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ABSTRACT

Deep generative models have advanced text-to-online handwriting generation
(TOHG), which aims to synthesize realistic pen trajectories conditioned on tex-
tual input and style references. However, most existing methods still primarily
focus on character- or word-level generation, resulting in inefficiency and a lack
of holistic structural modeling when applied to full text lines. To address these
issues, we propose DiffInk, the first latent diffusion Transformer framework for
full-line handwriting generation. We first introduce InkVAE, a novel sequential
variational autoencoder enhanced with two complementary latent-space regular-
ization losses: (1) an OCR-based loss enforcing glyph-level accuracy, and (2) a
style-classification loss preserving writing style. This dual regularization yields
a semantically structured latent space where character content and writer styles
are effectively disentangled. We then introduce InkDiT, a novel latent diffusion
Transformer that integrates target text and reference styles to generate coherent
pen trajectories. Experimental results demonstrate that DiffInk outperforms ex-
isting state-of-the-art (SOTA) methods in both glyph accuracy and style fidelity,
while significantly improving generation efficiency.
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Figure 1: Overview of DiffInk. By directly modeling entire text lines rather than individual char-
acters, the model efficiently synthesizes online handwritten text lines (G;) conditioned on textual
input (T') and style references (.5;), achieving accurate content reproduction and consistent style in
both character form and layout structure. Different colors represent distinct handwriting styles.

1 INTRODUCTION

As shown in Figure 1, TOHG refers to the task of synthesizing realistic pen trajectories conditioned
on textual content and style references. It has a wide range of applications, including personalized
digital ink rendering, handwriting simulation, and data augmentation for optical character recog-
nition (OCR). However, TOHG presents unique challenges: beyond character-level generation, it
requires coherent inter-character modeling and line-level layout; Compared to image-based meth-
ods, it needs to handle temporal dynamics while maintaining glyph fidelity and stylistic consistency.

In recent years, TOHG has attracted growing research interest. Early methods (Graves, 2013; Li
et al., 2024) adopt Auto-Regressive (AR) modeling to generate trajectory points sequentially. Sub-
sequent approaches attempt to control style through content-style disentanglement, utilizing either
1) coarse-grained global style representations such as writer IDs (Luo et al., 2022) or 2) fine-grained
local style representations such as character components (Liu et al., 2024; Dai et al., 2023). Notably,
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Figure 2: Latent-space visualization of Vanilla VAE vs. InkVAE (ours). While both mod-
els achieve good reconstruction, InkVAE learns a more structured latent space (visualized with t-
SNE (Maaten & Hinton, 2008)): (a) Text-line features from 8 writers—InkVAE exhibits clearer
writer-specific clusters. (b) Character-level features from 8 common characters—InkVAE yields
tighter intra-class groupings and more distinct inter-class separation.

OLHWG (Ren et al., 2025) adopts a novel diffusion-based framework to generate isolated characters
and arranges them using external layout prediction modules, achieving SOTA performance. How-
ever, these methods all fundamentally operate at the character or word level, lacking the ability to
capture long-range dependencies and overall text-line structure.

To tackle these limitations, we propose DiffInk, a novel glyph- and style-aware conditional la-
tent diffusion Transformer for TOHG. Difflnk begins by training a sequential variational autoen-
coder (VAE) to learn compact latent representations of full text lines, thereby avoiding character-by-
character modeling and capturing long-range structural dependencies. However, although a vanilla
VAE can accurately reconstruct handwriting sequences when trained with only reconstruction loss,
adding auxiliary perceptual losses directly on the generated outputs yields limited benefit, as the
representations it learns lack semantic structure. Specifically, the VAE fails to group features by
writer identity or character label in its internal representation space. As illustrated in the left panels
of Figure 2 (a) and (b), features from different writers or characters overlap in an unstructured man-
ner. As a result, small perturbations introduced by the diffusion model in this space can easily push
the generated output toward an incorrect writing style or an unintended character.

To resolve this, we introduce two lightweight regularization losses to regulate semantic structure in
the latent space: (1) an OCR-based loss to ensure glyph-level accuracy and (2) a style-classification
loss to enforce writer-level consistency. These losses are implemented by two trainable classifiers
directly applied in the latent space and jointly optimized with the VAE reconstruction loss. We refer
to the resulting enhanced VAE as InkVAE, which learns a well-structured latent space where glyph
and style features are both effectively disentangled, enabling precise control over content and style
generation. As evidenced in the right panels of Figure 2 (a) and (b), this regularization substantially
restructures the latent space, yielding distinct clustering by both character and writing style. This
regularized latent space offers a robust foundation for conditional generation.

Building on this regularized latent space, we then develop a novel InkDiT that synthesizes full-line
handwriting conditioned on both target text sequences and short reference trajectories. The InkDiT
denoises latent representations concatenated with textual content and style features, predicting clean
outputs through iterative refinement. Specifically, textual content features are obtained by sequen-
tially mapping characters to embeddings from a learnable codebook, followed by a lightweight
content encoder. Style features are extracted from the reference trajectories using our Ink VAE en-
coder. These features encompass both local attributes (e.g., character shapes and strokes) and global
attributes (e.g., spacing and alignment). Subsequently, InkDiT effectively leverages these conditions
to generate content-accurate and style-consistent results.

Our main contributions can be summarized as follows: (1) We propose DiffInk, the first latent
diffusion framework for end-to-end full-line handwriting generation, capable of generating glyph-
accurate and style-consistent pen trajectories. (2) We introduce InkVAE, a sequential VAE enhanced
with two task-relevant lightweight regularization losses (OCR-based loss and style-classification
loss) to disentangle content and style in the latent space, enabling structured representation learning.
(3) We propose a novel InkDiT that jointly conditions on target text and reference style, generating
realistic handwriting trajectories via an iterative denoising process. (4) Experiments on the CASIA-
OLHWDB 2.0-2.2 benchmark demonstrate that DiffInk significantly outperforms current SOTA
methods in full-line generation quality, while also offering improved efficiency.
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2 RELATED WORK

2.1 ONLINE HANDWRITING GENERATION

Early methods for online handwriting generation were predominantly RNN-based. Approaches such
as Graves’ seminal work (Graves, 2013) and DeepWriting (Aksan et al., 2018) adopted LSTMs
with mixture density networks to model temporal dynamics, but lacked explicit style control.
SketchRNN (Ha & Eck, 2017) used an RNN-based VAE to generate ink data unconditionally. More
recently, TrInk (Jin et al., 2025) introduced a Transformer-based architecture, which leverages global
attention to generate more realistic and coherent handwriting trajectories.

In contrast to Latin-based scripts, languages like Chinese possess a vast set of characters with
highly complex structures and stroke compositions, which has led to the proposal of specialized
approaches to capture these intricacies. FontRNN (Tang et al., 2019) incorporated monotonic atten-
tion for stroke-level synthesis, while CHWmaster (Li et al., 2024) utilized a sliding-window RNN
for few-shot personalized generation. SDT (Dai et al., 2023) employed dual-branch encoders with
contrastive learning to disentangle writer style from character content, and WLU (Tang & Lian,
2021) applied meta-learning to support rapid personalization. Building on the diffusion paradigm,
DiffWriter (Ren et al., 2023) formulated character-level synthesis as a conditional denoising process,
and OLHWG (Ren et al., 2025) further extended this framework by decoupling glyph synthesis and
layout planning, thereby enabling layout-aware generation of full handwritten text lines. However,
these approaches essentially remain focused on modeling individual glyphs, with limited efforts
toward directly modeling entire text lines. While OLHWG assumes that character generation is in-
dependent of layout position and attempts to decouple a text line into isolated characters and layout
modules, such assumptions fail to capture the complexity of real handwriting. Appendix D.1 further
discusses our distinctions from existing character-level and layout-decoupled approaches.

