LEARNING TO DEAGGREGATE: LARGE-SCALE TRAJECTORY GENERATION WITH SPATIAL PRIORS

Anonymous authors

Paper under double-blind review

ABSTRACT

Generating realistic large-scale trajectories is essential for applications in urban mobility and transportation, yet current generative models either do not offer any controllability or rely on strong sample-specific conditioning. We introduce the Temporal Deaggregation Diffusion Model (TDDM), a hierarchical framework that first represents mobility using spatial priors, which are marginal distributions over geographical occupancy, and then deaggregates them into trajectories. This separation enables generation without sample-specific conditions, supporting transfer to new regions. To support evaluation, we build a benchmark across three cities spanning different continents (Asia, Europe, North America), with standardized metrics for fidelity and distributional coverage. Across all datasets, TDDM improves trajectory fidelity and coverage over leading baselines, and demonstrates stable performance when applied to unseen cities. By explicitly decoupling spatial allocation from temporal realization, our work highlights the role of spatial occupancy priors in enabling scalable and generalizable trajectory generation.

1 Introduction

Time-series data of human mobility enables applications such as pandemic forecasting and management (Ilin et al., 2021), smart city development (Wang et al., 2022), urban governance (Xiong et al., 2024), human rights violation detection (Tai et al., 2022) and monitoring of global migration induced by war and climate change (Niva et al., 2023; Alessandrini et al., 2020). Two major challenges stand in the way for using time-series data for these purposes.

The first is a *shortage of publicly available data* (Ansari et al., 2024). Data can only be collected and shared in limited capacity due to concerns of privacy, business and national security, creating a silo effect. Secondly, *generalization beyond observed data*, such as to new regions, unseen spatial areas, or rapidly changing environments, is often a necessary complement to the readily collectible data. One such case is generating high-fidelity realistic spatio-temporal trajectory data, such as individual pedestrians navigating a city or a building. Open problems within the road traffic domain (Lana et al., 2018), and using human mobility data at large, are (1) high quality large-scale trajectories and (2) adaptation to sudden environmental changes. Both are hindered by the unavailability of data, either because existing data cannot be shared or because new environments lack sufficient observations.

A promising direction is to use time-series generative models to capture and generalize mobility distributions. Although these models can be adapted for privacy (Yoon et al., 2019b; Wang et al., 2023; Buchholz et al., 2024) or forecasting (Alcaraz & Strodthoff, 2023), this work focuses exclusively on improving fidelity and cross-region generalization.

Existing approaches, while promising, either fail to capture the multi-modal structure of mobility data or struggle to scale across diverse environments (Buchholz et al., 2024). GAN- and VAE-based approaches such as TimeGAN (Yoon et al., 2019a), TimeVAE (Desai et al., 2021) and COSCI-GAN (Seyfi et al., 2022) suffer from mode collapse and oversimplified representations. Recent diffusion models improve fidelity but either remain unconditional (Diffusion-TS (Yuan & Qiao, 2024)) or rely on strong sample-specific conditioning (DiffTraj (Zhu et al., 2023)), limiting generalization across regions. While sample-specific conditioning increases quality of the synthetic trajectories, it increases the risk of memorization and prevents cross-region generalization by potentially tying each

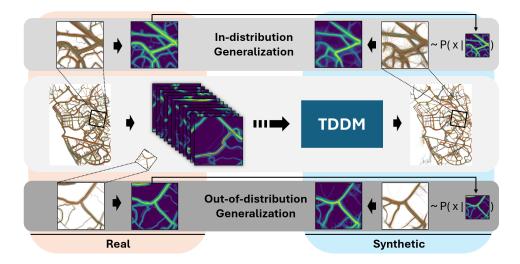


Figure 1: TDDM is trained on real 2D trajectories (left) to generate synthetic trajectories (right), conditioned on how likely it should be for the population of synthetic trajectories to occupy space on the 2D plane (spatial prior). The latter is represented as a discrete distribution over occupancy frequency, i.e., the marginal distribution over the trajectory probability distribution if integrating out time. This yields both high-fidelity in-distribution generalization (top) and out-of-distribution generalization (bottom), the latter when conditioning on a marginal distribution not part of the training data (dashed rectangle). Trajectory data from Beijing, China (Geolife).

sample to a training example. Our key insight is that trajectory generation can be factorized into two components: *where* people move, encoded as spatial priors, and *how* people move temporally.

To this end, we introduce Temporal Deaggregation Diffusion Model (TDDM), which conditions on spatial aggregate priors rather than trajectory-level statistics, combining controllability with high fidelity and cross-region generalization. We capture spatial patterns through marginal distributions over local regions, then condition a diffusion model to generate temporal trajectories that respect these patterns. Critically, we canonicalize each region before modeling via a similarity transform, enabling a single model to generalize across all regions for a given scale (e.g. 3x3 km). This spatial-temporal separation enables city-to-city generalization: the model learns temporal dynamics that are invariant to absolute location and orientation. Figure 1 illustrates capabilities of TDDM in a setting of mobility trajectory data.

Our main contributions are:

- Spatial-Temporal Factorization: We propose TDDM, a diffusion-based trajectory model that
 factorizes generation into spatial occupancy priors and temporal dynamics, with coordinate
 normalization enabling parameter sharing across geographic regions.
- *Benchmarking at Scale*: We establish a standardized evaluation framework across three cities on different continents (Beijing, Porto, San Francisco), with trajectory-specific metrics that harmonize sample fidelity, distributional coverage, and downstream usefulness.
- *Improved Fidelity and Coverage*: TDDM consistently outperforms leading baselines on KL-based distributional measures, demonstrating improved support coverage and proportionality while maintaining strong fidelity across datasets.
- Generalization to New Regions: Leveraging spatial priors and canonicalization, TDDM generates realistic trajectories in unseen parts of a city and in entirely new cities without retraining, showing strong out-of-distribution performance.

2 PROBLEM DEFINITION

The task of learning an unconditional generative model is defined as learning a mapping f from samples drawn from a known distribution \mathcal{D}_{known} , e.g. standard normal distribution, to samples

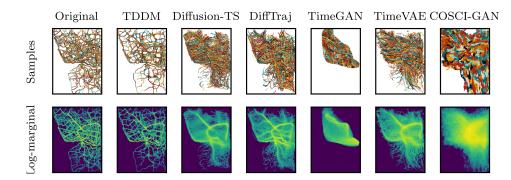


Figure 2: Comparison between original and synthetic trajectories for Porto dataset. First row shows individual trajectory samples while bottom shows log-density heatmaps of all observations. The synthetic data of the proposed model, TDDM, (second column) most closely matches both the individual trajectory patterns and overall density distribution of the original data.

from an unknown target distribution $\mathcal{D}_{\text{unknown}}$. The mapping is learned without direct access to the unknown distribution, and is instead limited to a set of samples $\mathbb{X}_{\text{train}} = \{x_1, \dots, x_N\}$, where $x_i \sim \mathcal{D}_{\text{unknown}}$. Once the mapping has been learned, synthetic data can be generating by first sampling the known distribution, then passing the individual samples through the mapping function $\mathbb{X}_{\text{synthetic}} = \{f(y_i)\}_{i=1}^M$, where $y_i \sim \mathcal{D}_{\text{known}}$. The goal of this mapping is for the synthetic samples to be *similar* to samples from the known distribution, both on a sample level and as a distribution.

3 TEMPORAL DEAGGREGATION DIFFUSION MODEL

In this work, we focus on the issue of learning and controlling distribution properties of the synthetic data distribution. More specifically, we focus on controlling the spatial marginal of trajectories, i.e. where time has been marginalized out. This is achieved by conditioning the generative process on a description of the marginal distribution, a spatial prior, with the goal being to generate samples that in aggregate follows said marginal distribution.

The central idea of TDDM is to separate *where* people move from *how* they move in time. We achieve this by conditioning trajectory generation on spatial priors H, which describe marginal occupancy distributions over regions. By factoring spatial allocation from temporal dynamics, TDDM learns invariant motion patterns that generalize across cities.

Concretely, the approach proceeds in three steps: (i) partition the spatial domain into regions, (ii) canonicalize each region via a similarity transform, and (iii) compute region-specific spatial priors that describe the local marginal distribution.

Partitioning the spatial domain. We adopt a hierarchical factorization by partitioning the spatial domain into discrete regions, each associated with a spatial prior. The prior describes the marginal distribution of occupancy in that region after marginalizing out time. This setup enables generation at the region level, where local priors act as controllable conditions for the diffusion process.

For training, the partitioning is into regions of the same shape but with randomized translation and rotation and consequently have arbitrary overlap. For sampling of the trained model, the partitioning can be on a grid which covers the area of interest (the trained-on city, the trained-on part of a city concatenated with the rest of the city, or a new city entirely) with partial border overlap.

Canonicalization. Each region is mapped into a canonical frame of reference using a similarity transform (Goodall, 1991), paralleling Procrustes alignment in shape analysis. Unlike group-equivariant architectures (Cohen & Welling, 2016), which encode invariances into model structure, our approach achieves invariance via input-output transformation, keeping the architecture lightweight and without additional inductive bias.

For a region r_c , we apply the similarity transformation $T_{r_c}(p,\alpha,s)$, parametrized by translation $p = -\mathbf{pos}(r_c)$, rotation $\alpha = -\mathbf{rot}(r_c)$, and scaling $s = 2/\mathbf{width}(r_c)$. This maps trajectories and priors into a normalized coordinate system $[-1,1]^D$.

For example, consider a 1×1 km region in downtown Beijing: T_{r_c} translates the region to the origin, rotates it to a fixed orientation, and rescales coordinates to $[-1,1] \times [-1,1]$. This normalization enables the model to learn local trajectory patterns (e.g., vehicles turning at intersections) that transfer across locations and cities. When sampling a region, the inverse transform is applied to each sample.

Spatial priors. More formally, let $x \in \mathbb{X}$ be a sample consisting of several observations $x[n] \in \mathbb{R}^D$, $\forall n$. We generate trajectories region by region. For each sub region r_c , we compute its spatial prior H and express the generative model as:

$$p(x) = \int p(x|H)p(H) dl. \tag{1}$$

In practice, we set $p(H) = p(H = f(r_c, \mathbb{X})) = p(r_c)$ where H is a discrete marginal distribution, $\sum_i \sum_j H_{i,j} = 1$, and r_c is a subregion of r. The probability for a subregion r_c is:

$$p(r_c) \propto \sum_{x \in \mathbb{X}} \sum_n \mathbb{1}(T_{r_c} x[n] \in [-1, 1]^D).$$
 (2)

Within each region, the prior is discretized by cells (i, j):

$$H_{i,j} = f(r_c, \mathbb{X})_{i,j} = \frac{\sum_{x \in \mathbb{X}} \sum_n \mathbb{1}_{r_{c_{i,j}}}(x[n])}{\sum_{x \in \mathbb{X}} \sum_n \mathbb{1}(x[n] \in \mathcal{R}_{r_c})}, \text{ where}$$
(3)

$$\mathbb{1}_{r_{c_{i,j}}}(x[n]) = \begin{cases} 1, & \text{if } x[n] \text{ falls within cell } (i,j) \text{ of region } r_c \\ 0, & \text{otherwise} \end{cases}$$
 (4)

The final approximation for p(x) is then

$$p(x) = \sum_{r_c} p(x|H = f(r_c, \mathbb{X}))p(r_c). \tag{5}$$

which is a generative mixture model over region partitions.

