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ABSTRACT

Frequent and structurally related subgraphs, also known as network motifs, are
valuable features of many datasets. However, strong combinatorial bottlenecks
have made it difficult to extract motifs and use them in learning tasks without
strong constraints on the motif properties. In this work we propose a repre-
sentation learning method based on learnable graph coarsening, MotiFiesta
which is the first to be able to extract large and approximate motifs in a fully
differentiable manner. We build benchmark datasets and evaluation metrics which
test the ability our proposed and future models to capture different aspects of
motif discovery where ground truth motifs are not known. Finally, explore the
notion of exploiting learned motifs as an inductive bias in real-world datasets by
showing competitive performance on motif-based featuresets with established
real-world benchmark datasets against concurrent architectures.

1 INTRODUCTION

In many application domains, observing an over-represented substructure in a dataset is seen as
evidence for its importance in network function. For example, early studies on network motifs
enumerated all possible over-represented small subgraphs across various datasets and uncovered
structures which explain the behaviour of real-world systems have been discovered such as the feed-
forward loop in gene regulatory networks, and the bi-parallel motif in ecological food chains (Milo
et al., 2002). More recently, motif libraries have shown strong utility in many machine learning
contexts such as (Jin et al., 2020), classification (Zhang et al., 2020; Acosta-Mendoza et al., 2012;
Thiede et al., 2021; Besta et al., 2022), representation learning Bevilacqua et al. (2021); Cotta et al.
(2021); Rossi et al. (2020) and explainability (Perotti et al., 2022). Although exhaustively mining
motifs is known to be NP-hard (Yu et al., 2020), motif utility has made the discovery task a key
challenge in data mining for the past 30 years. The aim of this work is to formally expose the task
of motif mining to machine learning models in an effort to enhance both the discovery of motifs and
the representation power of learned models.

Any motif mining algorithm has to solve two computationally intensive steps: subgraph search and
graph matching. The process of discovering a new occurrence of the motif involves a search over
the set of subgraphs of a given dataset which yields a search space that grows exponentially with the
number of nodes in the dataset as well as in the motif. Next, for a candidate motif and subgraph, a
graph matching procedure is needed to determine whether the candidate can be included in the set of
instances of the motif. Despite these barriers, many motif mining tools have been proposed Nijssen
& Kok (2004); Yan & Han (2002); Wernicke (2006), all of which rely on simplifications of the task
or a priori assumptions about the desired motifs. These simplifications include bounding motif size
Alon et al. (2008), topology constraints Reinharz et al. (2018), and simplified subgraph matching
criteria such as strict isomorphism, among others.

Besides those, an important limitation that is often overlooked is the variability inherent to many
motif sets particularly in biological networks. Network datasets often represent dynamic or noisy
processes and algorithms which limit their matching procedure to exact isomorphism will overlook
a large set of possible motif candidates. Some tools have addressed this challenge, again with
strong limitations such as REAFUM (Li & Wang, 2015) which allows for errors in node labelling,
and RAM (Zhang & Yang, 2008)which tolerates a fixed number of edge deletions within a given

1



Under review as a conference paper at ICLR 2023

motif. All of these constraints limit the set of observable motifs and can lead to us missing important
features of datasets. For this reason, we emphasize that our proposed methodology is built to support
the discovery of approximate motifs.

Recent success of graph representation learning, particularly in an unsupervised context, presents an
opportunity for circumventing some of these bottlenecks (Karalias & Loukas, 2020). Namely, by
allowing graph embedding models to leverage the statistical properties of a dataset, we can cast the
search and matching problems to efficient operations such as real-valued vector distances. Of course,
as is common with neural methods we sacrifice convergence and exactness guarantees in exchange
for flexibility and speed. In this regard, there has been extensive work on problems related to motif
mining using neural architecture such as subgraph counting Teixeira et al. (2022); Chen et al.
(2020); Liu et al. (2020) and graph matching Li et al. (2019); Fey et al. (2020). To our knowledge
neural motif mining problems for approximate subgraphs have yet to be proposed. Although related
work has shown promise in similar motif mining tasks, by (Oliver et al., 2022) in domain-specific
and partially differentiable applications, and applied to the related problems of frequent subgraph
mining, (Ying et al., 2020), and discriminative subgraph mining (Zhang et al., 2020). Finally, the
composability of differentiable models allows motif mining to act as pre-training module orienting
classifiers towards a robust and rich feature sets. For these reasons, we believe there is a need
to formally introduce the motif mining problem to the ML community by providing appropriate
benchmarking settings and proposing relevant methodology.

1.1 CONTRIBUTIONS

In this work, we (1) formalize the notion of motif mining as a machine learning task and provide
appropriate evaluation metrics as well as benchmarking datasets, (2) propose MotiFiesta, a fully
differentiable model as a first solution to learnable motif mining which discovers new motifs in
seconds for large datasets, and (3) we show that motif mining could also serve as an effective unsu-
pervised pre-training routine and interpretable feature selector in real-world datasets.

2 TASK

2.1 NETWORK MOTIF DEFINITION

We start from the classical definition of motif which is a subgraph with a larger frequency than
expected (Milo et al., 2002). More formally, let g = (V, E , X) be a connected subgraph drawn from
a graph dataset G, where V is a set of nodes, E ⊆ V × V is a set of edges, and X ∈ R|V |×d is a
feature matrix.

