving the original task’s performance. However, it may also limit the target model’s util-
ity as labels contain less information than posteriors. Also, in many cases, the ML tasks require
posteriors to understand the model’s prediction confidence. We note that previous work (Choo et al.,
2021; Li & Zhang, 2021) investigates the label-only membership inference attack on non-GNN mod-
els. However, its effectiveness on the proposed defense for GNN models remains unjustified and we
leave it as our future work.

Differential Privacy (DP). We then consider training the target model with differential privacy
(DP). Specifically, we apply the LAPGRAPH algorithm (Wu et al., 2022) which first computes the
number of edges that needs to be kept in the perturbed graph using a small portion of the privacy
budget ϵ1. Then, the Laplace noise will be added to the whole adjacency matrix with the remaining
privacy budget ϵ2 and keeps the largest number of edges in the perturbed graph. The total privacy
budget ϵ = ϵ1 + ϵ2. In our experiment, we set ϵ = 8 for all models. The target model performance
(with the 2-hop query) and the attack performance (Ac) are summarized in Table 2. We observe that
DP can achieve a better utility-privacy trade-off than random edge addition. For instance, for the
GraphSage model with DP trained on Cora, the target model’s performance is 0.774 and the attack
performance is 0.690, which are both better than random edge addition (shown in Figure 21). This
is because DP perturb edges in a more find-grained way than random perturbing.

In summary, our proposed defense mechanisms can achieve a trade-off between membership privacy
and model utility. In the future, we plan to investigate more advanced defense mechanisms.

A.7 OVERFITTING VS. ATTACK PERFORMANCE

Theorem A.1. Let g = p − q be the overfitting level where p and q is the training and testing
accuracy of the target model on its original classification tasks. If the total numbers of members
and non-members are balance, with the posteriors and the ground truth label, a lower bound of
membership inference attack accuracy is 1+g

2 .

Proof. Given a sample, we predict it as a member if it is correctly classified by the target model
otherwise a non-member. For all member nodes, p of them are correctly classified and 1−p of them
are wrongly classified. For all non-member nodes, 1 − q of them are correctly classified and q of
them are wrongly classified. In that sense, the overall accuracy is p+(1−q)

1+1 = 1+g
2 .
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