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ABSTRACT

Generating realistic large-scale trajectories is essential for applications in urban
mobility and transportation, yet current generative models either do not offer any
controllability or rely on strong sample-specific conditioning. We introduce the
Temporal Deaggregation Diffusion Model (TDDM), a hierarchical framework that
first represents mobility using spatial priors, which are marginal distributions over
geographical occupancy, and then deaggregates them into trajectories. This sepa-
ration enables generation without sample-specific conditions, supporting transfer
to new regions. To support evaluation, we build a benchmark across three cities
spanning different continents (Asia, Europe, North America), with standardized
metrics for fidelity and distributional coverage. Across all datasets, TDDM im-
proves trajectory fidelity and coverage over leading baselines, and demonstrates
stable performance when applied to unseen cities. By explicitly decoupling spa-
tial allocation from temporal realization, our work highlights the role of spatial
occupancy priors in enabling scalable and generalizable trajectory generation.

1 INTRODUCTION

Time-series data of human mobility enables applications such as pandemic forecasting and manage-
ment (Ilin et al., 2021), smart city development (Wang et al., 2022), urban governance (Xiong et al.,
2024), human rights violation detection (Tai et al., 2022) and monitoring of global migration induced
by war and climate change (Niva et al., 2023; Alessandrini et al., 2020). Two major challenges stand
in the way for using time-series data for these purposes.

The first is a shortage of publicly available data (Ansari et al., 2024). Data can only be collected and
shared in limited capacity due to concerns of privacy, business and national security, creating a silo
effect. Secondly, generalization beyond observed data, such as to new regions, unseen spatial areas,
or rapidly changing environments, is often a necessary complement to the readily collectible data.
One such case is generating high-fidelity realistic spatio-temporal trajectory data, such as individual
pedestrians navigating a city or a building. Open problems within the road traffic domain (Lana et al.,
2018), and using human mobility data at large, are (1) high quality large-scale trajectories and (2)
adaptation to sudden environmental changes. Both are hindered by the unavailability of data, either
because existing data cannot be shared or because new environments lack sufficient observations.

A promising direction is to use time-series generative models to capture and generalize mobility
distributions. Although these models can be adapted for privacy (Yoon et al., 2019b; Wang et al., 2023;
Buchholz et al., 2024) or forecasting (Alcaraz & Strodthoff, 2023), this work focuses exclusively on
improving fidelity and cross-region generalization.

Existing approaches, while promising, either fail to capture the multi-modal structure of mobility
data or struggle to scale across diverse environments (Buchholz et al., 2024). GAN- and VAE-
based approaches such as TimeGAN (Yoon et al., 2019a), TimeVAE (Desai et al., 2021), COSCI-
GAN (Seyfi et al., 2022), and TrajGen (Cao & Li, 2021) suffer from mode collapse and oversimplified
representations, with unconditional methods additionally offering no control over generated patterns.
Recent diffusion models improve fidelity but either remain unconditional (Diffusion-TS (Yuan & Qiao,
2024)) or rely on strong sample-specific conditioning (DiffTraj (Zhu et al., 2023), ControlTraj (Zhu
et al., 2024)), limiting generalization across regions. While sample-specific conditioning increases
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Figure 1: TDDM is trained on real 2D trajectories (left) to generate synthetic trajectories (right),
conditioned on how likely it should be for the population of synthetic trajectories to occupy space
on the 2D plane (spatial prior). The latter is represented as a discrete distribution over occupancy
frequency, i.e., the marginal distribution over the trajectory probability distribution if integrating
out time. This yields both high-fidelity in-distribution generalization (top) and out-of-distribution
generalization (bottom), the latter when conditioning on a marginal distribution not part of the training
data (dashed rectangle). Trajectory data from Beijing, China (Geolife).

quality of the synthetic trajectories, it increases the risk of memorization and prevents cross-region
generalization by potentially tying each sample to a training example. Our key insight is that trajectory
generation can be factorized into two components: where people move, encoded as spatial priors, and
how people move temporally.

To this end, we introduce Temporal Deaggregation Diffusion Model (TDDM), which conditions on
spatial aggregate priors rather than trajectory-level statistics, combining controllability with high
fidelity and cross-region generalization. We capture spatial patterns through marginal distributions
over local regions, then condition a diffusion model to generate temporal trajectories that respect these
patterns. Critically, we canonicalize each region before modeling via a similarity transform, enabling
a single model to generalize across all regions for a given scale (e.g. 3x3 km). This spatial-temporal
separation enables city-to-city generalization: the model learns temporal dynamics that are invariant
to absolute location and orientation. Figure 1 illustrates capabilities of TDDM in a setting of mobility
trajectory data. Figure 2 provides a visual comparison with baseline methods.

Our main contributions are:

• Spatial-Temporal Factorization: We propose TDDM, a diffusion-based trajectory model that
factorizes generation into spatial occupancy priors and temporal dynamics, with coordinate
normalization enabling parameter sharing across geographic regions.

• Benchmarking at Scale: We establish a standardized evaluation framework across three
cities on different continents (Beijing, Porto, San Francisco), with trajectory-specific metrics
that harmonize sample fidelity, distributional coverage, and downstream usefulness.

• Improved Fidelity and Coverage: TDDM consistently outperforms leading baselines on KL-
based distributional measures, demonstrating improved support coverage and proportionality
while maintaining strong fidelity across datasets.

• Generalization to New Regions: Leveraging spatial priors and canonicalization, TDDM
generates realistic trajectories in unseen parts of a city and in entirely new cities without
retraining or finetuning, showing strong out-of-distribution zero-shot performance.
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Figure 2: Comparison between original and synthetic trajectories for Porto dataset. First row shows
individual trajectory samples while bottom shows log-density heatmaps of all observations. The
synthetic data of the proposed model, TDDM, (second column) most closely matches both the
individual trajectory patterns and overall density distribution of the original data.

2 PROBLEM DEFINITION

The task of learning an unconditional generative model is defined as learning a mapping f from
samples drawn from a known distribution Dknown, e.g. standard normal distribution, to samples
from an unknown target distribution Dunknown. The mapping is learned without direct access to
the unknown distribution, and is instead limited to a set of samples Xtrain = {x1, . . . , xN}, where
xi ∼ Dunknown. Once the mapping has been learned, synthetic data can be generating by first
sampling the known distribution, then passing the individual samples through the mapping function
Xsynthetic = {f(yi)}Mi=1, where yi ∼ Dknown. The goal of this mapping is for the synthetic samples
to be similar to samples from the known distribution, both on a sample level and as a distribution.

3 TEMPORAL DEAGGREGATION DIFFUSION MODEL

In this work, we focus on the issue of learning and controlling distribution properties of the synthetic
data distribution. More specifically, we focus on controlling the spatial marginal of trajectories, i.e.
where time has been marginalized out. This is achieved by conditioning the generative process on a
description of the marginal distribution, a spatial prior, with the goal being to generate samples that
in aggregate follows said marginal distribution.

The central idea of TDDM is to separate where people move from how they move in time. We achieve
this by conditioning trajectory generation on spatial priors H , which describe marginal occupancy
distributions over regions. By factoring spatial allocation from temporal dynamics, TDDM learns
invariant motion patterns that generalize across cities.

Concretely, the approach proceeds in three steps: (i) partition the spatial domain into regions, (ii)
canonicalize each region via a similarity transform, and (iii) compute region-specific spatial priors
that describe the local marginal distribution.

Partitioning the spatial domain. We adopt a hierarchical factorization by partitioning the spatial
domain into discrete regions, each associated with a spatial prior. The prior describes the marginal
distribution of occupancy in that region after marginalizing out time. This setup enables generation at
the region level, where local priors act as controllable conditions for the diffusion process.

For training, the partitioning is into regions of the same shape but with randomized translation and
rotation and consequently have arbitrary overlap. For sampling of the trained model, the partitioning
can be on a grid which covers the area of interest (the trained-on city, the trained-on part of a city
concatenated with the rest of the city, or a new city entirely) with partial border overlap.
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Canonicalization. Each region is mapped into a canonical frame of reference using a similar-
ity transform (Goodall, 1991), paralleling Procrustes alignment in shape analysis. Unlike group-
equivariant architectures (Cohen & Welling, 2016), which encode invariances into model structure,
our approach achieves invariance via input-output transformation, keeping the architecture lightweight
and without additional inductive bias.

For a region rc, we apply the similarity transformation Trc(p, α, s), parametrized by translation
p = −pos(rc), rotation α = −rot(rc), and scaling s = 2/width(rc). This maps trajectories and
priors into a normalized coordinate system [−1, 1]D.

For example, consider a 1×1 km region in downtown Beijing: Trc translates the region to the origin,
rotates it to a fixed orientation, and rescales coordinates to [−1, 1] × [−1, 1]. This normalization
enables the model to learn local trajectory patterns (e.g., vehicles turning at intersections) that transfer
across locations and cities. When sampling a region, the inverse transform is applied to each sample.

