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ABSTRACT

Vision mambas have demonstrated strong performance with linear complexity to
the number of vision tokens. Their efficiency results from processing image to-
kens sequentially. However, most existing methods employ patch-based image
tokenization and then flatten them into 1D sequences for causal processing, which
ignore the intrinsic 2D structural correlations of images. It is also difficult to ex-
tract global information by sequential processing of local patches. In this paper,
we propose a global image serialization method to transform the image into a se-
quence of causal tokens, which contain global information of the 2D image. We
first convert the image from the spatial domain to the frequency domain using
Discrete Cosine Transform (DCT) and then arrange the pixels with corresponding
frequency ranges. We further transform each set within the same frequency band
back to the spatial domain to obtain a series of images before tokenization. We
construct a vision mamba model, GlobalMamba, with a causal input format based
on the proposed global image serialization, which can better exploit the causal
relations among image sequences. Extensive experiments demonstrate the effec-
tiveness of our GlobalMamba, including image classification on ImageNet-1K,
object detection on COCO, and semantic segmentation on ADE20K.

1 INTRODUCTION

Mamba (Gu & Dao, 2023; Lieber et al., 2024) has garnered significant interest within the deep learn-
ing community recently due to its efficiency. Compared to the widely adopted transformer-based ar-
chitectures, Mamba reduces the computational complexity from O(n2) to O(n), where n represents
the length of the input sequence, based on State Space Models (SSMs) (Gu et al., 2022; 2021a;b;
Gupta et al., 2022). Mamba further accelerates the originally sequential computation of state vari-
ables through a series of hardware-friendly algorithms (e.g., parallel scanning) to enhance efficiency
in practice. Mamba has demonstrated competitive performance and good potential in various areas
such as image representation learning (Zhu et al., 2024; Ma et al., 2024), video understanding (Li
et al., 2024), and point cloud analysis (Liang et al., 2024).

Recent efforts introduce Mamba to computer vision by converting image data into one-dimensional
token sequences to accommodate its input formats (Zhu et al., 2024; Liu et al., 2024; Huang et al.,
2024; Yang et al., 2024). Specifically, they first perform patch embedding to transform images into
tokens of a certain resolution, and then sequentially flatten these tokens in a systematic row-wise
and column-wise fashion, either across the global scope (Liu et al., 2024) or within a local win-
dow (Huang et al., 2024). Although this operation can adapt to various visual tasks, the inherent
causal order between image tokens is directly disrupted. Neighboring regions within the spatial do-
main of image data typically encode similar visual information, whereas characteristics in spatially
distant regions may exhibit pronounced dissimilarity, which is commonly referred to as the local in-
variance property of images. Therefore, the straightforward token flattening procedure may result in
parts of patches that were spatially proximate being placed at relatively distant positions in the flat-
tened sequence, and vice versa. This fails to provide an appropriate ordering for the image modeling
within the Mamba frameworks. Furthermore, each individual image token of these vision mambas
typically possesses only local information and fail to capture global features, thus exhibiting certain
deficiencies in terms of modeling capabilities.
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(a) Serialized by row

… …

(b) Serialized by column

…

(c) Serialized within local windows

…

(d) GlobalMamba: Serialized by frequency

Figure 1: Comparisons of different Vision Mamba framerowks. Vim and VMamba adopt a flattening
strategy similar to (a) and (b), transmuting two-dimensional images into one-dimensional sequences
by row or column, while LocalMamba (c) performs the corresponding flattening within a local
window. Notably, these sequences lack the inherent causal sequencing of tokens that is characteristic
of the causal architecture of Mamba causal architecture. Differently, GlobalMamba (d) constructs a
causal token sequence by frequency, while ensuring that tokens acquire global feature information.