The spatial prior H provides the context that separates where people move from how they move. By marginalizing out time, H encodes only the spatial occupancy of a region. The diffusion model then learns to generate realistic temporal trajectories that, in aggregate, match this spatial pattern. Because H can be estimated (even in unseen cities) for new regions (even in unseen cities), while temporal dynamics remain transferable, this factorization supports cross-region generalization.

See Figure 1 for examples of spatial priors H and corresponding trajectories.

3.1 ARCHITECTURE

To learn p(x|H) we propose an architecture based on the denoising diffusion architecture (Ho et al., 2020), using a transformer encoder (Vaswani et al., 2017) for denoising.

Generating synthetic data using denoising diffusion is achieved by learning to reverse a noise-adding process. See Appendix C.1 for more details on denoising diffusion. There are several ways to parameterize the denoising process, we extend the noise prediction parameterization (Ho et al., 2020) to include the marginal distribution: $\epsilon_{\theta}(x_t, t, H)$. This means that at any step of the denoising process, we have full access to a discretized version of the marginal distribution of the distribution we are sampling, a noisy trajectory, as well as the expected noise level via the denoising step.

This also poses a challenge, as we need a model that can handle these different modalities. To this end, we employ a transformer encoder. This allows us to use different strategies to tokenize the different modalities, the resulting tokens are then given as an input to the transformer. The attention mechanism allows the model to learn relevant relationship between the different token types, across different physical distances, as well as in time, to successfully denoise a trajectory.

More specifically, we employ three types of tokens: (1) trajectory tokens, (2) marginal distribution tokens and (3) denoising noise step tokens. At the end of each token, there is a learned token type

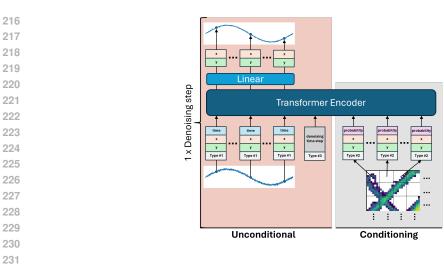


Figure 3: Architecture overview. In the unconditional part, each time point of the noisy trajectory is converted into a separate token with positional encoding used to encode its values and the time point, and a learned vector representing its type. The denoising step token, includes the denoising step encoded with positional encoding and then concatenated with a learned type vector. The input also include a marginal distribution to guide the denoising process to generate samples with particular properties, improving in-distribution performance as well as enabling generalization to previously unobserved areas. The marginal distribution is split into tokens, concatenated with a learned type vector and its position using positional encoding.

which allows the model to distinguish between the different types. Trajectories x_i are split into L tokens, one for each time step, and positional encoding is used to encode position and time. For the discretized marginal distribution H, we follow Vision Transformers (Dosovitskiy et al., 2020) and split marginal distribution into several regions, linearly project, and finally prepend the position of the region. Finally, a single token for t using positional encoding is used to denote the current step in the denoising process.

Rather than using a class-token, we use the output corresponding to the L trajectory tokens to make the noise prediction. These are linearly transformed, each token down to 2 dimensions: one for x and one for y, and then concatenated across time to construct the final prediction for the amount of noise added at diffusion step t.

An overview of the architecture is shown in Figure 3, which illustrates how a single trajectory is tokenized, how the marginal distribution is split into subregions and which tokens are used as output. The training and sampling procedures are shown in Algorithm 1 and 2, respectively. See Appendix C for hyperparameters, as well as additional details on tokenization.

4 EVALUATION

To evaluate TDDM's trajectory generation capabilities, we address three key questions:

- 1. Does TDDM generate higher-quality synthetic trajectories than existing approaches?
- 2. Can the spatial-temporal factorization enable better coverage of complex urban distributions?
- 3. Does coordinate normalization actually enable generalization to unseen regions?

We start with a comparative study on the unconditional generation task and compare against leading methods representing major generative paradigms: TimeGAN (seminal time-series GAN), DiffTraj (UNet-based trajectory diffusion model), Diffusion-TS (transformer-based time-series diffusion model), TimeVAE (VAE for sequential data), and COSCI-GAN (multi-channel time-series model). These baselines provide comprehensive coverage of trajectory generation approaches. See Appendix A for detailed comparisons.

270 271 **Algorithm 1** Training **Algorithm 2** Generation 272 **Input**: Number of total synthetic samples N_{out} , Target **Input**: Dataset $\mathbb{X}_{\text{train}}$, Region distribution $p(r_c)$, Tar-273 regions $\mathcal{R}_{\text{target}}$ 274 **Output:** Trained model parameters θ Dataset X_{target} , Trained model ϵ_{θ} , Diffusion 275 parameters $\{\alpha_t, \sigma_t\}_{t=1}^T$ 1: repeat **Output:** Synthetic trajectories $\mathcal{X}_{\text{synth}}$ 276 2: $r_c \sim p(r_c)$ 277 $H \leftarrow f(r_c, \mathbb{X}_{\text{train}})$ 1: $\mathcal{X}_{\text{synth}} \leftarrow \emptyset$ 278 $\mathcal{X}_{r_c} \leftarrow \text{Find contiguous subsequences of trajecto-}$ 2: for $r_c \in R_{\text{target}}$ do ries in $\mathbb X$ that lie within r_c 3: Compute heatmap $H = f(r_c, \mathbb{X}_{target})$ 279 $N_{r_c} = N_{\text{out}} \frac{\sum_{x} \sum_{n} \mathbb{1}(x[n] \in r_c)}{\sum_{\tilde{r}_c} \sum_{x} \sum_{n} \mathbb{1}(x[n] \in \tilde{r}_c)}$ Filter \mathcal{X}_{r_c} by minimum length, maximum time 4: gaps, and speed limits for $n=1,\ldots,N_{r_c}$ do 281 Normalize \mathcal{X}_{r_c} to $[0,1]^D$ relative to r_c 6: $x_T \sim \mathcal{N}(0, I)$ Select random sequence $x \in \mathcal{X}_{r_c}$ 7: for $t = T, \dots, 1$ do 8: $t \sim \text{Uniform}(\{0, \dots, T\})$ $z \sim \mathcal{N}(0, I)$ if t > 1, else z = 08: $\epsilon \sim N(0, \mathbf{I})$ 284 9: $x_{t-1} = \frac{1}{\sqrt{\alpha_t}} (x_t + \epsilon_\theta(x_t, H, t)) + \sigma_t z$ Update model parameters according to: 285 10: $\nabla_{\theta} || \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, H, t) ||$ Transform x_0 from $[0,1]^D$ to global coordinates 11: 11: until converged 287 of r_c 12: $\mathcal{X}_{\text{synth}} \leftarrow \mathcal{X}_{\text{synth}} \cup \{x_0\}$ 13: end for 289 14: **end for** 290 15: return $\mathcal{X}_{\text{synth}}$ 291 292 Then, we investigate how well TDDM can generalize to new unseen environments. First by training 293 295 another dataset. 296 297 298 299 300 301 302 303

304

305

306

307

308

310

311 312

313

314 315

316

317

318

319 320

321

322

323

on a limited part of the map and, using only spatial prior, generating for the remaining map. Second by showing how a TDDM trained on one city from one dataset can generalize to another city in

The evaluation is across three large-scale human trajectory datasets and across several evaluation measures, which together span current challenges and wanted properties of trajectory generation.

Evaluation Measures Several perspectives exists on synthetic data quality in the literature (Alaa et al., 2022; Wu et al., 2021; Esteban et al., 2017) covering a range of partially-overlapping aspects. In this work, we propose to harmonize these and consequently span high fidelity, covering the support, moving beyond copying the training data, downstream task informativeness and distributional proportionality, as captured by the following five qualities: (I) Fidelity: (Alaa et al., 2022) The individual synthetic samples should have similar characteristics to, or be indistinguishable from, samples from the original distribution. (II) Diversity: (Alaa et al., 2022) It should be possible for synthetic data to be drawn from any part of the unknown distribution's support. (III) *Proportionality:* (Wu et al., 2021) The probability of a sample occurring in the synthetic distribution should be proportional to the probability of a sample occurring in the unknown distribution. (IV) *Usefulness*: (Esteban et al., 2017) The synthetic data should capture aspects of the unknown distribution that is useful for downstream tasks. (V) Generalization: (Alaa et al., 2022) Synthetic samples should not be mere copies of the training data.

As there is not a single measure that can encapsulate all qualities, we propose to use the following evaluation measures to paint a fuller picture of the synthetic data quality:

- TSTR: Train on synthetic, test on real (Esteban et al., 2017). A transformer decoder is trained on the synthetic data, with the task to predict 10 future states given a sequence of observations. The resulting model is then evaluated on the training data and the mean absolute value is reported. This evaluates the usefulness, fidelity and diversity of the synthetic data. Lower is better.
- KL Divergence: Evaluates support coverage and proportionality between distributions. KL(R||S) measures how well the synthetic distribution covers areas where real data exists, penalizing missed modes in the real distribution. KL(S||R) measures how well the synthetic distribution stays within regions supported by real data, penalizing unrealistic generations. Together, they provide complementary perspectives: low KL(R||S) indicates good coverage

of the real distribution, while low KL(S||R) indicates high fidelity of the synthetic samples. Symmetric KL and Jensen–Shannon divergence balance these concerns, with JS providing better stability when handling regions with zero probability. Lower is better.

We also make use of the measures **Density Error**, **Trip Error**, **Length Error** and **Pattern Score**, introduced by Zhu et al. (2023). See Appendix D for details on all six measures.

Dataset and Preprocessing For evaluation we use three publicly accessible real-world GPS-trajectory datasets: Geolife (Zheng et al., 2011), Porto (Moreira-Matias et al., 2013) and Cabspotting (Piorkowski et al., 2022). Geolife consists of data from 182 users collected between 2007-2012, resulting in 17,621 trajectories mostly centered around Beijing, China. Porto was originally released as part of the Taxi Service Trajectory challenge and contains data on 442 taxis in Porto, Portugal, spanning more than a year. Cabspotting is also a taxi dataset, with approximately 500 taxis from the San Francisco Bay Area in California, United States, collected over 30 days. For all three datasets, we use time, longitude and latitude. The data is also resampled to one observation per second and map matching is used to reduce observation noise. See C for more details on preprocessing.