Spatial priors. More formally, let x ∈ X be a sample consisting of several observations x[n] ∈
RD, ∀n, where D = 2 denotes spatial dimensions (long, lat) We generate trajectories region by
region. For each sub region rc, we compute its spatial prior H and express the generative model as:

p(x) =

∫
p(x|H)p(H) dl. (1)

In practice, we set p(H) = p(H = f(rc,X)) = p(rc) where H is a discrete marginal distribution,∑
i

∑
j Hi,j = 1, and rc is a subregion of r. The probability for a subregion rc is:

p(rc) ∝
∑
x∈X

∑
n

1(Trcx[n] ∈ [−1, 1]D). (2)

Within each region, the prior is discretized by cells (i, j):

Hi,j = f(rc,X)i,j =
∑

x∈X
∑

n 1rci,j (x[n])∑
x∈X

∑
n 1(x[n] ∈ Rrc)

,where (3)

1rci,j (x[n]) =

{
1, if x[n] falls within cell (i, j) of region rc
0, otherwise

(4)

In practice, we use a 64× 64 grid for 3× 3 km regions, balancing spatial detail with computational
efficiency: finer grids increase quadratic token cost in the transformer, while coarser resolution would
reduce the spatial information needed to capture detailed road structure and trajectory patterns. The
final approximation for p(x) is then

p(x) =
∑
rc

p(x|H = f(rc,X))p(rc). (5)

which is a generative mixture model over region partitions.

The spatial prior H provides the context that separates where people move from how they move. By
marginalizing out time, H encodes only the spatial occupancy of a region. The diffusion model then
learns to generate realistic temporal trajectories that, in aggregate, match this spatial pattern. Because
H can be estimated (even in unseen cities) for new regions (even in unseen cities), while temporal
dynamics remain transferable, this factorization supports cross-region generalization. See Figure 1
for examples of spatial priors H and corresponding trajectories.

To learn p(x|H) we propose an architecture based on the denoising diffusion architecture (Ho et al.,
2020), using a transformer encoder (Vaswani et al., 2017) for denoising.

Generating synthetic data using denoising diffusion is achieved by learning to reverse a noise-adding
process. See Appendix C.1 for more details on denoising diffusion. There are several ways to
parameterize the denoising process, we extend the noise prediction parameterization (Ho et al., 2020)
to include the marginal distribution: ϵθ(xt, t,H). This means that at any step of the denoising process,
we have full access to a discretized version of the marginal distribution of the distribution we are
sampling, a noisy trajectory, as well as the expected noise level via the denoising step.

This also poses a challenge, as we need a model that can handle these different modalities. To this
end, we employ a transformer encoder. This allows us to use different strategies to tokenize the
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Figure 3: Architecture overview. In the unconditional part, each time point of the noisy trajectory
is converted into a separate token with positional encoding used to encode its values and the time
point, and a learned vector representing its type. The denoising step token, includes the denoising
step encoded with positional encoding and then concatenated with a learned type vector. The input
also include a marginal distribution to guide the denoising process to generate samples with particular
properties, improving in-distribution performance as well as enabling generalization to previously
unobserved areas. The marginal distribution is split into tokens, concatenated with a learned type
vector and its position using positional encoding.

different modalities, the resulting tokens are then given as an input to the transformer. The attention
mechanism allows the model to learn relevant relationship between the different token types, across
different physical distances, as well as in time, to successfully denoise a trajectory.

More specifically, we employ three types of tokens: (1) trajectory tokens, (2) marginal distribution
tokens and (3) denoising noise step tokens. At the end of each token, there is a learned token type
which allows the model to distinguish between the different types. Trajectories xi are split into L
tokens, one for each time step, and positional encoding is used to encode position and time. For the
discretized marginal distribution H , we follow Vision Transformers (Dosovitskiy et al., 2020) and
split marginal distribution into several regions, linearly project, and finally prepend the position of
the region. Finally, a single token for t using positional encoding is used to denote the current step in
the denoising process.

Rather than using a class-token, we use the output corresponding to the L trajectory tokens to make
the noise prediction. These are linearly transformed, each token down to 2 dimensions: one for x and
one for y, and then concatenated across time to construct the final prediction for the amount of noise
added at diffusion step t.

An overview of the architecture is shown in Figure 3, which illustrates how a single trajectory is
tokenized, how the marginal distribution is split into subregions and which tokens are used as output.
The training and sampling procedures are formalized in Algorithms 1 and 2. Algorithm 1 shows how
we train the model by randomly sampling regions, computing their spatial priors, and learning to
generate trajectories matching those priors. Algorithm 2 shows how we generate city-scale datasets
by conditioning on spatial priors alone to enable zero-shot transfer to new regions or cities. The
training and sampling procedures are shown in Algorithm 1 and 2, respectively. See Appendix C for
hyperparameters, as well as additional details on tokenization.

To understand how these algorithms enable zero-shot generalization in our out-of-distribution ex-
periments, consider the key design choices. In Algorithm 1, lines 2-3 randomly sample regions and
compute spatial priors, ensuring the model encounters diverse geographic contexts during training.
Line 6 canonicalizes trajectories to normalized coordinates [0, 1]D, allowing the model to learn
location-invariant dynamics. The denoising process (line 10) is conditioned on H , teaching the model
to respect spatial distributional constraints. In Algorithm 2, zero-shot transfer works as follows: for
target regions (unseen city areas or entirely different cities), we compute the spatial prior H from
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Xtarget trajectories (line 3), but the model ϵθ never receives individual target trajectories, only their
aggregate spatial distribution. The model generates trajectories in normalized space conditioned
solely on H (lines 7-10), then transforms them back to global coordinates of the target region (line
11). This canonicalization symmetry (normalize during training, denormalize during generation)
combined with conditioning on aggregate distributions rather than trajectory instances enables the
model to apply learned dynamics to any geographic region without gradient updates or fine-tuning on
target data, demonstrating zero-shot generalization.

Algorithm 1 Training
Input: Dataset Xtrain, Region distribution p(rc), Tar-

get length
Output: Trained model parameters θ

1: repeat
2: rc ∼ p(rc)
3: H ← f(rc,Xtrain)
4: Xrc ← Find contiguous subsequences of trajecto-

ries in X that lie within rc
5: Filter Xrc by minimum length, maximum time

gaps, and speed limits
6: Normalize Xrc to [0, 1]D relative to rc
7: Select random sequence x ∈ Xrc

8: t ∼ Uniform({0, . . . , T})
9: ϵ ∼ N(0, I)

10: Update model parameters according to:
∇θ||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ,H, t)||

11: until converged

Algorithm 2 Generation
Input: Number of total synthetic samples Nout, Target

regionsRtarget
Dataset Xtarget, Trained model ϵθ , Diffusion

parameters {αt, σt}Tt=1

Output: Synthetic trajectories Xsynth

1: Xsynth ← ∅
2: for rc ∈ Rtarget do
3: Compute heatmap H = f(rc,Xtarget)

4: Nrc = Nout

∑
x

∑
n 1(x[n]∈rc)∑

r̃c

∑
x

∑
n 1(x[n]∈r̃c)

5: for n = 1, . . . , Nrc do
6: xT ∼ N (0, I)
7: for t = T, . . . , 1 do
8: z ∼ N (0, I) if t > 1, else z = 0
9: xt−1 = 1√

αt
(xt + ϵθ(xt, H, t)) + σtz

10: end for
11: Transform x0 from [0, 1]D to global coordinates

of rc
12: Xsynth ← Xsynth ∪ {x0}
13: end for
14: end for
15: return Xsynth

4 EVALUATION

To evaluate TDDM’s trajectory generation capabilities, we address three key questions:

1. Does TDDM generate higher-quality synthetic trajectories than existing approaches?
2. Can the spatial-temporal factorization enable better coverage of complex urban distributions?
3. Does coordinate normalization actually enable generalization to unseen regions?

We start with a comparative study on the unconditional generation task and compare against leading
methods representing major generative paradigms: TimeGAN (seminal time-series GAN), DiffTraj
(UNet-based trajectory diffusion model), Diffusion-TS (transformer-based time-series diffusion
model), TimeVAE (VAE for sequential data), and COSCI-GAN (multi-channel time-series model).
These baselines provide comprehensive coverage of trajectory generation approaches. See Ap-
pendix A for detailed comparisons. There we also include theoretical comparisons with recent work
without reproducible source code (TrajGen Cao & Li (2021), ControlTraj Zhu et al. (2024)) as well
as with COLA Wang et al. (2024).

Then, we investigate how well TDDM can generalize to new unseen environments. First by training
on a limited part of the map and, using only spatial prior, generating for the remaining map. Second
by showing how a TDDM trained on one city from one dataset can generalize to another city in
another dataset.

The evaluation is across three large-scale human trajectory datasets and across several evaluation
measures, which together span current challenges and wanted properties of trajectory generation.

Evaluation Measures Several perspectives exists on synthetic data quality in the literature (Alaa
et al., 2022; Wu et al., 2021; Esteban et al., 2017) covering a range of partially-overlapping aspects.
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In this work, we propose to harmonize these and consequently span high fidelity, covering the support,
moving beyond copying the training data, downstream task informativeness and distributional propor-
tionality, as captured by the following five qualities: (I) Fidelity: (Alaa et al., 2022) The individual
synthetic samples should have similar characteristics to, or be indistinguishable from, samples from
the original distribution. (II) Diversity: (Alaa et al., 2022) It should be possible for synthetic data
to be drawn from any part of the unknown distribution’s support. (III) Proportionality: (Wu et al.,
2021) The probability of a sample occurring in the synthetic distribution should be proportional to the
probability of a sample occurring in the unknown distribution. (IV) Usefulness: (Esteban et al., 2017)
The synthetic data should capture aspects of the unknown distribution that is useful for downstream
tasks. (V) Generalization: (Alaa et al., 2022) Synthetic samples should not be mere copies of the
training data.

As there is not a single measure that can encapsulate all qualities, we propose to use the following
evaluation measures to paint a fuller picture of the synthetic data quality:

• TSTR: Train on synthetic, test on real (Esteban et al., 2017). A transformer decoder is
trained on the synthetic data, with the task to predict 10 future states given a sequence
of observations. The resulting model is then evaluated on the training data and the mean
absolute value is reported. This evaluates the usefulness, fidelity and diversity of the
synthetic data. Lower is better.