2.2 STYLE TRANSFER FOR HANDWRITING GENERATION

Controlling both content and style remains a central challenge in handwriting generation. For con-
tent representation, most methods employ content encoders to extract structural information from
template inputs (Pippi et al., 2023). Some approaches (Pan et al., 2023; Kang et al., 2021) further
design fine-grained encoders to capture detailed local patterns. Alternatively, several methods (Ren
etal.,2023;2025) adopt learnable character embeddings to provide high-level semantic information.
For style representation, early approaches (Kang et al., 2020; Gui et al., 2023) employed learnable
style embeddings to represent the writing style of specific authors. Later methods (Dai et al., 2023;
Liu et al., 2024) introduced style encoders to extract style features from a few reference samples,
using mechanisms such as cross-attention or adaptive normalization (Huang & Belongie, 2017) to
guide the generation process and maintain stylistic consistency. (Kotani et al., 2020) obtains style
representations via matrix factorization. For text-line handwriting generation, using a continuous
text-line reference (Li et al., 2024; Pippi et al., 2025) has become a popular approach to encode
local writing style and overall layout.

2.3 DIFFUSION GENERATIVE MODELS

Diffusion models (Ho et al., 2020) have emerged as powerful tools in generative modeling, demon-
strating impressive performance across images (Rombach et al., 2022), speech (Lee et al., 2025),
and vision-language tasks (Luo et al., 2023). To reduce computational costs and enhance semantic
control, many recent works (Zhang et al., 2023; Saharia et al., 2022; Ramesh et al., 2022; Labs,
2024) adopt latent diffusion models, where the denoising process is conducted in a learned latent
space. Recently, Diffusion Transformers (DiT) (Peebles & Xie, 2023) have replaced traditional
U-Net (Ronneberger et al., 2015) backbones with Transformer-based (Vaswani et al., 2017) archi-
tectures, enabling stronger global conditioning in image synthesis tasks. Variational Autoencoders
(VAESs) (van den Oord et al., 2017; Baevski et al., 2020) are commonly used to construct such spaces,
offering compact and structured representations.

Overall, while considerable progress has been made in handwriting generation and latent diffusion
modeling, generating complete online handwritten text lines remains a challenging and underex-
plored task due to long-range dependencies and complex layouts. To this end, we propose DiffInk, a
structure-aware generative framework based on a latent diffusion Transformer, providing a promis-
ing direction for tackling text-to-online handwriting generation.
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Figure 3: Overview of the DiffInk Framework. (a) InkVAE encodes online handwriting sequences
into compact latent representations. During training, regularization losses Lo and Ly are applied
to the latent space to encourage disentangled glyph and style. (b) InkDiT leverages this latent space
to synthesize handwriting by denoising noisy inputs x; into clean representations xg. The process
is conditioned on content features Z obtained from text embeddings and style features x.; derived
from a reference trajectory. InkDiT is trained with a diffusion loss L.

3 METHOD

3.1 PRELIMINARY

Online Handwriting Data An online handwriting text-line data is represented as a pair (T, X),
where T' = {t1,1a,...,t,} denotes a sequence of m characters, and X = {seq,,seqs,...,seq,,}
is the corresponding sequence of pen trajectories. Each seq; € R™*5 encodes the trajectory of
character ¢; with n; points. The total number of points for the entire line is >, n;. Each point is
represented as a 5-dimensional vector (x, y, pen), where (x, y) are spatial coordinates and pen is a
one-hot vector indicating the pen state: Pen Down, Pen Up, or End of Character.

Task Overview Compared with single-character handwriting generation, TOHG is considerably
more complex and challenging. First, text-line generation often involves much longer sequences
(typically over 25 characters), which substantially increases modeling difficulty. Moreover, in addi-
tion to capturing handwriting style, TOHG also involves modeling inter-character dependencies and
structural relationships across the line to produce fluent and natural handwriting. To make the prob-
lem precise, we therefore formalize TOHG as follows: the input consists of a reference trajectory
Xref and a concatenated text combining Tier and Tgeq, and the goal is to generate a trajectory Xeen
that renders Ty, While preserving the handwriting style in Xr.

3.2 OVERVIEW OF THE DIFFINK FRAMEWORK

As illustrated in Figure 3, DiffInk consists of two key components: InkVAE, a pre-trained sequential
variational autoencoder, and InkDiT, a conditional latent diffusion Transformer. Ink VAE compresses
online trajectories X € RN*? into latent representations x € R'*? capturing both glyph-level
structures and writer-specific style features. InkDiT operates within this structured latent space. It
receives a noisy latent input x; along with two conditioning signals: (1) a style prompt 2,y € R*9,
obtained by encoding the reference trajectory X.s with the InkVAE encoder; and (2) a content
condition Z € R!*%e encoded by the content encoder from text embeddings. Guided by these
conditions, InkDiT denoises z; to reconstruct the clean latent representation xy. During inference,
the process starts from pure Gaussian noise and, under the same content and style conditions as in
training, applies DDIM sampling to obtain a clean latent representation. This refined latent is then
decoded by the InkVAE decoder to generate the final handwriting sequence.

3.3 GLYPH- AND STYLE-AWARE INKVAE

As shown in Figure 3 (a), InkVAE employs an encoder—decoder architecture, primarily designed for
efficient modeling of handwriting sequences through a compact latent space. Beyond this, InkVAE
incorporates a novel task-relevant regularization strategy to construct a well-structured latent space,
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which promotes the disentanglement of content and style, leading to more robust representations
across both diverse handwriting styles and character classes. Such structured representations, as
evidenced by recent studies (Tang et al., 2025; Yao et al., 2025; Guo et al., 2025), have been shown
to improve the convergence efficiency and overall performance of downstream diffusion models.

Trajectory Encoder To extract complex handwriting features, we employ a 1D convolutional en-
coder to transform the input handwriting sequence X € R¥*5 into a compact latent representation
x € R4 This representation is directly provided as input to three branches: (1) a trajectory
decoder for handwriting reconstruction, (2) a Transformer-based OCR module for text-line hand-
writing recognition, and (3) a style classifier for writer identification.

Trajectory Decoder Following (Tang et al., 2019), the decoder first applies a 1D convolutional
stack that mirrors the trajectory encoder, up-sampling the latent feature  into a feature map O; €
RN *(6p+3)  The feature vector Oy is divided into two branches: (1) 6p logits that parameterize a p-
component Gaussian Mixture Model (GMM) (Reynolds, 2015) for predicting the (x, y) coordinates,
and (2) 3 logits for classifying the pen state pen. Accordingly, the reconstruction loss is defined as
Lrec = Lpen + Lomm, Where Ly is a focal loss used for the three-way pen-state classification, and
Lomm is the negative log-likelihood of the ground-truth points under the predicted mixture. To enable
the model to learn when to stop writing, the GMM loss is computed only over valid trajectory steps,
while the pen-state loss is applied across the entire sequence, including padded regions.

