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Abstract

Recent advances in computational pathology have led to the emergence of numer-
ous foundation models. These models typically rely on general-purpose encoders
with multi-instance learning for whole slide image (WSI) classification or apply
multimodal approaches to generate reports directly from images. However, these
models cannot emulate the diagnostic approach of pathologists, who systematically
examine slides at low magnification to obtain an overview before progressively
zooming in on suspicious regions to formulate comprehensive diagnoses. Instead,
existing models directly output final diagnoses without revealing the underlying
reasoning process. To address this gap, we introduce CPathAgent, an innova-
tive agent-based approach that mimics pathologists’ diagnostic workflow by au-
tonomously navigating across WSI through zoom-in/out and move operations based
on observed visual features, thereby generating substantially more transparent and
interpretable diagnostic summaries. To achieve this, we develop a multi-stage train-
ing strategy that unifies patch-level, region-level, and WSI-level capabilities within
a single model, which is essential for replicating how pathologists understand and
reason across diverse image scales. Additionally, we construct PathMMU-HR²,
the first expert-validated benchmark for large region analysis. This represents a
critical intermediate scale between patches and whole slides, reflecting a key clini-
cal reality where pathologists typically examine several key large regions rather
than entire slides at once. Extensive experiments demonstrate that CPathAgent
consistently outperforms existing approaches across benchmarks at three different
image scales, validating the effectiveness of our agent-based diagnostic approach
and highlighting a promising direction for computational pathology.

1 Introduction

Pathology serves as the gold standard for diagnosing numerous diseases, particularly cancer. The
advent of digital pathology has enabled the digitization and computational analysis of histopatho-
logical slides, opening transformative opportunities for AI-assisted diagnostics. Recently, numerous
pathology foundation models have emerged to automate and enhance diagnostic workflows.

These foundation models (Figure 1, left) adopt two primary architectural paradigms. The first employs
encoder-based models such as DINO[1; 2] or CLIP [3] to extract patch-level representations from
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Figure 1: Comparison of the "black box" traditional MIL approach, LMM approach, and our proposed CPathA-
gent for analyzing pathology images. CPathAgent interpretably mimics pathologists’ reasoning by performing
operational actions (e.g., zooming in, moving the view) while describing analytical logic.

WSIs, which are then aggregated via Multi-Instance Learning (MIL) [4; 5; 6] for diagnostic predic-
tions. The second utilizes large multimodal models (LMMs) that jointly process visual data and text
instructions to generate pathology reports or structured outputs [7; 8; 9; 10]. While these approaches
achieve impressive benchmark performance, they share a fundamental mismatch with clinical practice.
In real-world diagnostics, pathologists employ a systematic multi-scale examination strategy. They
begin by scanning slides at low magnification (2-4×) to assess overall tissue architecture and identify
regions of interest, then strategically navigating to atypical regions while progressively increasing
magnification (10×, 20×, 40×) to examine fine-grained details. Throughout this process, pathologists
continuously integrate observations across scales while conducting step-by-step diagnostic reasoning.

However, current models bypass this systematic sequential process by directly aggregating infor-
mation across the WSI or processing visual inputs in a single forward pass, leading to two critical
limitations. First, weak supervision: relying solely on slide-level labels without explicit guidance on
diagnostically important regions or when to examine specific magnifications makes them vulnerable
to shortcut learning [6], exploiting spurious correlations (staining artifacts, background patterns)
rather than genuine pathological features. Second, lack of interpretability and verifiability: pro-
ducing only final predictions without providing natural language descriptions of the intermediate
reasoning prevents pathologists from understanding what the AI actually discovered and validating
whether its findings are based on clinically relevant features.

To address these limitations, we introduce CPathAgent, a novel agent-based framework inspired
by recent advances in AI agent systems that have achieved remarkable success from strategic
gameplay [11] and web navigation [12] to task automation [13] and multimodal content generation
[14; 15; 16; 17]. The key to their success lies in decomposing complex tasks into sequential
reasoning steps with dynamic decision-making. Following this paradigm, CPathAgent bridges
the gap between clinical practice and AI-assisted diagnosis by rethinking pathology diagnosis as
adaptive visual reasoning. Unlike existing black-box models that treat diagnosis as single-shot
classification, CPathAgent emulates pathologists’ examination strategy through WSI navigation
with dynamic magnification adjustment and multi-view synthesis, conducting explicit step-by-step
reasoning through natural language to enable interpretable and verifiable diagnostic assessments.

Specifically, CPathAgent performs a three-stage diagnostic workflow (Figure 1). In the global
screening stage, CPathAgent analyzes a low-resolution WSI overview to identify suspicious regions
that warrant detailed examination. In the navigation planning stage, CPathAgent plans an exploration
strategy for each selected region, determining a sequence of view coordinates and magnification
levels to investigate, mimicking how pathologists mentally map their examination before diving into
details. Finally, in the multi-scale reasoning stage, the planned navigation path is executed through
systematic analysis of fields of view at different magnifications (e.g., zooming in for cellular details,
moving laterally across areas, zooming out for context), and synthesizes observations via step-by-step
diagnostic reasoning to reach a conclusion. Overall, this work makes the following contributions:
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1) CPathAgent framework: We propose an agent-based diagnostic system that performs diagnosis
through strategic WSI navigation and multi-scale visual reasoning, mirroring pathologists’ systematic
examination process while providing interpretable step-by-step rationales.

2) PathMMU-HR² benchmark: We develop the first visual question answering benchmark specifi-
cally designed for high-resolution pathology image regions (16000×16000 pixels), rigorously vali-
dated by three professional pathologists to ensure clinical relevance and diagnostic accuracy.

3) Multi-stage training strategy: We design a progressive training approach that equips CPathAgent
with perceptual and reasoning capabilities across different image scales within a unified framework.

4) Comprehensive evaluation: We conduct experiments at multiple scales, from patches and large
regions to WSIs, highlighting CPathAgent’s strong performance and practical clinical utility.

2 Related Work

2.1 Pathology Foundation Models

Recent years have seen significant progress in developing foundation models for computational
pathology, broadly categorized into encoder-based models and large multimodal models (LMMs).

Encoder-based models focus on extracting rich patch-level representations from WSIs. Early efforts
in this area relied on ImageNet-pretrained CNNs [18; 19] as feature extractors, combined with
multi-instance learning (MIL) [4; 5; 6] to aggregate these features for slide-level prediction. More
recently, the field has shifted toward pathology-specific foundation models that adopt self-supervised
learning paradigms. Architectures such as DINO [1; 2] and CLIP [3], when trained on large-scale
pathology datasets, have demonstrated superior feature extraction capabilities [20; 8; 21; 22; 23].
These improved representations, integrated via MIL or incorporated into pretrained WSI transformers
[20; 9], have significantly advanced the WSI-level classification performance. LMMs for pathology
have emerged in parallel, enabling joint processing of pathology images and text instructions to
generate textual diagnostic outputs. These models integrate visual and linguistic information through
various designs. Patch-level LMMs [7; 24; 8; 25; 26] adapt general vision-language frameworks
like LLaVA [27] for patch-level pathology image interpretation, while WSI-level models [9; 28; 29]
aim to process entire WSIs for generating reports or answering diagnostic questions. Recent unified
frameworks [10] attempt to handle both patches and WSIs within a single model architecture.

Despite these advances, current models typically process pathology inputs in a static manner, con-
trasting with expert pathologists who dynamically navigate regions of interest, examine tissues at
multiple magnifications, and integrate contextual information to formulate diagnoses.