4.1 Large-scale Unconditional Trajectory Generation

The task of unconditional trajectory generation is to learn a generative model which generate a high quality (I)-(V) synthetic dataset of trajectories. For each dataset, we train each model from scratch and then sample them to generate a synthetic dataset used for evaluation. In the case of TDDM, that means that a region and spatial prior components of the mixture are learned during training, with both relative probability between regions, $p(r_c)$, and spatial priors H_{r_c} for each region partitioned on a grid covering the city in question. The sampling process is then to first draw a region, then draw a trajectory from TDDM conditioned on that region's spatial prior. Table 1 show the average performance across the three datasets.

TDDM achieves the strongest overall performance, reducing distributional divergences by a large margin compared to all baselines ($KL_{\rm sym}$: 0.277 vs. 1.153 for Diffusion-TS and 1.232 for DiffTraj, JS: 0.059 vs. 0.198 and 0.209 respectively). This indicates both improved coverage and better avoidance of unrealistic samples. Proportionality measures follow the same trend: TDDM attains the lowest Density and Trip errors (0.019, 0.031), whereas the next-best diffusion models remain higher (0.029, 0.041). Fidelity is also strong: TSTR reaches 0.011, slightly improving over DiffTraj (0.013) and Diffusion-TS (0.014). On Length error, TDDM matches Diffusion-TS at state of the art (0.004 vs. 0.003), while all other methods trail substantially. Finally, Pattern score is highest for TDDM (0.917), confirming that it best preserves global structure. Overall, TDDM consistently surpasses existing GAN-, VAE-, and diffusion-based methods, combining high fidelity with superior distributional alignment. Results for individual cities is found in the appendix (Table 6).

Inspecting the trajectory samples visually (e.g. Figure 1) we see the advantage of TDDM over the baselines. TDDM generates the trajectories that are the most similar to the original: roads are clearly defined and there are holes in the support where no trajectories appear. Diffusion-TS, DiffTraj and TimeVAE are all capable of capturing the overall shape of the cities, but fail at generating all roads and often generates trajectories that are far from any road. TimeGAN and COSCI-GAN often fail to capture the overall chape of the cities, and TimeGAN especially struggles with mode-collapse. These observations are consistent across all three datasets, see Appendix E.1 for Geolife and Cabspotting.

4.2 ABLATION STUDY

To probe the role of spatial priors and region size, we conduct ablations (Table 2). Removing spatial priors leaves TSTR unchanged but degrades KL-based scores by up to 5 times, showing that temporal dynamics alone provide useful signals but fail to ensure coverage and proportionality. Reducing partition size to 1×1 km slightly increases Pattern (0.930 vs. 0.917) but worsens Length error (0.150 vs. 0.004), revealing a tradeoff between local coherence and global realism. The full 3×3 km prior-based model provides the best overall balance. Results for individual cities is found in the appendix (Table 7).

378 379 380

Table 1: Evaluation of different models' performance across several datasets and measures. Models are trained, sampled and evaluated once per dataset. The results are then averaged across datasets.

381
382
383
384
385
386
387
388

391 392 393

394

397 399

405 406 407

408

409 410 411

418

419

412

428

429

430

431

Measure TimeGAN TimeVAE COSCI-GAN Diffusion-TS DiffTraj TDDM TSTR (↓) $.037 \pm .027$ $.018 \pm .010$ $.023 \pm .007$ $.014 \pm .009$ $.013 \pm .005$ $.011\pm.006$ $\mathrm{KL}(S \parallel R) (\downarrow)$ 0.301 3.702 2.363 3.046 1.395 1.594 $\mathrm{KL}(R \parallel S) (\downarrow)$ 2.5861.268 1.740 0.911 0.869 0.253 $\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$ 3.1441.816 2.393 1.1531.2320.277 JS (↓) 0.397 0.287 0.363 0.198 0.209 0.059 Density (↓) 0.2580.0430.1340.0290.0330.019 Trip (↓) 0.323 0.056 0.158 0.041 0.042 0.031 0.042Length (↓) 0.0970.7890.003 0.065 0.004 Pattern (†) 0.6770.8400.7700.907 0.893 0.917

Table 2: Ablation study. Models are trained, sampled and evaluated once per dataset. The results are then averaged across datasets. Note that TDDM has a 3×3 km region size.

Measure	TDDM	$1\times 1~\mathrm{km}$	w/o spatial prior
TSTR (↓)	0.011 ± 0.006	0.024 ± 0.012	0.011 ± 0.006
$\mathrm{KL}(S \parallel R) \left(\downarrow \right)$	0.301	0.339	1.569
$\mathrm{KL}(R \parallel S) \left(\downarrow \right)$	0.253	0.318	1.098
$\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$	0.277	0.328	1.334
JS (↓)	0.059	0.071	0.228
Density (↓)	0.019	0.022	0.067
Trip (↓)	0.031	0.044	0.074
Length (↓)	0.004	0.150	0.078
Pattern (†)	0.917	0.930	0.833

OUT-OF-DISTRIBUTION GENERALIZATION

Finally, we evaluate generalization (Table 3) for Intra-city and city-to-city transfer. Results for individual cities is found in the appendix (Table 9). Visualization of the marginal distribution of the synthetic datasets are shown in Appendix (Figure 15).

Intra-city transfer, where the model is trained on only 25% of a map and applied to the rest, shows that TSTR remains as low as with full coverage (0.010), while KL_{sym} and JS divergences degrade modestly (0.545 vs. 0.278; 0.106 vs. 0.059). Pattern also remains high (0.927 vs. 0.940), indicating that spatial priors act as a strong regularizer.

In city-to-city transfer, performance varies with the source dataset but remains competitive: Pattern stays above 0.915 across all cases, proportionality measures are consistently lower than GAN/VAEs and close to diffusion baselines, and TSTR often matches in-distribution performance when trained on Porto. The main weakness is Length error, which increases to 0.06–0.11 across cities, suggesting that fine-grained distance modeling is less transferable. Despite this, TDDM demonstrates robust fidelity and distributional generalization across cities, highlighting the effectiveness of separating spatial priors from temporal dynamics.

Interestingly, cross-city transfer from Porto often yields stronger results than training on limited portions of the target city. On average, models trained on Porto generalize with lower KL and JS divergences (0.335 and 0.071) than those trained on only 25% of the target city (0.545 and 0.106), and they also maintain slightly better proportionality and Pattern scores (0.930 vs. 0.927). The only exception is Length error, where access to even a small fraction of local data provides an advantage (0.026 vs. 0.060). This suggests that Porto captures temporal dynamics and spatial statistics that are broadly representative across cities, making it an unexpectedly strong universal source dataset for this setting. More generally, these results highlight a tradeoff: if path-length accuracy is paramount, local data (even in small amounts) remains valuable, but for distributional coverage and spatial structure, carefully chosen training cities may outperform partial local coverage.

Table 3: Generalization performance across different training scenarios. Left: Intra-city generalization comparing training on the partial (25%) versus full (100%) spatial domain. Right: City-to-city generalization where models are trained on one dataset and evaluated on others. Results are averaged across datasets.

Intra-city (Training data)		City-to-city (Trained on)			
Measure	25%	100%	Geolife	Porto	Cabspotting
TSTR (↓)	0.010 ± 0.006	$\boldsymbol{0.010 \pm 0.007}$	0.016 ± 0.008	0.010 ± 0.005	0.011 ± 0.006
$\mathrm{KL}(S \parallel R) (\downarrow)$	0.615	0.305	0.903	0.357	0.610
$\mathrm{KL}(R \parallel S) (\downarrow)$	0.474	0.251	0.688	0.313	0.449
$\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$	0.545	0.278	0.795	0.335	0.530
JS (↓)	0.106	0.059	0.149	0.071	0.102
Density (↓)	0.021	0.015	0.018	0.018	0.022
Trip (↓)	0.036	0.027	0.031	0.036	0.042
Length (↓)	0.026	0.003	0.082	0.060	0.109
Pattern (↑)	0.927	0.940	0.925	0.930	0.915

5 Conclusion

We have presented the Temporal Deaggregation Diffusion Model (TDDM), a hierarchical generative framework that separates spatial priors from temporal dynamics for large-scale trajectory generation. Across three major urban datasets, TDDM consistently improves distributional alignment, achieving up to 4 times lower KL divergences than the best diffusion baselines, while also setting new state of the art on Density, Trip, and Pattern measures. Importantly, TDDM matches leading models on Length error and outperforms them on fidelity as measured by TSTR. This is also confirmed visually.

Beyond unconditional generation, ablation studies highlight the critical role of spatial priors for coverage and proportionality, while generalization experiments demonstrate that TDDM can synthesize realistic trajectories in unseen parts of cities and across entirely new cities. In particular, we find that training on Porto generalizes better on average to other cities than training on partial local data, suggesting that certain cities may act as representative source datasets. That is, datasets that generalize broadly across urban contexts and provide stronger transferability than limited amounts of local data.

Taken together, these results show that factorizing *where* and *how* people move not only advances generation quality but also unlocks strong out-of-distribution generalization. TDDM thus provides both a methodological advance and a practical step toward scalable and generalizable mobility modeling.

ETHICS STATEMENT

486

487 488

489

490

491

492

493 494

495

496

497

498

499

500

502

504

505 506 507

508 509

510

511

512

513

514

515

516

517

518

519

520521522

523 524

525

526

527

528 529

530

531

532

534

535 536

538

This work focuses on improving the quality and generalization capabilities of synthetic human mobility trajectory generation using publicly available GPS datasets (Geolife, Porto, Cabspotting) with appropriate licenses as detailed in Appendix B.1. We acknowledge that synthetic trajectory generation technology has dual-use potential. While our primary motivation is to advance the state-ofthe-art in generative modeling to enable beneficial applications such as urban planning, transportation research, and mobility simulation, we recognize that high-quality synthetic data generation techniques could potentially be misused for surveillance or other harmful purposes. We encourage responsible use of our methods and emphasize that practitioners should consider appropriate safeguards when deploying synthetic trajectory generation in real-world applications. Additionally, we note that privacy considerations must be carefully evaluated when applying our methods, as even publicly available trajectory datasets can potentially be used for re-identification when combined with other data sources or when analyzed with sufficient temporal and spatial resolution. We emphasize that our methods do not guarantee privacy-preserving synthetic data generation, and we strongly encourage practitioners to combine our approach with established privacy-preserving techniques such as differential privacy when working with real-world trajectory data. Our research contributes to the broader goal of developing high-fidelity generative models that can support legitimate research and planning activities while reducing the need for access to sensitive real trajectory data. We have designed our evaluation framework to focus on distributional properties and generation quality without enabling inference about specific individuals in the original datasets.

REPRODUCIBILITY

To ensure full reproducibility of our results, we provide comprehensive implementation details and experimental resources. We release complete, runnable source code for all experiments ¹, including implementations of TDDM and all baseline methods, along with evaluation code for all measures used: TODO. The core TDDM algorithm is detailed in Algorithms 1 and 2, with complete architectural specifications in Section 3.1 and extended implementation details in Appendix C. All hyperparameters used in our experiments are provided in Appendix C.4, including the search space and final values obtained through systematic optimization. Dataset preprocessing steps for all three datasets (Geolife, Porto, Cabspotting) are comprehensively described in Appendix B, including data licenses, filtering criteria, and map-matching procedures. Our evaluation methodology is detailed in Section 4 with extended measure descriptions in Appendix D. All experimental configurations, including baseline implementations and evaluation protocols, are provided to enable direct replication of our results across all datasets and experimental conditions.