To address this, we propose GlobalMamba, a modified vision mamba model with global image se-
rialization, as shown in Figure 3. We first transform the original image from the spatial domain
to the frequency domain via the Discrete Cosine Transform (DCT), thereby acquiring the spectral
distribution. We segment the frequency spectrum into multiple intervals, ranging from lower to
higher frequencies. We then iteratively group the pixels in the frequency domain within the same
frequency band by nullifing the amplitude values corresponding to frequencies that fall outside the
designated intervals during the segmentation. Subsequently, we project these segmented spectral
representations back into the spatial domain via an inverse transform. Each segment is then individ-
ually processed through a tokenization process, yielding a collection of tokens that are representative
of the various frequency intervals and possess an expansive global visual receptive field. We arrange
these tokens into a unidimensional causal sequence in ascending order of frequency, which is then
subjected to the Mamba feature extraction process. Our GlobalMamba constructs a causal token
sequence in the order of frequency, allowing the model to understand images in a process similar
to humans (i.e., grasping the low-frequency information such as contours before augmenting with
detailed information). The tokens used in GlobalMamba are intrinsically associated with discrete
frequency intervals, facilitating an enhanced global encapsulation of the spectral information of vi-
sual data. In addition, the construction of the causal sequence aligns with the frequency principle of
neural networks, which tends to prioritize fitting the low-frequency components of the input data,
and low-frequency information often plays a more decisive role in visual tasks such as image clas-
sification. We conduct extensive experiments on various tasks to evaluate the effectiveness of our
model, including image classification on ImageNet-1K Russakovsky et al. (2015), object detection
on COCO Lin et al. (2014), and semantic segmentation on ADE20K Zhou et al. (2019). The consis-
tent improvements (e.g. +0.6% over Vim on ImageNet-1K) compared with the adopted baselines
demonstrate the superiority of the proposed GlobalMamba.

2 RELATED WORK

Vision Mambas. Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs) are the
two most commonly used backbones for computer vision. Among them, CNNs have served as the
common backbone for most visual tasks over an extended period due to their unique local recep-
tive field prior (He et al., 2016; Liu et al., 2022; Szegedy et al., 2015; Simonyan & Zisserman,
2014). ResNet (He et al., 2016), in particular, has become the most widely used convolutional struc-
ture by employing an efficient residual structure to prevent vanishing gradient issues. Additionally,
ViTs have emerged as the foundational model architecture with their exceptional scale-up capability
and adaptability to multi-modal inputs (Dosovitskiy et al., 2020; Liu et al., 2021; Li et al., 2022).
Recently, motivated by the success of Mamba (Gu & Dao, 2023) in natural language processing,
several efforts have attempted to apply it to visual understanding tasks (Zhu et al., 2024; Liu et al.,
2024; Huang et al., 2024; Yang et al., 2024; Hu et al., 2024; Patro & Agneeswaran, 2024). Typ-
ically, Vision Mamba (Vim) (Zhu et al., 2024) constitutes the pioneering effort in the adaptation
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of the Mamba architecture for applications within the domain of computer vision, wherein image
tokens are flattened into a one-dimensional sequence to adapt to the input format. VMamba (Liu
et al., 2024) and LocalMamba (Huang et al., 2024) substantially enrich the serialization process
of images by employing strategies such as multi-directional scanning and local window scanning
to enhance the corresponding feature extraction ability. In addition, ZigMa (Hu et al., 2024) fur-
ther applies the Mamba architecture to visual generation. Nevertheless, the approaches employed
in these studies necessitate the flattening of tokens during image processing, thereby undermining
the intrinsic local invariance characteristics inherent within images. Consequently, the resultant
one-dimensional token sequences are devoid of the causal relationships that should exist between
preceding and succeeding elements, as well as between contiguous tokens. Moreover, these flat-
tened tokens are imbued with spatially confined information, lacking a comprehensive grasp of the
global context. Addressing this deficiency and enhancing the preservation of such causalities as well
as global perceptions constitutes a principal objective of our proposed method.

Causal Sequence Modeling. Recurrent Neural Networks (RNNs) (Jordan, 1997; Hochreiter &
Schmidhuber, 1997; Cho, 2014) represent the pioneering architectural paradigm within the deep
learning domain that inherently captures sequential causal relationships. They take sequential data
as input and perform recursion along the progression of the sequence, with all nodes connected
in a chain-like structure. Therefore, RNNs are particularly suitable for natural language and time
series data samples, which inherently possess temporal causality. Mamba (Gu & Dao, 2023) pos-
sesses intermediate hidden state variables similar to RNNs, and the iterative manner between state
variables also follows a temporal sequence. Therefore, it lacks rationality to model visual tokens
without causal order using Mamba. Causal sequence modeling also exists in the decoder part of
transformers (Kim et al., 2018). Currently, large language models widely adopt a decoder-only ar-
chitecture, utilizing next-token prediction for feature extraction of causal input sequences (Radford,
2018; Radford et al., 2019; Brown, 2020; Touvron et al., 2023a;b; Dubey et al., 2024), which is
applicable to both language understanding and generation tasks. However, the direct application
of a decoder-only architecture to visual classification tasks does not yield impressive results, with
a decrease in accuracy compared to its counterpart with global attention interactions (Chen et al.,
2020). In addition, Tian et al. (Tian et al., 2024) transformed the original next-token prediction into
next-scale prediction to enhance the causality between sequences, thereby improving the quality in
visual generation. In this paper, we reinforce the causality between image sequences by frequency
segmentation, enhancing their compatibility with subsequent modeling procedures