2.2 Agent-based Models

Agent-based models represent an emerging paradigm in AI research, characterized by systems
that can perceive their environment, make decisions, and take actions to achieve specific goals
[30]. Recent advances in large language models (LLMs) have catalyzed significant progress in this
domain, enabling more sophisticated reasoning and planning capabilities. Notable examples include
WebGPT [12] and WebShop [31], which navigate web environments to complete information-seeking
and shopping tasks; ReAct [32], which interleaves reasoning and action steps for improved task
performance; AutoGPT [33] and AutoGen [34], which decompose complex tasks into manageable
subtasks with minimal human supervision; and task-specific agents for code development [14],
creative content generation [35], scientific research [36], and clinical decision-making and discovery
that simulate physician workflows in hospital environments [37; 38; 39; 40]. These agent models
typically incorporate several key components [15]: perception modules to process environmental
inputs, reasoning modules to interpret observations and plan actions, and execution modules to
implement planned actions. This architecture enables agents to adapt to dynamic environments and
accomplish complex, multi-step tasks through iterative observation-reasoning-action cycles.

Despite success in various domains, agent-based approaches remain largely unexplored in computa-
tional pathology. PathFinder [41] represents a successful early attempt at introducing agent-based
systems for WSI analysis. The system segments WSIs into fixed 512×512 patches and employs a
multi-agent framework that iteratively generates importance maps to select diagnostically relevant
regions, produces natural language descriptions of these patches, and then regenerates subsequent
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importance maps conditioned on previous descriptions. However, PathFinder primarily operates
through region selection at a fixed magnification level within predefined 512×512 patches, lacking
the dynamic multi-scale navigation capability that characterizes pathologist workflows.

To address this gap, CPathAgent takes a step further by incorporating multi-scale navigation capabili-
ties that mimic pathologist behavior. It autonomously decides where to examine, when to zoom in or
out, and how to navigate across WSIs, closely mimicking the iterative diagnostic workflow of expert
pathologists. Notably, CPathAgent provides verbalization of its diagnostic reasoning, effectively
simulating the internal thought processes that pathologists experience during slide examination
(specific examples can be found in Appendix Figures A12 to A16). This approach enables enhanced
interpretability through traceable reasoning paths and improved diagnostic performance.

2.3 Pathology Benchmarks and Datasets

Benchmark datasets provide standardized evaluation frameworks crucial for advancing computational
pathology. Traditional WSI benchmarks like Camelyon16 [42] and TCGA [43] focused primarily on
slide-level classification tasks. More recently, datasets like WSICaption[44] and WSI-VQA[45] have
expanded the scope to more complex tasks, including WSI description generation and VQA.

In parallel, several patch-level benchmarks have emerged for evaluating multimodal models in
pathology. PathVQA [46] introduced the first VQA tasks for pathology images, drawing on textbook
image-caption pairs. QuiltVQA [47] expanded this approach by extracting image-caption pairs from
pathology lectures on YouTube, resulting in higher-quality VQA pairs due to the educational nature of
these materials. PathMMU [48] marks a more recent advance, offering a comprehensive benchmark
across diverse pathology sources validated by expert pathologists to ensure clinical relevance.

Despite this progress, existing benchmarks predominantly focus on either localized patch-level
tasks or broad WSI analysis, overlooking a critical intermediate scale: the huge region. This scale
is particularly important because it mirrors real-world diagnostic workflows. In routine practice,
pathologists typically begin by scanning the WSIs to identify suspicious areas, then focus their
diagnostic attention on these large, yet manageable regions. It is often within these huge regions that
key diagnostic decisions are made, as they provide sufficient context for interpretation.

To address this limitation, we introduce PathMMU-HR², a benchmark specifically designed for huge
region analysis in pathology. By targeting this intermediate scale between isolated patches and WSIs,
PathMMU-HR² better aligns with how pathologists actually examine and interpret tissue. It provides
a more controlled, context-rich, and diagnostically meaningful setting for evaluating multimodal
models, especially those incorporating agent-based reasoning across different scales. To ensure
clinical relevance, we also engaged three board-certified pathologists to validate the dataset, making
PathMMU-HR² an expert benchmark for intermediate-scale pathology evaluation.

3 Methods

In this section, we detail the construction of CPathAgent-Instruct training data, the PathMMU-HR²
benchmark, and the CPathAgent model architecture with its multi-stage training process.

3.1 Reasoning Workflow of CPathAgent

To simulate expert-level diagnostic reasoning, we design CPathAgent as an agent-based system
capable of dynamic region selection, strategic navigation planning, and multi-scale reasoning. As
illustrated in Figure 2, the entire diagnostic process is decomposed into three key stages:

1) Global Screening: To address the computational challenge of gigapixel WSIs, CPathAgent
employs a coarse-to-fine region selection that mirrors pathologists’ systematic screening protocol.

Given a WSI I ∈ RH×W×3, we first generate a thumbnail Ithumb via 32× downsampling and partition
it into a grid of N regions with 5% overlap to ensure boundary continuity: G = {g1, g2, . . . , gN},
where each gi corresponds to a 16000× 16000 pixel region at 40× magnification. CPathAgent fθ
takes the annotated thumbnail as input and generates structured text outputs: (1) Region grouping:
CPathAgent clusters regions with similar pathological characteristics into K diagnostic regions
C = {C1, . . . , CK}, where each cluster Ck = {gi1 , . . . , gi|Ck|} is assigned a descriptive semantic
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Figure 2: Illustration of CPathAgent framework, which mimics the diagnostic workflow of pathologists via
global screening, navigation planning, and multi-scale reasoning across sequential views.

label ℓk (e.g., “Core Tumor Regions,” “Lymph Node Assessment,” “Background Adipose and Stromal
Tissue”); (2) Region prioritization: For each cluster Ck, CPathAgent predicts a severity level sk ∈
{0, 1, . . . , 5} where higher values indicate greater clinical importance and inspection priority, along
with a binary decision dk ∈ {0, 1} indicating whether Ck requires high-magnification review (dk = 1)
or can be skipped (dk = 0). This stage produces a structured output R = {(ℓk, Ck, sk, dk)}Kk=1 that
filters uninformative regions (sk = 0), reducing computational burden for subsequent analysis.

2) Navigation Planning: For each preserved huge region ri, the model generates a dynamic nav-
igation plan as a sequence of viewing steps. Each step is specified by a tuple (x, y,m, o), where
(x, y) denotes spatial coordinates in normalized space [0, 1], m represents the magnification level
relative to the original huge region (where 1.0× corresponds to the full view), and o describes the
diagnostic focus for that position (i.e., what features need to be observed). The navigation plan
Pi = {(x1, y1,m1, o1), . . . , (xT , yT ,mT , oT )} is generated autoregressively, where each step is
conditioned on the visual content of the region and WSI source information (e.g., lung, colon, etc.).

3) Multi-scale Multi-view Sequence Reasoning: Following the planned navigation path Pi,
the model receives the complete sequence of cropped images corresponding to all viewing steps
{(x1, y1,m1, o1), . . . , (xT , yT ,mT , oT )} as input at once. Given this multi-view image sequence
along with their associated diagnostic focus descriptions and spatial coordinates, the model performs
holistic reasoning across the entire viewing trajectory in a first-person perspective similar to a pathol-
ogist’s examination process. The reasoning process systematically observes features across multiple
scales and positions, establishes and refines diagnostic hypotheses by cross-referencing evidence, and
maintains logical continuity throughout the navigation sequence. Finally, the model synthesizes all
observations into a coherent pathological report that summarizes the diagnostic findings.

