
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO DEAGGREGATE:
LARGE-SCALE TRAJECTORY GENERATION
WITH SPATIAL PRIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating realistic large-scale trajectories is essential for applications in urban
mobility and transportation, yet current generative models either do not offer any
controllability or rely on strong sample-specific conditioning. We introduce the
Temporal Deaggregation Diffusion Model (TDDM), a hierarchical framework that
first represents mobility using spatial priors, which are marginal distributions over
geographical occupancy, and then deaggregates them into trajectories. This sepa-
ration enables generation without sample-specific conditions, supporting transfer
to new regions. To support evaluation, we build a benchmark across three cities
spanning different continents (Asia, Europe, North America), with standardized
metrics for fidelity and distributional coverage. Across all datasets, TDDM im-
proves trajectory fidelity and coverage over leading baselines, and demonstrates
stable performance when applied to unseen cities. By explicitly decoupling spa-
tial allocation from temporal realization, our work highlights the role of spatial
occupancy priors in enabling scalable and generalizable trajectory generation.

1 INTRODUCTION

Time-series data of human mobility enables applications such as pandemic forecasting and manage-
ment (Ilin et al., 2021), smart city development (Wang et al., 2022), urban governance (Xiong et al.,
2024), human rights violation detection (Tai et al., 2022) and monitoring of global migration induced
by war and climate change (Niva et al., 2023; Alessandrini et al., 2020). Two major challenges stand
in the way for using time-series data for these purposes.

The first is a shortage of publicly available data (Ansari et al., 2024). Data can only be collected and
shared in limited capacity due to concerns of privacy, business and national security, creating a silo
effect. Secondly, generalization beyond observed data, such as to new regions, unseen spatial areas,
or rapidly changing environments, is often a necessary complement to the readily collectible data.
One such case is generating high-fidelity realistic spatio-temporal trajectory data, such as individual
pedestrians navigating a city or a building. Open problems within the road traffic domain (Lana et al.,
2018), and using human mobility data at large, are (1) high quality large-scale trajectories and (2)
adaptation to sudden environmental changes. Both are hindered by the unavailability of data, either
because existing data cannot be shared or because new environments lack sufficient observations.

A promising direction is to use time-series generative models to capture and generalize mobility
distributions. Although these models can be adapted for privacy (Yoon et al., 2019b; Wang et al., 2023;
Buchholz et al., 2024) or forecasting (Alcaraz & Strodthoff, 2023), this work focuses exclusively on
improving fidelity and cross-region generalization.

Existing approaches, while promising, either fail to capture the multi-modal structure of mobility
data or struggle to scale across diverse environments (Buchholz et al., 2024). GAN- and VAE-
based approaches such as TimeGAN (Yoon et al., 2019a), TimeVAE (Desai et al., 2021), COSCI-
GAN (Seyfi et al., 2022), and TrajGen (Cao & Li, 2021) suffer from mode collapse and oversimplified
representations, with unconditional methods additionally offering no control over generated patterns.
Recent diffusion models improve fidelity but either remain unconditional (Diffusion-TS (Yuan & Qiao,
2024)) or rely on strong sample-specific conditioning (DiffTraj (Zhu et al., 2023), ControlTraj (Zhu
et al., 2024)), limiting generalization across regions. While sample-specific conditioning increases

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: TDDM is trained on real 2D trajectories (left) to generate synthetic trajectories (right),
conditioned on how likely it should be for the population of synthetic trajectories to occupy space
on the 2D plane (spatial prior). The latter is represented as a discrete distribution over occupancy
frequency, i.e., the marginal distribution over the trajectory probability distribution if integrating
out time. This yields both high-fidelity in-distribution generalization (top) and out-of-distribution
generalization (bottom), the latter when conditioning on a marginal distribution not part of the training
data (dashed rectangle). Trajectory data from Beijing, China (Geolife).

quality of the synthetic trajectories, it increases the risk of memorization and prevents cross-region
generalization by potentially tying each sample to a training example. Our key insight is that trajectory
generation can be factorized into two components: where people move, encoded as spatial priors, and
how people move temporally.

To this end, we introduce Temporal Deaggregation Diffusion Model (TDDM), which conditions on
spatial aggregate priors rather than trajectory-level statistics, combining controllability with high
fidelity and cross-region generalization. We capture spatial patterns through marginal distributions
over local regions, then condition a diffusion model to generate temporal trajectories that respect these
patterns. Critically, we canonicalize each region before modeling via a similarity transform, enabling
a single model to generalize across all regions for a given scale (e.g. 3x3 km). This spatial-temporal
separation enables city-to-city generalization: the model learns temporal dynamics that are invariant
to absolute location and orientation. Figure 1 illustrates capabilities of TDDM in a setting of mobility
trajectory data. Figure 2 provides a visual comparison with baseline methods.

Our main contributions are:

• Spatial-Temporal Factorization: We propose TDDM, a diffusion-based trajectory model that
factorizes generation into spatial occupancy priors and temporal dynamics, with coordinate
normalization enabling parameter sharing across geographic regions.

• Benchmarking at Scale: We establish a standardized evaluation framework across three
cities on different continents (Beijing, Porto, San Francisco), with trajectory-specific metrics
that harmonize sample fidelity, distributional coverage, and downstream usefulness.

• Improved Fidelity and Coverage: TDDM consistently outperforms leading baselines on KL-
based distributional measures, demonstrating improved support coverage and proportionality
while maintaining strong fidelity across datasets.

• Generalization to New Regions: Leveraging spatial priors and canonicalization, TDDM
generates realistic trajectories in unseen parts of a city and in entirely new cities without
retraining or finetuning, showing strong out-of-distribution zero-shot performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Comparison between original and synthetic trajectories for Porto dataset. First row shows
individual trajectory samples while bottom shows log-density heatmaps of all observations. The
synthetic data of the proposed model, TDDM, (second column) most closely matches both the
individual trajectory patterns and overall density distribution of the original data.

2 PROBLEM DEFINITION

The task of learning an unconditional generative model is defined as learning a mapping f from
samples drawn from a known distribution Dknown, e.g. standard normal distribution, to samples
from an unknown target distribution Dunknown. The mapping is learned without direct access to
the unknown distribution, and is instead limited to a set of samples Xtrain = {x1, . . . , xN}, where
xi ∼ Dunknown. Once the mapping has been learned, synthetic data can be generating by first
sampling the known distribution, then passing the individual samples through the mapping function
Xsynthetic = {f(yi)}Mi=1, where yi ∼ Dknown. The goal of this mapping is for the synthetic samples
to be similar to samples from the known distribution, both on a sample level and as a distribution.

3 TEMPORAL DEAGGREGATION DIFFUSION MODEL

In this work, we focus on the issue of learning and controlling distribution properties of the synthetic
data distribution. More specifically, we focus on controlling the spatial marginal of trajectories, i.e.
where time has been marginalized out. This is achieved by conditioning the generative process on a
description of the marginal distribution, a spatial prior, with the goal being to generate samples that
in aggregate follows said marginal distribution.

The central idea of TDDM is to separate where people move from how they move in time. We achieve
this by conditioning trajectory generation on spatial priors H , which describe marginal occupancy
distributions over regions. By factoring spatial allocation from temporal dynamics, TDDM learns
invariant motion patterns that generalize across cities.

Concretely, the approach proceeds in three steps: (i) partition the spatial domain into regions, (ii)
canonicalize each region via a similarity transform, and (iii) compute region-specific spatial priors
that describe the local marginal distribution.

Partitioning the spatial domain. We adopt a hierarchical factorization by partitioning the spatial
domain into discrete regions, each associated with a spatial prior. The prior describes the marginal
distribution of occupancy in that region after marginalizing out time. This setup enables generation at
the region level, where local priors act as controllable conditions for the diffusion process.

For training, the partitioning is into regions of the same shape but with randomized translation and
rotation and consequently have arbitrary overlap. For sampling of the trained model, the partitioning
can be on a grid which covers the area of interest (the trained-on city, the trained-on part of a city
concatenated with the rest of the city, or a new city entirely) with partial border overlap.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Canonicalization. Each region is mapped into a canonical frame of reference using a similar-
ity transform (Goodall, 1991), paralleling Procrustes alignment in shape analysis. Unlike group-
equivariant architectures (Cohen & Welling, 2016), which encode invariances into model structure,
our approach achieves invariance via input-output transformation, keeping the architecture lightweight
and without additional inductive bias.

For a region rc, we apply the similarity transformation Trc(p, α, s), parametrized by translation
p = −pos(rc), rotation α = −rot(rc), and scaling s = 2/width(rc). This maps trajectories and
priors into a normalized coordinate system [−1, 1]D.

For example, consider a 1×1 km region in downtown Beijing: Trc translates the region to the origin,
rotates it to a fixed orientation, and rescales coordinates to [−1, 1] × [−1, 1]. This normalization
enables the model to learn local trajectory patterns (e.g., vehicles turning at intersections) that transfer
across locations and cities. When sampling a region, the inverse transform is applied to each sample.

Spatial priors. More formally, let x ∈ X be a sample consisting of several observations x[n] ∈
RD, ∀n, where D = 2 denotes spatial dimensions (long, lat) We generate trajectories region by
region. For each sub region rc, we compute its spatial prior H and express the generative model as:

p(x) =

∫
p(x|H)p(H) dl. (1)

In practice, we set p(H) = p(H = f(rc,X)) = p(rc) where H is a discrete marginal distribution,∑
i

∑
j Hi,j = 1, and rc is a subregion of r. The probability for a subregion rc is:

p(rc) ∝
∑
x∈X

∑
n

1(Trcx[n] ∈ [−1, 1]D). (2)

Within each region, the prior is discretized by cells (i, j):

Hi,j = f(rc,X)i,j =
∑

x∈X
∑

n 1rci,j (x[n])∑
x∈X

∑
n 1(x[n] ∈ Rrc)

,where (3)

1rci,j (x[n]) =

{
1, if x[n] falls within cell (i, j) of region rc
0, otherwise

(4)

In practice, we use a 64× 64 grid for 3× 3 km regions, balancing spatial detail with computational
efficiency: finer grids increase quadratic token cost in the transformer, while coarser resolution would
reduce the spatial information needed to capture detailed road structure and trajectory patterns. The
final approximation for p(x) is then

p(x) =
∑
rc

p(x|H = f(rc,X))p(rc). (5)

which is a generative mixture model over region partitions.

The spatial prior H provides the context that separates where people move from how they move. By
marginalizing out time, H encodes only the spatial occupancy of a region. The diffusion model then
learns to generate realistic temporal trajectories that, in aggregate, match this spatial pattern. Because
H can be estimated (even in unseen cities) for new regions (even in unseen cities), while temporal
dynamics remain transferable, this factorization supports cross-region generalization. See Figure 1
for examples of spatial priors H and corresponding trajectories.