Glyph- and Style-Aware Regularization To encourage the latent space to preserve character-
level structural information, we introduce a lightweight OCR module as a structural regularizer.
Operating at the feature-token level, this module promotes consistency in the representations of the
same character class across different writing styles. Specifically, the OCR module decodes latent
representations into character sequences using a Transformer-based recognition head, and is trained
with a CTC-based (Graves et al., 20006) loss, denoted as L. This supervision imposes structural
constraints on the encoder, promoting the learning of character-invariant features and enhancing
both the structural awareness and semantic disentanglement of the latent space.

On the other hand, to enhance the discriminability of writing styles in the latent space, we introduce
a lightweight style encoder as a global discriminative supervisor. This module processes the entire
latent representation to extract a holistic style representation. It summarizes the latent features using
an LSTM network (Staudemeyer & Morris, 2019) with attention pooling and is optimized by a writer
classification loss (Lyy), which explicitly encourages style-aware separation in the latent space.

VAE Loss Function InkVAE is trained end-to-end with the objective function Lyag defined in
Equation 1. This training strategy enables the encoder to learn latent representations that are struc-
turally coherent, semantically aligned, and stylistically informative, providing a solid foundation for
diffusion-based handwriting synthesis. Details of InkVAE are presented in the Appendix B.1.

Lyag = Z Ao Ly where ¢ € {rec, kl, ocr, sty} (1)

3.4 HANDWRITING GENERATION WITH INKDIT

As shown in Figure 3 (b), InkDiT employs a Transformer-based diffusion architecture for con-
ditional online handwriting generation in the latent space. It builds on InkVAE’s compact and
structured representation and progressively refines noisy latent variables into coherent trajectories
through denoising. By conditioning on both text-line Tier + Tyen and a reference trajectory Xer,
InkDiT achieves controllable generation with improved fidelity and continuity.

Text-Line Content For content representation, each character in the input text Tyt + Tgeq i em-
bedded via a learnable codebook € RX* e where K is the vocabulary size and diey is the em-
bedding dimension. By embedding characters directly, the approach learns high-level semantic
representations of characters, while avoiding the domain gap caused by the complex mapping from
fixed templates to long handwritten text-line sequences (Wang et al., 2023; 2026). Text-line gener-
ation is further challenged by uncertain character lengths at inference, which prevent direct embed-
ding—trajectory alignment as in character-level methods (Ren et al., 2023; 2025). We address this
through a simple yet efficient design where character embeddings are sequentially concatenated,
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padded with shared learnable embeddings to match x(, and processed by a lightweight content en-
coder. Based on ConvNeXt-V2 (Woo et al., 2023), this encoder leverages large-kernel depthwise
convolutions to capture long-range dependencies and yields a representation Z € R!*%e serving as
semantically aligned content conditions for generation guidance.

Text-Line Handwriting Style For style representation, character-level approaches (Dai et al.,
2023; Tang & Lian, 2021; Ren et al., 2025) typically rely on randomly sampled isolated characters
from the same writer. In contrast, text-line generation requires capturing additional layout informa-
tion absent in such isolated samples. To holistically model both writing style and text-line layout,
we follow (Li et al., 2024; Pippi et al., 2025) and adopt a continuous handwritten trajectory X.f as
the style reference. This trajectory is encoded into a latent representation by the trajectory encoder
of our proposed style-aware Ink VAE. Leveraging the VAE encoder’s strength as a versatile feature
extractor (Leng et al., 2025; Cheng & Yuan, 2025), we obtain the style feature zs. By modeling
style directly within the unified latent space of the VAE (Tan et al., 2025; Chen et al., 2025), we
avoid introducing a separate style encoder and ensure consistent representation learning.

DiT Denoiser The diffusion network follows the DiT (Peebles & Xie, 2023) architecture, leverag-
ing its contextual modeling capacity to recover the clean latent from noisy inputs under the guidance
of content features Z and style features x.¢. The three inputs are concatenated along the channel
dimension and linearly projected to align with the InkVAE feature space.

Tt =V -xo+V1—a-e, e~N(0I) )
&0 = InkDiTy [z, Tref, Z], t);  Lair = By ¢[mask © |29 — 20]%] 3)

DiT denoiser is trained to recover the clean feature x( at masked positions by minimizing the masked
mean squared error (MSE), as defined in Equation 3, where the masked regions correspond to the
reference style trajectory features. Benefiting from the semantically structured latent space provided
by InkVAE, the DiT model can more effectively utilize conditional inputs to recover features from
noise, resulting in better alignment with the underlying data distribution. Following the DDIM (Song
et al., 2020) sampling strategy, we start from Gaussian noise and iteratively generate the final latent
estimate £, conditioned on both content and style features. Finally, this latent representation is de-
coded by the InkVAE decoder to reconstruct the handwriting trajectory. Details of InkDiT, including
its architectural design as well as training and inference procedures, are presented in Appendix B.2.

4 EXPERIMENTS

4.1 DATASET & EVALUATION METRICS

Dataset We conduct experiments to validate DiffInk on Chinese handwriting datasets. For Chi-
nese TOHG, we use CASIA-OLHWDB 2.0-2.2 (Liu et al., 2011), sampling 500 writers based on
longer average text lines. Among them, 400 writers are used for training and 100 for testing. We
then augment the training set with synthesized samples, yielding 67,000 text lines covering 2,648
characters. The test set comprises 4,780 text lines. Details are presented in the Appendix A.

Evaluation Metrics To comprehensively evaluate the proposed Difflnk, following prior
works (Tang & Lian, 2021; Dai et al., 2023; Ren et al., 2025), we employ several widely used
evaluation metrics, including: (1) Content fidelity, assessed with a pretrained text-line OCR model
by reporting Accurate Rate (AR) and Correct Rate (CR) following the (Yin et al., 2013) OLHCTR
benchmark; (2) Style consistency, measured with a writer classifier via writer classification accuracy
(Style); (3) Trajectory similarity, evaluated using normalized Dynamic Time Warping (DTW) dis-
tance (Berndt & Clifford, 1994; Chen et al., 2022); (4) Generation efficiency, reported as the number
of characters generated per second (Avg. char/s). Details are presented in Appendix B.4.

4.2 IMPLEMENTATION DETAILS

For Chinese TOHG, InkVAE is trained for 100 epochs with a batch size of 128 and a learning rate
of 5 x 1074, To balance different objectives, we apply the following loss weights: Agmm = 1.0,
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Table 1: Quantitative comparison with SOTA handwriting generation methods. Baseline meth-
ods generate isolated characters and compose text lines through a shared layout prediction module
from OLHWG. In contrast, our method directly generates complete text lines and outperforms these
single-character approaches across all evaluation metrics.

Method Venue Output AR% 1T CR% 1 Style 1 DTW | Avg. char/s T
Drawing (Zhang et al., 2017) TPAMI'17 Char-level 76.35 76.87 25.75 1.582 4.16
Deeplmitator (Zhao et al., 2020) PR’20 Char-level 78.21 78.98 27.62 1.561 3.96
WLU (Tang & Lian, 2021) CGF’21 Char-level 79.85 80.23 35.71 1.540 25.19
SDT (Dai et al., 2023) CVPR’23 Char-level 82.53 83.00 50.51 1.270 3.35
OLHWG (Ren et al., 2025) ICLR’25 Char+layout 91.48 91.71 44.74 1.326 0.07
DiffInk This work Line-level 94.38 94.58 77.38 1.049 58.47

Apen = 2.0, Aoer = 1.0, Ayy = 0.5, and Ag = 1 x 10~%. The DiT model is trained for 200k steps
with a batch size of 256 and a learning rate of 7.5 x 10~°. Details are presented in the Appendix B.