Frequency Analysis. Frequency analysis exhibits profound potential for advancement within the
domain of deep learning and computer vision. A collection of scholarly endeavors has delved into
the frequency principle, suggesting that neural networks exhibit a learning bias towards preferen-
tially fitting the low-frequency signals in the data (Xu et al., 2019; 2024; Luo et al., 2019). Con-
currently, they employ the frequency principle to execute sophisticated interpretive analyses of deep
learning and guide the corresponding training process. Additionally, several works leverage fre-
quency analysis to facilitate the practical application of visual tasks (Liang et al., 2023; Xu et al.,
2020; Qin et al., 2021; Rao et al., 2023; Xie et al., 2021). For example, Xu et al. (Xu et al., 2020)
discovered that CNNs exhibit a heightened sensitivity to low-frequency channels and mitigate the
loss of information due to spatial downsampling by employing feature selection strategies within the
frequency domain. Rao et al. (Rao et al., 2023) constructed a GFNet capable of modeling long-term
spatial dependencies in the frequency domain with log-linear complexity. In this paper, we utilize
the division of frequencies to construct visual token sequences, such that the modeling of Mamba
adheres to a causal order from low to high frequencies, which alleviates the destruction of image
local invariance to a certain extent. Each image token can also focus more intently on the global in-
formation within its corresponding frequency band, offering a superior alternative to previous vision
models where tokens only encapsulate local information.

3 PROPOSED APPROACH

In this section, we first provide a brief introduction to the preliminaries of Mamba. Subsequently,
we elaborate on the specific principle and operational process of frequency segmentation. Lastly,
we present an overview of GlobalMamba accompanied by corresponding analysis.
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Figure 2: The frequency-based global tokenization of GlobalMamba involves frequency-segmenting
images into multiple bands, downsampled and tokenized with a lightweight CNN into casual se-
quences for subsequent processing.

3.1 PRELIMINARIES

State Space Models. State space models (SSM) employ intermediate hidden states in accordance
with the input sequences, with each state transition being derived from the current input and the
output at each time step is jointly determined by the current input and the hidden state:

h
′
(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

where x(t) ∈ R, y(t) ∈ R, h(t) ∈ RN denote the input, output, and hidden state, respectively.
A ∈ RN×N ,B ∈ RN×1,C ∈ R1×N ,D ∈ R1×1 are the corresponding learnable parameters to
determine the evolution and projection processes. Note that D is often ignored for brevity.

To apply the aforementioned model to actual discrete data, the zero-order hold technique is em-
ployed to discretize the equations. (A and (B) are transformed into their corresponding discrete
forms A and B with a time-scale parameter ∆ ∈ R > 0, formulated as follows:

A = e∆A, B = (∆A)−1(e∆A − I) ·∆B. (2)

The state-space equations with the aforementioned discretization are as follows:

ht = Aht−1 +Bxt, yt = Cht +Dxt. (3)

State space models can be reformulated into a convolutional architecture enabling an efficient train-
ing procedure with the time-invariance of the learnable parameters. The specific equation form will
not be elaborated for brevity.

Mamba. Although time-invariant parameters are beneficial for the efficiency of the training process,
he lack of specific differentiation for inputs at varying temporal instances constrains the capacity of
the model for feature representation. Consequently, Mamba refines this approach by transitioning
from time-invariant to time-variant parameters, modifying the learnable parameters to be relevant to
the input data. Specifically, B and C are obtained from the input through different linear transfor-
mation matrices, while ∆ is determined by the input undergoing a linear transformation followed
by the corresponding activation function. However, the time-variant parameters inherently preclude
the model from being transformed into a convolutional form for parallel training. To address this,
Mamba employs various hardware optimization algorithms to achieve acceleration, including paral-
lel scanning. Therefore, Mamba maintains training efficiency while constraining the time complex-
ity to O(n), presenting a comparative advantage over the O(n2) complexity of transformers.