The frequency of subgraph g is given by:

f(g,G) = |{h : h ≃ g ∀ h ⊂ G}| (1)

where we count the number of subgraphs h isomorphic to g. The raw frequency of a motif leads to
the task of frequent subgraph mining (Jiang et al., 2013) where we are interested in finding the set of
subgraphs g with maximal frequency. However to obtain significant motifs, the frequency must be
normalized by the frequency of the subgraph in an null model that preserves the generic properties
of the original network while ablating significantly enriched subgraphs (Milo et al., 2002). The
null graphs give us a baseline expectation of subgraph occurrence and therefore points us toward
significantly enriched subgraphs.

Given a randomized (aka null) dataset G̃, g is considered a motif of G if

|f(g,G)|
|f(g, G̃)|

> α (2)

is sufficiently large for some threshold α ∈ [0, 1].

An approximate motif follows the same definition but we simply replace the isomorphism condition
with a graph similarity function such as a graph kernel (Vishwanathan et al., 2010; Kriege et al.,
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2020) or edit distance (Riesen & Bunke, 2009), to allow non-isomorphic but similar subgraphs
contribute to f(g,G).
Evaluating f exactly is exponential in the size of the search space and of the motifs and thus in-
tractable for many real-world settings. Here, machine learning methods offer the advantage of cap-
turing statistical properties of datasets and allowing us to cast the problem in terms of efficient
vector distances and similarities. Translating the task of identifying motif occurrences to a machine
learning context, we view the process as a node labeling.

3 MOTIFIESTA : MOTIF MINING MODEL

Here, we describe the proposed approximate motif mining algorithm, MotiFiesta. We saw in
Section 2.1 that a motif is a subgraph that occurs with a sufficiently large normalized concentration.
The challenge of motif mining is to search for the set all such subgraphs and their occurrences in a
large dataset of graphs. We propose to tackle the structural similarity and concentration problems
by training two neural layers: a subgraph embedder ϕ and a subgraph density estimator f̂ . Mean-
while, the search for subgraphs that fit the motif definition borrows the intuition that motifs can be
composed of smaller adjacent motifs and therefore one can limit the search space by looking around
a current set of motifs for larger ones (Schreiber & Schwöbbermeyer, 2010; Oliver et al., 2022;
Kashtan et al., 2004b). We bring this search strategy to differentiable setting by adapting the Edge-
Pool graph coarsening layer (Diehl, 2019). Our customized EdgePool layer is trained to coarsen
subgraphs that fit the motif definition into a single node so that the neighbours of a coarsened node
become candidates for larger motifs and further coarsening. To decide which subgraphs to coarsen,
we rely on a graph similarity function K that enables defining similar subgraphs. We learn a model
ϕ that maps similar subgraphs to close points in a vector space - see section 3.2. Finally, we rely on a
vector density estimation model f̂ to compare the frequency of subgraphs in our dataset to the ones
in decoy datasets - see Section 3.3. Our model then learns to group together subgraphs more fre-
quent in our dataset. The fully end-to-end nature of the proposed method is chosen to take advantage
of the scalability benefits of neural representation methods along with the ability to connect motif
mining directly with supervised learning models. The execution of MotiFiesta is illustrated in
Figure 1.

3.1 SUBGRAPH SEARCH THROUGH LEARNABLE GRAPH COARSENING

The main intuition behind MotiFiesta’s motif search strategy is to take advantage of the com-
posability of motifs in a differentiable manner by adapting EdgePool (Diehl, 2019). For an input
graph, the EdgePool layer collapses pairs of nodes connected by an edge into a single node to obtain
a coarsened graph. The layer collapses edges based on a learned probability and computes a new
embedding that combines embeddings of collapsed nodes into a single node in the coarsened graph.
As edge pooling layers are stacked, each node of upper layers contains information from larger and
larger subgraphs in the original graph. Moreover, because all pooling events are carried out over
edges, we guarantee that the subgraph being represented by each node is always connected which
inherently satisfies the first criteria of motifs. The twist that we introduce is to cast the decision to
collapse an edge when the corresponding subgraphs fit the motif definition.

As we need to ensure that embeddings assigned to each correspond to structural similarity, we need
to keep track of the subgraph being encoded by each coarsened node. We define the spotlight of
node SL(u), as the subgraph in the original graph whose nodes have been coarsened into u. As
initialization, we define spotlights for the original input graph as ∀u ∈ V,SL(u) = {u}. Then
for each coarsening event, a pair of adjacent nodes is collapsed into a new node w so we have
SL(w) = SL(u) ∪ SL(v). At any point in the coarsening, the spotlight maps a newly created node
to a unique connected subgraph in the input. Figure 1 illustrates the notion of a spotlight.