LLM USAGE

This paper was developed with assistance from large language models as writing and research tools, including Claude (Anthropic), ChatGPT (OpenAI), and Cursor AI for code assistance. The LLMs contributed to:

- Writing refinement: Improving clarity, flow, and exposition throughout the paper
- **Technical positioning**: Helping articulate the methodological approach and frame the contribution within existing literature
- Experimental analysis: Assisting with evaluation design and results presentation
- Literature review: Supporting the discovery and organization of related work
- Code development: Assisting with implementation and debugging of code

All research concepts, experimental design, implementation, and scientific conclusions are the original work of the authors. All LLM-generated content has been verified and validated by the authors. The authors take full responsibility for all content and claims presented in this paper.

¹Available at https://anonymous.4open.science/r/tddm/.

REFERENCES

- Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2019.
- Ahmed Alaa, Boris Van Breugel, Evgeny S. Saveliev, and Mihaela van der Schaar. How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 290–306. PMLR, 17–23 Jul 2022.
- Juan Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecasting with structured state space models. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.
- Alfredo Alessandrini, Daniela Ghio, Silvia Migali, et al. *Estimating net migration at high spatial resolution*. Publications Office of the European Union, 2020.
- Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al. Chronos: Learning the language of time series. *arXiv preprint arXiv:2403.07815*, 2024.
- Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation. In 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS '24). ACM, April 2024. doi: 10.1145/3620665.3640366.
- Erik Buchholz, Alsharif Abuadbba, Shuo Wang, Surya Nepal, and Salil S Kanhere. Sok: Can trajectory generation combine privacy and utility? *arXiv preprint arXiv:2403.07218*, 2024.
- Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International conference on machine learning*, pp. 2990–2999. PMLR, 2016.
- Yun Dai, Chao Yang, Kaixin Liu, Angpeng Liu, and Yi Liu. Timeddpm: Time series augmentation strategy for industrial soft sensing. *IEEE Sensors Journal*, 2023.
- Abhyuday Desai, Cynthia Freeman, Ian Beaver, and Zuhui Wang. TimeVAE: A variational autoencoder for multivariate time series generation. *arXiv preprint arXiv:2111.08095*, 2021.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. *arXiv preprint arXiv:1706.02633*, 2017.
- Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for probabilistic time series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 11979–11987, 2024.
- Colin Goodall. Procrustes methods in the statistical analysis of shape. *Journal of the Royal Statistical Society: Series B (Methodological)*, 53(2):285–339, 1991.

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Advances* in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 2020.
 - Cornelia Ilin, Sébastien Annan-Phan, Xiao Hui Tai, Shikhar Mehra, Solomon Hsiang, and Joshua E Blumenstock. Public mobility data enables covid-19 forecasting and management at local and global scales. *Scientific reports*, 11(1):13531, 2021.
 - Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General purpose time series synthesis with generative adversarial networks. *Advances in Neural Information Processing Systems*, 35:36999–37010, 2022.
 - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint* arXiv:1412.6980, 2014.
 - Ibai Lana, Javier Del Ser, Manuel Velez, and Eleni I Vlahogianni. Road traffic forecasting: Recent advances and new challenges. *IEEE Intelligent Transportation Systems Magazine*, 10(2):93–109, 2018.
 - Luis Moreira-Matias, Michel Ferreira, Joao Mendes-Moreira, L. L., and J. J. Taxi Service Trajectory Prediction Challenge, ECML PKDD 2015. UCI Machine Learning Repository, 2013. DOI: https://doi.org/10.24432/C55W25.
 - Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8162–8171. PMLR, 18–24 Jul 2021.
 - Venla Niva, Alexander Horton, Vili Virkki, Matias Heino, Maria Kosonen, Marko Kallio, Pekka Kinnunen, Guy J Abel, Raya Muttarak, Maija Taka, et al. World's human migration patterns in 2000–2019 unveiled by high-resolution data. *Nature Human Behaviour*, 7(11):2023–2037, 2023.
 - Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. Crawdad epfl/mobility, 2022.
 - Ali Seyfi, Jean-Francois Rajotte, and Raymond Ng. Generating multivariate time series with COmmon Source CoordInated GAN (COSCI-GAN). *Advances in Neural Information Processing Systems*, 35:32777–32788, 2022.
 - Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series prediction. In *International Conference on Machine Learning*, pp. 31016–31029. PMLR, 2023.
 - Xiao Hui Tai, Shikhar Mehra, and Joshua E Blumenstock. Mobile phone data reveal the effects of violence on internal displacement in afghanistan. *Nature human behaviour*, 6(5):624–634, 2022.
 - Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion models for probabilistic time series imputation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 24804–24816. Curran Associates, Inc., 2021.
 - Valhalla Contributors. Valhalla: Open source routing engine for openstreetmap, 2025. URL https://github.com/valhalla/valhalla. MIT License.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30, 2017.
 - Huandong Wang, Changzheng Gao, Yuchen Wu, Depeng Jin, Lina Yao, and Yong Li. Pategail: a privacy-preserving mobility trajectory generator with imitation learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 14539–14547, 2023.
 - Yun Wang, Faiz Currim, and Sudha Ram. Deep learning of spatiotemporal patterns for urban mobility prediction using big data. *Information Systems Research*, 33(2):579–598, 2022.

- Qitian Wu, Rui Gao, and Hongyuan Zha. Bridging explicit and implicit deep generative models via neural stein estimators. *Advances in Neural Information Processing Systems*, 34:11274–11286, 2021.
- Gang Xiong, Zhishuai Li, Meihua Zhao, Yu Zhang, Qinghai Miao, Yisheng Lv, and Fei-Yue Wang. Trajsgan: A semantic-guiding adversarial network for rban trajectory generation. *IEEE Transactions on Computational Social Systems*, 11(2):1733–1743, 2024. doi: 10.1109/TCSS.2023. 3235923.
- Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series Generative Adversarial Networks. *Advances in neural information processing systems (NeurIPS)*, 32, 2019a.
- Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic data with differential privacy guarantees. In *International Conference on Learning Representations*, 2019b.
- Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In *The Twelfth International Conference on Learning Representations*, 2024.
- Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. *Geolife GPS trajectory dataset User Guide*, geolife gps trajectories 1.1 edition, July 2011.
- Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James Yu. Difftraj: Generating gps trajectory with diffusion probabilistic model. *Advances in Neural Information Processing Systems*, 36:65168–65188, 2023.

APPENDIX: SUPPLEMENTARY MATERIAL FOR LEARNING TO DEAGGREGATE

The appendix contains supplementary material to the paper *Learning to Deaggregate: Unconditional Generation of Trajectories at Scale.* We provide detailed information on related work, model architecture, implementation details, extended experimental results, and additional visualizations.

Contents

A. Extended Related Work	14
B. Datasets and Preprocessing	15
B.1. Dataset Descriptions and Licenses	
C. Architecture Details	16
C.1. Denoising Diffusion Probabilstic Models	17
C.2. Optimization Details	
C.3. Encoder Input	
C.4. Hyperparameters	
D. Extended Evaluation Measure Description	18
E. Additional Results	21
E.1. Additional Result Visualizations	21
E.2. Quantitative Results Tables	

A EXTENDED RELATED WORK

In Section 1 and 4 of the main paper, we described the state-of-the-art models used for comparison. Here, we provide extended details on how these models differ from our proposed TDDM approach, particularly regarding their conditional generation capabilities and architectural choices.

Previous work on unconditional generation of time-series data has focused on variations of the generative adversarial networks (GAN) architecture (Esteban et al., 2017; Yoon et al., 2019a; Jeon et al., 2022) and, more recently diffusion models (Zhu et al., 2023; Yuan & Qiao, 2024).

There has also been an interest in using time-series generation for imputation and forecasting (Alcaraz & Strodthoff, 2023; Tashiro et al., 2021; Shen & Kwok, 2023; Dai et al., 2023; Feng et al., 2024). Transformer-based time-series foundation models has been proposed as a general purpose forecasting tool (Ansari et al., 2024), but has not been evaluated on the unconditional generation task.

TimeGAN (Yoon et al., 2019a) consists of a generative adversarial network (GAN) operating inside the latent space of an autoencoder. To further improve performance, they add an additional network with the task of predicting one time step ahead. The encoder, decoder, supervisor, generator and discriminator are all implemented using autoregressive models and in practice they use gated recurrent units (GRUs).

The TimeVAE (Desai et al., 2021) architecture is a variant of the popular variational autoencoder architecture. The autoencoder is trained with an additional loss component to have the latent space conform to a known statistical distribution, in this instance a multivariate normal distribution. The autoencoder is trained to both minimize the reconstruction loss, as well as minimizing the divergence between the embedded data and the prior set for the latent space.

COSCI-GAN (Seyfi et al., 2022) proposes to use a separate generative adversarial network for each channel of the data. The individual GANs all share single source of noise as input to the generator and, additionally they a central discriminator that is given the stacked output from the all the generators as input.

DiffTraj (Zhu et al., 2023) adapts the denoising diffusion architecture (Ho et al., 2020) to generate GPS-trajectories. The U-Net architecture used in (Ho et al., 2020) for denoising, is also adapted to work with trajectories. As part of the generation process, the model is conditioned on individual trajectory-specific statistics such as velocity, distance, and departure time.

Diffusion-TS (Yuan & Qiao, 2024) also adapts the denoising diffusion architecture (Ho et al., 2020) to generate time-series data by implementing the denoising step with a multilayer neural network each consisting of a transformer block, a fully connected neural network as well as time-series specific layers with the aim of improved performance and interpretability. The architecture also has support for conditional generation to enable using the models for imputation and forecasting.

As Diffusion-TS move away from U-Net-approach in DiffTraj to a partial Transformer architecture, we extend this further to a full Transformer-based architecture. By doing so, we can simultaneously avoid the additional time-series specific induction bias in Diffusion-TS while gaining increased performance and capabilities for synthetic data generation. While both DiffTraj and Diffusion-TS have support for using conditional information in their models, our approach differs both in terms of flexibility and in purpose. The conditional modeling in Diffusion-TS is not for increased sample quality, but instead for enabling additional capabilities for additional tasks, namely forecasting and imputation, which is different than synthetic data generation, and cannot be directly adapted for use of spatial prior.

In DiffTraj, conditional information is used to improve sample quality. Our approach also use conditional information to improve performance, the difference is the type of information used for the conditioning. We use statistics related to the local environment, which we refer to as *spatial prior*, which in general cannot be directly tied to any individual sample. In DiffTraj the statistics are directly related to individual samples, which in practice create a one-to-one mapping between sample and conditional. The use of spatial prior allows our method to generalize to entirely new environments and scenarios, while conditioning on sample-level statistics only allows for generating samples within the same spatial region trained on.