Illustrative examples, including global screening results, navigation path planning, and multi-scale
reasoning outputs, are shown in Appendix Figure A12 to Figure A15. The prompts used for
CPathAgent through these stages are provided in Appendix Figure A26 to Figure A28.

3.2 CPathAgent-Instruct Dataset Construction

In contrast to methods relying on inference-time prompting with closed-source models (e.g., OpenAI
o3, Gemini-2.5-Pro), we focus on curating high-quality data to train open-source models for expert-
level agent-based pathology analysis. To this end, we construct the CPathAgent-Instruct dataset,
comprising corresponding subsets that target the three critical stages detailed in Section 3.1. While
we use Gemini-2.5-Pro following the approaches in Section 3.1 to synthesize training data, prompting
alone proves insufficient for expert-level performance. We therefore incorporate reference information
such as WSI reports as guidance to ensure data quality. The construction process is as follows:
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Figure 3: Overview of the generation process for CPathAgent’s navigation planning subset and multi-scale
multi-view sequence reasoning instruction-tuning data.

Source Data: We use WSI reports from HistGen [49] and corresponding WSIs from TCGA, splitting
80% (5,254 WSIs) for training and 20% for testing and PathMMU-HR² generation. We apply
patient-level splitting to ensure no data leakage across sets. Details are provided in Appendix A.

Global Screening Subset: This dataset follows the same WSI processing as CPathAgent’s global
screening stage, with one key difference: we leverage Gemini-2.5-Pro, using WSI overview as
primary inputs and corresponding WSI reports as additional guidance, to generate high-quality
structured outputs (region groupings, priority scores, and examination flags) as training data.

Navigation Planning Subset: We implement a reference-guided three-step generation pipeline to
synthesize high-quality navigation plans Pi = {(x1, y1,m1, o1), . . . , (xT , yT ,mT , oT )} that decide
when and where to examine tissue at different magnifications, leveraging expert knowledge from
WSI reports as shown in Figure 3: 1) Retrieval-guided Region Description: For each important
region identified during global screening, we extract region-specific descriptions from expert WSI
reports by prompting Gemini-2.5-Pro with the WSI report and region image, extracting a region
description Dregion that captures the features of this region. 2) Multi-scale Patch Captioning: To
provide comprehensive visual references for navigation path generation, we segment patches at
three scales: 1× (overview), 2× (four views), and 4× (sixteen views), forming a multi-scale patch
set {I1×, I2×, I4×}. We then prompt Gemini-2.5-Pro with these patches and Dregion to produce
descriptions {d1, d2, . . . , d21} for these patches that guide subsequent navigation path generation. 3)
Navigation Path Generation: We prompt Gemini-2.5-Pro with coordinate-annotated region images
(marked with 0.1 relative position intervals), patch descriptions {d1, . . . , d21}, and Dregion to generate
navigation plans where each step (xt, yt,mt, ot) can navigate to any position and magnification,
enabling flexible navigation strategies that fully mimic pathologist rather than fixed sequential routes.

Multi-scale Multi-view Sequence Reasoning Subset: The synthesis of this subset follows the same
process as CPathAgent’s multi-scale reasoning stage (Section 3.1). In addition to the cropped image
sequences extracted along the planned navigation paths, we provide the region description Dregion as
reference guidance to Gemini-2.5-Pro for generating high-quality step-by-step reasoning chains.

VQA-oriented Subset: To enable CPathAgent to handle both general diagnosis and VQA scenarios,
this is an additional subset that adapts the navigation planning process to question-driven contexts.
We first prompt Gemini-2.5-Pro to generate pathology questions from multi-scale patch descriptions
{d1, d2, . . . , d21}, then generate question-oriented navigation paths by prompting with both the
question and region description Dregion. Finally, we prompt Gemini-2.5-Pro with the cropped image
sequences along with the question and region description Dregion to produce question-oriented
reasoning chains. This trains CPathAgent to dynamically adjust its examination strategy based on
question-oriented targeted areas and magnifications to efficiently answer diagnostic questions.

Overall, CPathAgent-Instruct comprises 278K instruction-tuning samples for training CPathAgent’s
pathologist-like agent capabilities. Detailed data statistics are provided in Appendix A.
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3.3 PathMMU-HR² Dataset Construction

To evaluate CPathAgent’s multi-scale reasoning capabilities on huge regions, we construct PathMMU-
HR², a Huge Region Huge Resolution benchmark specifically designed to assess the model’s capa-
bility for huge region analysis. We sample huge regions from the held-out TCGA test set, ensuring
broad coverage across tissue types (e.g., TCGA-BRCA, TCGA-LUAD). Following the construc-
tion pipeline of CPathAgent-Instruct VQA-oriented subset, we generate VQA pairs that require
synthesizing observations across different scales, necessitating multi-scale reasoning for accurate
diagnosis. Three board-certified pathologists independently review and filter generated VQA pairs
based on clinical relevance and diagnostic accuracy, necessity of multi-scale integration, and align-
ment with standard pathology practice. The final PathMMU-HR² comprises 1,668 expert-validated
VQA samples, providing a robust benchmark for evaluating huge region analysis capabilities.

3.4 CPathAgent Model Architecture and Training

CPathAgent builds upon the LLaVA-OneVision [50], integrating Qwen3-14B [51] as the LLM
backbone and CPath-CLIP [10] as the vision encoder, connected via a two-layer MLP. We adopt
a three-stage progressive training strategy that systematically develops CPathAgent’s capabilities,
advancing from foundational multimodal understanding to agent-based diagnostic reasoning.

To be specific, stages 1 and 2 follow the CPath-Omni [10] training protocol: stage 1 aligns vision
and language components using CPath-PatchCaption with only the MLP trainable, while stage 2
fine-tunes all parameters on CPath-PathInstruct to develop comprehensive patch-level pathology
understanding, including VQA, classification, and image description capabilities.

Notably, stage 3 is the critical phase that transforms CPathAgent into a pathologist-like agent. During
this stage, we train on our specialized CPathAgent-Instruct dataset, supplemented with 20% of CPath-
Instruct data, with all parameters unfrozen. This phase equips CPathAgent with advanced agent
capabilities that emulate pathologists’ diagnostic workflows while preserving the strong patch-level
analysis skills from earlier stages. This multi-stage approach yields a versatile model that seamlessly
integrates fine-grained patch-level analysis with pathologist-like agent-based WSI navigation.

4 Experiments

We evaluate CPathAgent across multiple tasks: patch understanding, huge region analysis, and WSI
classification to assess its capabilities and benchmark performance against existing approaches.

4.1 Patch Understanding Evaluation

Since patch-level understanding serves as the foundation for reasoning over larger-region reasoning,
we first evaluate CPathAgent’s ability to interpret standard-resolution pathology patches on Path-
MMU [48], currently the largest and most diverse expert-verified pathology dataset. We compare
CPathAgent with the most advanced general-purpose LMMs, including InstructBLIP-FLAN-T5-
XXL[52], LLaVA-1.5-13B[53], LLaVA-OneVision[50] series, Qwen2.5-VL[54] series, GPT-4V[55],
GPT-4.1[56] series and Gemini-2.5[57] series, along with domain-specific pathology LMMs such as
LLaVA-Med[58], Quilt-LLaVA[8], PathGen-LLaVA[26] and CPath-Omni[10].

Results: CPathAgent significantly outperforms both general-purpose and pathology-specific LMMs.
As shown in Table 1, it achieves the highest performance across all subsets, with 80.5% on the tiny test
set and 78.6% on the full test set, surpassing the strongest general-purpose model (Gemini-2.5-Pro,
68.7% Tiny / 67.5% All) and surpasses the SOTA domain-specific model (CPath-Omni, 72.4% Tiny
/ 72.2% All). While CPathAgent shares patch-level training data with CPath-Omni, its superior
performance stems from the third-stage training on high-quality, multi-scale data, which strengthens
its analytical capabilities and lays the foundation for agent-based diagnostic workflow.