3.2 FREQUENCY-BASED GLOBAL IMAGE SERIALIZATION

As mentioned before, Mamba inherently models the input data with a causal order, whereas image
tokens, after being flattened by rows and columns, lack the causal relationship between adjacent ele-
ments and are therefore not fully applicable to the Mamba architecture. In addition, the tokenization
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Figure 3: The overall framework of GlobalMamba. The causal sequences obtained through global
tokenization will undergo iterative feature extraction via multiple Vision Mamba blocks. Each of
these blocks is meticulously designed to incorporate layers of normalization, SSM, and MLP. Fea-
ture downsampling might be adopted for pyramid architectures such as VMamba.

process results in separate image tokens representing local features without a more global percep-
tion. To address this, we approach the frequency-based global tokenization illustrated in Figure.
Given an image x ∈ Rh×w, we first utilize the Discrete Cosine Transform (DCT) to convert it into
the corresponding frequency domain, with the following formula:

F (u, v) = α(u)α(v)

h−1∑
i=0

w−1∑
j=0

x(i, j)cos(
(2i+ 1)uπ

2h
)cos(

(2j + 1)uπ

2w
), (4)

where x(i, j) denotes the pixel value at position (i, j). u and v represent the frequency variables,
with their ranges from 0 to h− 1 and from 0 to w − 1, respectively. F (u, v) is the coefficients after
the two-dimensional DCT transformation. α(u) and α(v) are scaling factors, defined as:

α(u) =
1√
h

when u = 0, α(u) =
1√
2h

otherwise. (5)

The spectrum diagram after DCT manifests a pronounced clustering of low-frequency coefficients in
the upper left quadrant, while high-frequency components scattered in the lower right corner. Con-
currently, the spectrum diagram exhibits symmetry with respect to the main diagonal. Considering
the hierarchical organization of frequency components, we delineate the spectral map into discrete
frequency segments by adhering to a progression from lower to higher frequencies, and in alignment
with a orientation orthogonal to the principal diagonal, as illustrated in Figure 2. Specifically, let
K denote the number of frequency segments into which the division is to be made. We unecenly
partition the principal diagonal into K segments considering that the non-uniformity of frequency
distribution, such that the distance from the kth division point to the top-left corner is 1

2K−k of the
entire length of diagonal. Along each of these division points, a perpendicular line is delineated with
respect to the principal diagonal. The interval between consecutive perpendicular lines thus defines
the spectral domain for each frequency segment, encapsulating the respective frequency distribution
within that segment. We denote the maximum frequency corresponding to each division point as fk
and the segmented frequency bands can be represented as (0, f1, ..., fK).

Subsequently, we expand these K frequency bands into K corresponding independent spectrum dia-
grams, denoted as (F1(u, v), ..., FK(u, v)). Within the kth spectral diagram, we retain the frequency
values from the direct current component up to the threshold of fk, while resetting the amplitude of
larger frequencies to 0. This segmentation approach ensures that the spectral representation main-
tains discernible semantic integrity upon its inverse transformation back into the spatial domain.
Additionally, it adheres to the frequency principle by increasing the proportion of low-frequency
components, which is formulated as follows:

Fk(u, v) = I(fk − f(u, v))Fk(u, v), I(x) = 1 when x ≥ 0 and I(x) = 0 otherwise, (6)

where f(u, v) represents the frequency at position (u, v).

Ultimately, we project the derived spectral representations from the frequency domain to the origi-
nal spatial domain through Inverse Discrete Cosine Transform (IDCT), resulting in K images cor-
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Table 1: Architectural overview of the GlobalMamba series.
Layer name Output size GlobalMamba-M* GlobalMamba-T* Output size GlobalMamba-T GlobalMamba-S GlobalMamba-B

Stem 14×14
conv 16×16 conv 16×16

112×112
conv 3×3 conv 3×3 conv 3×3

dim=192 dim=384 dim=96 dim=96 dim=128

Stage 1 14×14

SSM block × 6 SSM block × 6

56×56

SSM block × 2 SSM block × 2 SSM block × 2
dim=192 dim=384 dim=96 dim=96 dim=128
Identity Identity Downsampling Downsampling Downsampling

dim=192 dim=384 dim=192 dim=192 dim=256

Stage 2 14×14

SSM block × 6 SSM block × 6

28×28

SSM block × 2 SSM block × 2 SSM block × 2
dim=192 dim=384 dim=192 dim=192 dim=256
Identity Identity Downsampling Downsampling Downsampling

dim=192 dim=384 dim=384 dim=384 dim=512

Stage 3 14×14

SSM block × 6 SSM block × 6

14×14

SSM block × 8 SSM block × 15 SSM block × 15
dim=192 dim=384 dim=384 dim=384 dim=512
Identity Identity Downsampling Downsampling Downsampling