• KL Divergence: Evaluates support coverage and proportionality between distributions.
KL(R∥S) measures how well the synthetic distribution covers areas where real data exists,
penalizing missed modes in the real distribution. KL(S∥R) measures how well the synthetic
distribution stays within regions supported by real data, penalizing unrealistic generations.
Together, they provide complementary perspectives: low KL(R∥S) indicates good coverage
of the real distribution, while low KL(S∥R) indicates high fidelity of the synthetic samples.
Symmetric KL and Jensen–Shannon divergence balance these concerns, with JS providing
better stability when handling regions with zero probability. Lower is better.

We also make use of the measures Density Error, Trip Error, Length Error and Pattern Score,
introduced by Zhu et al. (2023). See Appendix E for details on all six measures.

Dataset and Preprocessing For evaluation we use three publicly accessible real-world GPS-
trajectory datasets: Geolife (Zheng et al., 2011), Porto (Moreira-Matias et al., 2013) and Cabspot-
ting (Piorkowski et al., 2022). Geolife consists of data from 182 users performing various activities
(e.g., walking, biking, driving) collected between 2007-2012, resulting in 17,621 trajectories mostly
centered around Beijing, China. Porto was originally released as part of the Taxi Service Trajectory
challenge and contains data on 442 taxis in Porto, Portugal, spanning more than a year. Cabspotting
is also a taxi dataset, with approximately 500 taxis from the San Francisco Bay Area in California,
United States, collected over 30 days. For all three datasets, we use time, longitude and latitude.
The data is also resampled to one observation per second and map matching is used to reduce
observation noise. All models, including baselines and TDDM, are trained and evaluated using the
same preprocessed datasets. See C for more details on preprocessing.

4.1 LARGE-SCALE UNCONDITIONAL TRAJECTORY GENERATION

The task of unconditional trajectory generation is to learn a generative model which generate a high
quality (I)-(V) synthetic dataset of trajectories. For each dataset, we train each model from scratch
and then sample them to generate a synthetic dataset used for evaluation. In the case of TDDM, that
means that a region and spatial prior components of the mixture are learned during training, with
both relative probability between regions, p(rc), and spatial priors Hrc for each region partitioned
on a grid covering the city in question. The sampling process is then to first draw a region, then
draw a trajectory from TDDM conditioned on that region’s spatial prior. Table 1 show the average
performance across the three datasets.

TDDM achieves the strongest overall performance, reducing distributional divergences by a large
margin compared to all baselines (KLsym : 0.277 vs. 1.153 for Diffusion-TS and 1.232 for DiffTraj,
JS : 0.059 vs. 0.198 and 0.209 respectively). This indicates both improved coverage and better
avoidance of unrealistic samples. Proportionality measures follow the same trend: TDDM attains the
lowest Density and Trip errors (0.019, 0.031), whereas the next-best diffusion models remain higher
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(0.029, 0.041). Fidelity is also strong: TSTR reaches 0.011, slightly improving over DiffTraj (0.013)
and Diffusion-TS (0.014). On Length error, TDDM matches Diffusion-TS at state of the art (0.004
vs. 0.003), accurately capturing the distribution of distances between consecutive trajectory points
(see Appendix F.2 for detailed visualizations), while all other methods trail substantially. Finally,
Pattern score is highest for TDDM (0.917), confirming that it best preserves global structure. Overall,
TDDM consistently surpasses existing GAN-, VAE-, and diffusion-based methods, combining high
fidelity with superior distributional alignment. Results for individual cities is found in the appendix
(Table 7).

Inspecting the trajectory samples visually (e.g. Figure 2) we see the advantage of TDDM over the
baselines. TDDM generates the trajectories that are the most similar to the original: roads are clearly
defined and there are holes in the support where no trajectories appear. Diffusion-TS, DiffTraj and
TimeVAE are all capable of capturing the overall shape of the cities, but fail at generating all roads
and often generates trajectories that are far from any road. TimeGAN and COSCI-GAN often fail to
capture the overall chape of the cities, and TimeGAN especially struggles with mode-collapse. These
observations are consistent across all three datasets, see Appendix F.1 for Geolife and Cabspotting.

4.2 ABLATION STUDY

To probe the role of spatial priors and region size, we conduct ablations (Table 2). Removing spatial
priors leaves TSTR unchanged but degrades KL-based scores by up to 5 times, showing that temporal
dynamics alone provide useful signals but fail to ensure coverage and proportionality. Reducing
partition size to 1× 1 km slightly increases Pattern (0.930 vs. 0.917) but worsens Length error (0.150
vs. 0.004), revealing a tradeoff between local coherence and global realism. The full 3 × 3 km
prior-based model provides the best overall balance. Results for individual cities is found in the
appendix (Table 8).

Map matching is used as part of the preprocessing to align the raw GPS trajectories to maps for the
respective cities, before GPS noise is added back. The same preprocessed data is used throughout
the experiments, both for training models and as the target distribution for the evaluation. To verify
the effect of map-matching, the top-three models (TDDM, Diffusion-TS, DiffTraj) are also trained
without map matching. All models show a significant drop in performance when not using map-
matched data, especially for Cabspotting due to its lower frequency of position updates. The results,
shown in Table 9 in the Appendix is consistent with the results where map-matching is used. This
demonstrates that TDDM’s improvements in performance compared to the baselines stem from the
deaggregation framework.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION

Finally, we evaluate zero-shot generalization (Table 3) for intra-city and city-to-city transfer. In both
settings, models are trained only on source regions and generate for target regions using solely the
spatial prior H , with no gradient updates on target trajectories. Results for individual cities, including

Table 1: Evaluation of different models’ performance across several datasets and measures. Models
are trained, sampled and evaluated once per dataset. The results are then averaged across datasets.

Measure TimeGAN TimeVAE COSCI-GAN Diffusion-TS DiffTraj TDDM

TSTR (↓) 0.037 ± 0.027 0.018 ± 0.010 0.023 ± 0.007 0.014 ± 0.009 0.013 ± 0.005 0.011 ± 0.006

KL(S ∥ R) (↓) 3.702 2.363 3.046 1.395 1.594 0.301

KL(R ∥ S) (↓) 2.586 1.268 1.740 0.911 0.869 0.253

KLsym (↓) 3.144 1.816 2.393 1.153 1.232 0.277

JS (↓) 0.397 0.287 0.363 0.198 0.209 0.059

KLspeed (↓) 0.465 0.225 6.463 0.035 0.126 0.013

Density (↓) 0.258 0.043 0.134 0.029 0.033 0.019

Trip (↓) 0.323 0.056 0.158 0.041 0.042 0.031

Length (↓) 0.097 0.042 0.789 0.003 0.065 0.004

Pattern (↑) 0.677 0.840 0.770 0.907 0.893 0.917
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Table 2: Ablation study. Models are trained, sampled and evaluated once per dataset. The results are
then averaged across datasets. Note that TDDM has a 3× 3 km region size.

Measure TDDM 1x1 km w/o spatial prior w/o spatial prior + rejection

TSTR (↓) 0.011 ± 0.006 0.024 ± 0.012 0.011 ± 0.006 0.014 ± 0.010

KL(S ∥ R) (↓) 0.301 0.339 1.569 1.925

KL(R ∥ S) (↓) 0.253 0.318 1.098 1.252

KLsym (↓) 0.277 0.328 1.334 1.588

JS (↓) 0.059 0.071 0.228 0.266

KLspeed (↓) 0.013 0.583 0.323 0.422

Density (↓) 0.019 0.022 0.067 0.063

Trip (↓) 0.031 0.044 0.074 0.081

Length (↓) 0.004 0.150 0.078 0.075

Pattern (↑) 0.917 0.930 0.833 0.860

the full city-to-city transfer table is found in the appendix (Table 12). Visualization of the marginal
distribution of the synthetic datasets are shown in Appendix (Figure 15).

Zero-shot intra-city transfer, where the model is trained from scratch on only 25% of a map (specif-
ically, a geographically contiguous quadrant as shown in Figures 12–14) and applied to the rest,
shows that aggregated TSTR remains comparable to full coverage (0.010 vs. 0.010), while KLsym
and JS divergences increase (0.545 vs. 0.278; 0.106 vs. 0.059). Pattern also remains high (0.927 vs.
0.940), indicating that spatial priors act as a strong regularizer. Although these aggregated results sug-
gest comparable performance, per-city analysis in the Appendix reveals more substantial variations
(Table 12).

In zero-shot city-to-city transfer, performance varies with the source dataset but remains competitive:
Pattern stays above 0.915 across all cases, proportionality measures are consistently lower than
GAN/VAEs and close to diffusion baselines, and TSTR often matches in-distribution performance
when trained on Porto. The main weakness is Length error, which increases to 0.06–0.11 across cities,
suggesting that fine-grained distance modeling is less transferable. Despite this, TDDM demon-
strates robust fidelity and distributional generalization across cities, highlighting the effectiveness of
separating spatial priors from temporal dynamics.