3.2 SUBSTRUCTURE REPRESENTATION LOSS

The first loss term of our model ensures that similarities in node embeddings encode structural
similarities of the subgraphs (spotlights) they represent. This step is necessary for ensuring that
subsequent density estimates in the embedding space point to regions of high structural similarity,
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Figure 1: Execution flow of MotiFiesta through the view of one edge coarsening step t. Node
embeddings zi are computed and trained to match a similarity function on the subgraphs of the
original graph they encode. For each edge, a neural network assigns a coarsening probability σ(i, j)
to each edge according. The probability is trained to assign large values to embeddings with a large
density in the data relative to a randomized graph dataset. Finally, we sweep through the edges of
the graph while coarsening each with probability σ(i, j) to create the graph at step t+ 1

and allows us to easily accommodate approximate motif instances. Given any graph similarity
function, simG : (gi, gj) → [0, 1], and a graph embedding function ϕ : g → Rd, we define the
representation loss for a pair of nodes (u, v) as:

Lrep(u, v, ϕ) = ||⟨ϕ(u), ϕ(v)⟩ − simG(SL(u),SL(v))||22. (3)

To avoid a quadratic scaling factor with batch size n, we can randomly sample a fixed number of
reference subgraphs B to compute only n × B subgraph comparisons. The choice of similarity
function will dictate the implicit rule determining motif belonging and thus application specific
considerations can be encoded at this step (Oliver et al., 2022). Additionally, we are not restricted to
functions with explicit feature maps or proper kernels and can use the inductive nature of ϕ to avoid
evaluating similarity across all possible pairs of nodes. For these experiments we use the Wasserstein
Weisfeiler Lehman graph kernel (Togninalli et al., 2019) which jointly models structural similarity
and node feature agreement on general undirected graphs.

3.3 CONCENTRATION LOSS

The embedding model ϕ gives us node embeddings which represent connected subgraphs of the
original graph. Next, we need to identify which of these subgraphs fits the concentration criterion
of motifs. Let the embedding of a node ϕ(u) be zu, remembering that the embedding is trained
to represent the subgraph SL(u). To assign a score to each edge at a given coarsening step t, we
pre-compute coarsened embeddings zuv over all edges (u, v) ∈ E(t), and train a scoring function
σ : zuv → [0, 1]. The score is designed to assign a large probability to high density subgraphs. We
implement σ with a simple MLP and train it using an efficient vector density estimator f̂ so that the
second loss term is given by

Lconcentration(σ,Z, Z̃;β, λ) = −
|Z|∑
i=1

σ(zi) exp[−β∆f̂ (zi;Z, Z̃)] + λ
∑
i

σ(zi),
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where ∆f (zi;Z, Z̃) = f̂Z(zi)− f̂Z̃(zi) is the difference in density estimates of zi under a batch of
embeddings computed for the input graphs Z and randomized (rewired) graphs Z̃, λ is the regulariza-
tion strength which shrinks the scores to zero, and β controls the growth of σ for more concentrated
motifs. To generate Z̃ we apply the standard technique described in (Schreiber & Schwöbbermeyer,
2010) which iteratively swaps pairs of edges with each other such that local connectivity patterns
are disrupted but the global graph statistics such as size and degree distribution are maintained.

Embeddings with a high density under the input graphs and low concentration under the randomized
distribution will result in a large negative contribution to the loss. In this case a σ(zi) = 1 will
best minimize the loss. Non-concentrated subgraphs, or those with a high concentration in both
distributions will have their σ pushed to zero by the regularization term. As we expect motifs to
occur less frequently than other embeddings, we apply an exponential to the delta function so that
non-motif embeddings do not overwhelm the contribution of concentrated subgraphs.

There are several choices for the density estimate f̂ but here we choose the k-NN density estimator
(Mack & Rosenblatt, 1979) for its efficiency. This estimator is based on the intuition that a point
in a dense region will on average have a small distance to its k-th nearest neighbor which can be
efficiently computed using K-D trees. We therefore let f̂X,k(x) = k

N ×
1

V dRk(x)
where Rk(x) is

the distance between x and its k-th nearest neighbor, and V d is the volume of a unit d-dimensional
sphere used for normalization.

A wrap up of these three components outlined in Algorithm 1 and model architecture details are in
Appendix 6.3.

Algorithm 1 MotiFiesta learnable edge contraction. We train a model to coarsen adjacent nodes
if the subgraph they induce qualifies as a motif.

1: Input: a batch of graphs G, graph similarity function simG, density estimator f̂
2: Output: embedding model ϕ and scoring model s
3: SL(u)← {u} for each u ∈ G tracks subgraph of coarsened nodes
4: G̃ ← rewire(G)
5: G(0) ← G
6: σ, ϕ← initialize edge score and node embedding models
7: // Repeat this loop for G̃
8: for t = 1, . . . , T do
9: G(t) ← ∅

10: for (u, v) ∈ E(t) do
11: zuv ← ϕ(u, v) Joint embedding
12: if σ(zuv) > Uniform(0, 1) then
13: Add new node w to G(t) with feature vector zuv
14: Add edges from w to Nei(u) and Nei(v).
15: Update spotlights SL(w)← SL(u) ∪ SL(v)
16: end if
17: end for
18: Add remaining unpooled nodes and edges from G(t−1) to G(t)
19: Backprop Lrep(ϕ, zu, zv)← ||⟨zu, zv⟩ − simG(SL(u),SL(v))||22 for all nodes.
20: Backprop Lconc(σ, zuv)← −σ(zuv) · exp [−f̂Z(zuv)− f̂Z̃(zuv)] for all edges.
21: end for