CPathAgent even outperforms the expert-annotated baselines in several subsets, suggesting that
its general patch-level understanding is already quite promising. This may also reflect limitations in
human annotations, as individual experts often specialize in narrow domains and may struggle with
unfamiliar cases in a diverse dataset like PathMMU. While CPathAgent benefits from broad training
and shows potential as a general-purpose pathology model, patch-level tasks remain relatively simple
compared to more complex reasoning across larger spatial contexts.

7



Table 1: Overall results of models on the PathMMU test set. The best-performing LMM in each subset for
general and pathology LMMs is in-bold, and the second-best performing LMM is underlined.

Test Overall PubMed SocialPath EduContent Atlas PathCLS
Tiny ALL Tiny ALL Tiny All Tiny All Tiny ALL Tiny ALL

(1156) (9677) (281) (3068) (235) (1855) (255) (1938) (208) (1007) (177) (1809)

Expert performance 71.8 - 72.9 - 71.5 - 69.0 - 68.3 - 78.9 -

General Large Multimodal Models
InstructBLIP-FLAN-T5-XXL 34.3 33.9 39.1 37.2 33.6 34.3 34.5 36.0 38.5 39.3 22.6 22.7
LLaVA-1.5-13B 38.8 37.6 44.5 41.0 40.4 40.4 34.1 39.4 47.1 44.3 24.9 23.5
LLaVA-OneVision-Qwen2-7B-OV 36.9 34.4 37.7 36.4 35.7 38.4 47.1 38.3 38.9 38.4 20.3 20.4
LLaVA-OneVision-Qwen2-72B-OV 51.0 46.4 60.5 51.0 59.1 52.9 54.9 49.8 43.8 49.2 27.7 26.5
Qwen2.5-VL-7B-Instruct 39.7 37.5 40.2 40.2 41.7 39.0 47.1 42.0 40.4 38.9 24.9 25.6
Qwen2.5-VL-72B-Instruct 56.2 51.2 63.3 56.1 62.4 55.5 65.5 58.3 54.3 55.2 26.0 28.7
GPT-4V-1106 53.9 49.8 59.4 53.5 58.7 53.9 60.4 53.6 48.1 52.8 36.2 33.8
GPT-4.1-mini-2025-04-14 60.7 59.9 66.9 63.4 62.1 61.8 65.1 61.1 60.1 62.8 43.5 48.8
GPT-4.1-2025-04-14 67.7 64.4 73.0 66.9 70.6 65.5 69.4 64.9 64.9 66.8 56.5 57.2
Gemini-2.5-Flash-Preview-04-17 68.0 65.2 74.9 69.2 71.1 64.9 68.1 65.3 67.5 69.3 53.7 56.3
Gemini-2.5-Pro-Preview-03-25 68.7 67.5 73.8 71.5 72.1 68.1 70.7 68.6 68.3 70.6 53.7 57.5

Pathology-specific Large Multimodal Models
LLaVA-Med 25.3 26.2 28.5 27.7 28.9 27.3 22.7 27.2 22.6 30.7 22.6 20.3
Quilt-LLaVA 45.6 41.5 47.3 42.6 46.4 46.6 51.8 45.3 46.2 42.7 32.2 29.2
PathGen-LLaVA 60.1 58.4 60.1 60.1 60.9 58.8 60.8 60.7 63.5 64.9 54.2 48.9
CPath-Omni 72.4 72.2 74.0 69.9 76.6 71.8 69.8 70.6 65.9 70.6 75.7 79.0
CPathAgent (Ours) 80.5 78.6 80.8 78.4 83.4 77.9 83.5 79.6 75.4 77.6 78.0 79.2

4.2 Huge Region Understanding Evaluation

We evaluate CPathAgent’s ability to autonomously navigate and reason over huge, high-resolution re-
gions using PathMMU-HR², which includes 1,668 expert-validated VQA pairs requiring multi-scale
analysis. We benchmark the same models as in Section 4.1. Additionally, we apply CPathA-
gent’s prompt (from global screening to multi-scale reasoning, detailed in Section 3.1) to stronger
agent-capable models like Gemini-2.5-Pro and GPT-4.1-mini, enabling them to mimic pathologists’
workflows as CPathAgent does and assess whether this approach yields performance gains.

Results: CPathAgent demonstrates superior performance on large, high-resolution regions
across diverse cancer types. As shown in Table 2, CPathAgent achieves 88.6% on the PathMMU-
HR², substantially outperforming both general-purpose models (Gemini-2.5-Pro by 15.4%) and
pathology-specific models (CPath-Omni by 16.9%). Despite operating at lower single-view resolu-
tion (1008×1008) compared to closed-source models like Gemini-2.5-Pro (3072×3072), CPathAgent
compensates through emulating pathologists’ diagnostic workflow through strategic navigation and
multi-view reasoning over huge regions. Notably, while CPathAgent and CPathOmni share patch-
level training data from stages 1-2 (Section 3.4), they differ significantly in their stage 3 training,
where CPathAgent incorporates agent-based navigation and reasoning for WSI and large region
analysis. The substantial performance gain validates the effectiveness of our CPathAgent-Instruct
dataset and agent training approach. Representative examples are provided in Appendix E.

Agent-based approaches consistently enhance model performance for pathology analysis. As shown
in Table 2, incorporating agent-based approach improves performance across models. Specifically,
with CPathAgent’s prompting strategy, Gemini-2.5-Pro improves from 73.2% to 76.4% and GPT-4.1-
mini from 60.1% to 62.3%. The enhancement is particularly pronounced in complex cancer types
like KICH, where Gemini-2.5-Pro shows a dramatic improvement from 56.5% to 69.3% (+12.8%).
This confirms that dynamically navigating and reasoning over huge regions that are similar to expert
pathologists is crucial for accurate diagnosis, especially for cases requiring integration of findings
across multiple scales and regions. These results suggest that empowering LMMs with expert-like
navigation and reasoning strategies is a promising direction for advancing AI in pathology tasks.

4.3 WSI Classification

We evaluate CPathAgent’s performance on WSI classification tasks across six diverse datasets
spanning multiple cancer types and diagnostic tasks: TCGA-BRCA (breast cancer subtyping),
TCGA-NSCLC (lung cancer subtyping), TCGA-RCC (renal cell carcinoma subtyping), TCGA-
ESCA (esophageal cancer subtyping), TCGA-BLCA (bladder cancer subtyping), and TCGA-THCA
(thyroid cancer subtyping). We benchmark CPathAgent against traditional MIL approaches, including
ABMIL [4] and DSMIL [5], as well as both general-purpose and pathology-specific LMMs.
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Table 2: Performance comparison of huge region classification across multiple cancer types using two approaches:
General LMMs, and Agent-based Methods. The best-performing model for each cancer type is in-bold, and the
second-best performing model is underlined.