Conditioning on information that is sample-specific also increase the risk of memorization, as the model might simply learn to store and retrieve individual training data points (trajectories) when conditioning on the individual statistic of any single training data point. In our work we use distinctly different conditional information for training and sampling for evaluation, making our method less susceptible to memorization issues.

While DiffTraj and Diffusion-TS both support conditional generation, our approach differs fundamentally in the type of conditioning information used. DiffTraj conditions on sample-specific statistics which creates a near one-to-one mapping between conditions and samples, potentially limiting generalization. In contrast, TDDM conditions on spatial prior about spatial regions, enabling generalization to new environments without retraining. This distinction is central to our model's ability to perform out-of-distribution generation as demonstrated in Section 4.3 of the main paper.

B DATASETS AND PREPROCESSING

In this section, we describe the datasets used in our experiments and the preprocessing steps applied to prepare the data for training and evaluation.

The datasets described in Section 4 of the main paper provide geographical diversity across different continents while ensuring sufficient data density for meaningful evaluation. Our preprocessing pipeline, described below, is applied uniformly to all methods to ensure fair comparison.

The trajectory segmentation process helps all methods by creating cleaner, more consistent training data with fewer anomalies. It is important to note that while our model operates on such local regions during both training and inference, we do not generate trajectories that extend beyond the size of regions used during training. Instead, the hierarchical approach allows us to generate coherent trajectories for multiple adjacent regions that together compose large-scale environments.

B.1 DATASET DESCRIPTIONS AND LICENSES

All three datasets used in this work are publicly available and contain GPS trajectory data from different geographical regions:

- Geolife (Zheng et al., 2011): Data from 182 users collected between 2007-2012, resulting
 in 17,621 trajectories mostly centered around Beijing, China. Released under the Microsoft
 Research License Agreement, which allows academic research but prohibits redistribution.
- **Porto** (Moreira-Matias et al., 2013): Released as part of the Taxi Service Trajectory challenge, containing data on 442 taxis in Porto, Portugal, spanning more than a year. Released under the CC BY 4.0 license.
- Cabspotting (Piorkowski et al., 2022): Taxi dataset with approximately 500 taxis from the San Francisco Bay Area in California, United States, collected over 30 days. Released under the CC BY 4.0 license. An account is required to download this data.

For all three datasets, we use time, longitude and latitude as the primary features.

B.2 Preprocessing

Raw GPS data contains multiple problems:

- · GPS drift
- GPS being turned on even when the vehicle is not in use
- · large spikes in velocity

We split trajectories into sub-trajectories if any observation leaves the geographic bounds, exceeds the velocity limit or if too long time has passed since the previous observation. In the raw data, a trajectory can span several days with several hours between observations. Introducing a time-limit allows us to break these trajectories into individual and more time-constrained journeys.

We up-sample the data to one observation per second. Map matching using Valhalla (Valhalla Contributors, 2025) is then used to map the GPS trajectories to the road network, the distance between the matched and interpolated trajectories are used to estimate a noise distribution. The final training data consists of the map matched trajectories with trajectory-noise added from the noise distribution, i.e. we sample the noise distribution once per trajectory.

C ARCHITECTURE DETAILS

C.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic includes two processes: a known noise-adding process and an approximated denoising process. The noise-adding process starts at a random sample $x \in \mathbb{X}$, denoted x_0 where 0 is the noise step, and adds noise at each steps according to a noise schedule $\beta = \{\beta_1, \ldots, \beta_T\}$. By using a Gaussian noise process (Ho et al., 2020), the forward process has a closed expression for time point t: $q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{a}_t}x_0, (1-\bar{\alpha}_t)I)$, where $\alpha_t := 1-\beta_t$, $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$. The reverse process is starts at $p(x_T) = \mathcal{N}(x_T; 0, I)$ and the transition function for $1 < t \le T$ is learned:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\tag{6}$$

There are different ways to parameterize $\mu_{\theta}(x_t, t)$ and $\Sigma_{\theta}(x_t, t)$ and we use the noise prediction parameterization (Ho et al., 2020):

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right), \qquad \Sigma_{\theta}(x_t, t) = \sigma_t^2 I \tag{7}$$

where $\epsilon_{\theta}(x_t, t)$ is a learned function and is trained to predict the added noise at step t of the noise adding process. In this work, we extend ϵ_{θ} with discretized marginal distribution H as described in the main paper in Section 3.1.

C.2 OPTIMIZATION DETAILS

We use the following positional encoding to encode a one-dimensional signal (Vaswani et al., 2017):

$$PE_{(pos,2i)} = \sin\left(-e^{i}\frac{\log(10000)}{\frac{d}{2} - 1}\right)$$
 (8)

$$PE_{(pos,2i+1)} = \cos\left(-e^{i}\frac{\log(10000)}{\frac{d}{2}-1}\right), \text{ where}$$
 (9)

pos is the signal, e.g. a position x, position y or time point t, and i is the target dimension. For position, we encode a single position observation in \mathbb{R} into \mathbb{R}^D , so the function would be called once for $i \in 1 \dots D$. We use the cosine noise schedule as proposed by Nichol & Dhariwal (2021):

$$\bar{\alpha}_t = \frac{f(t)}{f(0)}, f(t) = \cos\left(\frac{t/T + s}{1 + s} \cdot \frac{\pi}{2}\right)^2 \tag{10}$$

with s = 0.008. Furthermore, we use the simplified loss function proposed by Ho et al. (2020):

$$\mathcal{L}_{\text{simple}}(\theta) := \mathbb{E}_{t,x_0,\epsilon} \left[\left| \left| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t, x_0} + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right| \right|^2 \right]$$
(11)

We use the Adam (Kingma & Ba, 2014) optimizer and implement our model in PyTorch (Ansel et al., 2024).

C.3 ENCODER INPUT

We set N to be a hyperparameter, and D is the number of dimensions of a single observation in a trajectory, in our case D=2. The input to the transformer encoder is:

- L input tokens, each token corresponding to a time point in the noisy sequence. **Note:** The token size depends on the number of features of the dataset. It is a concatenation of:
 - $x \in \mathbb{R}^{DN}$, each corresponding to a dimension observed at each time point encoded using positional encoding
 - $x \in \mathbb{R}^N$, the time point encoded using the positional encoding introduced in (Vaswani et al., 2017)
 - $x \in \mathbb{R}^N$, a learned vector encoding denoting that this is a token that corresponds to a noisy sequence
- **Conditional information:** 64 tokens, each corresponding to a patch of the heatmap and being a concatenation of:
 - $x \in \mathbb{R}^N$, corresponding to the x position of the patch. Encoded using positional encoding (Vaswani et al., 2017).
 - $x \in \mathbb{R}^N$, corresponding to the y position of the patch. Encoded using positional encoding (Vaswani et al., 2017).
 - $-x \in \mathbb{R}^N$, corresponding to the intensity of the heatmap. Encoded using a linear projection (Dosovitskiy et al., 2020).
 - $x \in \mathbb{R}^N$, a learned vector encoding denoting that this is a token that corresponds to the conditional information
- A token encoding the current denoising step:
 - $x \in \mathbb{R}^{N(D+1)}$, the denoising step encoded using positional encoding (Vaswani et al., 2017)
 - $x \in \mathbb{R}^N$, a learned vector encoding denoting that this is a token that corresponds to the denoising step

C.4 HYPERPARAMETERS

We employ Optuna (Akiba et al., 2019) with Tree-structured Parzen Estimator (TPE) sampling to optimize our model's hyperparameters. The optimization process consists of 50 trials, where the

model is trained from scratch trains for 100 epochs. For each trial, we sample hyperparameters from the defined search space and evaluate the model's performance by calculating the Jensen-Shannon divergence between the marginal distributions of the synthetic data and the marginal distributions of the training data. We only use the Geolife dataset for hyperparameter tuning. The hyperparameters included in the optimization are shown in Table 4 and the final values are shown in Table 5.

Table 4: Hyperparameter Search Space

Parameter	Search Space	Description
Hidden Dimension	{4, 8, 16, 32, 64, 128}	Size of transformer hidden layers
Number of Layers	$\{1, 2, 4, 8\}$	Depth of transformer architecture
Number of Attention Heads	$\{1, 2, 4, 8\}$	Multi-head attention mechanism size
Diffusion Timesteps	{100, 500, 1000}	Number of diffusion steps
Learning Rate	$[10^{-6}, 10^{-2}]$	Log-uniform sampling

The Jensen-Shannon divergence was chosen as the optimization metric because it directly aligns with our goal of generating synthetic trajectories that match the distributional properties of real data, as discussed in Section 4 where we evaluate models on both sample-level fidelity and distribution-level similarity.

Table 5: Final Hyperparameters

Parameter	Value
Hidden Dimension	128
Number of Layers	8
Number of Attention Heads	2
Diffusion Timesteps	500
Learning Rate	0.00017483

D EXTENDED EVALUATION MEASURES DESCRIPTION

In Section 4, we introduced evaluation measures spanning multiple quality dimensions for synthetic trajectory data. Here we provide a more detailed description of these measures, their theoretical foundations, and how they complement each other in our benchmark.

D.1 DIFFTRAJ MEASURES

The measures from DiffTraj (Zhu et al., 2023) are²:

- **Density Error**: A pair of heatmaps of the training and synthetic data are calculated by dividing the city into 16×16 blocks. The number of observations in each block are counted and normalized. The Jensen-Shannon divergence is calculated between the training data heatmap and synthetic data heatmap.
- **Trip Error**: Two heatmap pairs, each 16×16 blocks, are calculated. The first pair is of the start positions for all trajectories, one heatmap for the training data and another for the synthetic data. The second pair is calculated from the last position for all trajectories. The Jensen-Shannon divergence is calculated once for each pair and then the average is reported.
- Length Error: The distance between consecutive observations are calculated, once for the training data and once for the synthetic data. Histograms are calculated for each, with the number of bins set to 16. Finally, the Jensen-Shannon divergence is calculated between the histogram of training data and the histogram of the synthetic data.
- Pattern Score: Using the heatmaps from Density Error, the top N areas (highest count) from the training and synthetic data are collected. The F-score is then calculated and reported.

²To the best of the authors ability to interpret the paper since the evaluation code is not available for DiffTraj.

D.2 KL-BASED DISTRIBUTION MEASURES

Our evaluation framework incorporates several Kullback-Leibler (KL) divergence-based measures that address different quality dimensions of synthetic trajectory data:

• **KL**(**R**|**S**): Kullback-Leibler divergence of the real (R) distribution from the synthetic (S) distribution measures how well the synthetic distribution covers areas where real data exists:

$$KL(R \parallel S) = \sum_{i,j} R_{i,j} \log \frac{R_{i,j}}{S_{i,j}}$$
 (12)

This directly corresponds to our *diversity* quality dimension (II), as it heavily penalizes when synthetic data misses modes present in the real distribution.