Interestingly, cross-city transfer from Porto often yields stronger results than training on limited
portions of the target city. On average, models trained on Porto generalize with lower KL and JS
divergences (0.335 and 0.071) than those trained on only 25% of the target city (0.545 and 0.106),
and they also maintain slightly better proportionality and Pattern scores (0.930 vs. 0.927). The
only exception is Length error, where access to even a small fraction of local data provides an
advantage (0.026 vs. 0.060). This reflects city-specific differences in trajectory length distributions,
which cannot be inferred from spatial priors alone. For instance, Porto exhibits a heavier-tailed
distribution than Cabspotting (Appendix F.2, Figure 19). This suggests that Porto captures temporal
dynamics and spatial statistics that are broadly representative across cities, making it an unexpectedly
strong universal source dataset for this setting. More generally, these results highlight a tradeoff:
if path-length accuracy is paramount, local data (even in small amounts) remains valuable, but for
distributional coverage and spatial structure, carefully chosen training cities may outperform partial
local coverage.
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Table 3: Generalization performance across different training scenarios. Left: Intra-city generalization
comparing training on the partial (25%) versus full (100%) spatial domain. Right: City-to-city
generalization where models are trained on one dataset and evaluated on others. Results are aggregated
across datasets.

Intra-city (Training data) City-to-city (Trained on)
Measure 25% 100% Geolife Porto Cabspotting

TSTR (↓) 0.010 ± 0.006 0.010 ± 0.007 0.016 ± 0.008 0.010 ± 0.005 0.011 ± 0.006

KL(S ∥ R) (↓) 0.615 0.305 0.903 0.357 0.610

KL(R ∥ S) (↓) 0.474 0.251 0.688 0.313 0.449

KLsym (↓) 0.545 0.278 0.795 0.335 0.530

JS (↓) 0.106 0.059 0.149 0.071 0.102

KLspeed (↓) 0.101 0.012 0.322 0.238 0.393

Density (↓) 0.021 0.015 0.018 0.018 0.022

Trip (↓) 0.036 0.027 0.031 0.036 0.042

Length (↓) 0.026 0.003 0.082 0.060 0.109

Pattern (↑) 0.927 0.940 0.925 0.930 0.915

5 CONCLUSION

We have presented the Temporal Deaggregation Diffusion Model (TDDM), a hierarchical generative
framework that separates spatial priors from temporal dynamics for large-scale trajectory generation.
Across three major urban datasets, TDDM consistently improves distributional alignment, achieving
up to 4 times lower KL divergences than the best diffusion baselines, while also setting new state
of the art on Density, Trip, and Pattern measures. Importantly, TDDM matches leading models on
Length error and outperforms them on fidelity as measured by TSTR. This is also confirmed visually.

Beyond unconditional generation, ablation studies highlight the critical role of spatial priors for
coverage and proportionality, while generalization experiments demonstrate that TDDM can synthe-
size realistic trajectories in unseen parts of cities and across entirely new cities. In particular, we
find that training on Porto generalizes better on average to other cities than training on partial local
data, suggesting that certain cities may act as representative source datasets. That is, datasets that
generalize broadly across urban contexts and provide stronger transferability than limited amounts of
local data.

Taken together, these results show that factorizing where and how people move not only advances
generation quality but also unlocks strong out-of-distribution generalization. TDDM thus provides
both a methodological advance and a practical step toward scalable and generalizable mobility
modeling.

Future Work. Several promising directions remain for extending TDDM. First, augmenting the
spatial prior H with additional marginal information (such as trajectory length distributions, time-
of-day priors, or directional priors for traffic handedness) could improve temporal fidelity and
enable accurate generalization to left-hand vs. right-hand traffic patterns. Second, incorporating road
hierarchy information as priors would better capture local speed structure and road network topology.
Finally, extending H with city-specific temporal marginals would likely improve cross-city temporal
fidelity while preserving the zero-shot spatial generalization capabilities demonstrated in this work.
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ETHICS STATEMENT

This work focuses on improving the quality and generalization capabilities of synthetic human
mobility trajectory generation using publicly available GPS datasets (Geolife, Porto, Cabspotting)
with appropriate licenses as detailed in Appendix B.1. We acknowledge that synthetic trajectory
generation technology has dual-use potential. While our primary motivation is to advance the state-of-
the-art in generative modeling to enable beneficial applications such as urban planning, transportation
research, and mobility simulation, we recognize that high-quality synthetic data generation techniques
could potentially be misused for surveillance or other harmful purposes. We encourage responsible
use of our methods and emphasize that practitioners should consider appropriate safeguards when
deploying synthetic trajectory generation in real-world applications. Additionally, we note that
privacy considerations must be carefully evaluated when applying our methods, as even publicly
available trajectory datasets can potentially be used for re-identification when combined with other
data sources or when analyzed with sufficient temporal and spatial resolution. We emphasize
that our methods do not guarantee privacy-preserving synthetic data generation, and we strongly
encourage practitioners to combine our approach with established privacy-preserving techniques such
as differential privacy when working with real-world trajectory data. Our research contributes to
the broader goal of developing high-fidelity generative models that can support legitimate research
and planning activities while reducing the need for access to sensitive real trajectory data. We
have designed our evaluation framework to focus on distributional properties and generation quality
without enabling inference about specific individuals in the original datasets.

REPRODUCIBILITY

To ensure full reproducibility of our results, we provide comprehensive implementation details and
experimental resources. We release complete, runnable source code for all experiments 1, including
implementations of TDDM and all baseline methods, along with evaluation code for all measures
used. The core TDDM algorithm is detailed in Algorithms 1 and 2, with complete architectural
specifications in Section 3 and extended implementation details in Appendix C. All hyperparameters
used in our experiments are provided in Appendix C.4, including the search space and final values
obtained through systematic optimization. Dataset preprocessing steps for all three datasets (Geolife,
Porto, Cabspotting) are comprehensively described in Appendix B, including data licenses, filtering
criteria, and map-matching procedures. Our evaluation methodology is detailed in Section 4 with
extended measure descriptions in Appendix E. All experimental configurations, including baseline
implementations and evaluation protocols, are provided to enable direct replication of our results
across all datasets and experimental conditions.

LLM USAGE

This paper was developed with assistance from large language models as writing and research tools,
including Claude (Anthropic), ChatGPT (OpenAI), and Cursor AI for code assistance. The LLMs
contributed to:

• Writing refinement: Improving clarity, flow, and exposition throughout the paper

• Technical positioning: Helping articulate the methodological approach and frame the
contribution within existing literature

• Experimental analysis: Assisting with evaluation design and results presentation

• Literature review: Supporting the discovery and organization of related work

• Code development: Assisting with implementation and debugging of code

All research concepts, experimental design, implementation, and scientific conclusions are the original
work of the authors. All LLM-generated content has been verified and validated by the authors. The
authors take full responsibility for all content and claims presented in this paper.

1Available at https://anonymous.4open.science/r/tddm/.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR LEARNING TO DEAGGREGATE

The appendix contains supplementary material to the paper Learning to Deaggregate: Unconditional
Generation of Trajectories at Scale. We provide detailed information on related work, model
architecture, implementation details, extended experimental results, and additional visualizations.
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A EXTENDED RELATED WORK

In Section 1 and 4 of the main paper, we described the state-of-the-art models used for comparison.
Here, we provide extended details on how these models differ from our proposed TDDM approach,
particularly regarding their conditional generation capabilities and architectural choices.

Previous work on unconditional generation of time-series data has focused on variations of the
generative adversarial networks (GAN) architecture (Esteban et al., 2017; Yoon et al., 2019a; Jeon
et al., 2022) and, more recently diffusion models (Zhu et al., 2023; Yuan & Qiao, 2024).

There has also been an interest in using time-series generation for imputation and forecasting (Alcaraz
& Strodthoff, 2023; Tashiro et al., 2021; Shen & Kwok, 2023; Dai et al., 2023; Feng et al., 2024).
Transformer-based time-series foundation models have been proposed as a general purpose forecasting
tool (Ansari et al., 2024), but has not been evaluated on the unconditional generation task.

TimeGAN (Yoon et al., 2019a) consists of a generative adversarial network (GAN) operating inside
the latent space of an autoencoder. To further improve performance, they add an additional network
with the task of predicting one time step ahead. The encoder, decoder, supervisor, generator and
discriminator are all implemented using autoregressive models and in practice they use gated recurrent
units (GRUs).

The TimeVAE (Desai et al., 2021) architecture is a variant of the popular variational autoencoder
architecture. The autoencoder is trained with an additional loss component to have the latent space
conform to a known statistical distribution, in this instance a multivariate normal distribution. The
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autoencoder is trained to both minimize the reconstruction loss, as well as minimizing the divergence
between the embedded data and the prior set for the latent space.

COSCI-GAN (Seyfi et al., 2022) proposes to use a separate generative adversarial network for each
channel of the data. The individual GANs all share single source of noise as input to the generator
and, additionally they have a central discriminator that is given the stacked output from the all the
generators as input.

Diffusion-TS (Yuan & Qiao, 2024) adapts the denoising diffusion architecture (Ho et al., 2020)
to generate time-series data by implementing the denoising step with a multilayer neural network
each consisting of a transformer block, a fully connected neural network as well as time-series
specific layers with the aim of improved performance and interpretability. The architecture also has
support for conditional generation to enable using the models for imputation and forecasting. As
Diffusion-TS moves away from the U-Net approach used in trajectory-specific models to a partial
Transformer architecture, we extend this further to a full Transformer-based architecture, avoiding
additional time-series specific induction biases while gaining increased performance for synthetic
data generation.

Recent work has extended these generative architectures to the specific domain of GPS trajectory
generation, with varying approaches to conditional control.

DiffTraj (Zhu et al., 2023) adapts the denoising diffusion architecture (Ho et al., 2020) to generate
GPS-trajectories. The U-Net architecture used in (Ho et al., 2020) for denoising, is also adapted to
work with trajectories. As part of the generation process, the model is conditioned on individual
trajectory-specific statistics such as velocity, distance, and departure time.