BRCA LUAD LUSC KIRP KIRC KICH ESCA THCA BLCA TGCT Overall
(368) (192) (230) (153) (151) (62) (70) (249) (141) (52) (1668)

General LMM Approach
LLaVA-OneVision-Qwen2-7B-OV 42.9 43.2 33.5 28.1 37.1 43.5 40.0 41.8 39.7 30.8 38.8
LLaVA-OneVision-Qwen2-72B-OV 40.8 52.1 40.0 39.2 36.4 33.9 35.7 45.8 57.4 36.5 43.0
Qwen2.5-VL-7B-Instruct 47.3 57.3 35.2 46.4 47.7 25.8 51.4 49.8 56.0 38.5 46.9
Qwen2.5-VL-72B-Instruct 48.4 61.5 44.3 52.9 56.3 27.4 52.9 48.6 62.4 51.9 51.2
GPT-4.1-mini-2025-04-14 56.0 64.6 60.4 62.1 61.6 35.5 70.0 59.4 68.1 59.6 60.1
GPT-4.1-2025-04-14 57.9 63.5 62.2 67.3 69.5 54.8 65.7 66.3 67.4 71.2 63.7
Gemini-2.5-Flash-Preview-04-17 66.6 74.0 76.1 65.4 76.8 40.3 70.0 72.7 76.6 63.5 70.4
Gemini-2.5-Pro-Preview-03-25 64.4 70.8 78.3 74.5 80.8 56.5 77.1 76.7 80.1 75.0 73.2
Quilt-LLaVA 29.3 45.8 44.8 38.6 38.4 30.6 35.7 39.8 47.5 40.4 38.8
PathGen-LLaVA 62.0 77.6 67.4 58.2 74.2 48.4 67.1 84.4 48.1 67.2 67.2
CPath-Omni 72.6 77.6 71.3 64.1 67.5 59.7 74.3 71.5 76.6 78.8 71.7

Agent-based Approach
GPT-4.1-mini-2025-04-14 56.0 69.3 63.9 62.7 64.9 41.9 71.4 59.8 68.1 73.1 62.3
Gemini-2.5-Pro-Preview-03-25 68.8 68.8 80.0 77.8 83.4 69.3 82.8 78.7 85.1 76.9 76.4
CPathAgent (Ours) 87.0 88.5 87.8 87.9 92.9 78.9 90.7 89.0 90.7 93.0 88.6

Since CPathAgent generates detailed diagnostic descriptions rather than dataset-specific classification
labels like MIL methods, we implement a two-stage evaluation process for fair comparison with WSI
benchmarks. In the first stage, CPathAgent employs our agent-based approach to identify suspicious
regions and generate comprehensive diagnostic summaries of significant findings within each WSI.
While these detailed descriptions effectively capture complex pathological characteristics, they must
be mapped to the predefined classification schemes used in standard benchmarks. Therefore, in
the second stage, we provide these descriptions to Gemini-2.5-Pro for conversion into the specific
labels required by each dataset. Consequently, more accurate and detailed diagnostic descriptions
from CPathAgent lead to more precise WSI-level classifications. For other LMM-based approaches,
following CPath-Omni [10], we directly prompt the models to generate descriptions for all WSI
regions. These descriptions are then similarly provided to Gemini-2.5-Pro to map them to the
corresponding classification labels, ensuring fair evaluation across all methods.

Results: CPathAgent achieves competitive performance on WSI classification using a fundamen-
tally different agent-based approach. As shown in Table 3, CPathAgent achieves an average accuracy
of 82.8% across six different cancer classification tasks, outperforming traditional MIL approaches
(ABMIL: 79.9%, DSMIL: 76.8%) and substantially surpassing both general-purpose LMMs like
Gemini-2.5-Pro (72.1%) and previous pathology-specific SOTA CPath-Omni (77.4%). CPathAgent
shows particularly strong performance on TCGA-BRCA (88.5%) and TCGA-ESCA (97.1%), where
it matches or exceeds specialized MIL methods. Although the overall margin over MIL approaches is
modest (+2.9% vs. ABMIL), this represents a significant paradigm shift: CPathAgent achieves these
results through interpretable, expert-like diagnostic reasoning rather than opaque feature aggregation.

Upper bound results validate synthetic data quality and reveal substantial room for improvement.
To assess data quality, we establish a theoretical upper bound by directly using our generated
agent training data for WSI classification (Table 3). The near-perfect upper bound accuracy across
most datasets (TCGA-ESCA: 100%, TCGA-NSCLC: 97.9%, TCGA-RCC: 96.5%, TCGA-BRCA:
97.0%) confirms that our synthetic navigation trajectories and diagnostic reasoning are clinically
accurate and diagnostically complete. While CPathAgent achieves significant advances with 82.8%
overall accuracy, the 9% gap to the upper bound (91.7%) indicates considerable room for further
improvement, especially on challenging datasets like TCGA-BLCA and TCGA-THCA. As an agent-
based exploration for pathology, CPathAgent demonstrates substantial potential for advancement.

4.4 Out of Distribution Evaluation

Although our model achieves strong diagnostic performance across multiple TCGA cancer types, we
further evaluate its generalization capability on out-of-distribution (OOD) datasets. Specifically, we
assess CPathAgent on two tasks: (1) binary WSI classification for distinguishing LUAD and LSCC in
the CPTAC-Lung dataset [59; 60], and (2) three-class classification (benign tumors, atypical tumors,
malignant tumors) on huge image regions (up to 10K × 10K pixels) in the BRACS dataset [61]. We
benchmark our method against representative WSI-level (PRISM [9], CPath-Omni [10], TITAN [28])
and region-level models (GPT-4.1, Gemini-2.5-Pro, CPath-Omni [10]).
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Table 3: Overall results of WSI classification tasks. The best-performing model in each subset is in-bold, and
the second-best performing model is underlined. CPath-Omni* indicates a retrained version using CPathAgent’s
train/test split to ensure fair comparison, as the original training data differed. Balanced accuracy (%) is reported.

TCGA-BRCA TCGA-NSCLC TCGA-RCC TCGA-ESCA TCGA-BLCA TCGA-THCA Avg.
Multi-instance Learning Approach (Traditional)

ABMIL 80.5 92.8 96.4 91.2 50.1 68.4 79.9
DSMIL 84.7 87.2 88.9 89.9 52.2 57.8 76.8

Large Multimodal Models
GPT-4.1-mini-2025-04-14 52.8 65.2 52.8 85.3 57.0 54.3 59.6
GPT-4.1-2025-04-14 61.0 65.8 53.8 85.3 61.3 58.9 64.3
Gemini-2.5-Flash-Preview-04-17 56.7 84.5 57.9 93.8 61.8 55.4 68.4
Gemini-2.5-Pro-Preview-03-25 72.4 89.2 69.2 97.1 59.8 44.9 72.1
Quilt-LLaVA 55.3 54.0 53.3 58.6 61.9 45.8 54.8
PathGen-LLaVA 66.5 53.5 59.0 78.6 54.7 49.2 60.2
CPath-Omni* 78.6 86.7 91.3 89.9 65.5 52.6 77.4

Agent-based Approach
CPathAgent (Ours) 88.5 90.8 94.6 97.1 62.7 63.2 82.8
Upper Bound 97.0 97.9 96.5 100.0 77.8 81.0 91.7
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Figure 4: OOD results for WSI (left) and region-level (right) classification tasks. Representative models from
WSI and region-level approaches are selected for comparison.

Results: CPathAgent achieves competitive OOD performance with exceptional data efficiency.
As shown in Figure 4, despite being trained on significantly fewer slides than baseline models,
CPathAgent demonstrates reasonable generalization on both WSI-level and region-level OOD tasks.
On CPTAC-Lung, CPathAgent achieves 88.1% balanced accuracy with only 5,254 training WSIs,
outperforming CPath-Omni (82.3%, 11,728 WSIs) and PRISM (83.2%, 587,196 WSIs), while
slightly below TITAN (91.9%, 335,645 WSIs). Notably, CPathAgent uses 64× fewer WSIs than
TITAN, 2.2× fewer than CPath-Omni, and 112× fewer than PRISM, yet achieves competitive or
superior performance. For BRACS region classification, CPathAgent achieves 64.3% accuracy,
substantially surpassing general LMMs GPT-4.1 (44.2%) and Gemini-2.5-Pro (49.0%), as well as the
pathology-specialized CPath-Omni (57.9%), demonstrating its capability in huge regions analysis.