To learn p(x|H) we propose an architecture based on the denoising diffusion architecture (Ho et al.,
2020), using a transformer encoder (Vaswani et al., 2017) for denoising.

Generating synthetic data using denoising diffusion is achieved by learning to reverse a noise-adding
process. See Appendix C.1 for more details on denoising diffusion. There are several ways to
parameterize the denoising process, we extend the noise prediction parameterization (Ho et al., 2020)
to include the marginal distribution: ϵθ(xt, t,H). This means that at any step of the denoising process,
we have full access to a discretized version of the marginal distribution of the distribution we are
sampling, a noisy trajectory, as well as the expected noise level via the denoising step.

This also poses a challenge, as we need a model that can handle these different modalities. To this
end, we employ a transformer encoder. This allows us to use different strategies to tokenize the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Architecture overview. In the unconditional part, each time point of the noisy trajectory
is converted into a separate token with positional encoding used to encode its values and the time
point, and a learned vector representing its type. The denoising step token, includes the denoising
step encoded with positional encoding and then concatenated with a learned type vector. The input
also include a marginal distribution to guide the denoising process to generate samples with particular
properties, improving in-distribution performance as well as enabling generalization to previously
unobserved areas. The marginal distribution is split into tokens, concatenated with a learned type
vector and its position using positional encoding.

different modalities, the resulting tokens are then given as an input to the transformer. The attention
mechanism allows the model to learn relevant relationship between the different token types, across
different physical distances, as well as in time, to successfully denoise a trajectory.

More specifically, we employ three types of tokens: (1) trajectory tokens, (2) marginal distribution
tokens and (3) denoising noise step tokens. At the end of each token, there is a learned token type
which allows the model to distinguish between the different types. Trajectories xi are split into L
tokens, one for each time step, and positional encoding is used to encode position and time. For the
discretized marginal distribution H , we follow Vision Transformers (Dosovitskiy et al., 2020) and
split marginal distribution into several regions, linearly project, and finally prepend the position of
the region. Finally, a single token for t using positional encoding is used to denote the current step in
the denoising process.

Rather than using a class-token, we use the output corresponding to the L trajectory tokens to make
the noise prediction. These are linearly transformed, each token down to 2 dimensions: one for x and
one for y, and then concatenated across time to construct the final prediction for the amount of noise
added at diffusion step t.

An overview of the architecture is shown in Figure 3, which illustrates how a single trajectory is
tokenized, how the marginal distribution is split into subregions and which tokens are used as output.
The training and sampling procedures are formalized in Algorithms 1 and 2. Algorithm 1 shows how
we train the model by randomly sampling regions, computing their spatial priors, and learning to
generate trajectories matching those priors. Algorithm 2 shows how we generate city-scale datasets
by conditioning on spatial priors alone to enable zero-shot transfer to new regions or cities. The
training and sampling procedures are shown in Algorithm 1 and 2, respectively. See Appendix C for
hyperparameters, as well as additional details on tokenization.

To understand how these algorithms enable zero-shot generalization in our out-of-distribution ex-
periments, consider the key design choices. In Algorithm 1, lines 2-3 randomly sample regions and
compute spatial priors, ensuring the model encounters diverse geographic contexts during training.
Line 6 canonicalizes trajectories to normalized coordinates [0, 1]D, allowing the model to learn
location-invariant dynamics. The denoising process (line 10) is conditioned on H , teaching the model
to respect spatial distributional constraints. In Algorithm 2, zero-shot transfer works as follows: for
target regions (unseen city areas or entirely different cities), we compute the spatial prior H from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Xtarget trajectories (line 3), but the model ϵθ never receives individual target trajectories, only their
aggregate spatial distribution. The model generates trajectories in normalized space conditioned
solely on H (lines 7-10), then transforms them back to global coordinates of the target region (line
11). This canonicalization symmetry (normalize during training, denormalize during generation)
combined with conditioning on aggregate distributions rather than trajectory instances enables the
model to apply learned dynamics to any geographic region without gradient updates or fine-tuning on
target data, demonstrating zero-shot generalization.

Algorithm 1 Training
Input: Dataset Xtrain, Region distribution p(rc), Tar-

get length
Output: Trained model parameters θ

1: repeat
2: rc ∼ p(rc)
3: H ← f(rc,Xtrain)
4: Xrc ← Find contiguous subsequences of trajecto-

ries in X that lie within rc
5: Filter Xrc by minimum length, maximum time

gaps, and speed limits
6: Normalize Xrc to [0, 1]D relative to rc
7: Select random sequence x ∈ Xrc

8: t ∼ Uniform({0, . . . , T})
9: ϵ ∼ N(0, I)

10: Update model parameters according to:
∇θ||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ,H, t)||

11: until converged

Algorithm 2 Generation
Input: Number of total synthetic samples Nout, Target

regionsRtarget
Dataset Xtarget, Trained model ϵθ , Diffusion

parameters {αt, σt}Tt=1

Output: Synthetic trajectories Xsynth

1: Xsynth ← ∅
2: for rc ∈ Rtarget do
3: Compute heatmap H = f(rc,Xtarget)

4: Nrc = Nout

∑
x

∑
n 1(x[n]∈rc)∑

r̃c

∑
x

∑
n 1(x[n]∈r̃c)

5: for n = 1, . . . , Nrc do
6: xT ∼ N (0, I)
7: for t = T, . . . , 1 do
8: z ∼ N (0, I) if t > 1, else z = 0
9: xt−1 = 1√

αt
(xt + ϵθ(xt, H, t)) + σtz

10: end for
11: Transform x0 from [0, 1]D to global coordinates

of rc
12: Xsynth ← Xsynth ∪ {x0}
13: end for
14: end for
15: return Xsynth

4 EVALUATION

To evaluate TDDM’s trajectory generation capabilities, we address three key questions:

1. Does TDDM generate higher-quality synthetic trajectories than existing approaches?
2. Can the spatial-temporal factorization enable better coverage of complex urban distributions?
3. Does coordinate normalization actually enable generalization to unseen regions?

We start with a comparative study on the unconditional generation task and compare against leading
methods representing major generative paradigms: TimeGAN (seminal time-series GAN), DiffTraj
(UNet-based trajectory diffusion model), Diffusion-TS (transformer-based time-series diffusion
model), TimeVAE (VAE for sequential data), and COSCI-GAN (multi-channel time-series model).
These baselines provide comprehensive coverage of trajectory generation approaches. See Ap-
pendix A for detailed comparisons. There we also include theoretical comparisons with recent work
without reproducible source code (TrajGen Cao & Li (2021), ControlTraj Zhu et al. (2024)) as well
as with COLA Wang et al. (2024).

Then, we investigate how well TDDM can generalize to new unseen environments. First by training
on a limited part of the map and, using only spatial prior, generating for the remaining map. Second
by showing how a TDDM trained on one city from one dataset can generalize to another city in
another dataset.

The evaluation is across three large-scale human trajectory datasets and across several evaluation
measures, which together span current challenges and wanted properties of trajectory generation.

Evaluation Measures Several perspectives exists on synthetic data quality in the literature (Alaa
et al., 2022; Wu et al., 2021; Esteban et al., 2017) covering a range of partially-overlapping aspects.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In this work, we propose to harmonize these and consequently span high fidelity, covering the support,
moving beyond copying the training data, downstream task informativeness and distributional propor-
tionality, as captured by the following five qualities: (I) Fidelity: (Alaa et al., 2022) The individual
synthetic samples should have similar characteristics to, or be indistinguishable from, samples from
the original distribution. (II) Diversity: (Alaa et al., 2022) It should be possible for synthetic data
to be drawn from any part of the unknown distribution’s support. (III) Proportionality: (Wu et al.,
2021) The probability of a sample occurring in the synthetic distribution should be proportional to the
probability of a sample occurring in the unknown distribution. (IV) Usefulness: (Esteban et al., 2017)
The synthetic data should capture aspects of the unknown distribution that is useful for downstream
tasks. (V) Generalization: (Alaa et al., 2022) Synthetic samples should not be mere copies of the
training data.

As there is not a single measure that can encapsulate all qualities, we propose to use the following
evaluation measures to paint a fuller picture of the synthetic data quality:

• TSTR: Train on synthetic, test on real (Esteban et al., 2017). A transformer decoder is
trained on the synthetic data, with the task to predict 10 future states given a sequence
of observations. The resulting model is then evaluated on the training data and the mean
absolute value is reported. This evaluates the usefulness, fidelity and diversity of the
synthetic data. Lower is better.

• KL Divergence: Evaluates support coverage and proportionality between distributions.
KL(R∥S) measures how well the synthetic distribution covers areas where real data exists,
penalizing missed modes in the real distribution. KL(S∥R) measures how well the synthetic
distribution stays within regions supported by real data, penalizing unrealistic generations.
Together, they provide complementary perspectives: low KL(R∥S) indicates good coverage
of the real distribution, while low KL(S∥R) indicates high fidelity of the synthetic samples.
Symmetric KL and Jensen–Shannon divergence balance these concerns, with JS providing
better stability when handling regions with zero probability. Lower is better.

We also make use of the measures Density Error, Trip Error, Length Error and Pattern Score,
introduced by Zhu et al. (2023). See Appendix E for details on all six measures.

Dataset and Preprocessing For evaluation we use three publicly accessible real-world GPS-
trajectory datasets: Geolife (Zheng et al., 2011), Porto (Moreira-Matias et al., 2013) and Cabspot-
ting (Piorkowski et al., 2022). Geolife consists of data from 182 users performing various activities
(e.g., walking, biking, driving) collected between 2007-2012, resulting in 17,621 trajectories mostly
centered around Beijing, China. Porto was originally released as part of the Taxi Service Trajectory
challenge and contains data on 442 taxis in Porto, Portugal, spanning more than a year. Cabspotting
is also a taxi dataset, with approximately 500 taxis from the San Francisco Bay Area in California,
United States, collected over 30 days. For all three datasets, we use time, longitude and latitude.
The data is also resampled to one observation per second and map matching is used to reduce
observation noise. All models, including baselines and TDDM, are trained and evaluated using the
same preprocessed datasets. See C for more details on preprocessing.

4.1 LARGE-SCALE UNCONDITIONAL TRAJECTORY GENERATION

The task of unconditional trajectory generation is to learn a generative model which generate a high
quality (I)-(V) synthetic dataset of trajectories. For each dataset, we train each model from scratch
and then sample them to generate a synthetic dataset used for evaluation. In the case of TDDM, that
means that a region and spatial prior components of the mixture are learned during training, with
both relative probability between regions, p(rc), and spatial priors Hrc for each region partitioned
on a grid covering the city in question. The sampling process is then to first draw a region, then
draw a trajectory from TDDM conditioned on that region’s spatial prior. Table 1 show the average
performance across the three datasets.