ControlTraj (Zhu et al., 2024) is a diffusion-based framework for generating GPS trajectories condi-
tioned on road network topology from OpenStreetMap and trip-specific attributes (departure time,
distance, speed). Similar to DiffTraj, ControlTraj uses trajectory-level conditioning to control in-
dividual samples. In contrast, TDDM conditions on spatial priors (aggregate marginal occupancy
distributions computed from multiple trajectories).

COLA (Wang et al., 2024) is a model for generating discrete trajectories, i.e., where space is
discretized into location IDs, and where samples are temporally sparser (hourly timesteps vs. 1-second
for TDDM). Both COLA and TDDM address city-to-city transfer, but using different paradigms.
COLA uses transfer learning with gradient-based adaptation, while TDDM achieves zero-shot transfer
via spatial prior conditioning. The zero-shot approach only requires marginal occupancy information,
while the transfer learning approach requires access to full trajectories from the target domain.

TrajGen (Cao & Li, 2021) is an unconditional generative model for trajectories. It uses an uncon-
ditional generative image generative model to generate images of trajectories. The images show a
top-down view of single trajectories. These are then decoded into a sequence of points, which are
then ordered and then timestamped. While both TrajGen and TDDM separate spatial and temporal
information, they differ fundamentally in representation and conditioning: TrajGen’s unconditional
approach means that once trained, the model has limited control of what trajectory patterns are
generated, whereas TDDM explicitly conditions on spatial priors H, enabling controllable generation
and zero-shot cross-city transfer.

While DiffTraj, ControlTraj, and Diffusion-TS all support conditional generation, our approach
differs fundamentally in the type and purpose of conditioning information. DiffTraj and ControlTraj
condition on sample-specific statistics (velocity, distance, road networks), creating a near one-to-
one mapping between conditions and individual trajectories. Diffusion-TS uses conditioning for
enabling imputation and forecasting rather than improving generation quality. In contrast, TDDM
conditions on spatial priors (aggregate marginal occupancy distributions computed from multiple
trajectories), which cannot be directly tied to any individual sample. This distinction enables TDDM
to generalize to entirely new environments through zero-shot transfer (requiring only marginal
occupancy information), while sample-specific conditioning limits generation to the trained spatial
region and increases memorization risk. TrajGen’s unconditional approach offers no control over
generated patterns, while COLA’s transfer learning paradigm requires access to full trajectories from
the target domain for gradient-based adaptation.
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B DATASETS AND PREPROCESSING

In this section, we describe the datasets used in our experiments and the preprocessing steps applied
to prepare the data for training and evaluation.

The datasets described in Section 4 of the main paper provide geographical diversity across different
continents while ensuring sufficient data density for meaningful evaluation. Our preprocessing
pipeline, described below, is applied uniformly to all methods to ensure fair comparison.

The trajectory segmentation process helps all methods by creating cleaner, more consistent training
data with fewer anomalies. It is important to note that while our model operates on such local
regions during both training and inference, we do not generate trajectories that extend beyond the
size of regions used during training. Instead, the hierarchical approach allows us to generate coherent
trajectories for multiple adjacent regions that together compose large-scale environments.

B.1 DATASET DESCRIPTIONS AND LICENSES

All three datasets used in this work are publicly available and contain GPS trajectory data from
different geographical regions:

• Geolife (Zheng et al., 2011): Data from 182 users collected between 2007-2012, resulting
in 17,621 trajectories mostly centered around Beijing, China. Released under the Microsoft
Research License Agreement, which allows academic research but prohibits redistribution.

• Porto (Moreira-Matias et al., 2013): Released as part of the Taxi Service Trajectory chal-
lenge, containing data on 442 taxis in Porto, Portugal, spanning more than a year. Released
under the CC BY 4.0 license.

• Cabspotting (Piorkowski et al., 2022): Taxi dataset with approximately 500 taxis from the
San Francisco Bay Area in California, United States, collected over 30 days. Released under
the CC BY 4.0 license. An account is required to download this data.

For all three datasets, we use time, longitude and latitude as the primary features.

B.2 PREPROCESSING

Raw GPS data contains multiple problems:

• GPS drift

• GPS being turned on even when the vehicle is not in use

• large spikes in velocity

We split trajectories into sub-trajectories if any observation leaves the geographic bounds, exceeds
the velocity limit or if too long time has passed since the previous observation. In the raw data, a
trajectory can span several days with several hours between observations. Introducing a time-limit
allows us to break these trajectories into individual and more time-constrained journeys.

We up-sample the data to one observation per second. Map matching using Valhalla (Valhalla
Contributors, 2025) is then used to map the GPS trajectories to the road network, the distance
between the matched and interpolated trajectories are used to estimate a noise distribution. The final
training data consists of the map matched trajectories with trajectory-noise added from the noise
distribution, i.e. we sample the noise distribution once per trajectory.

B.3 HARDWARE

All experiments were conducted on a system with the following specifications:

• CPU: AMD Ryzen 9 5900X

• RAM: 128 GB

• GPU: NVIDIA GeForce RTX 3090 Ti (24 GB GDDR6X)
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C ARCHITECTURE DETAILS

C.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic includes two processes: a known noise-adding process and an
approximated denoising process. The noise-adding process starts at a random sample x ∈ X,
denoted x0 where 0 is the noise step, and adds noise at each steps according to a noise schedule
β = {β1, . . . , βT }. By using a Gaussian noise process (Ho et al., 2020), the forward process has
a closed expression for time point t: q(xt|x0) = N (xt;

√
ātx0, (1 − ᾱt)I), where αt := 1 − βt,

ᾱt :=
∏t

s=1 αs . The reverse process is starts at p(xT ) = N (xT ; 0, I) and the transition function for
1 < t ≤ T is learned:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (6)

There are different ways to parameterize µθ(xt, t) and Σθ(xt, t) and we use the noise prediction
parameterization (Ho et al., 2020):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, Σθ(xt, t) = σ2

t I (7)

where ϵθ(xt, t) is a learned function and is trained to predict the added noise at step t of the noise
adding process. In this work, we extend ϵθ with discretized marginal distribution H as described in
the main paper in Section 3.

C.2 OPTIMIZATION DETAILS

We use the following positional encoding to encode a one-dimensional signal (Vaswani et al., 2017):

PE(pos,2i) = sin

(
−ei

log(10000)
d
2 − 1

)
(8)

PE(pos,2i+1) = cos

(
−ei

log(10000)
d
2 − 1

)
,where (9)

pos is the signal, e.g. a position x, position y or time point t, and i is the target dimension. For
position, we encode a single position observation in R into RD, so the function would be called once
for i ∈ 1 . . . D. We use the cosine noise schedule as proposed by Nichol & Dhariwal (2021):

ᾱt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

(10)

with s = 0.008. Furthermore, we use the simplified loss function proposed by Ho et al. (2020):

Lsimple(θ) := Et,x0,ϵ

[∣∣∣∣ϵ− ϵθ(
√
ᾱt, x0 +

√
1− ᾱtϵ, t)

∣∣∣∣2] (11)

We use the Adam (Kingma & Ba, 2014) optimizer and implement our model in PyTorch (Ansel et al.,
2024).

C.3 ENCODER INPUT

We set N to be a hyperparameter, and D is the number of dimensions of a single observation in a
trajectory, in our case D = 2. The input to the transformer encoder is:

• L input tokens, each token corresponding to a time point in the noisy sequence. Note: The
token size depends on the number of features of the dataset. It is a concatenation of:

– x ∈ RDN , each corresponding to a dimension observed at each time point encoded
using positional encoding

– x ∈ RN , the time point encoded using the positional encoding introduced in (Vaswani
et al., 2017)
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– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to a
noisy sequence

• Conditional information: 64 tokens, each corresponding to a patch of the heatmap and
being a concatenation of:

– x ∈ RN , corresponding to the x position of the patch. Encoded using positional
encoding (Vaswani et al., 2017).

– x ∈ RN , corresponding to the y position of the patch. Encoded using positional
encoding (Vaswani et al., 2017).

– x ∈ RN , corresponding to the intensity of the heatmap. Encoded using a linear
projection (Dosovitskiy et al., 2020).

– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to the
conditional information

• A token encoding the current denoising step:

– x ∈ RN(D+1), the denoising step encoded using positional encoding (Vaswani et al.,
2017)

– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to the
denoising step

C.4 HYPERPARAMETERS

We employ Optuna (Akiba et al., 2019) with Tree-structured Parzen Estimator (TPE) sampling to
optimize our model’s hyperparameters. The optimization process consists of 50 trials, where the
model is trained from scratch trains for 100 epochs. For each trial, we sample hyperparameters from
the defined search space and evaluate the model’s performance by calculating the Jensen-Shannon
divergence between the marginal distributions of the synthetic data and the marginal distributions of
the training data. We only use the Geolife dataset for hyperparameter tuning. The hyperparameters
included in the optimization are shown in Table 4 and the final values are shown in Table 5.

Table 4: Hyperparameter Search Space

Parameter Search Space Description
Hidden Dimension {4, 8, 16, 32, 64, 128} Size of transformer hidden layers
Number of Layers {1, 2, 4, 8} Depth of transformer architecture
Number of Attention Heads {1, 2, 4, 8} Multi-head attention mechanism size
Diffusion Timesteps {100, 500, 1000} Number of diffusion steps
Learning Rate [10−6, 10−2] Log-uniform sampling

The Jensen-Shannon divergence was chosen as the optimization metric because it directly aligns with
our goal of generating synthetic trajectories that match the distributional properties of real data, as
discussed in Section 4 where we evaluate models on both sample-level fidelity and distribution-level
similarity.