3.4 DECODING

The output required to evaluate M-Jaccard coefficient is an assignment of nodes to a fixed number
of discrete categories (motifs). However, the model does not assign embeddings to any categories,
instead it only models the motif-likeness as a continuous property of all subgraphs in the dataset
through the pooling score σ. To collapse this score to K motifs we apply a locality sensitive hash
(Dasgupta et al., 2011) to all the embeddings in the dataset. Each embedding (spotlight) is assigned
to a bucket by a locality sensitive hashing function such that similar embeddings are assigned to
the same bucket, leveraging the approximate motif properties enforced by our representation loss.
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The bucket identifier can then be taken as an integer code of the nodes in the original graph. For
each bucket, we are given the mean σ score and keep only the top K scoring buckets while the rest
are assigned to the ‘no motif’ label. At this point we apply the M-Jaccard coefficient permutation
test on datasets where have a ground truth motif labeling. We summarize the decoding execution in
Algorithm 3.

3.5 COMPLEXITY ANALYSIS

The bulk of runtime is spent on the training step which is performed once per dataset. Since we
chose the Wasserstein Weisfeiler Lehman graph kernel, evaluating the representation loss for n
nodes requires O(m2) calls to the WWL kernel with runtime O(n3 log(n)) where m is the number
of graphs in one batch. As an implementation detail, we were able to achieve good performance by
computing a constant number of pairwise subgraph comparisons regardless of batch size to avoid the
quadratic cost. The density estimation is built on a nearest neighbor estimator which relies on quick
neighbourhood searches which can be implemented on a K-d tree in O(log(m)). In the induction
phase, we execute a forward pass through the scoring and pooling which is O(m). To discretize
the subgraphs we use an O(n) locality sensitive hashing procedure. We note that polynomial and
sub-polynomial runtimes for classical enumeration methods are very rare. Typical training times on
were around 2 hours for the synthetic datasets on a single GPU, and the decoding step takes ∼ 10
seconds.

4 RESULTS

We test the proposed model and model evaluation framework in three settings. The first experiment
tests the ability of MotiFiesta to retrieve motifs in synthetic datasets when the ground truth
motifs are known. Finally, we explore the potential for the motif mining task as an unsupervised
pre-training step in graph classification setting. Finally, to explore the relevance and interpretability
of the motif mining procedure we perform an ablation study on our mined motifs to search for
important motifs.

4.1 MINING FOR PLANTED MOTIFS

To evaluate the motif mining capacity of our trained models, we propose as in (Ying et al., 2020) to
build a synthetic dataset where motifs are artificially injected at high concentrations at known posi-
tions (see Appendix 6.1). In this context, and in real-world datasets where ground-truth motifs are
known, evaluating the performance of a motif miner can be done through efficient set comparisons
through a small modification of the Jaccard measure.

We denote the (soft) labeling with Ŷ ∈ [0, 1]|V |×K which specifies the probability that node i
belongs to motif j for all graphs in a dataset where K is the number of motifs in the dataset. In
the synthetic setting, the number of motifs K is known a priori but is not given to the model at
training time. Note that this framing allows for soft (probabilistic) assignment of nodes to motifs,
non-isomorphic motif occurrences, as well as one node belonging to multiple motifs (non-disjoint
motifs).

When considering a single dimension (motif), we see that Ŷ∗,j partitions G into those nodes inside
motif j, Ŷ∗,j → 1 and those outside the motif Ŷ∗,j → 0. At this point, we wish to measure the
agreement between two sets for all motifs, for which the Jaccard coefficient is widely accepted.
Here, we use the generalization of the Jaccard coefficient to real-valued sets. To evaluate the model
applied to a single graph, we have

J(Ŷ,Y) =
1

K

K∑
j=1

∑|V |
i=1 min(Yi,j , Ŷi,j)∑|V |
i=1 max(Yij , Ŷij)

,where Ŷ,Y ∈ [0, 1]|V |×K . (4)

The Jaccard coefficient ranges from 0 to 1 and simultaneously captures precision and recall. Models
which over-assign nodes to a given motif are penalized by the denominator which considers the
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union of the prediction and the true motif, while a model that misses motif nodes will have a low
numerator value.

Because there is no inherent ordering to motif sets, the labeling assigned by the model and the one
chosen for ground-truth motifs will be arbitrary. The final performance measure for a motif labeling
is therefore given by the maximum Jaccard coefficient over all permutations SK of the columns of
Y:

M-Jaccard(Y, Ŷ) = max
π∈SK

J(Ŷ, π(Y)). (5)

We generate several synthetic datasets that capture different motif-related variables. Each dataset
consists of 1000 graphs generated randomly using the Erdös-Reyni random graph generator. Next,
we generate one or more subgraphs that will act as the motifs. To create concentrated subgraphs we
insert the motifs graphs into the each of the original graph and randomly connect nodes in the motif
to the rest of the graph. In this manner we know which nodes belong to motifs and can control the
concentration, size, topology, and structural variability of the motifs. This comes with a caveat since
it is possible that the base graphs already contain motif occurrences naturally which would not be
annotated as motif instances. It is possible to check the extent of this problem for simple motifs that
have specified counting algorithms (e.g. cliques) which we show in Appendix 6. To mitigate this
effect, we focus our evaluation on larger motifs (10 nodes) for most experiments.