TDDM achieves the strongest overall performance, reducing distributional divergences by a large
margin compared to all baselines (KLsym : 0.277 vs. 1.153 for Diffusion-TS and 1.232 for DiffTraj,
JS : 0.059 vs. 0.198 and 0.209 respectively). This indicates both improved coverage and better
avoidance of unrealistic samples. Proportionality measures follow the same trend: TDDM attains the
lowest Density and Trip errors (0.019, 0.031), whereas the next-best diffusion models remain higher

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(0.029, 0.041). Fidelity is also strong: TSTR reaches 0.011, slightly improving over DiffTraj (0.013)
and Diffusion-TS (0.014). On Length error, TDDM matches Diffusion-TS at state of the art (0.004
vs. 0.003), accurately capturing the distribution of distances between consecutive trajectory points
(see Appendix F.2 for detailed visualizations), while all other methods trail substantially. Finally,
Pattern score is highest for TDDM (0.917), confirming that it best preserves global structure. Overall,
TDDM consistently surpasses existing GAN-, VAE-, and diffusion-based methods, combining high
fidelity with superior distributional alignment. Results for individual cities is found in the appendix
(Table 7).

Inspecting the trajectory samples visually (e.g. Figure 2) we see the advantage of TDDM over the
baselines. TDDM generates the trajectories that are the most similar to the original: roads are clearly
defined and there are holes in the support where no trajectories appear. Diffusion-TS, DiffTraj and
TimeVAE are all capable of capturing the overall shape of the cities, but fail at generating all roads
and often generates trajectories that are far from any road. TimeGAN and COSCI-GAN often fail to
capture the overall chape of the cities, and TimeGAN especially struggles with mode-collapse. These
observations are consistent across all three datasets, see Appendix F.1 for Geolife and Cabspotting.

4.2 ABLATION STUDY

To probe the role of spatial priors and region size, we conduct ablations (Table 2). Removing spatial
priors leaves TSTR unchanged but degrades KL-based scores by up to 5 times, showing that temporal
dynamics alone provide useful signals but fail to ensure coverage and proportionality. Reducing
partition size to 1× 1 km slightly increases Pattern (0.930 vs. 0.917) but worsens Length error (0.150
vs. 0.004), revealing a tradeoff between local coherence and global realism. The full 3 × 3 km
prior-based model provides the best overall balance. Results for individual cities is found in the
appendix (Table 8).

Map matching is used as part of the preprocessing to align the raw GPS trajectories to maps for the
respective cities, before GPS noise is added back. The same preprocessed data is used throughout
the experiments, both for training models and as the target distribution for the evaluation. To verify
the effect of map-matching, the top-three models (TDDM, Diffusion-TS, DiffTraj) are also trained
without map matching. All models show a significant drop in performance when not using map-
matched data, especially for Cabspotting due to its lower frequency of position updates. The results,
shown in Table 9 in the Appendix is consistent with the results where map-matching is used. This
demonstrates that TDDM’s improvements in performance compared to the baselines stem from the
deaggregation framework.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION

Finally, we evaluate zero-shot generalization (Table 3) for intra-city and city-to-city transfer. In both
settings, models are trained only on source regions and generate for target regions using solely the
spatial prior H , with no gradient updates on target trajectories. Results for individual cities, including

Table 1: Evaluation of different models’ performance across several datasets and measures. Models
are trained, sampled and evaluated once per dataset. The results are then averaged across datasets.

Measure TimeGAN TimeVAE COSCI-GAN Diffusion-TS DiffTraj TDDM

TSTR (↓) 0.037 ± 0.027 0.018 ± 0.010 0.023 ± 0.007 0.014 ± 0.009 0.013 ± 0.005 0.011 ± 0.006

KL(S ∥ R) (↓) 3.702 2.363 3.046 1.395 1.594 0.301

KL(R ∥ S) (↓) 2.586 1.268 1.740 0.911 0.869 0.253

KLsym (↓) 3.144 1.816 2.393 1.153 1.232 0.277

JS (↓) 0.397 0.287 0.363 0.198 0.209 0.059

KLspeed (↓) 0.465 0.225 6.463 0.035 0.126 0.013

Density (↓) 0.258 0.043 0.134 0.029 0.033 0.019

Trip (↓) 0.323 0.056 0.158 0.041 0.042 0.031

Length (↓) 0.097 0.042 0.789 0.003 0.065 0.004

Pattern (↑) 0.677 0.840 0.770 0.907 0.893 0.917

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation study. Models are trained, sampled and evaluated once per dataset. The results are
then averaged across datasets. Note that TDDM has a 3× 3 km region size.

Measure TDDM 1x1 km w/o spatial prior w/o spatial prior + rejection

TSTR (↓) 0.011 ± 0.006 0.024 ± 0.012 0.011 ± 0.006 0.014 ± 0.010

KL(S ∥ R) (↓) 0.301 0.339 1.569 1.925

KL(R ∥ S) (↓) 0.253 0.318 1.098 1.252

KLsym (↓) 0.277 0.328 1.334 1.588

JS (↓) 0.059 0.071 0.228 0.266

KLspeed (↓) 0.013 0.583 0.323 0.422

Density (↓) 0.019 0.022 0.067 0.063

Trip (↓) 0.031 0.044 0.074 0.081

Length (↓) 0.004 0.150 0.078 0.075

Pattern (↑) 0.917 0.930 0.833 0.860

the full city-to-city transfer table is found in the appendix (Table 12). Visualization of the marginal
distribution of the synthetic datasets are shown in Appendix (Figure 15).

Zero-shot intra-city transfer, where the model is trained from scratch on only 25% of a map (specif-
ically, a geographically contiguous quadrant as shown in Figures 12–14) and applied to the rest,
shows that aggregated TSTR remains comparable to full coverage (0.010 vs. 0.010), while KLsym
and JS divergences increase (0.545 vs. 0.278; 0.106 vs. 0.059). Pattern also remains high (0.927 vs.
0.940), indicating that spatial priors act as a strong regularizer. Although these aggregated results sug-
gest comparable performance, per-city analysis in the Appendix reveals more substantial variations
(Table 12).

In zero-shot city-to-city transfer, performance varies with the source dataset but remains competitive:
Pattern stays above 0.915 across all cases, proportionality measures are consistently lower than
GAN/VAEs and close to diffusion baselines, and TSTR often matches in-distribution performance
when trained on Porto. The main weakness is Length error, which increases to 0.06–0.11 across cities,
suggesting that fine-grained distance modeling is less transferable. Despite this, TDDM demon-
strates robust fidelity and distributional generalization across cities, highlighting the effectiveness of
separating spatial priors from temporal dynamics.

Interestingly, cross-city transfer from Porto often yields stronger results than training on limited
portions of the target city. On average, models trained on Porto generalize with lower KL and JS
divergences (0.335 and 0.071) than those trained on only 25% of the target city (0.545 and 0.106),
and they also maintain slightly better proportionality and Pattern scores (0.930 vs. 0.927). The
only exception is Length error, where access to even a small fraction of local data provides an
advantage (0.026 vs. 0.060). This reflects city-specific differences in trajectory length distributions,
which cannot be inferred from spatial priors alone. For instance, Porto exhibits a heavier-tailed
distribution than Cabspotting (Appendix F.2, Figure 19). This suggests that Porto captures temporal
dynamics and spatial statistics that are broadly representative across cities, making it an unexpectedly
strong universal source dataset for this setting. More generally, these results highlight a tradeoff:
if path-length accuracy is paramount, local data (even in small amounts) remains valuable, but for
distributional coverage and spatial structure, carefully chosen training cities may outperform partial
local coverage.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Generalization performance across different training scenarios. Left: Intra-city generalization
comparing training on the partial (25%) versus full (100%) spatial domain. Right: City-to-city
generalization where models are trained on one dataset and evaluated on others. Results are aggregated
across datasets.

Intra-city (Training data) City-to-city (Trained on)
Measure 25% 100% Geolife Porto Cabspotting

TSTR (↓) 0.010 ± 0.006 0.010 ± 0.007 0.016 ± 0.008 0.010 ± 0.005 0.011 ± 0.006

KL(S ∥ R) (↓) 0.615 0.305 0.903 0.357 0.610

KL(R ∥ S) (↓) 0.474 0.251 0.688 0.313 0.449

KLsym (↓) 0.545 0.278 0.795 0.335 0.530

JS (↓) 0.106 0.059 0.149 0.071 0.102

KLspeed (↓) 0.101 0.012 0.322 0.238 0.393

Density (↓) 0.021 0.015 0.018 0.018 0.022

Trip (↓) 0.036 0.027 0.031 0.036 0.042

Length (↓) 0.026 0.003 0.082 0.060 0.109

Pattern (↑) 0.927 0.940 0.925 0.930 0.915

5 CONCLUSION

We have presented the Temporal Deaggregation Diffusion Model (TDDM), a hierarchical generative
framework that separates spatial priors from temporal dynamics for large-scale trajectory generation.
Across three major urban datasets, TDDM consistently improves distributional alignment, achieving
up to 4 times lower KL divergences than the best diffusion baselines, while also setting new state
of the art on Density, Trip, and Pattern measures. Importantly, TDDM matches leading models on
Length error and outperforms them on fidelity as measured by TSTR. This is also confirmed visually.

Beyond unconditional generation, ablation studies highlight the critical role of spatial priors for
coverage and proportionality, while generalization experiments demonstrate that TDDM can synthe-
size realistic trajectories in unseen parts of cities and across entirely new cities. In particular, we
find that training on Porto generalizes better on average to other cities than training on partial local
data, suggesting that certain cities may act as representative source datasets. That is, datasets that
generalize broadly across urban contexts and provide stronger transferability than limited amounts of
local data.

Taken together, these results show that factorizing where and how people move not only advances
generation quality but also unlocks strong out-of-distribution generalization. TDDM thus provides
both a methodological advance and a practical step toward scalable and generalizable mobility
modeling.

Future Work. Several promising directions remain for extending TDDM. First, augmenting the
spatial prior H with additional marginal information (such as trajectory length distributions, time-
of-day priors, or directional priors for traffic handedness) could improve temporal fidelity and
enable accurate generalization to left-hand vs. right-hand traffic patterns. Second, incorporating road
hierarchy information as priors would better capture local speed structure and road network topology.
Finally, extending H with city-specific temporal marginals would likely improve cross-city temporal
fidelity while preserving the zero-shot spatial generalization capabilities demonstrated in this work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the quality and generalization capabilities of synthetic human
mobility trajectory generation using publicly available GPS datasets (Geolife, Porto, Cabspotting)
with appropriate licenses as detailed in Appendix B.1. We acknowledge that synthetic trajectory
generation technology has dual-use potential. While our primary motivation is to advance the state-of-
the-art in generative modeling to enable beneficial applications such as urban planning, transportation
research, and mobility simulation, we recognize that high-quality synthetic data generation techniques
could potentially be misused for surveillance or other harmful purposes. We encourage responsible
use of our methods and emphasize that practitioners should consider appropriate safeguards when
deploying synthetic trajectory generation in real-world applications. Additionally, we note that
privacy considerations must be carefully evaluated when applying our methods, as even publicly
available trajectory datasets can potentially be used for re-identification when combined with other
data sources or when analyzed with sufficient temporal and spatial resolution. We emphasize
that our methods do not guarantee privacy-preserving synthetic data generation, and we strongly
encourage practitioners to combine our approach with established privacy-preserving techniques such
as differential privacy when working with real-world trajectory data. Our research contributes to
the broader goal of developing high-fidelity generative models that can support legitimate research
and planning activities while reducing the need for access to sensitive real trajectory data. We
have designed our evaluation framework to focus on distributional properties and generation quality
without enabling inference about specific individuals in the original datasets.