dim=192 dim=384 dim=768 dim=768 dim=1024

Stage 4 14×14
SSM block × 6 SSM block × 6

7×7
SSM block × 2 SSM block × 2 SSM block × 2

dim=192 dim=384 dim=768 dim=768 dim=1024

Classifier 1×1
cls token cls token

1×1
pooling pooling pooling

softmax softmax softmax softmax softmax
Params (M). 7 26 Params (M). 30 50 89
FLOPs (G) 1.7 5.7 FLOPs (G) 5.3 9.5 17.0

responding to different frequency ranges, presented as follows:

xk(i, j) = α(u)α(v)

h−1∑
u=0

w−1∑
v=0

Fk(u, v)cos(
(2i+ 1)uπ

2h
)cos(

(2j + 1)uπ

2w
), (7)

where the interpretation of each term is consistent with that in equation 4. With these images cor-
responding to different frequency bands, we perform spatial downsampling based on the frequency
range of each sample, representing images with a smaller frequency range using a lower spatial
resolution, formulated as follows:

x′
k = G(xk,

h

2K−k
,

w

2K−k
), (8)

where G(·) denotes the downsampling interpolation function and ( h
2K−k ,

w
2K−k ) is the correspond-

ing spatial resolution after downsampling. Subsequently, we proceed with the tokenization proce-
dure, employing an identical compact CNN and a linear module to segment the image samples into
patches. These extracted tokens are sequentially organized in a causally ordered manner, progressing
from the lower to the higher frequency spectrum.

3.3 GLOBALMAMBA

The serialized image tokens are optimally conducive for feature extraction via the sophisticated
vision mambas, in which SSM-based encoders are stacked iteratively to extract image features, as
shown in Figure 3. The general representation computation can be formulated as follows:

tn = zn−1 + SSM(Norm(zn−1)),

zn = tn +MLP (Norm(tn−1)),
(9)

where zn denotes the output feature of the nth block. Note that vision mambas encompass two dis-
tinct architectural paradigms: the pyramid and the plain types. Specifically, the pyramid architecture
is characterized by the periodic application of downsampling operations on feature maps between
consecutive blocks, whereas the plain architecture is composed exclusively of Identity mappings
and the corresponding feature aggregation requires the class token concatenation with the input se-
quences. Ultimately, the output from the final block will be employed on image classification or
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other downstream tasks. Our proposed GlobalMamba is applicable to diverse vision mamba archi-
tectures and we present different specifications of GlobalMamba in Table 1.

Analysis. Indeed, while the GlobalMamba framework we propose may theoretically result in an ex-
pansion of the token sequence, in practical application, this impact is negligible. This is attributable
to the application of a significantly higher downsampling factor 2K−k to the images within the
lower frequency spectrum, which, subsequent to the patchification process, leads to a substantial
reduction in the number of generated tokens. This strategic approach effectively curtails the over-
all length of the sequence, maintaining an optimized balance between computational efficiency and
representational integrity. For instance, when K = 4 and a standard 16× 16 tokenization procedure
is employed, the sequence length yielded by the GlobalMamba approach is marginally higher than
that of the conventional baseline method by approximately 30%. Furthermore, our experiments have
also demonstrated that simply replicating and expanding the sequence length of baselines does not
confer a performance improvement, thereby validating the efficacy of GlobalMamba.

In addition, the tokens procured via GlobalMamba inherently encode more global information, par-
ticularly within the low-frequency spectral segments. In instances where k ≥ 4, the resultant tokens
are singular in number, endowing this single token with the ability to represent the global spatial
features of that frequency band. At the same time, our method follows a causal order of frequencies
from low to high and explicitly increases the proportion of low-frequency information in the entire
token sequence. This approach is consistent with the human visual comprehension process and the
frequency prior principle of neural networks, which tend to prioritize the learning of low-frequency
features to secure a comprehensive understanding before fitting the high-frequency parts for detailed
information. Significantly, the low-frequency component often exerts a predominant influence on
the interpretive capabilities required for task comprehension.

4 EXPERIMENTS

In this section, we conducted extensive experiments to demonstrate the effectiveness of Global-
Mamba. We initially trained on ImageNet-1K for image classification and then transferred the
pre-trained model to downstream tasks such as object detection and semantic segmentation. Ad-
ditionally, we provided a series of ablation studies for comparative analysis and investigation. All
our experiments were conducted on 8 RTX 3090 GPUs.