We test three main motif mining conditions: motif topology, number of motifs in the dataset, and
varying true concentration of the motif using the M-Jaccard. Results are summarized in Table 1
(continued in Appendix 8) and a sample of top scoring motif sets for various settings are shown in
Figure 2. As a control condition, for each dataset we train model where all edge scores are fixed
to 0.5. Before performing the M-Jaccard, we performed a simple check on the behaviour of the σ
scores to verify that motif nodes are assigned larger scores (see Appendix 7).

(a) Star (b) Barbell (c) Clique

Figure 2: Random samples from most populated buckets with ground truth motif nodes in blue.

The hyperparameter set remains the same for all experiments (see Appendix 6.3). Results for all
conditions tested are summarized in Appendix. The decoding step uses a small grid search over the
flexibility parameter in the hashing step (hash size) as well as in the pooling layer to use (subgraph
size), we output the max average accuracy over 5 repetitions for each condition. MotiFiesta
is able to consistently outperform the random baseline in many conditions. Notably, it appears
that when the topology of the motif is well defined (as in the case of the barbell and clique) we
see the strongest results, indicating that the power of the graph embedding model is an important
factor. As external comparisons, we apply the classical Mfinder (Kashtan et al., 2004a) and neural
method SP-Miner (Ying et al., 2020) on our synthetic motifs. Since Mfinder is limited to small
isomorphic motifs we only test the different topologies and find that for all except the clique, we are
able to achieve significantly higher performance (see Appendix 6.6). We find similar results when
comparing to SP-Miner which is designed to mine the globally most frequent isomorphic subgraphs
(see Appendix 6.7). We note that both these algorithms, while performing similar tasks, are not
directly comparable to our approximate and significant motif mining setting.

4.2 MOTIF MINING AS FEATURE EXTRACTION

Apart from applications in data mining, we explore the potential for the motif task as a pre-training
phase in supervised learning. We therefore test the view that motifs are statistically robust and
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ϵ = 0 ϵ = 0.01 ϵ = 0.02 ϵ = 0.05

barbell 0.68 ± 0.04 (0.40 ± 0.01) 0.66 ± 0.05 (0.37 ± 0.02) 0.69 ± 0.01 (0.32 ± 0.05) 0.67 ± 0.02 (0.34 ± 0.06)
clique 0.58 ± 0.14 (0.35 ± 0.00) 0.62 ± 0.08 (0.34 ± 0.00) 0.57 ± 0.15 (0.34 ± 0.00) 0.41 ± 0.08 (0.34 ± 0.00)
random 0.51 ± 0.03 (0.34 ± 0.00) 0.49 ± 0.02 (0.35 ± 0.00) 0.46 ± 0.02 (0.35 ± 0.00) 0.44 ± 0.04 (0.35 ± 0.00)
star 0.43 ± 0.09 (0.43 ± 0.03) 0.42 ± 0.02 (0.40 ± 0.04) 0.40 ± 0.02 (0.38 ± 0.04) 0.40 ± 0.03 (0.38 ± 0.03)

5 nodes 0.37 ± 0.02 (0.34 ± 0.00) 0.36 ± 0.00 (0.35 ± 0.01) 0.36 ± 0.01 (0.36 ± 0.00) 0.36 ± 0.00 (0.35 ± 0.02)
10 nodes 0.48 ± 0.02 (0.35 ± 0.00) 0.46 ± 0.03 (0.35 ± 0.00) 0.43 ± 0.01 (0.38 ± 0.04) 0.47 ± 0.03 (0.35 ± 0.01)
20 nodes 0.48 ± 0.12 (0.34 ± 0.01) 0.43 ± 0.08 (0.35 ± 0.01) 0.44 ± 0.03 (0.39 ± 0.05) 0.33 ± 0.00 (0.34 ± 0.00)

Table 1: M-Jaccard score under various synthetic motif mining conditions. Each row contains the M-
Jaccard score when testing on motif datasets with each edge of the motifs distorted with probability
ϵ. Unless specified otherwise, motif instances are of size 10 nodes. The values in small type and
parentheses are the scores obtained by a dummy model that assigns all edges a merging probability
of 0.5. The largest score in each experiment is in bold when significant.

structurally complex feature sets. Taking three real world datasets in the TUDataset (Morris et al.,
2020) from various domains we train MotiFiesta using only the representation and concentration
loss again with rewired graphs as a negative distribution. Once the motif mining model is trained
we compute a whole graph embedding by applying a global pooling to each merging layer and
concatenate the output of each layer to produce a graph embedding so that for T pooling layers of
d dimensions each, we obtain a T × d feature vector for each graph. Once training converges, we
freeze MotiFiesta and pass the embeddings to a random forest classifier. In this manner, the
embeddings are computed without any information about the classification labels. As baselines we
train three graph neural network models in an end to end fashion (EdgePool, GCN (Kipf & Welling,
2016), GIN (Xu et al., 2018)). We report the results in Table 2.