• **KL(S||R)**: Kullback-Leibler divergence of the synthetic (S) distribution from the real (R) distribution measures how well the synthetic distribution stays within regions supported by real data:

$$KL(S \parallel R) = \sum_{i,j} S_{i,j} \log \frac{S_{i,j}}{R_{i,j}}$$

$$(13)$$

This reflects our *fidelity* quality dimension (I), penalizing synthetic data that generates unrealistic trajectories in regions with little or no real data.

 \bullet KL $_{\mathrm{sym}}$: The symmetric KL divergence balances both directional measures:

$$KL_{sym} = \frac{1}{2}(KL(S \parallel R) + KL(R \parallel S))$$
(14)

• JS: Jensen-Shannon divergence provides a bounded symmetric measure:

$$JS(S,R) = \frac{1}{2}KL(S \parallel M) + \frac{1}{2}KL(R \parallel M)$$
(15)

where $M = \frac{1}{2}(S + R)$. This avoids numerical instabilities with zero probabilities and is bounded between 0 and 1.

Together, these measures address the *proportionality* quality dimension (III) - low values in both KL directions indicate the synthetic distribution not only covers the same support as the real distribution but also assigns similar probability mass across that support. The symmetric measures ($KL_{\rm sym}$ and JS) provide balanced assessments that account for both support coverage and proportionality, with JS offering better numerical stability when regions with zero probability are present in either distribution.

D.3 THEORETICAL JUSTIFICATION AND IMPLEMENTATION

Our implementation of KL-based measures uses a discretizations with a 256×256 grid over the entire city. This is $\times 256$ higher resolution than what is used in DiffTraj, to enabling more precise evaluation of fine-grained spatial patterns.

KL divergence measures are theoretically well-suited for trajectory evaluation because:

- They directly quantify the information loss when approximating one distribution with another
- They are sensitive to both the support coverage and the proportionality of distributions
- The two directional variants (KL(S||R) and KL(R||S)) provide complementary insights into different failure modes

D.4 RELATION TO SAMPLE QUALITY

The combined set of measures provides a comprehensive evaluation framework addressing all five quality dimensions from Section 4:

- **Fidelity**: Length Error, Trip Error, and KL(R||S) all measure aspects of fidelity by ensuring trajectories have realistic properties.
- Diversity: KL(S||R) and Pattern Score evaluate how well synthetic trajectories cover the support of real data.
- Proportionality: All KL-based measures, but especially JS, capture proportionality by measuring distributional similarity.
- Usefulness: TSTR directly measures usefulness for a downstream prediction task.
- Generalization: See Section D.6.

D.5 LIMITATIONS ANALYSIS

The DiffTraj measures provide a more coarse-grained evaluation using 16×16 spatial discretization, while our KL-based measures use 256×256 grids for finer-grained assessment. The $\times 256$ higher resolution allows more precise evaluation of the model's ability to capture detailed spatial distributions, especially important in urban environments where road networks create complex movement patterns.

By combining these measures with TSTR, our benchmark provides a comprehensive evaluation that addresses both distribution-level properties and practical utility of the generated trajectories, spanning all important dimensions of synthetic data quality discussed in Section 4.

D.6 EVALUATING GENERALIZATION

Our evaluation framework extends beyond traditional in-distribution testing to assess different types of generalization capabilities:

- *In-distribution generalization*: Unlike predictive models where test sets evaluate prediction accuracy, unconditional generative models require evaluating whether they capture the full distribution rather than memorizing training examples. For trajectory generation, we directly compare distribution-level properties between synthetic and real data instead of using held-out test sets. Using a held-out test would require massive data amounts and/or an inverted data split, e.g. 20% train, 80% test to sufficiently assess support coverage and proportionality. This is currently infeasible in practice. Also, current models still struggle to even replicate (memorize) the training data in unconditional generation, making this less of a relevant problem in the field for now.
- Out-of-distribution generalization: A distinctive feature of our benchmark is its assessment of spatial transfer capability, evaluating a model's ability to generate plausible trajectories for geographic regions not represented in training data:
 - Intra-city generalization (Section 4.3): Tests whether models can generate trajectories for unseen areas within the same city
 - City-to-city generalization (Section 4.3): Tests whether models can transfer knowledge between entirely different cities

The evaluation measures take on different significance when assessing generalization. $KL(S\|R)$ becomes particularly important for out-of-distribution evaluation as it tests whether the synthetic distribution covers the full support of the real distribution in previously unseen regions. Meanwhile, $KL(R\|S)$ reveals whether the model avoids generating implausible trajectories in new environments. The Pattern Score helps determine if important spatial areas in the new environment are captured, while TSTR directly measures the usefulness of the generated data for downstream tasks in these new settings.

Our experiments in Sections 4.3 demonstrate how this comprehensive evaluation identifies genuine generalization capabilities rather than mere memorization. The combination of measures reveals whether a model has learned transferable spatial dynamics or is simply reproducing patterns from its

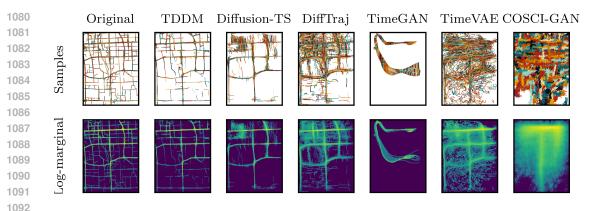


Figure 4: Comparison between original and synthetic trajectories for Geolife dataset. First row shows individual trajectory samples while bottom shows log-density heatmaps of all observations. The synthetic data of the proposed model, TDDM, (second column) most closely matches both the individual trajectory patterns and overall density distribution of the original data.

training data. This evaluation approach provides a more rigorous assessment of generalization than traditional machine learning benchmarks, which typically only test in-distribution generalization.

E ADDITIONAL RESULTS

In Section 4 we present the results. Here we first provide additional visualization, focusing on more detailed view of and also providing a closer-look at the synthetic data generated. We also provide full tables as a complement to the tables provide figures that are averaged across datasets.

E.1 ADDITIONAL VISUALIZATION

The visualizations presented in this section supports the quantitative results in Section 4.1 of the main paper. Specifically, Figures 6–8 demonstrate TDDM's ability to generate synthetic trajectories that closely match the spatial distribution patterns of the original data across all three datasets (Geolife, Porto, and Cabspotting).

These visualizations highlight two key aspects of TDDM's performance claimed in the main paper: (1) the high fidelity of individual generated trajectories, which follow road networks and maintain realistic movement patterns; and (2) the proportionality of the generated distribution, as shown by the similarity between the heatmaps of real and synthetic data. The comparison with baseline methods in Figures 1, 4 and 5 visually confirms TDDM's strong performance reported in Table 6.

The generalization capabilities of TDDM are further illustrated in Figures 12–14, which show how our model trained on a limited portion of each city can generate high-quality trajectories for previously unseen areas. Additionally, Figures 9–11 provide a closer look at trajectories in several regions chosen at random, across the three datasets, demonstrating the consistent quality of our generated data compared to real trajectories and baseline methods.

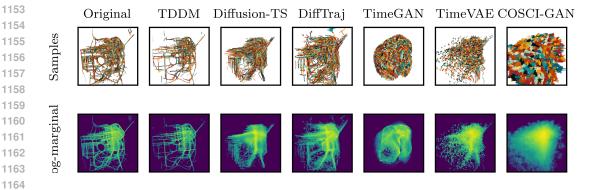


Figure 5: Comparison between original and synthetic trajectories for Cabspotting dataset. First row shows individual trajectory samples while bottom shows log-density heatmaps of all observations. The synthetic data of the proposed model, TDDM, (second column) most closely matches both the individual trajectory patterns and overall density distribution of the original data.

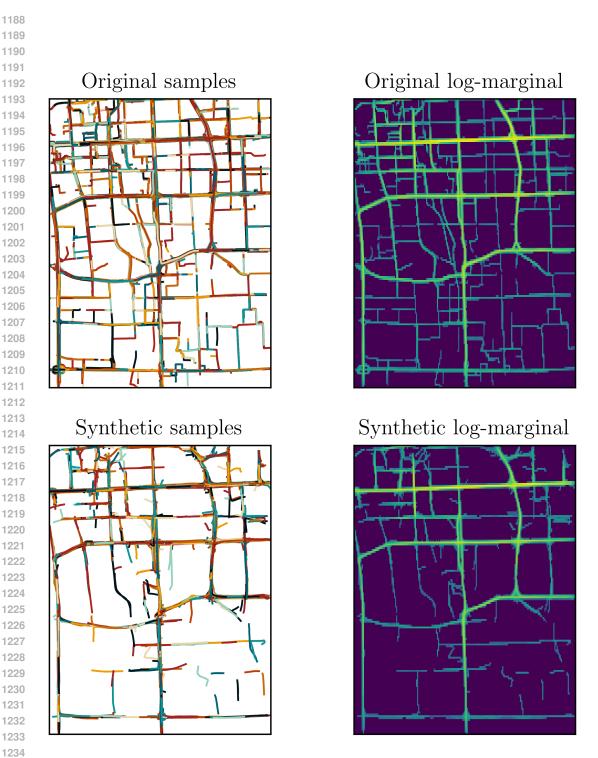


Figure 6: Detailed visualization for Geolife dataset. Comparison between training data (top) and synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely match both the individual trajectory patterns and overall density distribution of the original data.

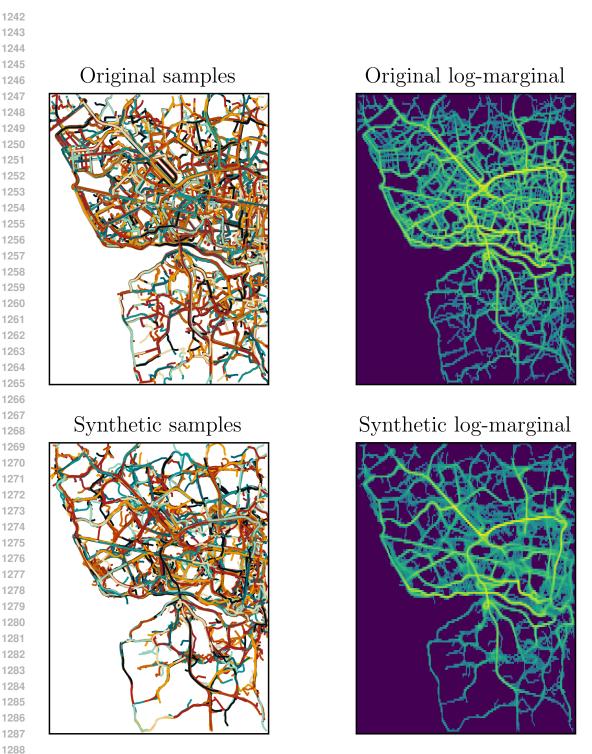
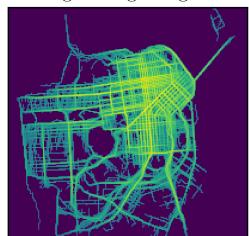


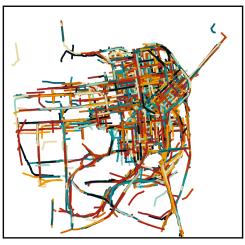
Figure 7: Detailed visualization for Porto dataset. Comparison between training data (top) and synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely match both the individual trajectory patterns and overall density distribution of the original data.