4.3 MAIN RESULTS

Comparing with Representative Methods As there is a lack of established baselines for end-
to-end text-line generation, we adopt several SOTA character generation methods and extend them
with a layout modeling module to enable line-level comparison. These baselines include Draw-
ing (Zhang et al., 2017), DeeplImitator (Zhao et al., 2020), WLU (Tang & Lian, 2021), and SDT (Dai
et al., 2023), which generate high-fidelity handwritten characters under an autoregressive paradigm,
as well as OLHWG (Ren et al., 2025), which synthesizes isolated characters using a diffusion-
based approach. To support text-line level comparison, we adopt the layout prediction module from
OLHWG—currently the SOTA—to compose full lines from the character-level outputs of all five
methods. In the OLHWG method, the layout prediction module infers the subsequent layout based
on the layouts of a fixed number of preceding characters (originally set to 10) from the ground-truth
text line. To accommodate text lines of varying lengths, we instead use the layouts of the first 30%
of characters from each text line as input for layout prediction (max 10). To ensure fairness, all
methods are retrained on the same dataset with consistent preprocessing and default configurations.

Quantitative Evaluation As shown in Table 1, DiffInk (ours) achieves superior performance
across all quantitative metrics. For content fidelity, the OCR-based metrics AR and CR both ex-
ceed 94%, outperforming the latest SOTA method OLHWG by an average margin of 3 percentage
points, and substantially surpassing earlier approaches such as Drawing, DeepImitator, WLU and
SDT—with a margin of 14.44%. For style consistency, DiffInk achieves a style score of 77.38 at
the text-line level—the highest among all methods—surpassing the contrastive-learning—based OL-
HWG by 30 percentage points, the dual-branch style-loss—based SDT by 27 points, and baselines
with simple style modeling by an average of 50 points. Moreover, style evaluation further reveals
that layout stitching introduces anomalies that can be readily detected by the style classifier. In
terms of structural fidelity, DiffInk attains substantially lower normalized DTW distances, indicat-
ing more consistent alignment with target trajectories. In contrast, autoregressive methods such as
WLU and SDT suffer from cumulative error propagation, which severely degrades text-line level
performance. Finally, DiffInk demonstrates strong generation efficiency, producing 58.82 charac-
ters per second—17x faster than SDT, over 800x faster than OLHWG, and more than 2x faster than
WLU—thanks to the efficient text-line modeling of Ink VAE.

Qualitative Evaluation As shown in Figure 4, DiffInk (ours) produces more continuous and co-
herent text lines with smooth character transitions. In contrast, character-wise methods such as SDT
and OLHWG often exhibit unnatural stitching artifacts at character boundaries, while WLU tends
to generate characters that stick together, likely due to its strong reliance on the pretrained con-
tent—style encoder. These problems arise partly because character-level methods can only assemble
text lines by scaling and positioning individual characters according to their predicted bounding
boxes. During inference, obtaining these bounding boxes requires an additional prediction module,
which introduces its own errors and further affects the reliability of the final text-line layout. Be-
yond these practical limitations, although their single-character generation quality is generally good,
the decoupled modeling of layout and characters neglects structural dependencies between adjacent
characters, making it difficult to achieve consistent and coherent text-line layouts when character
shapes differ substantially. Additional visualization results are provided in Appendix C.
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Figure 4: Comparison with SOTA methods under unseen writing styles across diverse layouts. All
baseline methods generate isolated characters and compose lines via a shared layout module.
Blue boxes denote the same style reference, while red boxes highlight errors or unnatural character
connections. These methods suffer from stitching artifacts, especially when adjacent characters
differ structurally. DiffInk generates more coherent and naturally connected text lines.

Table 2: Ablation study of InkVAE and its impact on InkDiT generation. ”v"”” means loss en-
abled. While all VAEs achieve near-perfect reconstruction performance with various losses, InkDiT
achieves optimal performance when trained on InkVAE latents (last row). This confirms that our
lightweight regularization losses structure the latent space for robust diffusion-based genera-
tion, with negligible impact on VAE reconstruction performance.

VAE Losses VAE Reconstruction Performance InkDiT Generation Performance
Lrectkl Loer Lty AR% 1 CR% 1 Style T DTW | AR% 1 CR% 1 Style T DTW |
v X X 97.59 97.61 99.97 0.014 74.77 75.20 60.68 1.062
v v X 97.60 97.63 99.97 0.015 82.09 82.41 66.07 1.052
v X v 97.59 97.62 99.98 0.016 79.64 79.95 68.99 1.059
v v v 97.65 97.67 99.97 0.016 94.38 94.58 77.38 1.049

4.4  ABLATION STUDY OF INKVAE AND INKDIT

Effect of InNkVAE and its impact on InkDiT As shown in Table 2, we perform an ablation study
to evaluate the effectiveness of InkVAE. The left columns list the loss configurations of different
VAE variants, the middle columns report reconstruction performance, and the right columns present
generation results of InkDiT trained on the corresponding feature spaces. Since online handwriting
data is relatively clean and less affected by background noise than image-pixel modeling, VAEs
trained solely with the reconstruction loss L. already achieve high-fidelity reconstructions, as re-
flected by the low DTW distances in the middle columns. However, the diffusion results reveal a
key limitation: strong reconstruction fidelity does not guarantee a well-structured or semantically
meaningful latent space. Compared with the Vanilla VAE, adding OCR regularization improves
recognition accuracy by about 4 points, while style regularization yields an 8-point gain in the
writer-classification score. When combined—forming our proposed InkVAE—the latent space be-
comes markedly more suitable for diffusion modeling, as evidenced by the best overall results across
recognition accuracy, style classification score, and DTW distance.

Figure 2 further visualizes the latent space. Unlike the Vanilla VAE, which fails to form clear clusters
by writing style or character class, InkVAE—with OCR and style regularization—produces well-
separated clusters, yielding more discriminative and semantically meaningful representations. This
shows that although the Vanilla VAE reconstructs sequences well, its latent features lack sufficient
semantic information, so even small perturbations may lead to content errors or stylistic drift during
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VAE Model DiT generation results (trained on corresponding VAE) Table 3: Ablation Study of InkDiT. The con-
2 ik ] 2 LT tent encoder with ConvNextV2 significantly im-
proves content accuracy and style consistency

Baseline

+ OCR loss IJ‘J/'%M . . .. . . .

’ ’ with minimal overhead, while introducing long-
+Style loss / skip residual connections leads to performance
+OCR+Style |

degradation and additional computational cost.

loss (ours)

Target rI® - T

Figure 5: InkDiT Generation with VAE Vari- wilongskip 7173 7191 5542 1074 5555
ants. Blue boxes highlight content errors; red  y/, convNextv2 8151 8171 6549 1052 7194
boxes indicate style inconsistencies. InkDiT
trained on the latent space from our InkVAE
yields more accurate and consistent results.