PROTEINS COX2 IMDB-BINARY

MotiFiesta 73.1±2.0 80.7±2.4 72.2±3.3
EdgePool Diehl (2019) 73.6±4.1 80.5±4.0 71.8±3.6
GCN Kipf & Welling (2016) 73.5±5.6 80.9±4.0 72.8±3.1
GIN Xu et al. (2018) 72.6±3.9 79.6±5.1 73.4±3.2

Table 2: Classification performance of MotiFiesta on graph classification benchmarks.

Across three different datasets, using motif-based embeddings has similar performance to state of
the art graph neural network architectures. It cannot be said that this method improves the state
of the art but given the unsupervised nature of MotiFiesta, this result suggests that computing
embeddings solely by focusing the attention of the model towards statistically enriched subgraphs
(motifs) can be a powerful and efficient way of extracting useful subgraph features. This provides
support for the notion that frequent subgraphs are a useful inductive bias in prediction tasks.

4.3 MOST SIGNIFICANT MOTIFS CORRELATE WITH MODEL PERFORMANCE

In real-world datasets, we lack ground-truth motifs, making definite motif mining evaluation dif-
ficult. Despite this limitation, we propose to study the importance of the mined motifs through
ablation studies on classification tasks. If the motifs identified in real-world datasets hold important
information about the functioning of the network, excluding their embeddings from the global graph
embedding should have an impact on classification performance. Next, we apply the same models
trained for 2 but when computing the global graph embedding, we only allow subgraphs with the
top L σ scores to contribute to the global graph embedding. The intuition is that the subgraphs which
the model assigns the highest motif likeness should lead to the strongest classification performance.
To control for the differing amount of information entering the global embedding with varying L,
we also filter the embeddings by picking L spotlights at random (red line). We see in Figure 3 a
general upward trend in performance as L grows while the top L filtered models outperform the
random model for low values of L. This indicates that in a fully unsupervised manner, the model is
able to identify useful subgraphs.
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Figure 3: Subgraph ablation study. Using only the subgraphs with the largest σ score leads to the
best performance compared to choosing random subgraphs during classification.

One could then simply inspect motifs with large σ values for potentially explanatory subgraphs and
owing to the representation term in the training, all similar subgraphs are also given for free for
inspection. Generally, we do not expect that motif-likeness will contain information about graph-
level properties (e.g. classification label) for all datasets. However, the large body of motif min-
ing literature contains many examples of settings where motifs do point towards network function
(Acosta-Mendoza et al., 2012; Milo et al., 2002; Leontis et al., 2006). We leave further inspection
of these subgraphs for future work.

5 CONCLUSION

We introduced a framing of the approximate network motif problem in a manner suitable for ma-
chine learning models, and propose a first model architecture to address this challenge. The model
we propose for this task is able to efficiently recover motifs over baselines in several synthetic data
conditions with decoding times on the order of seconds. When placed in a classification setting we
show that motif mining has potential as a challenging pre-training step and that the obtained mo-
tifs show potential to be naturally used as interpretable feature extractors. Although the inductive
nature of our model provides a significant performance boost at inference time, the subgraph simi-
larity loss computation is a quadratic of a polynomial time kernel which could limit the sensitivity
of the model. Additionally, the decoding phase requires tuning of several parameters which has to
be carefully chosen for each application. Further exploration of of efficient subgraph representa-
tion functions Bevilacqua et al. (2021) and graph partitioning Bouritsas et al. (2021) models will
therefore become relevant topics for motif mining. We also expect that the specific choices of the
modules in MotiFiesta will be highly domain-specific. Certain datasets will naturally call for
different notions of subgraph similarity, and certain datasets will tolerate varying degrees of distor-
tion in their motif occurrences. Future work should also focus in further exploring the impact of
these module choices.

6 AVAILABILITY

The code of all experiments is made available as a tarball. It will be made available on GitHub after
the anonymous phase.
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Appendix

The appendix contains additional details regarding dataset preparation, benchmarking, and experi-
ment setup.

6.1 DATASET PREPARATION

To test motif mining models on datasets with ground truth motifs we generate synthetic graphs and
repeatedly insert motifs to create over-represented subgraphs at known positions. The dataset con-
struction process admits several choices including number and type of motifs to insert, abundance
and degree of distortion across motif instances. For a given motif graph m and randomly generated
graph g, we randomly sample a node from u ∼ N (g) to delete and replace with m. Each g is gen-
erated using the Erdos-Reiny random graph generator with a connection probability p = 0.1. Next,
we randomly sample pairs of nodes from (u, v) ∼ N (g) × N (m) as the set of edges that connect
m to the rest of g. In all experiments, the graph containing the motif is chosen to be twice as large
as the motif. Distorting a motif according to probability ϵ is done by iterating over all node pairs
u, v ∈ V ×V and with probability ϵ, we create an edge between u and v it does not exist, and delete
the edge if it does exist. Table 3 summarizes these parameter choices.

Variable Values Description
Motif type barbell, wheel, random, star, clique Topology of planted motif
Motif size 3, 5, 10, 20 Number of nodes in planted motif
Concentration 30%, 50%, 100% Fraction of graphs where motif appears.
Number of motifs 1, 3, 10 Number of motifs in single dataset.
Distortion probability (ϵ) .01, .02, .05 Probability of distorting an edge in motif.