4.1 IMAGE CLASSIFICATION

We assessed the performance of GlobalMamba on classification tasks using the ImageNet-1K (Rus-
sakovsky et al., 2015) dataset, which encompasses over 1,280,000 training samples spanning
1,000 categories, while the validation set comprises 50,000 images. We adopted Vision Mamba
(Vim) (Zhu et al., 2024) and VMamba (Liu et al., 2024) as our baselines, maintaining consistent set-
tings for data augmentation and optimizer choices. We categorized the models based on the size of
their parameters into GlobalMamba-M (Mini), GlobalMamba-T (Tiny), GlobalMamba-S (Small),
and GlobalMamba-B (Base), presented in Table 1. We set the number of training epochs to 300
and employed a cosine schedule for learning rate adjustment. We compared methods with similar
parameters and provided both Top-1 accuracy and FLOPs metrics. The experimental results are
presented in Table 2, in which the GlobalMamba models marked with * represent the plain structure
applied to Vim, while the others represent the pyramid structure applied to VMamba. We observe
that GlobalMamba consistently achieves improved accuracy compared to the baseline methods. For
instance, on the VMamba-S and VMamba-B models, our method increases the classification accu-
racy by 0.3% and 0.2%, respectively, thus demonstrating the effectiveness of the proposed Global-
Mamba approach. In addition, GlobalMamba entails a marginal increment in FLOPs with the slight
expansion of the token sequence length, as analyzed in Section 3.3.

4.2 OBJECT DETECTION

We conducted evaluations on MSCOCO2017 (Lin et al., 2014) for object detection and instance
segmentation, which comprises over 118,000 training images, 5,000 validation images, and more
than 40,000 test images. We employed Mask-RCNN as the detector and performed both 1x and 3x
training schedules with the MMDetection (Chen et al., 2019) codebase. We reported the comparison
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Table 2: Classification results (%) on ImageNet. († denotes our reproduced performances.)

Method Backbone Image Size Params (M). FLOPs (G) Top-1 Acc

ResNet-18 (He et al., 2016) ConvNet 2242 12 - 69.8
DeiT-T (Touvron et al., 2021) Transformer 2242 6 1.3 72.2
PlainMamba-L1 (Yang et al., 2024) SSM 2242 7 3.0 77.9
EffVMamba-T (Pei et al., 2024) SSM 2242 6 0.8 76.5
EffVMamba-S (Pei et al., 2024) SSM 2242 11 1.3 78.7
LocalVim-T (Huang et al., 2024) SSM 2242 8 1.5 76.2
Vim-T† (Zhu et al., 2024) SSM 2242 7 1.5 75.8
GlobalMamba-M* (ours) SSM 2242 7 1.7 76.4

ResNet-50 (He et al., 2016) ConvNet 2242 25 - 77.2
RegNetY-4G (Radosavovic et al., 2020) ConvNet 2242 21 4.0 80.0
DeiT-S (Touvron et al., 2021) Transformer 2242 22 4.6 79.9
Swin-T (Liu et al., 2021) Transformer 2242 29 4.5 81.2
PlainMamba-L2 (Yang et al., 2024) SSM 2242 25 8.1 81.6
EffVMamba-B (Pei et al., 2024) SSM 2242 33 4.0 81.8
LocalVim-S (Huang et al., 2024) SSM 2242 28 4.8 81.2
Vim-S† (Zhu et al., 2024) SSM 2242 26 5.1 80.3
GlobalMamba-T* (ours) SSM 2242 26 5.7 80.8
VMamba-T (Liu et al., 2024) SSM 2242 30 4.9 82.6
GlobalMamba-T (ours) SSM 2242 30 5.3 82.8

ResNet-101 (He et al., 2016) ConvNet 2242 45 - 78.3
ResNet-152 (He et al., 2016) ConvNet 2242 60 - 78.6
RegNetY-8G (Radosavovic et al., 2020) ConvNet 2242 39 8.0 81.7
Swin-S (Liu et al., 2021) Transformer 2242 50 8.7 83.2
PlainMamba-L3 (Yang et al., 2024) SSM 2242 50 14.4 82.3
VMamba-S (Liu et al., 2024) SSM 2242 50 8.7 83.6
GlobalMamba-S (ours) SSM 2242 50 9.5 83.9

RegNetY-16G (Radosavovic et al., 2020) ConvNet 2242 84 16.0 82.9
ViT-B/16 (Dosovitskiy et al., 2020) Transformer 3842 86 55.4 77.9
DeiT-B (Touvron et al., 2021) Transformer 2242 86 17.5 81.8
Swin-B (Liu et al., 2021) Transformer 2242 88 15.4 83.5
VMamba-B (Liu et al., 2024) SSM 2242 89 15.4 83.9
GlobalMamba-B (ours) SSM 2242 89 17.0 84.1

results in Table 3. We observe that the SSM-based methods outperform vision transformers under
similar parameters, and GlobalMamba consistently achieves better results than VMamba across dif-
ferent model sizes and training settings. For instance, GlobalMamba-S outperforms VMamba-S by
0.3 and 0.2 in box AP under the 1x and 3x schedules, and by 0.2 and 0.1 in mask AP, respectively.