While current OOD performance may not yet meet clinical deployment standards, these results
demonstrate meaningful generalization beyond TCGA with remarkable data efficiency, suggesting
that scaling to larger datasets represents a promising direction for further improvement.

5 Conclusion

In this study, we present CPathAgent, an agent-based framework for computational pathology that
emulates pathologists’ diagnostic reasoning through strategic examination of high-resolution pathol-
ogy images. Through a systematic three-stage process of global screening, navigation planning, and
multi-scale sequence reasoning, CPathAgent faithfully replicates the critical diagnostic workflow
by dynamically zooming in and out while systematically shifting focus across regions of interest,
transparently documenting not only what features are observed but also why specific regions warrant
closer examination and how evidence accumulates across viewing scales, thereby achieving both
superior interpretability and state-of-the-art performance across diverse pathology tasks. Our compre-
hensive evaluation spanning three scales of image analysis (patch-level understanding, large regional
assessment, and whole slide image analysis) demonstrates that this agent-based paradigm, which
closely mirrors how experienced pathologists navigate and scrutinize tissue specimens, effectively
bridges the crucial gap between human diagnostic expertise and AI-assisted analysis.
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The code and model checkpoints will be released in later stage. The supple-
mental material provides detailed instructions for reproducing the main experimental results,
including environment setup and data preprocessing steps.
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versions (if applicable).
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6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The code and model checkpoints will be released in later stage. The supple-
mental material provides detailed instructions for reproducing the main experimental results,
including environment setup and data preprocessing steps.
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• The answer NA means that the paper does not include experiments.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Although we do not report error bars or statistical tests, we believe the scale and
consistency of our evaluations across large models and datasets are sufficient to demonstrate
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details about compute resources are provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully adheres to the NeurIPS Code of Ethics, including responsible
data usage, transparency, respect for human rights, and care in minimizing potential societal
harms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The paper discusses the positive societal impact of improving diagnostic
accuracy and efficiency in pathology through AI.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The study focuses on pathology-specific models and data, which do not pose
significant risks of misuse or dual-use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing datasets and code used in the study are properly cited, and their
respective licenses and terms of use have been fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[Yes]
Justification: New assets, including dataset and model checkpoints, will be released in later
stage. Documentation covering usage, license, and limitations will be provided at the time
of release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Although human annotators were involved, their work did not constitute human
subjects research as defined by our institution, and no IRB approval was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLMs for refining, and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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epithelial morphology and stromal context ?

A. Expansive epithelial structures with rigid, sieve-like fenestrations and …..
B. Diffuse sheets of monotonous, small, dark cells widely infiltrate a loose, ….
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VQA-oriented Reasoning
Let me start with the overall view at 1.0x ([0,0,1,1]), I see
overall distribution of large proliferative foci and separate
smaller glands within; Let me zoom in to the 2x, I
identify the large foci as …… Therefore, option A is correct.

Figure A1: Overview of the VQA-oriented dataset generation process: from multi-scale description to question
generation, question filtering, question-oriented navigation path generation, and VQA-related visual reasoning.

A Additional Details of Proposed Dataset

In this section, we present detailed information about our datasets: CPathAgent-Instruct and
PathMMU-HR². We provide comprehensive statistical analysis of both datasets, along with further
details regarding their construction process.

A.1 Details of CPathAgent-Instruct

Data Sources: CPathAgent derives its WSI report data from HistGen [49], while the corresponding
WSI data is sourced from The Cancer Genome Atlas (TCGA). TCGA provides a comprehensive
collection of pathology WSIs contributed by various participating institutions, encompassing a
diverse range of distinct tissue and cancer types. This extensive repository ensures diverse coverage
of pathological conditions and features essential for dataset and model development.

Additional Details of CPathAgent-Instruct: Our dataset utilizes 5,254 WSIs, which is 80% of the
total HisGen data for constructing CPathAgent-Instruct. The remaining WSIs are reserved for model
testing and for constructing the PathMMU-HR² dataset.

We provide the following additional dataset construction details that could not be included in the
main text due to space constraints:

1) Global Screening Subset Enhancement: For the region selection subset within CPathAgent-
Instruct, we face a challenge as this capability was not developed during earlier training stages (stage
1 and stage 2 as detailed in Section 3.4), and 5,254 WSIs are insufficient for acquiring this skill.
Considering that region selection is manageable for advanced large models like Gemini-2.5-Pro and
doesn’t heavily depend on WSI reports, we expand our data by utilizing all 24,429 TCGA overview
images (excluding test data). The WSI overview images are 32× downsampled versions of the original
WSIs as mentioned in the main paper, providing a overview the entire slide at lower resolution. To be
specific:

• For WSIs with associated pathology reports, we prompt Gemini-2.5-Pro with both the WSI
overview image and the corresponding report. The prompt specifically guides the model in
identifying and selecting suspicious regions, particularly those exhibiting pathological features
explicitly mentioned in the report.

• For WSIs without accompanying reports, we provide only the WSI overview image, prompting
the Gemini-2.5-Pro to identify regions showing abnormal tissue characteristics or potential
pathological features by leveraging Gemini-2.5-Pro’s powerful visual recognition capabilities.

To increase the diversity of our data, we use a generation temperature of 0.8 and create two separate
region selection results for each WSI. This strategy produces slightly different region selections
from the same WSI overview, effectively doubling our dataset size. At the same time, it introduces
natural variations in how regions are selected, which reflects the inherent subjectivity in how different
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Figure A2: Illustration of the proportional distribution of each subset within the CPathAgent-Instruct dataset.

           

        

          

               

           

         

           

               

         

          

         

                 

            

                

          

           

             

        

         

         

             

               

         

            

         

                  

                      

          

                         

                         

        

             

            

         

           

                

            

Figure A3: Illustration of the distribution of regions across tissue types.

pathologists might evaluate the same slide. The specific prompt templates we use can be found in
Section E.5.

2) Navigation Path Diversity Augmentation: Similarly, for the navigation path planning subset, we
recognize that pathologistsmay follow multiple valid trajectories when examining a large region
to reach accurate diagnoses. To capture this inherent diversity, we set the generation temperature
to 0.8 and prompt Gemini-2.5-Pro randomly 1-3 times per WSI using the approach described in
Section 3.2. This stochastic prompting process generates diverse navigation paths for identical
regions. Correspondingly, the multi-scale multi-image reasoning also changes based on the different
navigation paths, creating additional variations in our dataset. As a result, we substantially expand
our dataset while improving the model’s ability to generate diverse, valid trajectories.

3) VQA-oriented Subset Construction and Quality Control: We systematically construct the VQA
subset as shown in Figure A1. First, we use 21 multi-scale descriptions from sub-patches at different
magnifications (1x, 2x, 4x), which are generated through WSI-report guided prompting (detailed
in Section 3.2). We then input these descriptions along with their corresponding region images to
Gemini-2.5-Pro to create the initial VQA pairs.

However, we recognize that models often exploit textual shortcuts when answering VQA questions
rather than performing genuine image analysis. Inspired by PathMMU [48], we present text-only
questions to both Gemini-2.5-Pro [57] and DeepSeekV3 [62], then eliminate any questions both
models answer correctly without visual input. This ensures our dataset exclusively targets vision-
dependent reasoning tasks that cannot be solved through textual cues alone.