Table 3: Synthetic dataset construction parameters

6.2 ADAPTING EDGEPOOL FOR MOTIF MINING

The EdgePool layer introduced in Diehl (2019) computes a new graph G′ from an input graph
G = (V,E,X) by first computing a score suv = MLP(xu, xv) ∀(u, v) ∈ E. A greedy algorithm
chooses edges with the highest scores first and collapses them into a new node we denote as uv,
and computes a new node embedding xuv = Pool(xu, xv). The Pool operation is typically a sum
pool but can be any differentiable operation. Contraction is stopped when no edges that connect
previously pooled nodes are left. Nodes that do not belong to a contracted edge are assigned to a new
node in G′. That is, after the pooling step, every node in G is assigned to exactly one node in G′ and
contracted pairs of nodes are mapped to the same node in G′. In MotiFiesta we wish to allow for
the possibility that some graphs do not give rise to motifs if they do not fit the concentration criteria.
For this reason we replace the greedy contraction algorithm with a random sampling. Each edge is
assigned a probability using a Sigmoid layer and the new node set is computed by iterating through
each edge and adding it to the pooled edges with probability proportional to σ(u, v). As such, our
version of coarsening is stochastic. Additionally, EdgePool computes joint embeddings xuv only
after deciding to contract an edge. Instead we wish for the model to make the pooling decision as a
function of the joint subgraph and thus in our modification, s(u, v) = Sigmoid(Pool(xu, xv)), for
which joint embeddings are computed before the merging step.

6.3 MOTIFIESTA ARCHITECTURE

The models built for main results follow the hyperparameters choices outlined in Table 4. Once a
model is trained, the LSH-based decoding phase admits two choices. The first is the dimensionality
of the hash digest which we vary from {8, 16, 32} and which controls the collision probability when
assigning embeddings to a motif label. Larger hash digests have lower collision probabilities and
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are therefore more sensitive to variability in motif structure. The second choice in decoding is the
MotiFiesta pooling layer to use, for larger motifs we choose higher layers. This is also varied
from 2 to 4 in our experiments.

Parameter Values

Embedding model MLP, ReLU activation
Embedding size 8
Pooling layers 4
Scoring model MLP, Sigmoid activation
λ 1
β 1

Table 4: Hyperparameter choices for MotiFiesta

6.4 DECODING ALGORITHM

In Algorithm 3 we describe the procedure of going from an MotiFiesta model to a K dimen-
sional labeling containing the top K motifs.

Algorithm 3 Motif decoding process. Compute an integer code for all node embeddings to assign
each subgraph to a motif ID. We rank motif IDs by the mean pooling score σ of its constituent
subgraphs keeping only the top K.

1: Input: a batch of graphs G, MotiFiesta model hθ, coarsening level T , number of motifs K
2: Output: node-to-motif assignment matrix Ŷ ∈ [0, 1]|V(G)|×K

3: Z,S← hθ(G,T) collect all node embeddings after T layers and scores
4: H ← LocalitySensitiveHash(Z) map each embedding to an integer code.
5: H ← set of unique hash codes in H .
6: Ŷ ← OneHot(H,H)
7: Let R(H;S) return the rank of a hash code by descending mean score of all subgraphs with the

same hash.
8: for h ∈ H do
9: if R(h) > K then

10: Ŷ [h]← 0
11: end if
12: end for
13: return Ŷ

6.5 OBSERVED RUNTIME

Training time on typical synthetic runs using 1 NVIDIA GeForce GTX 1080 varied between 4-8
hours on the synthetic datasets. We benchmark the decoding time on one of our synthetic datasets
of 1000 graphs of 20 nodes each. Results for 30 runs for decoding at 1 to 4 pooling layers are
shown in Fig 4. Decoding was performed on a personal laptop using 1.6GHz dual-core Intel Core
i5 processor.
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Figure 4: Decoding Runtime. Given a trained model, we decode motifs at each specified pooling
layer (1-4, on x-axis) and note the resulting mean subgraph size and largest subgraph found at each
layer.

6.6 COMPARISON WITH EXACT METHOD

As an external comparison of motif retrieval, we compare with the popular exact motif mining
algorithm, MFinder Kashtan et al. (2004a). Since this method enumerates substructures the software
crashed after 5 hours on datasets containing motifs of size 5 which is the smallest motif we tested
on MotiFiesta. Single-motif datasets with size 4 motifs did execute successfully for each of our
5 motif topologies, and 4 distortion levels. Resulting M-Jaccard values are summarized in Table 5.
MFinder is unable to retrieve the planted motif for all topologies except for cliques which are almost
perfectly recovered.

ϵ = 0.00 ϵ = 0.01 ϵ = 0.02 ϵ = 0.05

barbell 0.00 0.04 0.08 0.22
clique 1.00 0.94 0.88 0.73
random 0.00 0.05 0.09 0.18
star 0.00 0.10 0.18 0.33

Table 5: M-Jaccard coefficient using MFinder Kashtan et al. (2004a)
on synthetic dataset with motifs of size 4.