REPRODUCIBILITY

To ensure full reproducibility of our results, we provide comprehensive implementation details and
experimental resources. We release complete, runnable source code for all experiments 1, including
implementations of TDDM and all baseline methods, along with evaluation code for all measures
used. The core TDDM algorithm is detailed in Algorithms 1 and 2, with complete architectural
specifications in Section 3 and extended implementation details in Appendix C. All hyperparameters
used in our experiments are provided in Appendix C.4, including the search space and final values
obtained through systematic optimization. Dataset preprocessing steps for all three datasets (Geolife,
Porto, Cabspotting) are comprehensively described in Appendix B, including data licenses, filtering
criteria, and map-matching procedures. Our evaluation methodology is detailed in Section 4 with
extended measure descriptions in Appendix E. All experimental configurations, including baseline
implementations and evaluation protocols, are provided to enable direct replication of our results
across all datasets and experimental conditions.

LLM USAGE

This paper was developed with assistance from large language models as writing and research tools,
including Claude (Anthropic), ChatGPT (OpenAI), and Cursor AI for code assistance. The LLMs
contributed to:

• Writing refinement: Improving clarity, flow, and exposition throughout the paper

• Technical positioning: Helping articulate the methodological approach and frame the
contribution within existing literature

• Experimental analysis: Assisting with evaluation design and results presentation

• Literature review: Supporting the discovery and organization of related work

• Code development: Assisting with implementation and debugging of code

All research concepts, experimental design, implementation, and scientific conclusions are the original
work of the authors. All LLM-generated content has been verified and validated by the authors. The
authors take full responsibility for all content and claims presented in this paper.

1Available at https://anonymous.4open.science/r/tddm/.

11

https://anonymous.4open.science/r/tddm/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Ahmed Alaa, Boris Van Breugel, Evgeny S. Saveliev, and Mihaela van der Schaar. How faithful
is your synthetic data? Sample-level metrics for evaluating and auditing generative models. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 290–306. PMLR, 17–23 Jul 2022.

Juan Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecasting
with structured state space models. Transactions on Machine Learning Research, 2023. ISSN
2835-8856.

Alfredo Alessandrini, Daniela Ghio, Silvia Migali, et al. Estimating net migration at high spatial
resolution. Publications Office of the European Union, 2020.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil
Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.

Erik Buchholz, Alsharif Abuadbba, Shuo Wang, Surya Nepal, and Salil S Kanhere. Sok: Can
trajectory generation combine privacy and utility? arXiv preprint arXiv:2403.07218, 2024.

Chu Cao and Mo Li. Generating mobility trajectories with retained data utility. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 2610–2620, 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016.

Yun Dai, Chao Yang, Kaixin Liu, Angpeng Liu, and Yi Liu. Timeddpm: Time series augmentation
strategy for industrial soft sensing. IEEE Sensors Journal, 2023.

Abhyuday Desai, Cynthia Freeman, Ian Beaver, and Zuhui Wang. TimeVAE: A variational auto-
encoder for multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (Medical) Time Series
Generation with Recurrent Conditional GANs. arXiv preprint arXiv:1706.02633, 2017.

Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
bilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11979–11987, 2024.

Colin Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical
Society: Series B (Methodological), 53(2):285–339, 1991.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020.

Cornelia Ilin, Sébastien Annan-Phan, Xiao Hui Tai, Shikhar Mehra, Solomon Hsiang, and Joshua E
Blumenstock. Public mobility data enables covid-19 forecasting and management at local and
global scales. Scientific reports, 11(1):13531, 2021.

Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General
purpose time series synthesis with generative adversarial networks. Advances in Neural Information
Processing Systems, 35:36999–37010, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ibai Lana, Javier Del Ser, Manuel Velez, and Eleni I Vlahogianni. Road traffic forecasting: Recent
advances and new challenges. IEEE Intelligent Transportation Systems Magazine, 10(2):93–109,
2018.

Luis Moreira-Matias, Michel Ferreira, Joao Mendes-Moreira, L. L., and J. J. Taxi Service Trajectory
- Prediction Challenge, ECML PKDD 2015. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C55W25.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8162–8171.
PMLR, 18–24 Jul 2021.

Venla Niva, Alexander Horton, Vili Virkki, Matias Heino, Maria Kosonen, Marko Kallio, Pekka
Kinnunen, Guy J Abel, Raya Muttarak, Maija Taka, et al. World’s human migration patterns in
2000–2019 unveiled by high-resolution data. Nature Human Behaviour, 7(11):2023–2037, 2023.

Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. Crawdad epfl/mobility,
2022.

Ali Seyfi, Jean-Francois Rajotte, and Raymond Ng. Generating multivariate time series with COmmon
Source CoordInated GAN (COSCI-GAN). Advances in Neural Information Processing Systems,
35:32777–32788, 2022.

Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
prediction. In International Conference on Machine Learning, pp. 31016–31029. PMLR, 2023.

Xiao Hui Tai, Shikhar Mehra, and Joshua E Blumenstock. Mobile phone data reveal the effects of
violence on internal displacement in afghanistan. Nature human behaviour, 6(5):624–634, 2022.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
volume 34, pp. 24804–24816. Curran Associates, Inc., 2021.

Valhalla Contributors. Valhalla: Open source routing engine for openstreetmap, 2025. URL https:
//github.com/valhalla/valhalla. MIT License.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30, 2017.

Huandong Wang, Changzheng Gao, Yuchen Wu, Depeng Jin, Lina Yao, and Yong Li. Pategail: a
privacy-preserving mobility trajectory generator with imitation learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 14539–14547, 2023.

13

https://github.com/valhalla/valhalla
https://github.com/valhalla/valhalla

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yu Wang, Tongya Zheng, Yuxuan Liang, Shunyu Liu, and Mingli Song. Cola: Cross-city mobility
transformer for human trajectory simulation. In Proceedings of the ACM on Web Conference 2024,
pp. 3509–3520, 2024.

Yun Wang, Faiz Currim, and Sudha Ram. Deep learning of spatiotemporal patterns for urban mobility
prediction using big data. Information Systems Research, 33(2):579–598, 2022.

Qitian Wu, Rui Gao, and Hongyuan Zha. Bridging explicit and implicit deep generative models via
neural stein estimators. Advances in Neural Information Processing Systems, 34:11274–11286,
2021.

Gang Xiong, Zhishuai Li, Meihua Zhao, Yu Zhang, Qinghai Miao, Yisheng Lv, and Fei-Yue Wang.
Trajsgan: A semantic-guiding adversarial network for rban trajectory generation. IEEE Trans-
actions on Computational Social Systems, 11(2):1733–1743, 2024. doi: 10.1109/TCSS.2023.
3235923.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series Generative Adversarial
Networks. Advances in neural information processing systems (NeurIPS), 32, 2019a.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International Conference on Learning Representations,
2019b.

Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation.
In The Twelfth International Conference on Learning Representations, 2024.

Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. Geolife GPS trajectory dataset - User
Guide, geolife gps trajectories 1.1 edition, July 2011.

Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James Yu. Difftraj: Generating gps
trajectory with diffusion probabilistic model. Advances in Neural Information Processing Systems,
36:65168–65188, 2023.

Yuanshao Zhu, James Jianqiao Yu, Xiangyu Zhao, Qidong Liu, Yongchao Ye, Wei Chen, Zijian
Zhang, Xuetao Wei, and Yuxuan Liang. Controltraj: Controllable trajectory generation with
topology-constrained diffusion model. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4676–4687, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX: SUPPLEMENTARY MATERIAL FOR LEARNING TO DEAGGREGATE

The appendix contains supplementary material to the paper Learning to Deaggregate: Unconditional
Generation of Trajectories at Scale. We provide detailed information on related work, model
architecture, implementation details, extended experimental results, and additional visualizations.

Contents

A. Extended Related Work . 15

B. Datasets and Preprocessing . 17

B.1. Dataset Descriptions and Licenses . 17
B.2. Preprocessing Pipeline . 17

C. Architecture Details . 18

C.1. Denoising Diffusion Probabilstic Models . 18
C.2. Optimization Details . 18
C.3. Encoder Input . 18
C.4. Hyperparameters . 19

D. Computational Complexity and Runtime Analysis 20

D.1. Theoretical Complexity . 20
D.2. Empirical Runtime and Memory Requirements 20

E. Extended Evaluation Measure Description . 21

F. Additional Results . 23

F.1. Additional Result Visualizations . 23
F.3. Quantitative Results Tables . 40

A EXTENDED RELATED WORK

In Section 1 and 4 of the main paper, we described the state-of-the-art models used for comparison.
Here, we provide extended details on how these models differ from our proposed TDDM approach,
particularly regarding their conditional generation capabilities and architectural choices.

Previous work on unconditional generation of time-series data has focused on variations of the
generative adversarial networks (GAN) architecture (Esteban et al., 2017; Yoon et al., 2019a; Jeon
et al., 2022) and, more recently diffusion models (Zhu et al., 2023; Yuan & Qiao, 2024).

There has also been an interest in using time-series generation for imputation and forecasting (Alcaraz
& Strodthoff, 2023; Tashiro et al., 2021; Shen & Kwok, 2023; Dai et al., 2023; Feng et al., 2024).
Transformer-based time-series foundation models have been proposed as a general purpose forecasting
tool (Ansari et al., 2024), but has not been evaluated on the unconditional generation task.

TimeGAN (Yoon et al., 2019a) consists of a generative adversarial network (GAN) operating inside
the latent space of an autoencoder. To further improve performance, they add an additional network
with the task of predicting one time step ahead. The encoder, decoder, supervisor, generator and
discriminator are all implemented using autoregressive models and in practice they use gated recurrent
units (GRUs).

The TimeVAE (Desai et al., 2021) architecture is a variant of the popular variational autoencoder
architecture. The autoencoder is trained with an additional loss component to have the latent space
conform to a known statistical distribution, in this instance a multivariate normal distribution. The

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

autoencoder is trained to both minimize the reconstruction loss, as well as minimizing the divergence
between the embedded data and the prior set for the latent space.