Original samples

Original log-marginal



Synthetic samples



Synthetic log-marginal

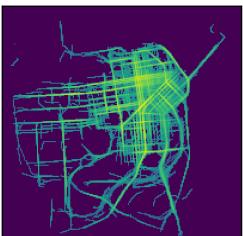


Figure 8: Detailed visualization for Cabspotting dataset. Comparison between training data (top) and synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely match both the individual trajectory patterns and overall density distribution of the original data.

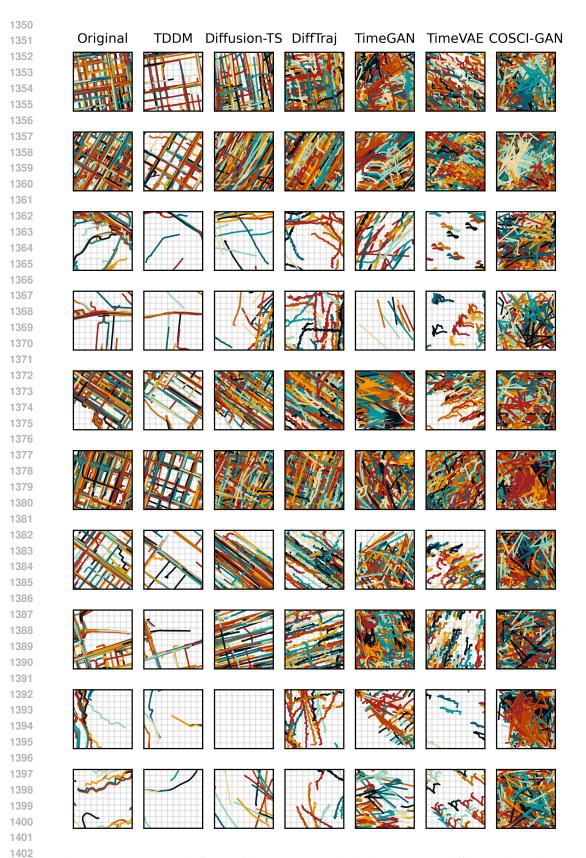


Figure 9: Random samples from training data and synthetic data across 11 different regions chosen at random, all from Cabspotting

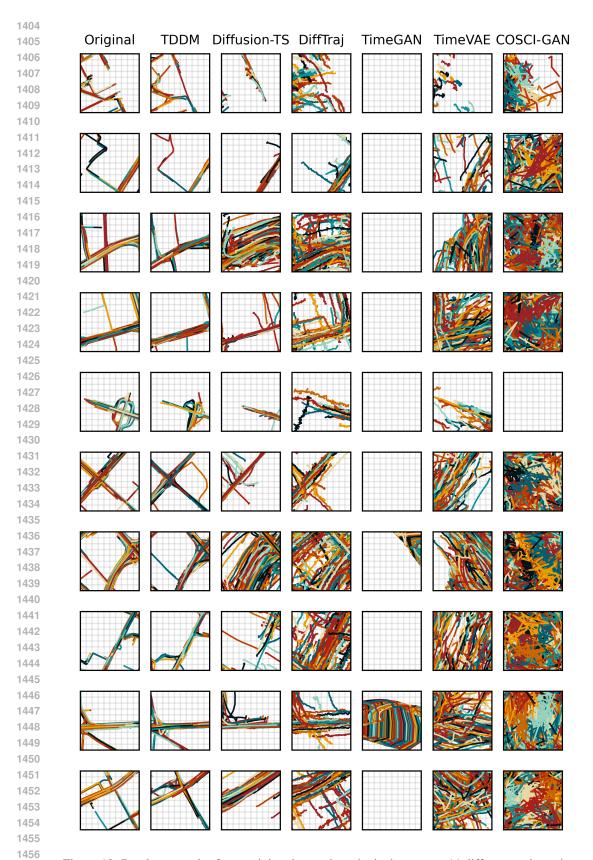


Figure 10: Random samples from training data and synthetic data across 11 different regions chosen at random, all from Geolife

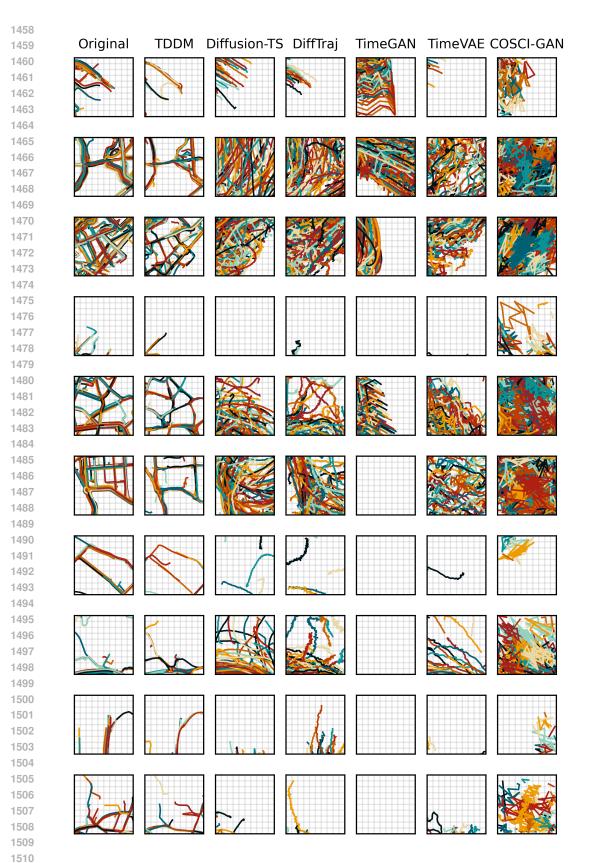


Figure 11: Random samples from training data and synthetic data across 10 different regions chosen at random, all from Porto.

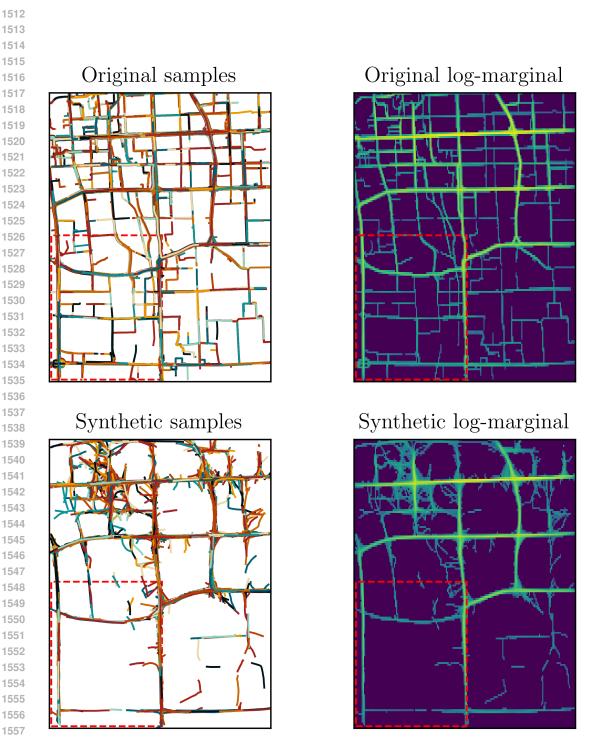


Figure 12: Generalization experiment. The model is trained on the lower left quadrant and used to generate data on the remaining geographical area. *Top left:* Data from Geolife, the lower-left quadrant of which used for training. *Top right:* heatmap of training data, *Bottom left:* synthetic trajectories. *Bottom right:* heatmap of the synthetic data.

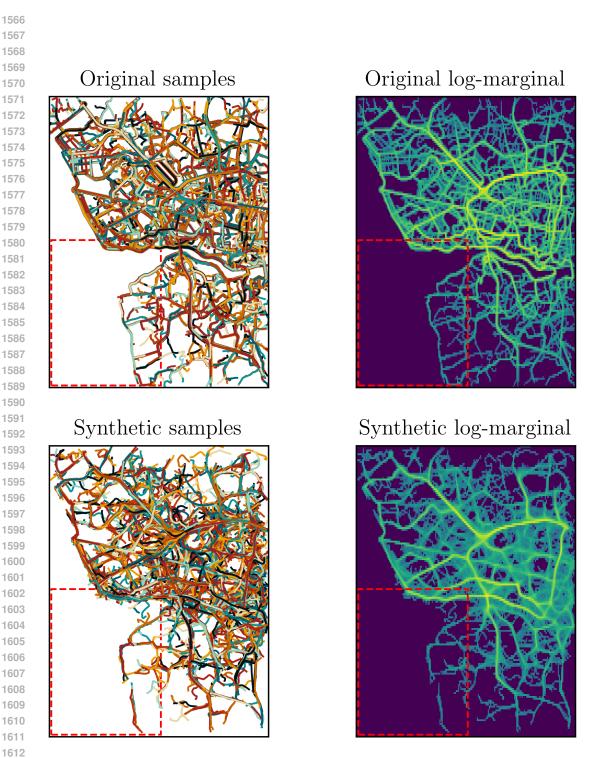
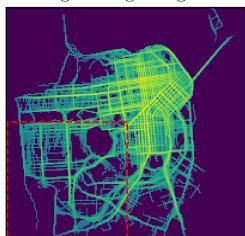


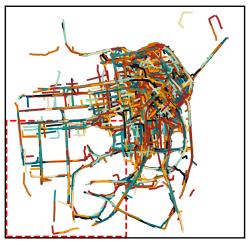
Figure 13: Generalization experiment. The model is trained on the top-left quadrant and used to generate data on the remaining geographical area. *Top left:* Data from Porto, the top-left quadrant of which used for training. *Top right:* heatmap of training data, *Bottom left:* synthetic trajectories. *Bottom right:* heatmap of the synthetic data.

Original samples

Original log-marginal



Synthetic samples



Synthetic log-marginal

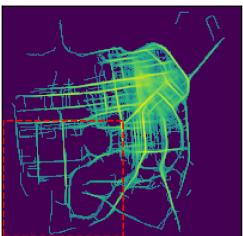


Figure 14: Generalization experiment. The model is trained on the lower left quadrant and used to generate data on the remaining geographical area. *Top left:* Data from Cabspotting, the lower-left quadrant of which used for training. *Top right:* heatmap of training data, *Bottom left:* synthetic trajectories. *Bottom right:* heatmap of the synthetic data.