4.3 SEMANTIC SEGMENTATION

We adopted ADE20K (Zhou et al., 2019) to verify the effectiveness of GlobalMamba on semantic
segmentation. The dataset encompasses 20,210 training images, 2,000 validation images, and 3,000
test images, which are annotated with 150 different semantic categories. We conducted experiments
using UPerNet (Xiao et al., 2018) as the segmentor within the MMSegmentation (Contributors,
2020) framework. We employed a training schedule of 160k for comparison, illustrated in Table
4. We find that GlobalMamba achieves certain advantages in terms of both mIoU (SS) and mIoU
(MS) compared to VMamba. For example, GlobalMamba-S surpasses the VMamba-S baseline by
0.3 mIoU (SS), which proves the superiority of our proposed framework.
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Table 3: Object detection and instance segmentation results on COCO.

Method Detector Params (M). APb APb
50 APb

75 APm APm
50 APm

75

ResNet-50 (He et al., 2016) MaskRCNN@1x 44 38.2 58.8 41.4 34.7 55.7 37.2
ResNet-101 (He et al., 2016) MaskRCNN@1x 63 38.2 58.8 41.4 34.7 55.7 37.2
ConvNeXt-T (Liu et al., 2022) MaskRCNN@1x 48 44.2 66.6 48.3 40.1 63.3 42.8
ConvNeXt-S (Liu et al., 2022) MaskRCNN@1x 70 45.4 67.9 50.0 41.8 65.2 45.1
ConvNeXt-T (Liu et al., 2022) MaskRCNN@3x 48 46.2 67.9 50.8 41.7 65.0 44.9
ConvNeXt-S (Liu et al., 2022) MaskRCNN@3x 70 47.9 70.0 52.7 42.9 66.9 46.2
Swin-T (Liu et al., 2021) MaskRCNN@1x 48 42.7 65.2 46.8 39.3 62.2 42.2
Swin-S (Liu et al., 2021) MaskRCNN@1x 69 44.8 66.6 48.9 40.9 63.2 44.2
Swin-T (Liu et al., 2021) MaskRCNN@3x 48 46.0 68.1 50.3 41.6 65.1 44.9
Swin-S (Liu et al., 2021) MaskRCNN@3x 69 48.2 69.8 52.8 43.2 67.0 46.1
VMamba-T (Liu et al., 2024) MaskRCNN@1x 50 47.3 69.3 52.0 42.7 66.4 45.9
GlobalMamba-T (ours) MaskRCNN@1x 50 47.6 69.4 52.2 42.9 66.5 46.0
VMamba-S (Liu et al., 2024) MaskRCNN@1x 70 48.7 70.0 53.4 43.7 67.3 47.0
GlobalMamba-S (ours) MaskRCNN@1x 70 49.0 70.5 53.5 43.9 67.5 47.0
VMamba-B (Liu et al., 2024) MaskRCNN@1x 108 49.2 71.4 54.0 44.1 68.3 47.7
GlobalMamba-B (ours) MaskRCNN@1x 108 49.3 71.4 54.2 44.2 68.4 47.7
VMamba-T (Liu et al., 2024) MaskRCNN@3x 50 48.8 70.4 53.5 43.7 67.4 47.0
GlobalMamba-T (ours) MaskRCNN@3x 50 49.0 70.5 53.7 43.8 67.5 47.1
VMamba-S (Liu et al., 2024) MaskRCNN@3x 70 49.9 70.9 54.7 44.2 68.2 47.7
GlobalMamba-S (ours) MaskRCNN@3x 70 50.1 80.1 54.9 44.3 68.4 47.8

Table 4: Semantic segmentation results on ADE20K.