COSCI-GAN (Seyfi et al., 2022) proposes to use a separate generative adversarial network for each
channel of the data. The individual GANs all share single source of noise as input to the generator
and, additionally they have a central discriminator that is given the stacked output from the all the
generators as input.

Diffusion-TS (Yuan & Qiao, 2024) adapts the denoising diffusion architecture (Ho et al., 2020)
to generate time-series data by implementing the denoising step with a multilayer neural network
each consisting of a transformer block, a fully connected neural network as well as time-series
specific layers with the aim of improved performance and interpretability. The architecture also has
support for conditional generation to enable using the models for imputation and forecasting. As
Diffusion-TS moves away from the U-Net approach used in trajectory-specific models to a partial
Transformer architecture, we extend this further to a full Transformer-based architecture, avoiding
additional time-series specific induction biases while gaining increased performance for synthetic
data generation.

Recent work has extended these generative architectures to the specific domain of GPS trajectory
generation, with varying approaches to conditional control.

DiffTraj (Zhu et al., 2023) adapts the denoising diffusion architecture (Ho et al., 2020) to generate
GPS-trajectories. The U-Net architecture used in (Ho et al., 2020) for denoising, is also adapted to
work with trajectories. As part of the generation process, the model is conditioned on individual
trajectory-specific statistics such as velocity, distance, and departure time.

ControlTraj (Zhu et al., 2024) is a diffusion-based framework for generating GPS trajectories condi-
tioned on road network topology from OpenStreetMap and trip-specific attributes (departure time,
distance, speed). Similar to DiffTraj, ControlTraj uses trajectory-level conditioning to control in-
dividual samples. In contrast, TDDM conditions on spatial priors (aggregate marginal occupancy
distributions computed from multiple trajectories).

COLA (Wang et al., 2024) is a model for generating discrete trajectories, i.e., where space is
discretized into location IDs, and where samples are temporally sparser (hourly timesteps vs. 1-second
for TDDM). Both COLA and TDDM address city-to-city transfer, but using different paradigms.
COLA uses transfer learning with gradient-based adaptation, while TDDM achieves zero-shot transfer
via spatial prior conditioning. The zero-shot approach only requires marginal occupancy information,
while the transfer learning approach requires access to full trajectories from the target domain.

TrajGen (Cao & Li, 2021) is an unconditional generative model for trajectories. It uses an uncon-
ditional generative image generative model to generate images of trajectories. The images show a
top-down view of single trajectories. These are then decoded into a sequence of points, which are
then ordered and then timestamped. While both TrajGen and TDDM separate spatial and temporal
information, they differ fundamentally in representation and conditioning: TrajGen’s unconditional
approach means that once trained, the model has limited control of what trajectory patterns are
generated, whereas TDDM explicitly conditions on spatial priors H, enabling controllable generation
and zero-shot cross-city transfer.

While DiffTraj, ControlTraj, and Diffusion-TS all support conditional generation, our approach
differs fundamentally in the type and purpose of conditioning information. DiffTraj and ControlTraj
condition on sample-specific statistics (velocity, distance, road networks), creating a near one-to-
one mapping between conditions and individual trajectories. Diffusion-TS uses conditioning for
enabling imputation and forecasting rather than improving generation quality. In contrast, TDDM
conditions on spatial priors (aggregate marginal occupancy distributions computed from multiple
trajectories), which cannot be directly tied to any individual sample. This distinction enables TDDM
to generalize to entirely new environments through zero-shot transfer (requiring only marginal
occupancy information), while sample-specific conditioning limits generation to the trained spatial
region and increases memorization risk. TrajGen’s unconditional approach offers no control over
generated patterns, while COLA’s transfer learning paradigm requires access to full trajectories from
the target domain for gradient-based adaptation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B DATASETS AND PREPROCESSING

In this section, we describe the datasets used in our experiments and the preprocessing steps applied
to prepare the data for training and evaluation.

The datasets described in Section 4 of the main paper provide geographical diversity across different
continents while ensuring sufficient data density for meaningful evaluation. Our preprocessing
pipeline, described below, is applied uniformly to all methods to ensure fair comparison.

The trajectory segmentation process helps all methods by creating cleaner, more consistent training
data with fewer anomalies. It is important to note that while our model operates on such local
regions during both training and inference, we do not generate trajectories that extend beyond the
size of regions used during training. Instead, the hierarchical approach allows us to generate coherent
trajectories for multiple adjacent regions that together compose large-scale environments.

B.1 DATASET DESCRIPTIONS AND LICENSES

All three datasets used in this work are publicly available and contain GPS trajectory data from
different geographical regions:

• Geolife (Zheng et al., 2011): Data from 182 users collected between 2007-2012, resulting
in 17,621 trajectories mostly centered around Beijing, China. Released under the Microsoft
Research License Agreement, which allows academic research but prohibits redistribution.

• Porto (Moreira-Matias et al., 2013): Released as part of the Taxi Service Trajectory chal-
lenge, containing data on 442 taxis in Porto, Portugal, spanning more than a year. Released
under the CC BY 4.0 license.

• Cabspotting (Piorkowski et al., 2022): Taxi dataset with approximately 500 taxis from the
San Francisco Bay Area in California, United States, collected over 30 days. Released under
the CC BY 4.0 license. An account is required to download this data.

For all three datasets, we use time, longitude and latitude as the primary features.

B.2 PREPROCESSING

Raw GPS data contains multiple problems:

• GPS drift

• GPS being turned on even when the vehicle is not in use

• large spikes in velocity

We split trajectories into sub-trajectories if any observation leaves the geographic bounds, exceeds
the velocity limit or if too long time has passed since the previous observation. In the raw data, a
trajectory can span several days with several hours between observations. Introducing a time-limit
allows us to break these trajectories into individual and more time-constrained journeys.

We up-sample the data to one observation per second. Map matching using Valhalla (Valhalla
Contributors, 2025) is then used to map the GPS trajectories to the road network, the distance
between the matched and interpolated trajectories are used to estimate a noise distribution. The final
training data consists of the map matched trajectories with trajectory-noise added from the noise
distribution, i.e. we sample the noise distribution once per trajectory.

B.3 HARDWARE

All experiments were conducted on a system with the following specifications:

• CPU: AMD Ryzen 9 5900X

• RAM: 128 GB

• GPU: NVIDIA GeForce RTX 3090 Ti (24 GB GDDR6X)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C ARCHITECTURE DETAILS

C.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic includes two processes: a known noise-adding process and an
approximated denoising process. The noise-adding process starts at a random sample x ∈ X,
denoted x0 where 0 is the noise step, and adds noise at each steps according to a noise schedule
β = {β1, . . . , βT }. By using a Gaussian noise process (Ho et al., 2020), the forward process has
a closed expression for time point t: q(xt|x0) = N (xt;

√
ātx0, (1 − ᾱt)I), where αt := 1 − βt,

ᾱt :=
∏t

s=1 αs . The reverse process is starts at p(xT) = N (xT ; 0, I) and the transition function for
1 < t ≤ T is learned:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (6)

There are different ways to parameterize µθ(xt, t) and Σθ(xt, t) and we use the noise prediction
parameterization (Ho et al., 2020):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, Σθ(xt, t) = σ2

t I (7)

where ϵθ(xt, t) is a learned function and is trained to predict the added noise at step t of the noise
adding process. In this work, we extend ϵθ with discretized marginal distribution H as described in
the main paper in Section 3.

C.2 OPTIMIZATION DETAILS

We use the following positional encoding to encode a one-dimensional signal (Vaswani et al., 2017):

PE(pos,2i) = sin

(
−ei

log(10000)
d
2 − 1

)
(8)

PE(pos,2i+1) = cos

(
−ei

log(10000)
d
2 − 1

)
,where (9)

pos is the signal, e.g. a position x, position y or time point t, and i is the target dimension. For
position, we encode a single position observation in R into RD, so the function would be called once
for i ∈ 1 . . . D. We use the cosine noise schedule as proposed by Nichol & Dhariwal (2021):

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

(10)

with s = 0.008. Furthermore, we use the simplified loss function proposed by Ho et al. (2020):

Lsimple(θ) := Et,x0,ϵ

[∣∣∣∣ϵ− ϵθ(
√
ᾱt, x0 +

√
1− ᾱtϵ, t)

∣∣∣∣2] (11)

We use the Adam (Kingma & Ba, 2014) optimizer and implement our model in PyTorch (Ansel et al.,
2024).

C.3 ENCODER INPUT

We set N to be a hyperparameter, and D is the number of dimensions of a single observation in a
trajectory, in our case D = 2. The input to the transformer encoder is:

• L input tokens, each token corresponding to a time point in the noisy sequence. Note: The
token size depends on the number of features of the dataset. It is a concatenation of:

– x ∈ RDN , each corresponding to a dimension observed at each time point encoded
using positional encoding

– x ∈ RN , the time point encoded using the positional encoding introduced in (Vaswani
et al., 2017)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to a
noisy sequence

• Conditional information: 64 tokens, each corresponding to a patch of the heatmap and
being a concatenation of:

– x ∈ RN , corresponding to the x position of the patch. Encoded using positional
encoding (Vaswani et al., 2017).

– x ∈ RN , corresponding to the y position of the patch. Encoded using positional
encoding (Vaswani et al., 2017).

– x ∈ RN , corresponding to the intensity of the heatmap. Encoded using a linear
projection (Dosovitskiy et al., 2020).

– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to the
conditional information

• A token encoding the current denoising step:

– x ∈ RN(D+1), the denoising step encoded using positional encoding (Vaswani et al.,
2017)

– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to the
denoising step

C.4 HYPERPARAMETERS

We employ Optuna (Akiba et al., 2019) with Tree-structured Parzen Estimator (TPE) sampling to
optimize our model’s hyperparameters. The optimization process consists of 50 trials, where the
model is trained from scratch trains for 100 epochs. For each trial, we sample hyperparameters from
the defined search space and evaluate the model’s performance by calculating the Jensen-Shannon
divergence between the marginal distributions of the synthetic data and the marginal distributions of
the training data. We only use the Geolife dataset for hyperparameter tuning. The hyperparameters
included in the optimization are shown in Table 4 and the final values are shown in Table 5.

Table 4: Hyperparameter Search Space

Parameter Search Space Description
Hidden Dimension {4, 8, 16, 32, 64, 128} Size of transformer hidden layers
Number of Layers {1, 2, 4, 8} Depth of transformer architecture
Number of Attention Heads {1, 2, 4, 8} Multi-head attention mechanism size
Diffusion Timesteps {100, 500, 1000} Number of diffusion steps
Learning Rate [10−6, 10−2] Log-uniform sampling

The Jensen-Shannon divergence was chosen as the optimization metric because it directly aligns with
our goal of generating synthetic trajectories that match the distributional properties of real data, as
discussed in Section 4 where we evaluate models on both sample-level fidelity and distribution-level
similarity.