Because in MFinder, only isomorphic subgraphs are counted as part of a motif, we observe that
when the motif is missed, it is completely missed (M-Jaccard→ 0). This is particularly noticeable
when distortion probability is close to zero, and the opposite trend can be seen for cliques where
the algorithm successfully detects the motif it catches all instances and performance decreases with
distortion probability. We note that at such small motif sizes, the M-Jaccard that only counts inserted
motifs in the motif set can be misleading as randomized graphs can include naturally occurring motif
occurrences that the score will not be aware of. Since it is costly to count subgraph occurrences in
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general we provide a count of clique occurrences using a clique finder algorithm (CITE). While
we manually insert one clique in each graph for 1000 graphs, Table 6 shows that below cliques of
size 10, there are actually many more cliques than are inserted. Cliques are enumerated using the
NetworkX Hagberg et al. (2008) implementation of Zhang et al. (2005).

ϵ 0.00 0.01 0.02 0.05
clique size
4 210000 198339 870 743
5 252000 229164 0 0
6 210000 182185 0 0
8 45000 34589 0 0
10 1000 659 0 0

Table 6: True count of clique occurrences in synthetically generated datasets. Each column repeats
the count after distorting the motif with probability ϵ.

6.7 COMPARISON TO NEURAL METHOD

As an additional external comparison we take SP-Miner Ying et al. (2020), the most similar ap-
proach we could find. The SP-Miner model computes the most unnormalized frequent subgraphs
and is restricted to isomorphism up to the WL isomorphism test. For this reason the results are not
included as part of the main results. Nevertheless the results highlight the importance of model-
ing subgraph similarity as well as the use of significance testing for motifs. M-Jaccard scores for
analogous settings to Table 1 are show in Table 7.

ϵ 0.00 0.01 0.02 0.05
dataset
barbell 0.008 0.008 0.010 0.011
clique 0.018 0.012 0.009 0.008
random 0.011 0.008 0.007 0.007
star 0.014 0.014 0.012 0.009

Table 7: M-Jaccard results for SP-Miner Ying et al. (2020) neural frequent subgraph miner.

7 ANALYSIS AND VISUALIZATION OF MERGING SCORES

After training MotiFiesta on a dataset, we compute the M-Jaccard coefficient both on the original
data distribution, as well as on datasets with increasing degrees of distortion applied to the motif
subgraphs. Before applying the decoding step, however we can already assess the quality of the
subgraph scoring layer. Since by construction (see Appendix 6.1) we know which nodes belong to
motifs and which do not, we should expect that measuring the merging score assigned by the model
in motif nodes should be significantly larger than for non-motif nodes. In Figure 5b see a clear
separation between the two distributions, indicating that the model is able to assign proper scores to
enriched subgraphs. As a visual aid, we show the pooling process on an example graph in Figure
5a.

8 M-JACCARD CONTINUED

In Table 8 we include the results of experimenting on datasets with varying number of motifs
(3 motifs, 5 motifs) as well as different concentrations (sparsity 0.3, 0.5, 1) where the sparsity
represents the probability that a given graph will contain a motif instance.
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(a) Illustration of edge pooling execution.

non-motif motif

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sc
or

e

(b) Pooling score distribution.

Figure 5: (a) input graph is at the bottom with white nodes, and motif nodes drawn with a star shape.
Pooled nodes are connected to the collapsed node by a dotted line. Illustration shows stacked 3
pooling layers. (b) distribution of edge scores assigned to nodes within a known motif versus those
outside of the motif subgraph.

ϵ = 0 ϵ = 0.01 ϵ = 0.02 ϵ = 0.05

3 motifs 0.19 ± 0.01 (0.18 ± 0.01) 0.29 ± 0.05 (0.18 ± 0.01) 0.24 ± 0.06 (0.17 ± 0.00) 0.29 ± 0.06 (0.19 ± 0.01)
5 motifs 0.11 ± 0.00 (0.11 ± 0.00) 0.11 ± 0.00 (0.11 ± 0.00) 0.11 ± 0.00 (0.11 ± 0.00) 0.11 ± 0.00 (0.11 ± 0.00)

sparse-0.30 0.36 ± 0.00 (0.33 ± 0.02) 0.36 ± 0.01 (0.35 ± 0.00) 0.35 ± 0.01 (0.34 ± 0.01) 0.35 ± 0.00 (0.34 ± 0.00)
sparse-0.50 0.40 ± 0.03 (0.34 ± 0.00) 0.43 ± 0.02 (0.34 ± 0.00) 0.40 ± 0.04 (0.34 ± 0.00) 0.43 ± 0.05 (0.34 ± 0.01)
sparse-1.00 0.40 ± 0.02 (0.34 ± 0.00) 0.42 ± 0.03 (0.32 ± 0.02) 0.41 ± 0.02 (0.34 ± 0.00) 0.42 ± 0.04 (0.34 ± 0.00)

Table 8: Continuation of M-Jaccard score under various synthetic motif mining conditions. Each
row contains the M-Jaccard score when testing on motif datasets with each edge of the motifs dis-
torted with probability ϵ. Unless specified otherwise, motif instances are of size 10 nodes. The
values in small type and parentheses are the scores obtained by a dummy model that assigns all
edges a merging probability of 0.5.
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