Model AR% 1T CR% 1 Style T DTW | Avg. char/s T

DiffInk (Ours) 94.38 94.58 77.38 1.049 58.47

generation. Building on this, Figure 5 presents qualitative results of InkDiT trained on different
VAE variants. While the Vanilla VAE often produces inaccurate content and inconsistent styles,
InkVAE achieves both high content fidelity and stylistic consistency, demonstrating the effectiveness
of disentangled latent spaces for controllable handwriting generation.

Effect of InleT As shown in Table 3, we per- — TR TR | RUz AR
form an ablation study on InkDiT. Introducing = e e =
long skip connections results in degraded per- o oM Afeb WHRAT) %‘\ﬁ’% iy
formance, whereas removing the content encoder ~ Piffink(Ours) $HER G A LR B3 24 BAaA
causes a marked drop in content quality and fur- Target | 4 4B ehekad Z“/Wiwﬁﬁ
ther undermines style consistency. Interestingly,
even with simple padding of text embeddings and
without explicit sequence-length annotations, the
content encoder effectively captures long-range
dependencies and provides accurate semantic conditioning. This effectiveness can be attributed
to its ConvNeXt-V2 (Woo et al., 2023) backbone with large convolutional kernels, which not only
provide a broad receptive field but also integrate embeddings across spatial and sequential dimen-
sions. Such integration yields more robust alignment of character content embeddings with the VAE
latent space, preventing over-reliance on individual tokens. Moreover, by enriching the contextual
information, the content encoder mitigates semantic ambiguity: without it, the model must rely on
sparse text embeddings, which often leads to misalignment and confusion. The visual results in Fig-
ure 6 further support these observations, demonstrating that, without the content encoder, generated
text exhibits poor alignment and semantic drift.

Figure 6: Ablation study on the content en-
coder. Without the content encoder, content er-
rors (red boxes) occur frequently.

4.5 FINE-GRAINED CHARACTER-LAYOUT ANALYSIS

As shown in Figure 7, we visualize character centroids (red dots) for each method and connect them
to reveal layout trends. Baseline methods exhibit unnatural connections between adjacent charac-
ters in certain regions (highlighted by red boxes), stemming from their assumption that character
content and layout can be modeled independently. This often results in broken baselines and dis-
continuous structures. This phenomenon points to a fundamental property of handwritten text lines:
character layout and connections cannot be fully disentangled, as they remain inherently context-
dependent. Importantly, text-line layout is not merely arranging character bounding boxes; it should
also account for the structural properties of individual characters and the contextual dependencies
among their neighbors. Rather than treating layout as a separate post-processing step, DiffInk di-
rectly models the spatial arrangement and inter-character connections of the entire text line within a
structure-aware latent space, thereby producing more coherent and consistent results.

Text Drawing DeeplIminator OLHWG DiffInk (Ours) Target

WLU SDT
i ] A i | Bph D 14 | SRS s o A ek 4
S LY] Ron kbRt | AH-Hiend) | Sty | PRARISAGH, | (oo | Sy | Rt hediiy
Figure 7: Fine-Grained Layout Analysis. Baseline methods show local misalignments (red boxes),
while DiffInk achieves more coherent and consistent layouts.
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Figure 8: Comparison of data distributions between generated and real data. t-SNE (Maaten &
Hinton, 2008) visualization of features from the same text lines generated by baselines and DiffInk.
DiffInk closely overlaps with real data, while baselines show varying degrees of deviation.

4.6 VISUALIZATIONS WITH T-SNE

As shown in Figure 8, the t-SNE visualization of features extracted by the trajectory encoder reveals
that DiffInk’s generated text lines closely overlap with real handwritten samples, indicating that
DiffInk effectively captures the distribution of authentic handwriting. In contrast, baseline methods
that synthesize characters individually and concatenate them using bounding boxes exhibit a notice-
able distributional shift from real data. This suggests that although text lines can be reconstructed
through post-hoc concatenation, such pipelines struggle to model the coupling between character
shapes and text-line layout, which in real handwriting arises from continuous writing dynamics and
natural inter-character transitions. As a result, character-concatenation methods fail to reproduce
the holistic structure of real text lines, whereas DiffInk’s end-to-end modeling captures both global
layout and stylistic coherence more faithfully. These results further confirm that modeling the entire
text line as a unified sequence is essential for preserving realistic handwriting statistics.

5 CONCLUSION

In this paper, we propose DiffInk, a pioneering conditional latent diffusion Transformer frame-
work for TOHG. Our key contributions are: (1) a task-aware variational autoencoder (InkVAE)
that incorporates OCR-based and style regularization to learn a semantically structured latent space
with disentangled content and style; and (2) a conditional latent diffusion Transformer (InkDiT)
that conditions on textual input and reference styles to generate coherent pen trajectories. Built
upon these components, DiffInk produces full-line handwritten text with high content accuracy, con-
sistent style, and natural inter-character transitions. Comprehensive experiments demonstrate that
DiffInk significantly outperforms existing methods, validating the effectiveness of our approach.
This work establishes the effectiveness of the conditional latent diffusion model for complex on-
line handwriting generation and highlights its potential for OCR, personalized digital handwriting
applications, and human-computer interaction systems. Limitations and discussions, including ex-
tensions to paragraph-level generation and to other languages are presented in Appendix D.
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A DATASETS AND PREPROCESSING

Dataset For Chinese TOHG, we use the
CASIA-OLHWDB 2.0-2.2 (Liu et al., 2011)
datasets, which contain over 50,000 online
handwritten text lines collected from 1,019
writers. Due to training resource limitations,
we select 500 writers based on the average
length of their text lines, prioritizing those with
longer and more informative content. Among
them, 400 writers are used for training and 100
for testing. As shown in Figure 9, we further
analyze the text-line length distribution in the
training set, where the average length exceeds
30 characters (higher than the reported 26.68
characters in prior benchmarks (Yin et al,
2013)) and the maximum length goes beyond
40 characters—sufficient to cover typical text-
line writing scenarios in daily life.

We observe that the character distribution in
text-line data exhibits a pronounced long-tail
pattern. To mitigate this issue, we design
a frequency-aware data augmentation strategy.
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Figure 9: Analysis of text-line length distribution
in the Chinese handwriting dataset. Due to dataset
constraints, our method supports up to 52 charac-
ters per line, which is higher than the average of
26.68 characters reported in (Yin et al., 2013) and
sufficient for practical usage.
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Specifically, we sample isolated character instances written by the same author from CASIA-
OLHWDB 1.0-1.2, with sampling probabilities inversely proportional to their frequencies in the
original text-line corpus—assigning higher selection chances to rare characters. For each sampled
author, we randomly select a text-line from the training set as a layout template, and place the sam-
pled characters according to the original character BBoxes. This strategy enables the construction
of synthetic text-lines that effectively compensate for the scarcity of low-frequency characters. In
total, we generate approximately 67,000 text-line samples for training.

Data processing We first normalize the (x, y) coordinates of all trajectory points following prior
work (Zhang et al., 2017), to address scale inconsistencies caused by variations in device resolution
and handwriting styles. This normalization facilitates more stable learning of structural patterns in
handwritten text. Subsequently, we apply the Ramer—Douglas—Peucker(RDP) (Douglas & Peucker,
1973) algorithm to each stroke sequence to remove redundant points, thereby reducing the overall
trajectory length and improving computational efficiency. The simplification coefficients are empir-
ically selected based on extensive trial experiments: we set them to 0.4 for CASIA-OLHWDB. The
average sequence length of Chinese handwriting is reduced by about 500 points after simplification.
These values balance preserving handwriting structure with noise reduction, while also shortening
the input sequences. For each batch of text-line data, we pad all sequences to the maximum line
length. The padding regions are filled with x = y = 0, while the pen-state pen is set to the End of
Character symbol.