Table 5: Final Hyperparameters

Parameter Value
Hidden Dimension 128
Number of Layers 8
Number of Attention Heads 2
Diffusion Timesteps 500
Learning Rate 0.00017483

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D COMPUTATIONAL COMPLEXITY AND RUNTIME ANALYSIS

In this section, we provide a detailed analysis of TDDM’s computational complexity and empirical
runtime characteristics. This addresses concerns about the scalability and practical deployment of our
method for large-scale trajectory generation.

D.1 THEORETICAL COMPLEXITY

The computational complexity of TDDM is determined by the transformer encoder architecture used
for denoising at each diffusion step. For a single denoising step, the per-trajectory cost is:

O((L+R)d2 + (L+R)2d) (12)

where:

• L is the trajectory sequence length (number of time steps)
• R is the number of spatial prior patches (64 in our implementation)
• d is the hidden dimension of the transformer (128 in our final model)

The first term (L+R)d2 corresponds to the cost of the feed-forward layers in the transformer, while
the second term (L+R)2d corresponds to the cost of the self-attention mechanism that processes
both trajectory tokens and spatial prior tokens jointly.

Scalability to large cities. Importantly, because we operate on fixed-size 3× 3 km regions with
a constant number of spatial prior patches (R = 64), the per-trajectory computational cost remains
constant across cities of different sizes. City-scale generation scales linearly with geographic coverage
(city area), as we independently process each region and stitch the results together according to the
mixture model formulation in Section 3. This is in contrast to methods that must process entire
city-scale contexts, which would scale quadratically with area in attention-based models.

D.2 EMPIRICAL RUNTIME AND MEMORY REQUIREMENTS

We measure TDDM’s inference performance on an NVIDIA GeForce RTX 3090 Ti (24 GB GDDR6X)
for different batch sizes. Table 6 shows the time per trajectory and peak GPU memory consumption.

Table 6: TDDM inference performance across different batch sizes on RTX 3090 Ti. Time per trajec-
tory decreases with larger batch sizes due to improved GPU utilization, while memory consumption
grows sub-linearly.

Batch Size Time per Trajectory (ms) Peak GPU Memory (MB)
1 1162 313
8 427 340

64 349 558
256 340 1307

Key observations from these measurements:

• Batching efficiency: Increasing batch size from 1 to 256 reduces per-trajectory time by
approximately 3.4× (from 1162 ms to 340 ms), demonstrating good GPU utilization at
higher batch sizes.

• Memory efficiency: Peak GPU memory grows sub-linearly with batch size. A 256× increase
in batch size only requires approximately 4.2× increase in memory (from 313 MB to 1307
MB), indicating efficient memory usage that can accommodate large-scale generation on
modern GPUs.

• Practical throughput: At the batch size of 256, TDDM can generate approximately 2.9
trajectories per second on a single RTX 3090 Ti. For a typical city-scale dataset with 50,000
trajectories, complete generation takes approximately 4.7 hours.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Comparison with baselines: While direct runtime comparisons depend on implementation
details, hardware, and sampling procedures, TDDM’s per-trajectory inference time of 340ms
is competitive with other diffusion-based methods. The ability to batch efficiently and the
constant per-trajectory cost (independent of city size) make TDDM practical for large-scale
applications.

E EXTENDED EVALUATION MEASURES DESCRIPTION

In Section 4, we introduced evaluation measures spanning multiple quality dimensions for synthetic
trajectory data. Here we provide a more detailed description of these measures, their theoretical
foundations, and how they complement each other in our benchmark.

E.1 DIFFTRAJ MEASURES

The measures from DiffTraj (Zhu et al., 2023) are2:

• Density Error: A pair of heatmaps of the training and synthetic data are calculated by
dividing the city into 16× 16 blocks. The number of observations in each block are counted
and normalized. The Jensen-Shannon divergence is calculated between the training data
heatmap and synthetic data heatmap.

• Trip Error: Two heatmap pairs, each 16 × 16 blocks, are calculated. The first pair is of
the start positions for all trajectories, one heatmap for the training data and another for the
synthetic data. The second pair is calculated from the last position for all trajectories. The
Jensen-Shannon divergence is calculated once for each pair and then the average is reported.

• Length Error: The distance between consecutive observations are calculated, once for the
training data and once for the synthetic data. Histograms are calculated for each, with the
number of bins set to 16. Finally, the Jensen-Shannon divergence is calculated between the
histogram of training data and the histogram of the synthetic data.

• Pattern Score: Using the heatmaps from Density Error, the top N areas (highest count) from
the training and synthetic data are collected. The F-score is then calculated and reported.

E.2 KL-BASED DISTRIBUTION MEASURES

Our evaluation framework incorporates several Kullback-Leibler (KL) divergence-based measures
that address different quality dimensions of synthetic trajectory data:

• KL(R∥S): Kullback-Leibler divergence of the real (R) distribution from the synthetic (S)
distribution measures how well the synthetic distribution covers areas where real data exists:

KL(R ∥ S) =
∑
i,j

Ri,j log
Ri,j

Si,j
(13)

This directly corresponds to our diversity quality dimension (II), as it heavily penalizes when
synthetic data misses modes present in the real distribution.

• KL(S∥R): Kullback-Leibler divergence of the synthetic (S) distribution from the real (R)
distribution measures how well the synthetic distribution stays within regions supported by
real data:

KL(S ∥ R) =
∑
i,j

Si,j log
Si,j

Ri,j
(14)

This reflects our fidelity quality dimension (I), penalizing synthetic data that generates
unrealistic trajectories in regions with little or no real data.

2To the best of the authors ability to interpret the paper since the evaluation code is not available for DiffTraj.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• KLsym: The symmetric KL divergence balances both directional measures:

KLsym =
1

2
(KL(S ∥ R) + KL(R ∥ S)) (15)

• JS: Jensen-Shannon divergence provides a bounded symmetric measure:

JS(S,R) =
1

2
KL(S ∥ M) +

1

2
KL(R ∥ M) (16)

where M = 1
2 (S + R). This avoids numerical instabilities with zero probabilities and is

bounded between 0 and 1.

Together, these measures address the proportionality quality dimension (III) - low values in both KL
directions indicate the synthetic distribution not only covers the same support as the real distribution
but also assigns similar probability mass across that support. The symmetric measures (KLsym and
JS) provide balanced assessments that account for both support coverage and proportionality, with JS
offering better numerical stability when regions with zero probability are present in either distribution.

E.3 THEORETICAL JUSTIFICATION AND IMPLEMENTATION

Our implementation of KL-based measures uses a discretizations with a 256 × 256 grid over the
entire city. This is ×256 higher resolution than what is used in DiffTraj, to enabling more precise
evaluation of fine-grained spatial patterns.

KL divergence measures are theoretically well-suited for trajectory evaluation because:

• They directly quantify the information loss when approximating one distribution with
another

• They are sensitive to both the support coverage and the proportionality of distributions

• The two directional variants (KL(S∥R) and KL(R∥S)) provide complementary insights into
different failure modes

E.4 RELATION TO SAMPLE QUALITY

The combined set of measures provides a comprehensive evaluation framework addressing all five
quality dimensions from Section 4:

• Fidelity: Length Error, Trip Error, and KL(R∥S) all measure aspects of fidelity by ensuring
trajectories have realistic properties.

• Diversity: KL(S∥R) and Pattern Score evaluate how well synthetic trajectories cover the
support of real data.

• Proportionality: All KL-based measures, but especially JS, capture proportionality by
measuring distributional similarity.

• Usefulness: TSTR directly measures usefulness for a downstream prediction task.

• Generalization: See Section E.6.

E.5 LIMITATIONS ANALYSIS

The DiffTraj measures provide a more coarse-grained evaluation using 16× 16 spatial discretization,
while our KL-based measures use 256× 256 grids for finer-grained assessment. The ×256 higher
resolution allows more precise evaluation of the model’s ability to capture detailed spatial distributions,
especially important in urban environments where road networks create complex movement patterns.

By combining these measures with TSTR, our benchmark provides a comprehensive evaluation that
addresses both distribution-level properties and practical utility of the generated trajectories, spanning
all important dimensions of synthetic data quality discussed in Section 4.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.6 EVALUATING GENERALIZATION

Our evaluation framework extends beyond traditional in-distribution testing to assess different types
of generalization capabilities:

• In-distribution generalization: Unlike predictive models where test sets evaluate prediction
accuracy, unconditional generative models require evaluating whether they capture the
full distribution rather than memorizing training examples. For trajectory generation, we
directly compare distribution-level properties between synthetic and real data instead of
using held-out test sets. Using a held-out test would require massive data amounts and/or
an inverted data split, e.g. 20% train, 80% test to sufficiently assess support coverage and
proportionality. This is currently infeasible in practice. Also, current models still struggle to
even replicate (memorize) the training data in unconditional generation, making this less of
a relevant problem in the field for now.

• Out-of-distribution generalization: A distinctive feature of our benchmark is its assessment
of spatial transfer capability, evaluating a model’s ability to generate plausible trajectories
for geographic regions not represented in training data:

– Intra-city generalization (Section 4.3): Tests whether models can generate trajectories
for unseen areas within the same city

– City-to-city generalization (Section 4.3): Tests whether models can transfer knowledge
between entirely different cities

The evaluation measures take on different significance when assessing generalization. KL(S∥R)
becomes particularly important for out-of-distribution evaluation as it tests whether the synthetic
distribution covers the full support of the real distribution in previously unseen regions. Meanwhile,
KL(R∥S) reveals whether the model avoids generating implausible trajectories in new environments.
The Pattern Score helps determine if important spatial areas in the new environment are captured,
while TSTR directly measures the usefulness of the generated data for downstream tasks in these new
settings.

Our experiments in Sections 4.3 demonstrate how this comprehensive evaluation identifies genuine
generalization capabilities rather than mere memorization. The combination of measures reveals
whether a model has learned transferable spatial dynamics or is simply reproducing patterns from its
training data. This evaluation approach provides a more rigorous assessment of generalization than
traditional machine learning benchmarks, which typically only test in-distribution generalization.

F ADDITIONAL RESULTS

In Section 4 we present the results. Here we first provide additional visualization, focusing on more
detailed view of and also providing a closer-look at the synthetic data generated. We also provide full
tables as a complement to the tables provide figures that are averaged across datasets.

F.1 ADDITIONAL VISUALIZATION

The visualizations presented in this section supports the quantitative results in Section 4.1 of the main
paper. Specifically, Figures 6–8 demonstrate TDDM’s ability to generate synthetic trajectories that
closely match the spatial distribution patterns of the original data across all three datasets (Geolife,
Porto, and Cabspotting).