Table 5: Final Hyperparameters

Parameter Value
Hidden Dimension 128
Number of Layers 8
Number of Attention Heads 2
Diffusion Timesteps 500
Learning Rate 0.00017483
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D COMPUTATIONAL COMPLEXITY AND RUNTIME ANALYSIS

In this section, we provide a detailed analysis of TDDM’s computational complexity and empirical
runtime characteristics. This addresses concerns about the scalability and practical deployment of our
method for large-scale trajectory generation.

D.1 THEORETICAL COMPLEXITY

The computational complexity of TDDM is determined by the transformer encoder architecture used
for denoising at each diffusion step. For a single denoising step, the per-trajectory cost is:

O((L+R)d2 + (L+R)2d) (12)

where:

• L is the trajectory sequence length (number of time steps)
• R is the number of spatial prior patches (64 in our implementation)
• d is the hidden dimension of the transformer (128 in our final model)

The first term (L+R)d2 corresponds to the cost of the feed-forward layers in the transformer, while
the second term (L+R)2d corresponds to the cost of the self-attention mechanism that processes
both trajectory tokens and spatial prior tokens jointly.

Scalability to large cities. Importantly, because we operate on fixed-size 3× 3 km regions with
a constant number of spatial prior patches (R = 64), the per-trajectory computational cost remains
constant across cities of different sizes. City-scale generation scales linearly with geographic coverage
(city area), as we independently process each region and stitch the results together according to the
mixture model formulation in Section 3. This is in contrast to methods that must process entire
city-scale contexts, which would scale quadratically with area in attention-based models.

D.2 EMPIRICAL RUNTIME AND MEMORY REQUIREMENTS

We measure TDDM’s inference performance on an NVIDIA GeForce RTX 3090 Ti (24 GB GDDR6X)
for different batch sizes. Table 6 shows the time per trajectory and peak GPU memory consumption.

Table 6: TDDM inference performance across different batch sizes on RTX 3090 Ti. Time per trajec-
tory decreases with larger batch sizes due to improved GPU utilization, while memory consumption
grows sub-linearly.

Batch Size Time per Trajectory (ms) Peak GPU Memory (MB)
1 1162 313
8 427 340

64 349 558
256 340 1307

Key observations from these measurements:

• Batching efficiency: Increasing batch size from 1 to 256 reduces per-trajectory time by
approximately 3.4× (from 1162 ms to 340 ms), demonstrating good GPU utilization at
higher batch sizes.

• Memory efficiency: Peak GPU memory grows sub-linearly with batch size. A 256× increase
in batch size only requires approximately 4.2× increase in memory (from 313 MB to 1307
MB), indicating efficient memory usage that can accommodate large-scale generation on
modern GPUs.

• Practical throughput: At the batch size of 256, TDDM can generate approximately 2.9
trajectories per second on a single RTX 3090 Ti. For a typical city-scale dataset with 50,000
trajectories, complete generation takes approximately 4.7 hours.
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• Comparison with baselines: While direct runtime comparisons depend on implementation
details, hardware, and sampling procedures, TDDM’s per-trajectory inference time of 340ms
is competitive with other diffusion-based methods. The ability to batch efficiently and the
constant per-trajectory cost (independent of city size) make TDDM practical for large-scale
applications.

E EXTENDED EVALUATION MEASURES DESCRIPTION

In Section 4, we introduced evaluation measures spanning multiple quality dimensions for synthetic
trajectory data. Here we provide a more detailed description of these measures, their theoretical
foundations, and how they complement each other in our benchmark.

E.1 DIFFTRAJ MEASURES

The measures from DiffTraj (Zhu et al., 2023) are2:

• Density Error: A pair of heatmaps of the training and synthetic data are calculated by
dividing the city into 16× 16 blocks. The number of observations in each block are counted
and normalized. The Jensen-Shannon divergence is calculated between the training data
heatmap and synthetic data heatmap.

• Trip Error: Two heatmap pairs, each 16 × 16 blocks, are calculated. The first pair is of
the start positions for all trajectories, one heatmap for the training data and another for the
synthetic data. The second pair is calculated from the last position for all trajectories. The
Jensen-Shannon divergence is calculated once for each pair and then the average is reported.

• Length Error: The distance between consecutive observations are calculated, once for the
training data and once for the synthetic data. Histograms are calculated for each, with the
number of bins set to 16. Finally, the Jensen-Shannon divergence is calculated between the
histogram of training data and the histogram of the synthetic data.

• Pattern Score: Using the heatmaps from Density Error, the top N areas (highest count) from
the training and synthetic data are collected. The F-score is then calculated and reported.

E.2 KL-BASED DISTRIBUTION MEASURES

Our evaluation framework incorporates several Kullback-Leibler (KL) divergence-based measures
that address different quality dimensions of synthetic trajectory data:

• KL(R∥S): Kullback-Leibler divergence of the real (R) distribution from the synthetic (S)
distribution measures how well the synthetic distribution covers areas where real data exists:

KL(R ∥ S) =
∑
i,j

Ri,j log
Ri,j

Si,j
(13)

This directly corresponds to our diversity quality dimension (II), as it heavily penalizes when
synthetic data misses modes present in the real distribution.

• KL(S∥R): Kullback-Leibler divergence of the synthetic (S) distribution from the real (R)
distribution measures how well the synthetic distribution stays within regions supported by
real data:

KL(S ∥ R) =
∑
i,j

Si,j log
Si,j

Ri,j
(14)

This reflects our fidelity quality dimension (I), penalizing synthetic data that generates
unrealistic trajectories in regions with little or no real data.

2To the best of the authors ability to interpret the paper since the evaluation code is not available for DiffTraj.
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• KLsym: The symmetric KL divergence balances both directional measures:

KLsym =
1

2
(KL(S ∥ R) + KL(R ∥ S)) (15)

• JS: Jensen-Shannon divergence provides a bounded symmetric measure:

JS(S,R) =
1

2
KL(S ∥ M) +

1

2
KL(R ∥ M) (16)

where M = 1
2 (S + R). This avoids numerical instabilities with zero probabilities and is

bounded between 0 and 1.

Together, these measures address the proportionality quality dimension (III) - low values in both KL
directions indicate the synthetic distribution not only covers the same support as the real distribution
but also assigns similar probability mass across that support. The symmetric measures (KLsym and
JS) provide balanced assessments that account for both support coverage and proportionality, with JS
offering better numerical stability when regions with zero probability are present in either distribution.

E.3 THEORETICAL JUSTIFICATION AND IMPLEMENTATION

Our implementation of KL-based measures uses a discretizations with a 256 × 256 grid over the
entire city. This is ×256 higher resolution than what is used in DiffTraj, to enabling more precise
evaluation of fine-grained spatial patterns.

KL divergence measures are theoretically well-suited for trajectory evaluation because:

• They directly quantify the information loss when approximating one distribution with
another

• They are sensitive to both the support coverage and the proportionality of distributions

• The two directional variants (KL(S∥R) and KL(R∥S)) provide complementary insights into
different failure modes

E.4 RELATION TO SAMPLE QUALITY

The combined set of measures provides a comprehensive evaluation framework addressing all five
quality dimensions from Section 4:

• Fidelity: Length Error, Trip Error, and KL(R∥S) all measure aspects of fidelity by ensuring
trajectories have realistic properties.

• Diversity: KL(S∥R) and Pattern Score evaluate how well synthetic trajectories cover the
support of real data.

• Proportionality: All KL-based measures, but especially JS, capture proportionality by
measuring distributional similarity.

• Usefulness: TSTR directly measures usefulness for a downstream prediction task.

• Generalization: See Section E.6.

E.5 LIMITATIONS ANALYSIS

The DiffTraj measures provide a more coarse-grained evaluation using 16× 16 spatial discretization,
while our KL-based measures use 256× 256 grids for finer-grained assessment. The ×256 higher
resolution allows more precise evaluation of the model’s ability to capture detailed spatial distributions,
especially important in urban environments where road networks create complex movement patterns.

By combining these measures with TSTR, our benchmark provides a comprehensive evaluation that
addresses both distribution-level properties and practical utility of the generated trajectories, spanning
all important dimensions of synthetic data quality discussed in Section 4.
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E.6 EVALUATING GENERALIZATION

Our evaluation framework extends beyond traditional in-distribution testing to assess different types
of generalization capabilities:

• In-distribution generalization: Unlike predictive models where test sets evaluate prediction
accuracy, unconditional generative models require evaluating whether they capture the
full distribution rather than memorizing training examples. For trajectory generation, we
directly compare distribution-level properties between synthetic and real data instead of
using held-out test sets. Using a held-out test would require massive data amounts and/or
an inverted data split, e.g. 20% train, 80% test to sufficiently assess support coverage and
proportionality. This is currently infeasible in practice. Also, current models still struggle to
even replicate (memorize) the training data in unconditional generation, making this less of
a relevant problem in the field for now.

• Out-of-distribution generalization: A distinctive feature of our benchmark is its assessment
of spatial transfer capability, evaluating a model’s ability to generate plausible trajectories
for geographic regions not represented in training data:

– Intra-city generalization (Section 4.3): Tests whether models can generate trajectories
for unseen areas within the same city

– City-to-city generalization (Section 4.3): Tests whether models can transfer knowledge
between entirely different cities

The evaluation measures take on different significance when assessing generalization. KL(S∥R)
becomes particularly important for out-of-distribution evaluation as it tests whether the synthetic
distribution covers the full support of the real distribution in previously unseen regions. Meanwhile,
KL(R∥S) reveals whether the model avoids generating implausible trajectories in new environments.
The Pattern Score helps determine if important spatial areas in the new environment are captured,
while TSTR directly measures the usefulness of the generated data for downstream tasks in these new
settings.