B IMPLEMENTATION DETAILS OF DIFFINK

B.1 DETAILS OF INKVAE

Reconstruction and KL Divergence As the latent modeling module of the latent diffusion Trans-
former, InkVAE is primarily designed to produce compact representations that minimize reconstruc-
tion loss. Specifically, InkVAE adopts a 1D convolutional encoder-decoder architecture with resid-
ual connections. The encoder processes the input handwriting sequence of shape NV x 5 through a
series of downsampling layers, progressively transforming it into representations of size N/2 x 128,
N/4 x 256, and finally N/8 x 384, forming a latent sequence with an 8x temporal compression
ratio. The decoder mirrors this structure with residual 1D convolutional blocks for upsampling,
gradually reconstructing the sequence into N/4 x 384, N/2 x 256, and N x 123. The final out-
put of the decoder parameterizes a p = 20-component Gaussian Mixture Model (GMM) for (z, y)
trajectory prediction, with the remaining dimensions used for pen-state classification (3 classes). A
Transformer-based trajectory decoder (3 layers, hidden size 256, 4 heads) is employed to enhance
sequence modeling. The overall reconstruction loss L., consists of two components: the negative
log-likelihood loss Lgmm for coordinate modeling, and the cross-entropy loss L., for pen-state clas-
sification. A KL divergence loss is also applied to the latent space, as is standard in VAE frameworks,
to promote regularization; to balance reconstruction quality, we follow diffusion-based models and
set its coefficient to a small value.

The Lgmm is defined as Equation 4, where p; = (2+,y¢) is the ground-truth point at timestep t,
and each mixture component is parameterized by mean p,,, ;, covariance 3, ; (often diagonal), and

mixing coefficient 7, ;. The pen-state prediction is treated as a 3-way classification task (pen-down,

pen-up, end-of-stroke), with loss defined as Equation 5, where y is the one-hot ground-truth label

and p}} is the predicted probability for class k at timestep ¢. This focal loss formulation down-
weights easy samples and focuses training on harder ones.

T M
1
ﬁgmm = *T tzzllog <Z 7Tm,t N(pt | /J'm,ta 2771,1&)) ) (4)

m=1
T 3
£focal _ _l Z Z o (1 _ pen)y pen 4 pen (5)
pen T T p k Pix) Yir 108Dt ks
t=1 k=1

Task relevant Regularization Recent studies (Tang et al., 2025; Yao et al., 2025; Guo et al., 2025)
suggest that a well-structured latent space plays a crucial role in the effectiveness of downstream
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Algorithm 1 InkDiT Training and Inference

Training Phase: Inference Phase:

1: Input: zo, Trer, Z 1: Input: z7 ~ N(0,1), Zrer, Z

2: Sample t ~ U(1,T) 2: fort=1T,...,1do

3: Sample noise € ~ N'(0,I) 3 2o = InkDiT([x¢, Zrer, Z], 1)

4: Compute T = /&t - To + 1 — @ - € 4: €= (s — Vau - 20)/V1 — ax

5: Predict &9 = InkDiTy ([z¢, Tret, Z], t) 5: Ti—1 =+/Qi—1-To+V1I—ai—1-¢€

6: Update InkDiTy using loss: Lair = || Zo — 2ol|? 6: end for > Final output: Zo

diffusion-based modeling. To this end, beyond trajectory reconstruction, InkVAE introduces two
auxiliary objectives to impose task-specific regularization on the latent space: (1) A style classifier
composed of an LSTM (Staudemeyer & Morris, 2019) with attention pooling and a 400-class writer
identification head, and (2) a Transformer-based OCR module (hidden size 384) equipped with a
2648-class character classifier and trained with CTC loss to encourage content-aware representation
learning. The style classification loss and the OCR loss are defined as Equation 6, where the for-
mer uses a cross-entropy loss between the writer identity label »*¥'® and the predicted probability
p*¥'e and the latter adopts the standard CTC loss (Graves et al., 2006) to align predicted character
sequences with ground-truth transcriptions.

C
Esty = — Z yztyle -log psctyle’ Lo = CTC (P, yocr). (6)

c=1
B.2 DETAILS OF INKDIT

To generate text lines conditioned on character sequences, InkDiT takes as input three components:
the noisy latent representation x;, a style condition z.¢, and the corresponding text embeddings. The
text embeddings is processed by a lightweight encoder to produce content-aware features. These
three inputs are then fused and projected into a unified joint space, which is subsequently modeled
by a multi-layer Transformer for time-aware latent denoising.

Content Encoder To model the character-level semantics in handwriting generation, we employ
a lightweight content encoder based on three stacked ConvNeXt-V2 (Woo et al., 2023) blocks.
The input to this encoder is a sequence of padded character embeddings with a dimensionality
of 512. Each ConvNeXt-V2 block consists of a depthwise 1D convolution with kernel size 7 to
capture local context, followed by a LayerNorm layer and a two-layer feedforward subnetwork with
GELU activation and Global Response Normalization (GRN). Residual connections are applied to
stabilize training and preserve lower-level features. This architectural design enables the encoder to
effectively extract local and contextual dependencies among character tokens, resulting in content-
aware features that are well aligned with the latent space representation used by the diffusion model.

DiT Backbone The InkDiT backbone operates entirely within a 384-dimensional latent space.
During each denoising step, it receives three conditional inputs: the noised latent representation
x; € RIX3%4 3 style condition feature zf € RY*3%, and the content feature derived from the
ConvNeXt-based encoder. These inputs are fused through a mixing operation and subsequently
projected to a 896-dimensional joint space using a linear layer. The resulting fused representation is
then passed into a 16-layer Transformer model that follows the standard design of multi-head self-
attention and feedforward networks. Each Transformer block incorporates adaptive normalization
and gated residual connections modulated by timestep embeddings, enabling the model to perform
time-aware denoising. This design facilitates joint reasoning over content semantics, spatial layout,
and temporal dynamics within a unified generative framework.

Diffusion Process The diffusion process follows a cosine noise schedule with 7' = 1000
timesteps. Instead of predicting the noise, InkDiT is trained to directly estimate the denoised la-
tent variable z(, following the DDPM-style parameterization. During inference, DDIM (Song et al.,
2020) sampling with 5 steps is used to efficiently generate the final latent output.

The complete training and inference procedures are summarized in Algorithm 1. During training, the
model learns to recover x from its noisy version z;, conditioned on both textual input and reference
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trajectory. To further improve generation quality, we apply lightweight DDIM-specific fine-tuning,
where the model is supervised to predict Z( at intermediate steps by unrolling a few DDIM iterations.
This enhances fidelity with minimal computational overhead. In inference, generation starts from
Gaussian noise at ¢ = 7' and iteratively denoises via DDIM updates, producing a coherent and
stylistically aligned latent sequence that is ultimately decoded into an online handwriting trajectory.