These visualizations highlight two key aspects of TDDM’s performance claimed in the main paper:
(1) the high fidelity of individual generated trajectories, which follow road networks and maintain
realistic movement patterns; and (2) the proportionality of the generated distribution, as shown by the
similarity between the heatmaps of real and synthetic data. The comparison with baseline methods in
Figures 2, 4 and 5 visually confirms TDDM’s strong performance reported in Table 7.

The generalization capabilities of TDDM are further illustrated in Figures 12–14, which show how our
model trained on a limited portion of each city can generate high-quality trajectories for previously
unseen areas. Additionally, Figures 9–11 provide a closer look at trajectories in several regions

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 4: Comparison between original and synthetic trajectories for Geolife dataset. First row
shows individual trajectory samples while bottom shows log-density heatmaps of all observations.
The synthetic data of the proposed model, TDDM, (second column) most closely matches both the
individual trajectory patterns and overall density distribution of the original data.

Figure 5: Comparison between original and synthetic trajectories for Cabspotting dataset. First row
shows individual trajectory samples while bottom shows log-density heatmaps of all observations.
The synthetic data of the proposed model, TDDM, (second column) most closely matches both the
individual trajectory patterns and overall density distribution of the original data.

chosen at random, across the three datasets, demonstrating the consistent quality of our generated
data compared to real trajectories and baseline methods.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 6: Detailed visualization for Geolife dataset. Comparison between training data (top) and
synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while
right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely
match both the individual trajectory patterns and overall density distribution of the original data.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 7: Detailed visualization for Porto dataset. Comparison between training data (top) and
synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while
right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely
match both the individual trajectory patterns and overall density distribution of the original data.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 8: Detailed visualization for Cabspotting dataset. Comparison between training data (top) and
synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while
right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely
match both the individual trajectory patterns and overall density distribution of the original data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 9: Random samples from training data and synthetic data across 11 different regions chosen at
random, all from Cabspotting

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 10: Random samples from training data and synthetic data across 11 different regions chosen
at random, all from Geolife

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 11: Random samples from training data and synthetic data across 10 different regions chosen
at random, all from Porto.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 12: Generalization experiment. The model is trained on the lower left quadrant and used to
generate data on the remaining geographical area. Top left: Data from Geolife, the lower-left quadrant
of which used for training. Top right: heatmap of training data, Bottom left: synthetic trajectories.
Bottom right: heatmap of the synthetic data.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 13: Generalization experiment. The model is trained on the top-left quadrant and used to
generate data on the remaining geographical area. Top left: Data from Porto, the top-left quadrant
of which used for training. Top right: heatmap of training data, Bottom left: synthetic trajectories.
Bottom right: heatmap of the synthetic data.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 14: Generalization experiment. The model is trained on the lower left quadrant and used to
generate data on the remaining geographical area. Top left: Data from Cabspotting, the lower-left
quadrant of which used for training. Top right: heatmap of training data, Bottom left: synthetic
trajectories. Bottom right: heatmap of the synthetic data.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 15: City-to-city generalization experiment visualization. The model is trained on one city and
then used to generate data on the remaining geographical area using spatial priors.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

F.2 LENGTH DISTRIBUTION ANALYSIS

To provide deeper insight into the Length Error measure described in Section 4, we visualize the
length distributions (distance between consecutive trajectory points) for both training and synthetic
data across all experimental settings. Each histogram shows the normalized distribution of Euclidean
distances between consecutive points, with the Jensen-Shannon divergence between these distributions
reported in the top-right corner.

These visualizations demonstrate TDDM’s ability to accurately match the fine-grained movement
patterns of real trajectories. The close alignment between training (teal) and synthetic (red) distribu-
tions across diverse experimental conditions validates the quantitative Length Error results presented
in the main paper.

0.0

0.2

0.4

0.6

0.8

T
im

e
G

A
N

0.212

Geolife
0.058

Cabspotting
0.021

Porto

Train

Synth

0.0

0.2

0.4

0.6

0.8

T
im

e
V

A
E

0.047 0.005 0.074

0.0

0.2

0.4

0.6

0.8

C
O

S
C

I-
G

A
N

0.774 0.885 0.707

0.0

0.2

0.4

0.6

0.8

D
iff

u
si

o
n
-T

S

0.002 0.003 0.005

0.0

0.2

0.4

0.6

0.8

D
iff

T
ra

j

0.043 0.139 0.012

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.0

0.2

0.4

0.6

0.8

T
D

D
M

0.004

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.003

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.005

Figure 16: Length distribution comparison for unconditional generation benchmark. Each subplot
shows the distribution of distances between consecutive trajectory points for training data (teal)
and synthetic data (red) across three datasets (Geolife, Cabspotting, Porto) and six methods. The
Jensen-Shannon divergence is shown in the top-right corner of each subplot.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

T
D

D
M

0.004

Geolife
0.003

Cabspotting
0.005

Porto

Train

Synth

0.0

0.2

0.4

0.6

0.8

1
x
1

k
m

0.256 0.043 0.152

0.0

0.2

0.4

0.6

0.8

w
/
o

sp
a
ti

a
l

p
ri

o
r 0.095 0.105 0.034

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.0

0.2

0.4

0.6

0.8

w
/
o

sp
a
ti

a
l

p
ri

o
r

+
re

je
c
ti

o
n

0.074

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.105

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.045

Figure 17: Length distribution comparison for ablation study. Shows the impact of different architec-
tural choices on TDDM’s ability to match the length distribution of training data.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

T
im

e
G

A
N

0.201

Geolife
0.065

Cabspotting
0.021

Porto

Train

Synth

0.0

0.2

0.4

0.6

0.8

T
im

e
V

A
E

0.054 0.005 0.070

0.0

0.2

0.4

0.6

0.8

C
O

S
C

I-
G

A
N

0.769 0.889 0.702

0.0

0.2

0.4

0.6

0.8

D
iff

u
si

o
n
-T

S

0.003 0.003 0.004

0.0

0.2

0.4

0.6

0.8

D
iff

T
ra

j

0.043 0.135 0.012

0.0

0.2

0.4

0.6

0.8

T
D

D
M

0.003 0.002 0.005

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.0

0.2

0.4

0.6

0.8

2
5
%

0.016

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.049

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.008

Figure 18: Length distribution comparison for intra-city generalization experiments. Models are
trained on 25% of the city and evaluated on the full area.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

G
e
o
li

fe

0.004

Geolife
0.016

Sampled for:
Cabspotting

0.148

Porto

Train

Synth

0.0

0.2

0.4

0.6

0.8

T
ra

in
e
d

o
n
:

P
o
rt

o

0.028 0.092 0.005

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.0

0.2

0.4

0.6

0.8

C
a
b
sp

o
tt

in
g

0.024

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.003

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.193

Figure 19: Length distribution comparison for city-to-city generalization experiments. Each row
shows a model trained on one city and evaluated on all three cities.

0.00

0.25

0.50

0.75

1.00

T
D

D
M

0.004

Geolife
0.003

Cabspotting
0.005

Porto

Train

Synth

0.00

0.25

0.50

0.75

1.00

1
0
%

d
ro

p
o
u
t

0.442 0.107 0.418

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.00

0.25

0.50

0.75

1.00

2
0
%

d
ro

p
o
u
t

0.445

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.136

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.429

Figure 20: Length distribution comparison for map dropout robustness experiments. Shows TDDM’s
performance with varying levels of missing road network information.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

D
iff

u
si

o
n
-T

S

0.005

Geolife
0.005

Cabspotting
0.007

Porto

Train

Synth

0.0

0.2

0.4

0.6

D
iff

T
ra

j

0.139 0.286 0.062

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.0

0.2

0.4

0.6

T
D

D
M

0.003

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.006

0.000 0.002 0.004 0.006 0.008 0.010
Distance

0.004

Figure 21: Length distribution comparison for models trained without map matching.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

F.3 QUANTITATIVE RESULTS

Complementing the summary tables, we list the tables with the quantitative results.

More specifically:

• Large-scale unconditional trajectory generation (4.1), Table 7.
• Ablation study (4.2), Table 8.
• Intra-city (4.3), Table 11.
• City-to-city (4.3), Table 12.
• Map matching ablation, Table 9.
• Robustness to map dropout, Table 10.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 7: Evaluation of different models’ performance across several datasets and measures.

Measure Model Geolife Porto Cabspotting

TSTR (↓)

TimeGAN 0.052 ± 0.031 0.038 ± 0.025 0.020 ± 0.012
TimeVAE 0.017 ± 0.010 0.016 ± 0.007 0.021 ± 0.011

COSCI-GAN 0.023 ± 0.006 0.021 ± 0.005 0.024 ± 0.009
Diffusion-TS 0.013 ± 0.009 0.010 ± 0.005 0.021 ± 0.008

DiffTraj 0.013 ± 0.004 0.014 ± 0.004 0.013 ± 0.007
TDDM 0.010 ± 0.005 0.009 ± 0.004 0.015 ± 0.008

KL(S ∥ R) (↓)

TimeGAN 5.566 3.606 1.933
TimeVAE 2.786 2.688 1.615

COSCI-GAN 4.650 2.910 1.578
Diffusion-TS 0.730 2.114 1.340

DiffTraj 1.498 2.025 1.259
TDDM 0.202 0.437 0.265

KL(R ∥ S) (↓)

TimeGAN 3.823 2.632 1.302
TimeVAE 1.236 1.445 1.124

COSCI-GAN 2.453 1.696 1.070
Diffusion-TS 0.598 1.135 0.999

DiffTraj 0.767 1.023 0.817
TDDM 0.177 0.336 0.246

KLsym (↓)

TimeGAN 4.695 3.119 1.618
TimeVAE 2.011 2.067 1.369

COSCI-GAN 3.552 2.303 1.324
Diffusion-TS 0.664 1.625 1.169

DiffTraj 1.132 1.524 1.038
TDDM 0.190 0.386 0.255

JS (↓)

TimeGAN 0.489 0.430 0.271
TimeVAE 0.294 0.327 0.241

COSCI-GAN 0.486 0.364 0.240
Diffusion-TS 0.114 0.264 0.216

DiffTraj 0.181 0.252 0.195
TDDM 0.040 0.079 0.056

KLspeed (↓)

TimeGAN 0.324 0.361 0.710
TimeVAE 0.351 0.240 0.083

COSCI-GAN 6.581 5.216 7.592
Diffusion-TS 0.038 0.015 0.053

DiffTraj 0.031 0.035 0.312
TDDM 0.011 0.020 0.007

Density (↓)

TimeGAN 0.433 0.252 0.088
TimeVAE 0.063 0.028 0.038

COSCI-GAN 0.264 0.078 0.060
Diffusion-TS 0.035 0.021 0.031

DiffTraj 0.046 0.023 0.031
TDDM 0.023 0.019 0.014

Trip (↓)

TimeGAN 0.510 0.346 0.115
TimeVAE 0.078 0.049 0.040

COSCI-GAN 0.295 0.096 0.082
Diffusion-TS 0.049 0.037 0.036

DiffTraj 0.052 0.035 0.037
TDDM 0.039 0.037 0.018

Length (↓)

TimeGAN 0.212 0.021 0.058
TimeVAE 0.047 0.074 0.005

COSCI-GAN 0.774 0.707 0.885
Diffusion-TS 0.002 0.005 0.003

DiffTraj 0.043 0.012 0.139
TDDM 0.004 0.005 0.003

Pattern (↑)

TimeGAN 0.490 0.730 0.810
TimeVAE 0.780 0.890 0.850

COSCI-GAN 0.650 0.830 0.830
Diffusion-TS 0.920 0.900 0.900

DiffTraj 0.890 0.880 0.910
TDDM 0.910 0.920 0.920

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 8: Ablation study of the effect of region size and spatial prior.