Our experiments in Sections 4.3 demonstrate how this comprehensive evaluation identifies genuine
generalization capabilities rather than mere memorization. The combination of measures reveals
whether a model has learned transferable spatial dynamics or is simply reproducing patterns from its
training data. This evaluation approach provides a more rigorous assessment of generalization than
traditional machine learning benchmarks, which typically only test in-distribution generalization.

F ADDITIONAL RESULTS

In Section 4 we present the results. Here we first provide additional visualization, focusing on more
detailed view of and also providing a closer-look at the synthetic data generated. We also provide full
tables as a complement to the tables provide figures that are averaged across datasets.

F.1 ADDITIONAL VISUALIZATION

The visualizations presented in this section supports the quantitative results in Section 4.1 of the main
paper. Specifically, Figures 6–8 demonstrate TDDM’s ability to generate synthetic trajectories that
closely match the spatial distribution patterns of the original data across all three datasets (Geolife,
Porto, and Cabspotting).

These visualizations highlight two key aspects of TDDM’s performance claimed in the main paper:
(1) the high fidelity of individual generated trajectories, which follow road networks and maintain
realistic movement patterns; and (2) the proportionality of the generated distribution, as shown by the
similarity between the heatmaps of real and synthetic data. The comparison with baseline methods in
Figures 2, 4 and 5 visually confirms TDDM’s strong performance reported in Table 7.

The generalization capabilities of TDDM are further illustrated in Figures 12–14, which show how our
model trained on a limited portion of each city can generate high-quality trajectories for previously
unseen areas. Additionally, Figures 9–11 provide a closer look at trajectories in several regions
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Figure 4: Comparison between original and synthetic trajectories for Geolife dataset. First row
shows individual trajectory samples while bottom shows log-density heatmaps of all observations.
The synthetic data of the proposed model, TDDM, (second column) most closely matches both the
individual trajectory patterns and overall density distribution of the original data.

Figure 5: Comparison between original and synthetic trajectories for Cabspotting dataset. First row
shows individual trajectory samples while bottom shows log-density heatmaps of all observations.
The synthetic data of the proposed model, TDDM, (second column) most closely matches both the
individual trajectory patterns and overall density distribution of the original data.

chosen at random, across the three datasets, demonstrating the consistent quality of our generated
data compared to real trajectories and baseline methods.
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Figure 6: Detailed visualization for Geolife dataset. Comparison between training data (top) and
synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while
right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely
match both the individual trajectory patterns and overall density distribution of the original data.
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Figure 7: Detailed visualization for Porto dataset. Comparison between training data (top) and
synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while
right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely
match both the individual trajectory patterns and overall density distribution of the original data.
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Figure 8: Detailed visualization for Cabspotting dataset. Comparison between training data (top) and
synthetic trajectories from our method (bottom). Left panels show individual trajectory samples while
right panels show log-density heatmaps of all points in the dataset. The synthetic samples closely
match both the individual trajectory patterns and overall density distribution of the original data.
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Figure 9: Random samples from training data and synthetic data across 11 different regions chosen at
random, all from Cabspotting
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Figure 10: Random samples from training data and synthetic data across 11 different regions chosen
at random, all from Geolife
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Figure 11: Random samples from training data and synthetic data across 10 different regions chosen
at random, all from Porto.
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Figure 12: Generalization experiment. The model is trained on the lower left quadrant and used to
generate data on the remaining geographical area. Top left: Data from Geolife, the lower-left quadrant
of which used for training. Top right: heatmap of training data, Bottom left: synthetic trajectories.
Bottom right: heatmap of the synthetic data.
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Figure 13: Generalization experiment. The model is trained on the top-left quadrant and used to
generate data on the remaining geographical area. Top left: Data from Porto, the top-left quadrant
of which used for training. Top right: heatmap of training data, Bottom left: synthetic trajectories.
Bottom right: heatmap of the synthetic data.
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Figure 14: Generalization experiment. The model is trained on the lower left quadrant and used to
generate data on the remaining geographical area. Top left: Data from Cabspotting, the lower-left
quadrant of which used for training. Top right: heatmap of training data, Bottom left: synthetic
trajectories. Bottom right: heatmap of the synthetic data.
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Figure 15: City-to-city generalization experiment visualization. The model is trained on one city and
then used to generate data on the remaining geographical area using spatial priors.
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F.2 LENGTH DISTRIBUTION ANALYSIS

To provide deeper insight into the Length Error measure described in Section 4, we visualize the
length distributions (distance between consecutive trajectory points) for both training and synthetic
data across all experimental settings. Each histogram shows the normalized distribution of Euclidean
distances between consecutive points, with the Jensen-Shannon divergence between these distributions
reported in the top-right corner.

These visualizations demonstrate TDDM’s ability to accurately match the fine-grained movement
patterns of real trajectories. The close alignment between training (teal) and synthetic (red) distribu-
tions across diverse experimental conditions validates the quantitative Length Error results presented
in the main paper.
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Figure 16: Length distribution comparison for unconditional generation benchmark. Each subplot
shows the distribution of distances between consecutive trajectory points for training data (teal)
and synthetic data (red) across three datasets (Geolife, Cabspotting, Porto) and six methods. The
Jensen-Shannon divergence is shown in the top-right corner of each subplot.
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Figure 17: Length distribution comparison for ablation study. Shows the impact of different architec-
tural choices on TDDM’s ability to match the length distribution of training data.
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Figure 18: Length distribution comparison for intra-city generalization experiments. Models are
trained on 25% of the city and evaluated on the full area.
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Figure 19: Length distribution comparison for city-to-city generalization experiments. Each row
shows a model trained on one city and evaluated on all three cities.
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Figure 20: Length distribution comparison for map dropout robustness experiments. Shows TDDM’s
performance with varying levels of missing road network information.
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Figure 21: Length distribution comparison for models trained without map matching.
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F.3 QUANTITATIVE RESULTS

Complementing the summary tables, we list the tables with the quantitative results.

More specifically:

• Large-scale unconditional trajectory generation (4.1), Table 7.
• Ablation study (4.2), Table 8.
• Intra-city (4.3), Table 11.
• City-to-city (4.3), Table 12.
• Map matching ablation, Table 9.
• Robustness to map dropout, Table 10.
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Table 7: Evaluation of different models’ performance across several datasets and measures.

Measure Model Geolife Porto Cabspotting

TSTR (↓)

TimeGAN 0.052 ± 0.031 0.038 ± 0.025 0.020 ± 0.012
TimeVAE 0.017 ± 0.010 0.016 ± 0.007 0.021 ± 0.011

COSCI-GAN 0.023 ± 0.006 0.021 ± 0.005 0.024 ± 0.009
Diffusion-TS 0.013 ± 0.009 0.010 ± 0.005 0.021 ± 0.008

DiffTraj 0.013 ± 0.004 0.014 ± 0.004 0.013 ± 0.007
TDDM 0.010 ± 0.005 0.009 ± 0.004 0.015 ± 0.008

KL(S ∥ R) (↓)

TimeGAN 5.566 3.606 1.933
TimeVAE 2.786 2.688 1.615

COSCI-GAN 4.650 2.910 1.578
Diffusion-TS 0.730 2.114 1.340

DiffTraj 1.498 2.025 1.259
TDDM 0.202 0.437 0.265

KL(R ∥ S) (↓)

TimeGAN 3.823 2.632 1.302
TimeVAE 1.236 1.445 1.124

COSCI-GAN 2.453 1.696 1.070
Diffusion-TS 0.598 1.135 0.999

DiffTraj 0.767 1.023 0.817
TDDM 0.177 0.336 0.246

KLsym (↓)

TimeGAN 4.695 3.119 1.618
TimeVAE 2.011 2.067 1.369

COSCI-GAN 3.552 2.303 1.324
Diffusion-TS 0.664 1.625 1.169

DiffTraj 1.132 1.524 1.038
TDDM 0.190 0.386 0.255

JS (↓)

TimeGAN 0.489 0.430 0.271
TimeVAE 0.294 0.327 0.241

COSCI-GAN 0.486 0.364 0.240
Diffusion-TS 0.114 0.264 0.216

DiffTraj 0.181 0.252 0.195
TDDM 0.040 0.079 0.056

KLspeed (↓)

TimeGAN 0.324 0.361 0.710
TimeVAE 0.351 0.240 0.083

COSCI-GAN 6.581 5.216 7.592
Diffusion-TS 0.038 0.015 0.053

DiffTraj 0.031 0.035 0.312
TDDM 0.011 0.020 0.007

Density (↓)

TimeGAN 0.433 0.252 0.088
TimeVAE 0.063 0.028 0.038

COSCI-GAN 0.264 0.078 0.060
Diffusion-TS 0.035 0.021 0.031

DiffTraj 0.046 0.023 0.031
TDDM 0.023 0.019 0.014

Trip (↓)

TimeGAN 0.510 0.346 0.115
TimeVAE 0.078 0.049 0.040

COSCI-GAN 0.295 0.096 0.082
Diffusion-TS 0.049 0.037 0.036

DiffTraj 0.052 0.035 0.037
TDDM 0.039 0.037 0.018

Length (↓)

TimeGAN 0.212 0.021 0.058
TimeVAE 0.047 0.074 0.005

COSCI-GAN 0.774 0.707 0.885
Diffusion-TS 0.002 0.005 0.003

DiffTraj 0.043 0.012 0.139
TDDM 0.004 0.005 0.003

Pattern (↑)

TimeGAN 0.490 0.730 0.810
TimeVAE 0.780 0.890 0.850

COSCI-GAN 0.650 0.830 0.830
Diffusion-TS 0.920 0.900 0.900

DiffTraj 0.890 0.880 0.910
TDDM 0.910 0.920 0.920
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Table 8: Ablation study of the effect of region size and spatial prior.