B.3 TRAINING CONFIGURATION

For InkVAE, all components—including the sequence encoder, sequence decoder, and two regular-
ization classifiers—are jointly optimized with a learning rate of 5 x 10=%, 3 = (0.9,0.99), and a
weight decay of 1 x 10~*. To stabilize training, we apply gradient clipping with a maximum norm
of 5.0. For InkDiT, we adopt the same settings but use a smaller learning rate of 7.5 x 10~ and
a stricter gradient clipping norm of 1.0. In both cases, the learning rate schedule combines a 5%
linear warm-up phase followed by cosine decay, implemented using the LambdaLR scheduler in
PyTorch. All models are trained from scratch on 4 xNVIDIA RTX A6000 GPUs. Training InkVAE
takes about 16 hours, whereas InkDiT training requires roughly 3 days. We employ the AdamW
optimizer (Loshchilov & Hutter, 2017) for both stages of training.

B.4 EVALUATION METRICS

To evaluate the readability and correctness of generated text lines, we adopt Accurate Rate (AR)
and Correct Rate (CR) as defined in Equations 7 and 8. Following (Liu et al., 2011), Ny is the total
number of ground-truth characters; D., Se, and I. denote the numbers of deletion, substitution, and
insertion errors, respectively. Specifically, we train a text-line OCR recognition model solely on the
training set, which still achieves a high accuracy of 97.62% when directly evaluated on the test set.
The model adopts the encoder of InkVAE as the backbone, followed by a character classification
head, and is subsequently used to evaluate the textual accuracy of generated handwriting samples.

(Nt_De_Se_Ie)

AR = N x 100% (7N
N, — D, —
CR = (N = De =~ 5c) x 100% (8)
Ny

The text-line DTW (Berndt & Clifford, 1994) distance is computed over the (z,y) coordinate se-
quences of each full text line and normalized by the length of the corresponding ground-truth tra-
jectory, following the formulation in Equation 9. Here, N is the number of test samples, x§t|
denotes the length of the i-th ground-truth trajectory, and DTW(+) is efficiently computed using the
torch-fastdtw library.

DTW (22", 2)

10
gt
%

Norm-DTW = 9

T

The style score is obtained by feeding the generated text lines into a style classifier, predicting
their corresponding writer identities. To this end, we train a 100-class writer identification model
on the testing set, which achieves a classification accuracy of 99.9% on the test set, demonstrating
its strong discriminative ability for style evaluation. The style classifier consists of the encoder of
InkVAE followed by a writer classification head. Besides, generation efficiency (Avg. char/s) is
evaluated as the average number of characters generated per second. All methods are tested with a
batch size of 1 on the same NVIDIA RTX A6000 GPU. The average generation speed is computed
by dividing the total number of generated characters by the elapsed time, excluding data loading and
other preprocessing operations.
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Writer-1 | AeRE e f e tE ARGOLRE | ghh gl L, AR ATt Menn | g ad BEEES 1A, ERE
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‘Writer-3
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Figure 10: Same text across different styles. Generating the same text in different styles shows
that DiffInk captures distinct style variations while maintaining intra-writer consistency.
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Figure 11: Multi-style input. DiffInk can take two style references simultaneously and, conditioned
on the given text, generate handwriting that blends characteristics of both styles, enabling control-
lable style manipulation.

C MORE EXPERIMENTAL RESULTS

C.1 STYLE CONTROL AND CONSISTENCY

Style Consistency As illustrated in the Figure 10, we showcase generated text lines from four
writers in the test set. Each writer is conditioned on the same textual content to generate handwrit-
ing samples in their respective styles. Horizontally, despite the variation in content, the generated
samples from the same writer exhibit strong stylistic consistency. For example, writer 1 consistently
produces slanted layouts from the lower left to the upper right. Vertically, given the same content
input, samples generated in different styles show clear variations in both layout and writing traits,
such as overall length, character size, and spatial arrangement.

Style Control DiffInk is capable of handling style-mixing inputs, allowing the model to generate
handwriting that interpolates between multiple reference styles. As illustrated in the Figure 11,
given two style examples and a target text string, the model synthesizes pen-trajectory sequences
that simultaneously reflect structural consistency with the textual content and stylistic characteristics
drawn from both references.

C.2 MORE COMPARISONS WITH EXISTING METHODS

We provide additional comparisons with existing approaches, including Drawing (Zhang et al.,
2017), Deepiminator (Zhao et al., 2020), WLU (Tang & Lian, 2021), SDT (Dai et al., 2023), and

19



Published as a conference paper at ICLR 2026

OLHWG (Ren et al., 2025). As illustrated in Figure 12 and Figure 13, our method delivers superior
text-line generation quality over a broader spectrum of handwriting styles.

‘Writer Style 1
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DeeP | B0k o voddoselRARIER A 4k, 54 Wb 05— it BRHA G- BAES & R 14D e, LGN

Iminator | AT A

WLU |04 » bR s B we bl Tihs 1 | WAFR BRER GRG0, C510E64,mnTe!

SDT | BP0 ko s@ M HIET &6, h afi b bamuts ) | TR BRART-B3EL5, SHIMEZR, LYLIL
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DiffInk
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Deep | e ik £EHo0, THARA MRS b IR 7 fin s, | Corborss IR U WL TNT eSS T ey
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Figure 12: More visual comparisons with SOTA methods. DiffInk generates more natural text-
line results, while the red boxes highlight unnatural character connections.
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Writer Style 4
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Figure 13:

More visual comparisons with SOTA methods. DiffInk generates more natural text-

line results, while the red boxes highlight unnatural character connections.
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C.3 MORE RESULTS GENERATED BY DIFFINK

In Figure 14, we present additional results generated by DiffInk. We randomly sample eight writers
from the test set and generate multiple text lines for each of them. Visual inspection reveals that the
generated text lines from the same writer exhibit consistent local stroke patterns and global layout
styles, while clear stylistic differences emerge across different writers. These results demonstrate
that DiffInk effectively captures inter-writer style variation, and that our lightweight style classifica-
tion strategy improves the model’s ability to generalize across styles. Moreover, the generated text
lines also maintain high content accuracy and readability, further validating the effectiveness of the

proposed DiffInk framework.
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Figure 14: More generation results by DiffInk (Ours). Difflnk is capable of producing diverse
handwritten long text lines, exhibiting high consistency within the same style and clear distinctions

across different styles.
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Table 4: DDIM sampling—step analysis of DiffInk, illustrating the trade-off between generation
quality and inference speed.

Sample Steps AR% T CR% 1T Stylet DTW | Time Cost

1 36.23 36.39 35.85 1.028 0.2x
2 79.70 80.00 66.31 1.022 0.4x
3 89.93 90.19 73.51 1.026 0.6x
4 93.16 93.39 76.47 1.040 0.8
5 (Ours) 94.38 94.58 77.38 1.052 1x
6 94.86 95.01 77.69 1.058 1.2x
10 95.35 95.52 78.32 1.067 2.0x
15 95.36 95.56 79.10 1.068 3.0x
20 95.27 95.47 79.16 1.076 4.0x

C.4 DDIM SAMPLING STEPS EVALUATION

To evaluate the impact of DDIM sampling steps on generation performance, we conducted an ad-
ditional experiment. As shown in the table 4, We observe that the performance of DDIM sampling
continues to improve as the number of steps increases from 1 to 5. However, when the number
of steps exceeds 10, the gains in content and style scores become marginal, while the DTW value
increases and the sampling cost grows significantly. Therefore, we adopt 5-step DDIM sampling in
this paper as a practical trade-off between generation quality and computational efficiency.