Method Segmentor Image size Params (M). mIoU (SS) mIoU (MS)
Swin-T (Liu et al., 2021) UperNet@160k 5122 60 44.4 45.8
Swin-S (Liu et al., 2021) UperNet@160k 5122 81 47.6 49.5
Vim-T (Zhu et al., 2024) UperNet@160k 5122 13 41.0 -
Vim-S (Zhu et al., 2024) UperNet@160k 5122 46 44.9 -
LocalVim-T (Huang et al., 2024) UperNet@160k 5122 36 43.4 44.4
LocalVim-S (Huang et al., 2024) UperNet@160k 5122 58 46.4 47.5
VMamba-T (Liu et al., 2024) UperNet@160k 5122 62 47.9 48.8
GlobalMamba-T (ours) UperNet@160k 5122 62 48.1 49.0
VMamba-S (Liu et al., 2024) UperNet@160k 5122 82 50.6 51.2
GlobalMamba-S (ours) UperNet@160k 5122 82 50.9 51.4
VMamba-B (Liu et al., 2024) UperNet@160k 5122 122 51.0 51.6
GlobalMamba-B (ours) UperNet@160k 5122 122 51.2 51.7

4.4 EXPERIMENTAL ANALYSIS

Causal Order. The causal modeling sequence from low to high frequency is the prior imposed
by our GlobalMamba. To demonstrate the rationality and effectiveness of this sequence, we com-
pare the performance of frequency division methods from high to low frequency and with randomly
selected frequency intervals. The specific methods of the three frequency divisions and the perfor-
mance comparison are shown in Figure 4. We see that randomly selecting the range for frequency
division is detrimental to the classification accuracy of the model, and the performance gain from the
high-to-low frequency sequence is significantly less than that of the low-frequency prior criterion
adopted by GlobalMamba.

Number of Frequency Segments. GlobalMamba performs multi-segment frequency division to
obtain the corresponding causal sequences. Therefore the number of frequency bands K is a crucial
factor, representing the granularity of frequency division and directly determining the length of
the causal sequences. To this end, we investigated the impact of different division numbers on

9
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low high

F1

F2
F3

F1

F2
F3

(a) Random

(b) High-Low

F1

F2
F3

(c) Low-High (d) Performance

Figure 4: Effect of the causal order: (a) Random division of frequency bands. (b) Dividing the
frequency bands in descending order from high to low frequency. (c) Dividing the frequency bands
in descending order from low to high frequency. (d) The corresponding classification performances.

Table 5: Effect of the segment number.

Method K Length Size Top-1 Acc Size Top-1 Acc
Vim - 197 Tiny 75.8 Small 80.3
Vim - 393 Tiny 75.0 Small 79.2
GlobalMamba* 2 246 Mini 75.9 Tiny 80.5
GlobalMamba* 3 255 Mini 76.2 Tiny 80.7
GlobalMamba* 4 256 Mini 76.4 Tiny 80.8
GlobalMamba* 5 257 Mini 76.3 Tiny 80.9
GlobalMamba* 6 258 Mini 76.4 Tiny 80.9

Table 6: Application to the Causal
Transformer.

Method Type Top-1 Acc
CausalT-S Plain 72.2
CausalT-S + GIS Plain 73.0
CausalT-S Pyramid 75.0
CausalT-S + GIS Pyramid 75.5

model performance, and also provided a performance comparison of the Vim baseline when directly
replicating and augmenting the sequence length in Table 5. Firstly, we verify that directly replicating
tokens in Vim fails to bring performance improvement and even reduces the accuracy of the original
model. Additionally, we observe that as the value of K increases from 2 to 6, the classification
performance rises first and then stabilize. Specially, decent performance is achieved when K = 4
for both model sizes and further enlarging K will slightly increase the sequence length but will not
result in significant performance gains. Therefore, we set K to 4 in the main experiments.

Application to Causal Transformer. In addition to vision mambas, decoder-only transformers also
possess the capability for causal modeling of inputs. Therefore, we tested the effectiveness of the
proposed global image serialization (GIS) approach on causal transformer by modifying the original
self-attention mechanism of DeiT-S and Swin-T to a causal form and applying it to ImageNet clas-
sification in Table 6. The consistent performance improvement in both the plain and pyramid types
of causal transformer structures demonstrates the flexibility and superiority of our GlobalMamba.

5 CONCLUSION

In this paper, we have proposed GlobalMamba as an effective visual backbone for representation
learning. We have adopted DCT to perform the corresponding frequency band arrangement in the
frequency domain, constructing a series of causal image sequences ranging from low to high fre-
quency. We have further ensured that the token sequence associated with the low-frequency compo-
nents is capable of extracting global information within the image, thereby significantly enhancing
the global comprehension of the visual data. We have validated the effectiveness of GlobalMamba
on diverse vision tasks and conducted in-depth ablation studies for detailed analysis and comparison.

Limitations. Due to the lower downsampling rate corresponding to the high-frequency components,
there still exists a portion of flattening operations. Future work will focus on completely avoiding
such simple flattening to obtain a more robust causal sequence.
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