For questions that pass validation, we proceed to generate navigation plans through a two-stage
process. First, we provide Gemini-2.5-Pro with the validated question, multi-scale image descriptions,
region descriptions, and full region images to generate a navigation path. Second, following the
approach established in our region description reasoning generation, we combine the validated
question with (1) cropped patches extracted along the planned navigation path and (2) corresponding
region descriptions. This combined input prompts Gemini-2.5-Pro to generate comprehensive
reasoning that systematically addresses the question—progressing logically from overall tissue
architecture to specific diagnostic features, comparing and eliminating answer options through
continuous reasoning to arrive at the correct conclusion.
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Figure A4: Illustration of the distribution of regions across tissue types.

a) General Description Reasoning b) VQA-oriented Reasoning

Figure A5: Visualization of a word cloud derived from general description-based and VQA-oriented reasoning.

This question-guided navigation and reasoning framework yields a dataset that enables CPathAgent
to dynamically adapt to diverse diagnostic queries by focusing on task-relevant regions and features
based on the specific question at hand.

Proportion of CPathAgent-Instruct subsets Figure A2 illustrates the distribution of different subsets
within the CPathAgent-Instruct dataset. Among them, "Viewing Path Planning" and "Multi-Image
Understanding and Reasoning" each constitute 32.8% of the total dataset. These equal proportions
exist because each planning instance directly corresponds to a reasoning instance, creating a one-to-
one relationship between these components. The VQA-oriented subset, though smaller, is sufficient
for model adaptation as it shares structural similarities with the main components.

Statistics of Source Regions: As shown in Figure A3, CPathAgent dataset encompasses 26 distinct
tissue types with a total of 78,658 individual regions. Breast tissue represents the highest proportion
at 13.4% (10,521 samples), while lymphoid tissue appears with 270 samples.

Statistics of Overview WSIs within region selection subset: As shown in Figure A4, the CPathA-
gent dataset consists of 26 distinct tissue types with a total of 24,429 WSI overviews. Lung tissue
represents the highest proportion at 12.9% (3,150 WSIs), followed by Breast with 3,110 WSIs and
Kidney with 2,672 WSIs.

Word Frequency in Multi-scale Multi-image Reasoning Subsets: We analyze word frequency
distributions in our General description-based (left, Figure A5) and VQA-oriented (right, Figure
A5) reasoning approaches. The visualization reveals distinctive reasoning patterns in pathology
diagnosis. General description reasoning emphasizes procedural terms like "zoom," "move," and
"examine"—simulating a pathologist’s physical navigation through tissue samples as they methodi-
cally adjust magnification, reposition focus areas, and explore specimens. Meanwhile, VQA-oriented
reasoning prioritizes diagnostic decision terms like "look," "see," and "feature," reflecting hypothesis
testing and evidence evaluation in clinical reasoning. Both approaches incorporate critical patholog-
ical terminology ("stroma," "nuclear," "infiltrate") essential for accurate diagnosis, demonstrating
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a) VQA-oriented CpathAgent-Instruct subset b) PathMMU-HR²

Figure A6: Visualization of a word cloud derived from questions in VQA-oriented subsets in CPathAgent-instruct
and PathMMU-HR².

that these reasoning strategies center on key diagnostic elements fundamental to clinical pathology
assessment and disease classification.

Word Frequency of Questions in VQA-oriented Subset: We analyze the question terminology
in our VQA-oriented subset, as shown in the left part of Figure A6. The visualization reveals
"diagnosis" as the central focus, surrounded by practical terms like "describe," "integrate," and
"feature." Magnification terms ("40x," "10x") indicate how pathologists navigate between different
viewing scales, while specific organs ("thyroid," "breast," "lung") appear frequently in questions.
Action words like "evaluate" and "observe," along with uncertainty terms like "likely" and "consider,"
demonstrate the methodical reasoning process. This word pattern demonstrates that our constructed
diagnostic questions demand multiscale examination with systematic feature assessment.

A.2 Details of PathMMU-HR²

The construction of PathMMU-HR² is similar to the construction of the VQA-oriented subset in
CPathAgen-Instruct, as shown in Figure A1. However, they differ in that after filtering VQA pairs
that can be solved through text-only shortcuts, we engage three pathologists with over 10 years of
experience for human validation. The evaluation criteria include: clinical relevance of questions,
accuracy of provided answers, necessity of multi-scale integration for answering, and alignment with
standard pathology practice. Questions failing any criterion are deemed invalid. Under pathologists’
evaluation, we identify 1,668 valid questions from the initially annotated 2,200 questions, with the
annotation platform interface shown in Figure A7.

We also visualize the question part of PathMMU-HR² with a word cloud in Figure A6. As shown,
the most prominent terms—such as "diagnose," "integrate," "accurately," and "across"—highlight
that many queries require multi-scale analysis and complex reasoning. The presence of micro-
level descriptors like "nuclear," "cellular," and "morphology," alongside macro-level terms such as
"tumor," "lesion," and "pattern" underscores the necessity of integrating observations across different
magnification levels (indicated by terms like "40x," "10x," and "2x"). This multi-scale integration is
essential for correctly answering questions that demand the model to synthesize information from
subcellular details to tissue architecture, evaluating both cytological features and architectural patterns
simultaneously to arrive at accurate answers.
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Figure A7: Example of the PathMMU-HR2 annotation interface.
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B Additional Experiments and Discussion

B.1 Comparison of Description Generation Performance Among Pathology-specific LMMs

We randomly sample 100 region samples from TCGA and compare them with two advanced
pathology-specific trained LMMs, PathGen-LLaVA [26] and Quilt-LLaVA [47], to generate de-
scriptions for these regions. To assess model performance, we utilize Gemini-2.5-Pro and GPT-4.1
as evaluators, with outputs categorized as wins, losses, or ties when performance is comparable. To
ensure clinical relevance of the evaluation, we also engage a professional pathologist with over 10
years of clinical experience to provide expert assessment.

Results: CPathAgent significantly outperforms both PathGen-LLaVA and Quilt-LLaVA across
all evaluation metrics. As shown in Figure A8, most notably, CPathAgent achieves a perfect 100%
win rate against Quilt-LLaVA across all three evaluators. Against PathGen-LLaVA, CPathAgent
maintains consistently strong performance with over 96% win rates across all evaluators.

The evaluation consistency between human and LMM evaluators is remarkably high. However,
we observe subtle differences in evaluation patterns: compared to the general-purpose LMMs,
the pathologist evaluator awards PathGen-LLaVA slightly more ties and one additional win. We
hypothesize this difference stems from the distinct evaluation priorities between expert pathologists
and LMMs. General-purpose LMMs, may favor CPathAgent’s comprehensive reasoning, while the
pathologist evaluator places equal weight on both reasoning quality and diagnostic accuracy, resulting
in a more reliable assessment that recognizes PathGen-LLaVA’s clinical precision in some cases.

          

                                       

                              

    

                             

                             

                              

  

                             

                      

                              

    

                             

                                                                                               

Figure A8: Comparison of CPathAgent with different pathology-specific LMMs for description/diagnosis
generation on 100 randomly sampled cases, evaluated by Gemini-2.5-Pro, GPT-4.1, and expert pathologists.

B.2 Pathologist evaluation results

We invited a pathology expert to evaluate both diagnostic description generation and VQA tasks across
40 regions, assessing whether the navigation path planning and multi-scale multi-view reasoning
align with clinical logic. The model was run 8 times to calculate pass@k metrics.