D DISCUSSION

D.1 COMPARISON WITH TWO-STAGE METHODS

As illustrated in Figure 15, conventional two-stage methods decouple character generation from
layout prediction and rely on additional post-processing to stitch characters together, which often
results in less coherent text lines. In contrast, our proposed DiffInk models content, style, and layout
within a unified framework, enabling genuine end-to-end generation that produces text lines with
more natural character connections and globally consistent layouts.

Stage 1: Handwriting Font Generation Stage 2: Text Line Layout Modeling

Sy Mo~ | - LTS

””””””””””””” Character B-Box
Style reference Character Handwriting lpost processing
Characters: B R f@%&jﬂ%@ﬁ/ﬁﬁ?b} % 13‘%

(Text: “fii&” . m%anzow*r&mw e, kg | Ours One-Stage Text Line
l Handwriting Generation

i e

Figure 15: Comparison with character-layout decoupled approaches: (a) a two-stage pipeline
combining handwritten font generation with layout post-processing; (b) DiffInk, which takes text
and a style reference to directly output complete text lines. Unlike the two-stage pipeline, DiffInk
generates more natural character connections rather than mechanically stitching bounding boxes.

(b) Style Reference

‘\ﬁ/@s v éwﬁ/?

D.2 IMPLEMENTATION OF DIFFINK

In the main experiments, we use a continuous reference segment from each text line as the style
reference, both for convenient sampling and to evaluate whether the model can generate layouts that
follow the trend of this given reference. This setting is adopted for convenient comparison with
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Figure 16: Results on the IAM test set. DiffInk generates English text lines with consistent style
and accurate content. The top row shows generated results, and the bottom row shows the corre-
sponding target samples.

Table 5: Recognition performance on ICDARI13 (Yin et al., 2013) with and without our synthesized
data. Adding synthetic text lines improves AR and CR by 8.5 and 8.6 points, demonstrating both
the effectiveness and quality of the generated data.

OCR Model Training Data CRT ART

Real data only (Baseline)  83.9 84.2
+ DiffInk Synth (Ours) 89.6  90.0

Real data only (Baseline)  86.2 86.6
+ DiffInk Synth (Ours) 909 91.1

CNN+Transformer

GLRNet (Peng et al., 2021)

recent SOTA methods (Ren et al., 2025), which feed the layouts of the first ten characters of a real
text line into the model; the model then predicts the positions and sizes of subsequent characters
based on the reference layout, the input character content, and an average character-size prior. To
ensure a fair comparison, we instead provide the continuous handwritten trajectory segment of the
real text line—containing both style and layout information—as input to our model. For the other
compared methods, the same reference segment is used as the style condition. The corresponding
character bounding boxes of this reference are fed into the OLHWG layout prediction module as
prompts, and the final text-line results are obtained by scaling the generated characters according
to the predicted bounding boxes. Finally, line-level metrics—including content scores, style scores,
and DTW distance—are computed with each text line conditioned on its own reference segment.

D.3 APPLYING TO OTHER LANGUAGES

To validate the generalizability of the proposed method, we directly applied it to English text
line generation tasks and conducted experiments on the IAM-OnDB dataset. The data process-
ing pipeline remained consistent with the Chinese setup, including the use of the RDP algorithm
(with the redundancy removal parameter set to 0.5) for redundant point removal and normalization
of trajectory coordinates. The IAM-OnDB (Liwicki & Bunke, 2005) dataset contains approximately
10,000 handwritten English text line samples produced by 221 writers, featuring substantial cursive
writing. We randomly selected data from 25 writers as the test set, with the remaining data used for
training. During training, all hyperparameters remained consistent with the Chinese experimental
configuration, except for the learning rate, which was reduced to 5 x 10~°.

Figure 16 showcases several examples of DiffInk applied to English handwriting generation. The
model effectively generates text-line sequences that are both content-accurate and style-consistent,
even when the handwriting features strong cursive connections and diverse stylistic variations. These
results highlight the versatility and generalizability of the DiffInk framework across multilingual and
stylistically complex handwriting scenarios.

D.4 IMPROVING OCR PERFORMANCE WITH SYNTHETIC DATA

In practical applications, the quantity of handwriting data plays a critical role in improving OCR per-
formance. To assess the impact of our synthesized data, we use the generated text lines to augment
the original training set. For recognition, we adopt the same OCR model employed in this work
for evaluation—a CNN+Transformer architecture—as the text-line recognition backbone. In addi-
tion, we also follow the recognition model design used in GLRNet (Peng et al., 2021) and conduct
experiments under the same settings.
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Our experimental results on the ICDARI13 dataset (Yin et al., 2013) are presented in Table 5. It
can be observed that the proposed generation method significantly improves the performance of the
recognition model. Specifically, after augmenting the training set with our synthesized data, the AR
and CR metrics increased by 8.5 and 8.6 percentage points, respectively. When using the recognition
model from GLRNet (Peng et al., 2021), our synthesized data further yields an average improvement
of around 4 percentage points. This demonstrates that our synthesized data can effectively mitigate
recognition degradation caused by the long-tail distribution of characters and the limited diversity of
handwriting styles, thereby substantially enhancing the representational capacity of existing datasets
and further confirming the high content and style quality of our synthetic data.

D.5 PERSONALIZED HANDWRITING GENERATION WITH DIFFINK

As a text-line handwriting generation model, DiffInk (Ours) is useful not only for producing high-
quality synthetic data for OCR systems, but also for broader generative applications such as per-
sonalized handwriting services and human—computer interaction. For example, in a personalized
handwriting generation scenario: for a given writer, only a single reference line—or even a short
trajectory of fewer than ten characters—is provided as the prompt X,¢, with its corresponding
text Trer. The user then specifies a target text line Tgen, and the model generates the correspond-
ing trajectory Xgen. As shown in Figure 17, DiffInk yields text lines with coherent layouts under
this one-shot setting. To further enhance diversity, the reference trajectory Xt can be augmented
to simulate different structural layouts. Furthermore, our approach offers a promising direction for
paragraph-level generation. As illustrated in Figure 18, we present an example of a model-generated
handwritten paragraph of classical Chinese poetry. By simply concatenating the line-level results, a
complete paragraph can be obtained, further demonstrating that DiffInk can support a broad range
of handwriting-related applications.
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Figure 17: One-shot generation results. DiffInk is capable of producing text lines of arbitrary
length conditioned only on a short reference trajectory, supporting arbitrary character combinations
from the defined vocabulary. Even under this one-shot setting, the generated lines maintain both
high character accuracy and consistent writing style. Different colors denote different styles.
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Figure 18: Extending handwriting generation to the paragraph level, we take classical Chinese
poetry as an example. Given a style reference, the text is input line by line to produce line-level
results, which are then concatenated to form a complete handwritten paragraph.

D.6 LIMITATIONS

While our model establishes SOTA performance on the notoriously difficult task of Chinese hand-
written text-line generation, direct application to other languages (e.g., Latin-based scripts) still
requires retraining. Exploring how to develop a unified multilingual generation model with only
minor modifications will therefore be one of our key directions for future work.

E USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs, such as ChatGPT (OpenAl, 2023) and DeepSeek (DeepSeek-Al, 2024), were employed
solely for language polishing and minor writing refinements in this paper. They were not used for
generating ideas, designing methods, conducting experiments, analyzing results, or creating figures.
All scientific contributions, including the conception of the research problem, model development,
and experimental validation, were carried out independently by the authors.
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