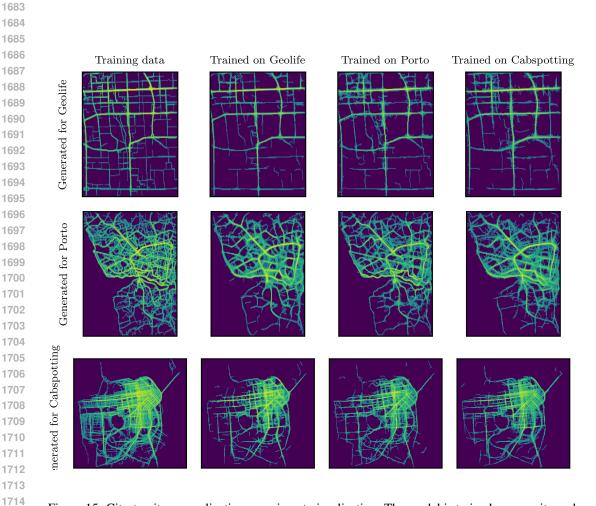


Figure 15: City-to-city generalization experiment visualization. The model is trained on one city and then used to generate data on the remaining geographical area using spatial priors.

E.2 QUANTITATIVE RESULTS Complementing the summary tables, we list the tables with the quantitative results. T More specifically: • Large-scale unconditional trajectory generation (4.1), Table 6. • Ablation study (4.2), Table 7. • Intra-city (4.3), Table 8. • *City-to-city* (4.3), Table 9.

Table 6: Evaluation of different models' performance across several datasets and measures.

1703					
1784	Table 6: Evaluation	of different mo	dels' performance	e across several da	ntasets and measur
1785 1786	Measure	Model	Geolife	Porto	Cabspotting
1787		TimeGAN	0.052 ± 0.031	0.038 ± 0.025	0.020 ± 0.012
1788		TimeVAE	0.032 ± 0.031 0.017 ± 0.010	0.038 ± 0.023 0.016 ± 0.007	0.020 ± 0.012 0.021 ± 0.011
	TIGETO (1)	COSCI-GAN	0.017 ± 0.016 0.023 ± 0.006	0.010 ± 0.007 0.021 ± 0.005	0.021 ± 0.011 0.024 ± 0.009
1789	$TSTR(\downarrow)$	Diffusion-TS	0.013 ± 0.009	0.010 ± 0.005	0.021 ± 0.008
1790		DiffTraj	0.013 ± 0.004	0.014 ± 0.004	$\boldsymbol{0.013 \pm 0.007}$
1791		TDDM	0.010 ± 0.005	0.009 ± 0.004	0.015 ± 0.008
1792		TimeGAN	5.566	3.606	1.933
1793		TimeVAE	2.786	2.688	1.615
1794	$KL(S \parallel R) (\downarrow)$	COSCI-GAN	4.650	2.910	1.578
1795	\ II / \ \ \ / \ \ / \ \ / \ \ / \ \ / \ \ \ / \ \ / \ \ / \ \ / \ \ / \ \ \ / \ \ \ \ / \ \ \ / \ \ \ \ / \ \ \ / \ \ \ \ / \ \ \ / \ \ \ \ \ / \ \ \ \ \ / \ \ \ \ \ / \	Diffusion-TS DiffTraj	$0.730 \\ 1.498$	$2.114 \\ 2.025$	$1.340 \\ 1.259$
1796		TDDM	0.202	0.437	0.265
1797					
1798		TimeGAN TimeVAE	3.823 1.236	$2.632 \\ 1.445$	$1.302 \\ 1.124$
1799	TTT (D 0) ()	COSCI-GAN	2.453	1.696	1.070
1800	$\mathrm{KL}(R \parallel S) (\downarrow)$	Diffusion-TS	0.598	1.135	0.999
1801		DiffTraj	0.767	1.023	0.817
1802		TDDM	0.177	0.336	0.246
1803		TimeGAN	4.695	3.119	1.618
1804		TimeVAE	2.011	2.067	1.369
1805	$\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$	COSCI-GAN	3.552	2.303	1.324
1806	sym (\psi)	Diffusion-TS	0.664	1.625	1.169
1807		DiffTraj TDDM	1.132 0.190	1.524 0.386	1.038 0.255
1808					
1809		TimeGAN TimeVAE	$0.489 \\ 0.294$	$0.430 \\ 0.327$	$0.271 \\ 0.241$
1810		COSCI-GAN	0.486	0.364	0.241 0.240
1811	JS (↓)	Diffusion-TS	0.114	0.264	0.216
1812		DiffTraj	0.181	0.252	0.195
1813		TDDM	0.040	0.079	0.056
1814		TimeGAN	0.433	0.252	0.088
1815		TimeVAE	0.063	0.028	0.038
1816	Density (↓)	COSCI-GAN	0.264	0.078	0.060
1817	; (\psi/	Diffusion-TS	0.035	0.021	0.031
1818		DiffTraj TDDM	0.046 0.023	0.023 0.019	0.031 0.014
1819					
1820		TimeGAN TimeVAE	$0.510 \\ 0.078$	$0.346 \\ 0.049$	$0.115 \\ 0.040$
1821		COSCI-GAN	0.078 0.295	0.049 0.096	0.040
1822	Trip (\downarrow)	Diffusion-TS	0.049	0.037	0.036
1823		DiffTraj	0.052	0.035	0.037
1824		TDDM	0.039	0.037	0.018
1825		TimeGAN	0.212	0.021	0.058
1826		TimeVAE	0.047	0.074	0.005
	Length (↓)	COSCI-GAN	0.774	0.707	0.885
1827	Zengu (v)	Diffusion-TS	0.002	0.005	0.003
1828		DiffTraj TDDM	$0.043 \\ 0.004$	0.012	0.139 0.003
1829				0.005	
1830		TimeGAN	0.490	0.730	0.810
1831		TimeVAE COSCI-GAN	$0.780 \\ 0.650$	$0.890 \\ 0.830$	$0.850 \\ 0.830$
1832	Pattern (†)	Diffusion-TS	0.030 0.920	0.900	0.900
1833		DiffTraj	0.890	0.880	0.910
1834		TDDM	0.910	$\boldsymbol{0.920}$	$\boldsymbol{0.920}$
1835					

Table 7: Ablation study of the effect of region size and spatial prior.

Measure	Model	Geolife	Porto	Cabspotting
TSTR (↓)	TDDM 1x1 km w/o spatial prior	0.010 ± 0.005 0.030 ± 0.014 0.009 ± 0.006	$egin{array}{l} 0.009 \pm 0.004 \\ 0.021 \pm 0.011 \\ 0.011 \pm 0.005 \end{array}$	$0.015 \pm 0.008 \\ 0.022 \pm 0.011 \\ 0.012 \pm 0.007$
$\mathrm{KL}(S \parallel R) (\downarrow)$	TDDM 1x1 km w/o spatial prior	0.202 0.279 0.926	0.437 0.552 2.349	0.265 0.184 1.433
$\mathrm{KL}(R \parallel S) \left(\downarrow\right)$	TDDM	0.177	0.336	0.246
	1x1 km	0.206	0.579	0.168
	w/o spatial prior	0.858	1.314	1.123
$\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$	TDDM	0.190	0.386	0.255
	1x1 km	0.243	0.566	0.176
	w/o spatial prior	0.892	1.831	1.278
JS (\dagger)	TDDM	0.040	0.079	0.056
	1x1 km	0.054	0.121	0.038
	w/o spatial prior	0.156	0.296	0.231
Density (↓)	TDDM 1x1 km w/o spatial prior	0.023 0.021 0.099	0.019 0.033 0.043	0.014 0.011 0.060
Trip (\dagger)	TDDM	0.039	0.037	0.018
	1x1 km	0.049	0.066	0.018
	w/o spatial prior	0.099	0.055	0.068
Length (↓)	TDDM	0.004	0.005	0.003
	1x1 km	0.256	0.152	0.043
	w/o spatial prior	0.095	0.034	0.105
Pattern (†)	TDDM	0.910	0.920	0.920
	1x1 km	0.930	0.910	0.950
	w/o spatial prior	0.860	0.850	0.790

Table 8: Generalization experiment.

			· r · · ·	
Measure	Trained on	Geolife	Porto	Cabspotting
TSTR (↓)	100% 25%	0.007 ± 0.004 0.011 ± 0.010	0.006 ± 0.003 0.013 ± 0.005	0.016 ± 0.009 0.013 ± 0.007
$\mathrm{KL}(S \parallel R) \left(\downarrow \right)$	100% 25%	0.199 0.468	0.448 0.916	0.266 0.461
$\mathrm{KL}(R \parallel S) (\downarrow)$	100% 25%	0.168 0.390	0.340 0.629	0.245 0.403
$\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$	100% 25%	0.184 0.429	0.394 0.773	0.256 0.432
JS (↓)	100% 25%	0.039 0.081	0.080 0.145	0.056 0.093
Density (↓)	100% 25%	0.019 0.028	0.016 0.020	0.011 0.014
Trip (↓)	100% 25%	0.032 0.042	0.037 0.048	0.013 0.019
Length (↓)	100% 25%	0.003 0.022	0.005 0.008	0.002 0.049
Pattern (†)	100% 25%	$0.930 \\ 0.930$	0.930 0.900	0.960 0.950

Table 9: City to city generalization experiment. The model is trained on one city and then is sampled for a target city using the marginal distribution.

		Sampled for		
Measure	Trained on	Geolife	Porto	Cabspotting
TSTR (↓)	Geolife Porto Cabspotting	0.010 ± 0.005 0.011 ± 0.006 0.012 ± 0.006	0.015 ± 0.007 0.009 ± 0.004 0.010 ± 0.005	0.017 ± 0.008 0.009 ± 0.003 0.015 ± 0.008
$\mathrm{KL}(S \parallel R) (\downarrow)$	Geolife Porto Cabspotting	0.202 0.294 0.313	1.168 0.437 0.907	0.637 0.421 0.265
$\mathrm{KL}(R \parallel S) (\downarrow)$	Geolife Porto Cabspotting	0.177 0.232 0.258	0.796 0.336 0.641	0.579 0.394 0.246
$\mathrm{KL}_{\mathrm{sym}}\left(\downarrow\right)$	Geolife Porto Cabspotting	0.190 0.263 0.286	0.982 0.386 0.774	0.608 0.407 0.255
JS (\lambda)	Geolife Porto Cabspotting	0.040 0.054 0.058	0.175 0.079 0.145	0.123 0.087 0.056
Density (↓)	Geolife Porto Cabspotting	0.023 0.021 0.026	0.021 0.019 0.019	$0.016 \\ 0.015 \\ 0.014$
Trip (↓)	Geolife Porto Cabspotting	0.039 0.047 0.042	0.040 0.037 0.042	0.022 0.026 0.018
Length (↓)	Geolife Porto Cabspotting	0.004 0.028 0.024	0.148 0.005 0.193	0.016 0.092 0.003
Pattern (†)	Geolife Porto Cabspotting	0.910 0.930 0.920	0.920 0.920 0.910	0.930 0.930 0.920