Measure Model Geolife Porto Cabspotting

TSTR (↓)

TDDM 0.010± 0.005 0.009± 0.004 0.015± 0.008
1x1 km 0.030± 0.014 0.021± 0.011 0.022± 0.011

w/o spatial prior 0.009± 0.006 0.011± 0.005 0.012± 0.007
w/o spatial prior + rejection 0.021± 0.009 0.007± 0.004 0.015± 0.008

KL(S ∥ R) (↓)

TDDM 0.202 0.437 0.265
1x1 km 0.279 0.552 0.184

w/o spatial prior 0.926 2.349 1.433
w/o spatial prior + rejection 1.343 2.550 1.881

KL(R ∥ S) (↓)

TDDM 0.177 0.336 0.246
1x1 km 0.206 0.579 0.168

w/o spatial prior 0.858 1.314 1.123
w/o spatial prior + rejection 0.890 1.478 1.388

KLsym (↓)

TDDM 0.190 0.386 0.255
1x1 km 0.243 0.566 0.176

w/o spatial prior 0.892 1.831 1.278
w/o spatial prior + rejection 1.117 2.014 1.635

JS (↓)

TDDM 0.040 0.079 0.056
1x1 km 0.054 0.121 0.038

w/o spatial prior 0.156 0.296 0.231
w/o spatial prior + rejection 0.187 0.324 0.285

KLspeed (↓)

TDDM 0.011 0.020 0.007
1x1 km 1.097 0.528 0.123

w/o spatial prior 0.478 0.124 0.368
w/o spatial prior + rejection 0.406 0.215 0.644

Density (↓)

TDDM 0.023 0.019 0.014
1x1 km 0.021 0.033 0.011

w/o spatial prior 0.099 0.043 0.060
w/o spatial prior + rejection 0.086 0.046 0.055

Trip (↓)

TDDM 0.039 0.037 0.018
1x1 km 0.049 0.066 0.018

w/o spatial prior 0.099 0.055 0.068
w/o spatial prior + rejection 0.103 0.070 0.070

Length (↓)

TDDM 0.004 0.005 0.003
1x1 km 0.256 0.152 0.043

w/o spatial prior 0.095 0.034 0.105
w/o spatial prior + rejection 0.074 0.045 0.105

Pattern (↑)

TDDM 0.910 0.920 0.920
1x1 km 0.930 0.910 0.950

w/o spatial prior 0.860 0.850 0.790
w/o spatial prior + rejection 0.880 0.870 0.830
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Table 9: Map matching ablation study. Models trained without map matching during preprocessing.

Measure Model Geolife Porto Cabspotting

TSTR (↓)
Diffusion-TS 0.015± 0.006 0.012± 0.005 0.020± 0.009

DiffTraj 0.019± 0.005 0.007± 0.004 0.013± 0.007
TDDM 0.013± 0.010 0.010± 0.004 0.011± 0.005

KL(S ∥ R) (↓)
Diffusion-TS 1.196 2.401 1.591

DiffTraj 3.068 2.799 1.623
TDDM 0.797 1.779 1.747

KL(R ∥ S) (↓)
Diffusion-TS 1.038 1.309 1.263

DiffTraj 1.387 1.545 1.036
TDDM 0.739 1.451 1.469

KLsym (↓)
Diffusion-TS 1.117 1.855 1.427

DiffTraj 2.227 2.172 1.329
TDDM 0.768 1.615 1.608

JS (↓)
Diffusion-TS 0.182 0.298 0.249

DiffTraj 0.319 0.341 0.238
TDDM 0.138 0.259 0.264

KLspeed (↓)
Diffusion-TS 0.058 0.018 0.042

DiffTraj 0.381 0.034 0.416
TDDM 0.012 0.013 0.017

Density (↓)
Diffusion-TS 0.051 0.025 0.055

DiffTraj 0.119 0.078 0.043
TDDM 0.038 0.022 0.040

Trip (↓)
Diffusion-TS 0.064 0.044 0.065

DiffTraj 0.127 0.087 0.051
TDDM 0.052 0.037 0.057

Length (↓)
Diffusion-TS 0.005 0.007 0.005

DiffTraj 0.139 0.062 0.286
TDDM 0.003 0.004 0.006

Pattern (↑)
Diffusion-TS 0.870 0.890 0.790

DiffTraj 0.800 0.810 0.860
TDDM 0.910 0.880 0.880
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Table 10: Robustness to map dropout. Models trained with random dropout of map information
during training.

Measure Model Geolife Porto Cabspotting

TSTR (↓)
TDDM 0.010± 0.005 0.009± 0.004 0.015± 0.008

10% dropout 0.027± 0.014 0.030± 0.016 0.020± 0.011
20% dropout 0.025± 0.011 0.033± 0.017 0.021± 0.010

KL(S ∥ R) (↓)
TDDM 0.202 0.437 0.265

10% dropout 0.246 0.213 0.214
20% dropout 0.243 0.211 0.215

KL(R ∥ S) (↓)
TDDM 0.177 0.336 0.246

10% dropout 0.379 0.200 0.253
20% dropout 0.376 0.197 0.256

KLsym (↓)
TDDM 0.190 0.386 0.255

10% dropout 0.313 0.207 0.234
20% dropout 0.310 0.204 0.235

JS (↓)
TDDM 0.040 0.079 0.056

10% dropout 0.061 0.045 0.049
20% dropout 0.061 0.044 0.049

KLspeed (↓)
TDDM 0.011 0.020 0.007

10% dropout 4.442 2.422 0.837
20% dropout 4.523 3.096 1.279

Density (↓)
TDDM 0.023 0.019 0.014

10% dropout 0.016 0.011 0.011
20% dropout 0.016 0.011 0.011

Trip (↓)
TDDM 0.039 0.037 0.018

10% dropout 0.032 0.034 0.017
20% dropout 0.033 0.035 0.018

Length (↓)
TDDM 0.004 0.005 0.003

10% dropout 0.442 0.418 0.107
20% dropout 0.445 0.429 0.136

Pattern (↑)
TDDM 0.910 0.920 0.920

10% dropout 0.920 0.930 0.950
20% dropout 0.910 0.920 0.950
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Table 11: Generalization experiment.

Measure Trained on Geolife Porto Cabspotting

TSTR (↓) 100% 0.007± 0.004 0.006± 0.003 0.016± 0.009
25% 0.011± 0.006 0.010± 0.004 0.014± 0.008

KL(S ∥ R) (↓) 100% 0.199 0.448 0.266
25% 0.424 0.916 0.461

KL(R ∥ S) (↓) 100% 0.168 0.340 0.245
25% 0.373 0.629 0.403

KLsym (↓) 100% 0.184 0.394 0.256
25% 0.399 0.773 0.432

JS (↓) 100% 0.039 0.080 0.056
25% 0.076 0.145 0.093

KLspeed (↓) 100% 0.011 0.019 0.007
25% 0.046 0.027 0.230

Density (↓) 100% 0.019 0.016 0.011
25% 0.025 0.020 0.014

Trip (↓) 100% 0.032 0.037 0.013
25% 0.039 0.048 0.019

Length (↓) 100% 0.003 0.005 0.002
25% 0.016 0.008 0.049

Pattern (↑) 100% 0.930 0.930 0.960
25% 0.910 0.900 0.950
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Table 12: City to city generalization experiment. The model is trained on one city and then is sampled
for a target city using the marginal distribution.

Sampled for

Measure Trained on Geolife Porto Cabspotting

TSTR (↓)
Geolife 0.010± 0.005 0.015± 0.007 0.017± 0.008

Porto 0.011± 0.006 0.009± 0.004 0.009± 0.003
Cabspotting 0.012± 0.006 0.010± 0.005 0.015± 0.008

KL(S ∥ R) (↓)
Geolife 0.202 1.168 0.637

Porto 0.294 0.437 0.421
Cabspotting 0.313 0.907 0.265

KL(R ∥ S) (↓)
Geolife 0.177 0.796 0.579

Porto 0.232 0.336 0.394
Cabspotting 0.258 0.641 0.246

KLsym (↓)
Geolife 0.190 0.982 0.608

Porto 0.263 0.386 0.407
Cabspotting 0.286 0.774 0.255

JS (↓)
Geolife 0.040 0.175 0.123

Porto 0.054 0.079 0.087
Cabspotting 0.058 0.145 0.056

KLspeed (↓)
Geolife 0.011 0.505 0.139

Porto 0.097 0.020 0.380
Cabspotting 0.083 0.703 0.007

Density (↓)
Geolife 0.023 0.021 0.016

Porto 0.021 0.019 0.015
Cabspotting 0.026 0.019 0.014

Trip (↓)
Geolife 0.039 0.040 0.022

Porto 0.047 0.037 0.026
Cabspotting 0.042 0.042 0.018

Length (↓)
Geolife 0.004 0.148 0.016

Porto 0.028 0.005 0.092
Cabspotting 0.024 0.193 0.003

Pattern (↑)
Geolife 0.910 0.920 0.930

Porto 0.930 0.920 0.930
Cabspotting 0.920 0.910 0.920
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