Measure Model Geolife Porto Cabspotting

TSTR (↓)

TDDM 0.010± 0.005 0.009± 0.004 0.015± 0.008
1x1 km 0.030± 0.014 0.021± 0.011 0.022± 0.011

w/o spatial prior 0.009± 0.006 0.011± 0.005 0.012± 0.007
w/o spatial prior + rejection 0.021± 0.009 0.007± 0.004 0.015± 0.008

KL(S ∥ R) (↓)

TDDM 0.202 0.437 0.265
1x1 km 0.279 0.552 0.184

w/o spatial prior 0.926 2.349 1.433
w/o spatial prior + rejection 1.343 2.550 1.881

KL(R ∥ S) (↓)

TDDM 0.177 0.336 0.246
1x1 km 0.206 0.579 0.168

w/o spatial prior 0.858 1.314 1.123
w/o spatial prior + rejection 0.890 1.478 1.388

KLsym (↓)

TDDM 0.190 0.386 0.255
1x1 km 0.243 0.566 0.176

w/o spatial prior 0.892 1.831 1.278
w/o spatial prior + rejection 1.117 2.014 1.635

JS (↓)

TDDM 0.040 0.079 0.056
1x1 km 0.054 0.121 0.038

w/o spatial prior 0.156 0.296 0.231
w/o spatial prior + rejection 0.187 0.324 0.285

KLspeed (↓)

TDDM 0.011 0.020 0.007
1x1 km 1.097 0.528 0.123

w/o spatial prior 0.478 0.124 0.368
w/o spatial prior + rejection 0.406 0.215 0.644

Density (↓)

TDDM 0.023 0.019 0.014
1x1 km 0.021 0.033 0.011

w/o spatial prior 0.099 0.043 0.060
w/o spatial prior + rejection 0.086 0.046 0.055

Trip (↓)

TDDM 0.039 0.037 0.018
1x1 km 0.049 0.066 0.018

w/o spatial prior 0.099 0.055 0.068
w/o spatial prior + rejection 0.103 0.070 0.070

Length (↓)

TDDM 0.004 0.005 0.003
1x1 km 0.256 0.152 0.043

w/o spatial prior 0.095 0.034 0.105
w/o spatial prior + rejection 0.074 0.045 0.105

Pattern (↑)

TDDM 0.910 0.920 0.920
1x1 km 0.930 0.910 0.950

w/o spatial prior 0.860 0.850 0.790
w/o spatial prior + rejection 0.880 0.870 0.830

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 9: Map matching ablation study. Models trained without map matching during preprocessing.

Measure Model Geolife Porto Cabspotting

TSTR (↓)
Diffusion-TS 0.015± 0.006 0.012± 0.005 0.020± 0.009

DiffTraj 0.019± 0.005 0.007± 0.004 0.013± 0.007
TDDM 0.013± 0.010 0.010± 0.004 0.011± 0.005

KL(S ∥ R) (↓)
Diffusion-TS 1.196 2.401 1.591

DiffTraj 3.068 2.799 1.623
TDDM 0.797 1.779 1.747

KL(R ∥ S) (↓)
Diffusion-TS 1.038 1.309 1.263

DiffTraj 1.387 1.545 1.036
TDDM 0.739 1.451 1.469

KLsym (↓)
Diffusion-TS 1.117 1.855 1.427

DiffTraj 2.227 2.172 1.329
TDDM 0.768 1.615 1.608

JS (↓)
Diffusion-TS 0.182 0.298 0.249

DiffTraj 0.319 0.341 0.238
TDDM 0.138 0.259 0.264

KLspeed (↓)
Diffusion-TS 0.058 0.018 0.042

DiffTraj 0.381 0.034 0.416
TDDM 0.012 0.013 0.017

Density (↓)
Diffusion-TS 0.051 0.025 0.055

DiffTraj 0.119 0.078 0.043
TDDM 0.038 0.022 0.040

Trip (↓)
Diffusion-TS 0.064 0.044 0.065

DiffTraj 0.127 0.087 0.051
TDDM 0.052 0.037 0.057

Length (↓)
Diffusion-TS 0.005 0.007 0.005

DiffTraj 0.139 0.062 0.286
TDDM 0.003 0.004 0.006

Pattern (↑)
Diffusion-TS 0.870 0.890 0.790

DiffTraj 0.800 0.810 0.860
TDDM 0.910 0.880 0.880

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Table 10: Robustness to map dropout. Models trained with random dropout of map information
during training.

Measure Model Geolife Porto Cabspotting

TSTR (↓)
TDDM 0.010± 0.005 0.009± 0.004 0.015± 0.008

10% dropout 0.027± 0.014 0.030± 0.016 0.020± 0.011
20% dropout 0.025± 0.011 0.033± 0.017 0.021± 0.010

KL(S ∥ R) (↓)
TDDM 0.202 0.437 0.265

10% dropout 0.246 0.213 0.214
20% dropout 0.243 0.211 0.215

KL(R ∥ S) (↓)
TDDM 0.177 0.336 0.246

10% dropout 0.379 0.200 0.253
20% dropout 0.376 0.197 0.256

KLsym (↓)
TDDM 0.190 0.386 0.255

10% dropout 0.313 0.207 0.234
20% dropout 0.310 0.204 0.235

JS (↓)
TDDM 0.040 0.079 0.056

10% dropout 0.061 0.045 0.049
20% dropout 0.061 0.044 0.049

KLspeed (↓)
TDDM 0.011 0.020 0.007

10% dropout 4.442 2.422 0.837
20% dropout 4.523 3.096 1.279

Density (↓)
TDDM 0.023 0.019 0.014

10% dropout 0.016 0.011 0.011
20% dropout 0.016 0.011 0.011

Trip (↓)
TDDM 0.039 0.037 0.018

10% dropout 0.032 0.034 0.017
20% dropout 0.033 0.035 0.018

Length (↓)
TDDM 0.004 0.005 0.003

10% dropout 0.442 0.418 0.107
20% dropout 0.445 0.429 0.136

Pattern (↑)
TDDM 0.910 0.920 0.920

10% dropout 0.920 0.930 0.950
20% dropout 0.910 0.920 0.950

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 11: Generalization experiment.

Measure Trained on Geolife Porto Cabspotting

TSTR (↓) 100% 0.007± 0.004 0.006± 0.003 0.016± 0.009
25% 0.011± 0.006 0.010± 0.004 0.014± 0.008

KL(S ∥ R) (↓) 100% 0.199 0.448 0.266
25% 0.424 0.916 0.461

KL(R ∥ S) (↓) 100% 0.168 0.340 0.245
25% 0.373 0.629 0.403

KLsym (↓) 100% 0.184 0.394 0.256
25% 0.399 0.773 0.432

JS (↓) 100% 0.039 0.080 0.056
25% 0.076 0.145 0.093

KLspeed (↓) 100% 0.011 0.019 0.007
25% 0.046 0.027 0.230

Density (↓) 100% 0.019 0.016 0.011
25% 0.025 0.020 0.014

Trip (↓) 100% 0.032 0.037 0.013
25% 0.039 0.048 0.019

Length (↓) 100% 0.003 0.005 0.002
25% 0.016 0.008 0.049

Pattern (↑) 100% 0.930 0.930 0.960
25% 0.910 0.900 0.950

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 12: City to city generalization experiment. The model is trained on one city and then is sampled
for a target city using the marginal distribution.

Sampled for

Measure Trained on Geolife Porto Cabspotting

TSTR (↓)
Geolife 0.010± 0.005 0.015± 0.007 0.017± 0.008

Porto 0.011± 0.006 0.009± 0.004 0.009± 0.003
Cabspotting 0.012± 0.006 0.010± 0.005 0.015± 0.008

KL(S ∥ R) (↓)
Geolife 0.202 1.168 0.637

Porto 0.294 0.437 0.421
Cabspotting 0.313 0.907 0.265

KL(R ∥ S) (↓)
Geolife 0.177 0.796 0.579

Porto 0.232 0.336 0.394
Cabspotting 0.258 0.641 0.246

KLsym (↓)
Geolife 0.190 0.982 0.608

Porto 0.263 0.386 0.407
Cabspotting 0.286 0.774 0.255

JS (↓)
Geolife 0.040 0.175 0.123

Porto 0.054 0.079 0.087
Cabspotting 0.058 0.145 0.056

KLspeed (↓)
Geolife 0.011 0.505 0.139

Porto 0.097 0.020 0.380
Cabspotting 0.083 0.703 0.007

Density (↓)
Geolife 0.023 0.021 0.016

Porto 0.021 0.019 0.015
Cabspotting 0.026 0.019 0.014

Trip (↓)
Geolife 0.039 0.040 0.022

Porto 0.047 0.037 0.026
Cabspotting 0.042 0.042 0.018

Length (↓)
Geolife 0.004 0.148 0.016

Porto 0.028 0.005 0.092
Cabspotting 0.024 0.193 0.003

Pattern (↑)
Geolife 0.910 0.920 0.930

Porto 0.930 0.920 0.930
Cabspotting 0.920 0.910 0.920

46

	Introduction
	Problem Definition
	Temporal Deaggregation Diffusion Model
	Evaluation
	Large-scale Unconditional Trajectory Generation
	Ablation Study
	Out-of-distribution Generalization

	Conclusion
	Extended Related Work
	Datasets and Preprocessing
	Dataset Descriptions and Licenses
	Preprocessing
	Hardware

	Architecture Details
	Denoising Diffusion Probabilistic Models
	Optimization Details
	Encoder Input
	Hyperparameters

	Computational Complexity and Runtime Analysis
	Theoretical Complexity
	Empirical Runtime and Memory Requirements

	Extended Evaluation Measures Description
	DiffTraj Measures
	KL-Based Distribution Measures
	Theoretical Justification and Implementation
	Relation to Sample Quality
	Limitations Analysis
	Evaluating Generalization

	Additional Results
	Additional visualization
	Length Distribution Analysis
	Quantitative Results