Results: Pathologist evaluation confirms that both navigation paths and diagnostic reasoning meet
clinical expectations. As shown in Figure A9, the model demonstrates strong performance with
both tasks. For navigation path evaluation, CPathAgent’s initial satisfaction rates are acceptable but
modest, starting at 70% for general description generation and 77.5% for VQA. However, the pass@k
metric demonstrates promising improvement when increasing model runs, with both tasks ultimately
exceeding 85% satisfaction. For reasoning evaluation, satisfaction rates start higher at 82.5% for
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Figure A9: Success rates (pass@k) across 8 generations, evaluated by pathologists across 40 regions. Results
show the percentage of pathologist satisfaction with navigation paths and reasoning for General Description
Generation (left) and VQA (right) as the number of generations increases.

Table A4: Overall results of models on the PathMMU-Pro. The best-performing model in each subset is in-bold.

Test Overall PubMed SocialPath EduContent
Tiny ALL Tiny ALL Tiny All Tiny All
(430) (4755) (147) (1865) (136) (1081) (147) (1809)

Expert performance 69.4 - 71.2 - 70.1 - 66.9 -

CPath-Omni 62.1 61.8 60.5 60.8 58.8 62.1 66.7 63.0
CPathAgent (Ours) 66.3 65.3 64.6 65.8 65.4 63.6 68.7 66.2

general description generation and 87.5% for VQA, and show continued improvement, reaching 90%
for general description generation and 92.5% for VQA at higher k values.

Across both tasks, the consistent upward trend in pass@k metrics suggests that the model can
reliably generate clinically sound navigation strategies and reasoning when given multiple attempts.
Additionally, VQA-based approaches consistently outperform general description tasks across both
navigation planning and reasoning. We attribute this to VQA’s focused attention on target features
that enables better identification of key elements, whereas general descriptions require additional
judgment about content prioritization.

B.3 Additional Results on PathMMU-Pro

While CPathAgent demonstrates strong performance on PathMMU, achieving results that exceed
the reported expert baselines, we acknowledge that the observed gap between our model and expert
performance can be attributed to two primary factors inherent to the benchmark design. First, the
expert annotations in PathMMU were conducted by pathologists with specialized expertise in one
or two specific domains, whereas the dataset encompasses a broad spectrum of tissue types and
pathological conditions across multiple subspecialties. Consequently, no individual expert possessed
comprehensive knowledge across all domains represented in the evaluation set. Second, as discovered
by the PathMMU, large multimodal models may exploit text-based reasoning shortcuts, leveraging
strong language priors and contextual cues from question formulations that are not readily accessible
to human experts performing traditional diagnostic tasks.

To address the concern regarding text-based shortcuts and provide a more rigorous assessment of
our model’s genuine pathological reasoning capabilities, we conducted additional evaluation on
PathMMU-Pro [63], a refined version of the benchmark specifically designed with more carefully
constructed questions that minimize textual biases.

Results: On PathMMU-Pro, CPathAgent no longer surpasses expert performance but maintains a
substantial lead over the previous SOTA CPath-Omni. As shown in Table A4, expert performance
now leads with an average accuracy of 69.4%, surpassing CPathAgent’s results. This shift substan-
tiates that the more rigorous question design in PathMMU-Pro effectively mitigates the text-based
guessing capabilities that LMMs could previously exploit. Nevertheless, CPathAgent demonstrates
consistent advantages over CPath-Omni, achieving 66.3% versus 62.1% on the Test-Tiny subset
and 65.3% versus 61.8% on the Test-All subset, demonstrating that CPathAgent possesses stronger
multimodal understanding capabilities for pathology.
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Table A5: Results of ablation study on agent components for WSI classification. Balanced accuracy (%) is
reported.

Model TCGA-BRCA TCGA-NSCLC TCGA-RCC TCGA-ESCA TCGA-BLCA TCGA-THCA Avg.
Full CPathAgent 88.5 90.8 94.6 97.1 62.7 63.2 82.8
w/o Gloabal Screening 84.7 88.7 94.6 94.1 60.8 58.9 80.3
w/o Navigation & Reasoning 80.0 83.6 88.7 94.1 52.2 51.3 75.0

Table A6: Results of ablation study on applying Gemini-2.5-Pro as an agent for WSI tasks. Balanced accuracy
(%) is reported

TCGA-BRCA TCGA-NSCLC TCGA-RCC TCGA-ESCA TCGA-BLCA TCGA-THCA Avg.
General Large Multimodal Models

Gemini-2.5-Pro-Preview-03-25 72.4 89.2 69.2 97.1 59.8 44.9 72.1

Agent-based Approach
Gemini-2.5-Pro-Preview-03-25 52.0 73.4 58.8 97.1 64.7 46.3 65.4
CPathAgent (Ours) 88.5 90.8 94.6 97.1 62.7 63.2 82.8

B.4 Ablation Study on Agent Components

To assess the contribution of each agent component, we conduct systematic ablation studies by
isolating individual module impacts. We evaluate two critical components. For global screening,
we replace the learned region selection module with random selection of 70% of WSI regions. For
navigation planning and multi-scale reasoning, we ablate the dynamic navigation and multi-view
analysis by directly generating descriptions from entire regions at once, followed by WSI classification
based on these single-view descriptions.

Results: Both agent components contribute meaningfully to performance, with navigation and
multi-scale reasoning being particularly critical for diagnostic accuracy. As shown in Table A5,
removing strategic global screening leads to a 2.5% performance drop (from 82.8% to 80.3%),
demonstrating that learned region selection effectively identifies diagnostically informative areas
and mimics pathologists’ selective attention during screening. The impact of removing navigation
and multi-scale reasoning is substantially more pronounced, with performance degrading by 7.8%
(from 82.8% to 75.0%). This significant drop reveals two key limitations of direct WSI region
processing: (1) directly processing high-resolution regions (up to 16000×16000 pixels) necessitates
aggressive downsampling to fit model input constraints, causing critical diagnostic details to become
indiscernible; (2) the absence of pathologist-like reasoning that strategically examines multiple
fields of view at varying magnifications fundamentally limits the model’s diagnostic capability.
These results confirm that CPathAgent’s effectiveness stems from the integration of all components,
with navigation planning and multi-scale reasoning being particularly essential for achieving high
diagnostic accuracy on WSI tasks.

B.5 Ablation Study on Applying Gemini-2.5-Pro as an Agent for WSI Tasks

We also apply CPathAgent’s inference prompts to directly prompt Gemini-2.5-Pro, enabling it to
perform agent-based reasoning and diagnosis similar to CPathAgent.

Results: Interestingly, while this approach yields modest improvements on TCGA-BLCA and
TCGA-THCA datasets, the overall performance decreases by 6.7% (from 72.1% to 65.4%), as
shown in the "Agent-based Approach" part of Table A6. This contrasts with the findings in Section 4.2
of the main paper, where applying agent-based approaches to advanced LMMs on large regions VQA
demonstrated performance gains.

We attribute this discrepancy to the fundamental differences between task types. Since our WSI clas-
sification task involves first generating descriptions for all regions and then performing classification
based on these descriptions, unlike VQA tasks that provide clear directional guidance for navigation
planning, general description tasks lack explicit objectives to guide the agent’s exploration strategy.
Consequently, when directly applying the agent approach to Gemini-2.5-Pro, the model struggles
with effective navigation path planning within large regions, as it lacks clear guidance on which
critical areas to examine. Since subsequent reasoning heavily depends on the planned navigation path,
performance suffers significantly, particularly on datasets like TCGA-BRCA and TCGA-NSCLC.
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For example, we observe that on TCGA-NSCLC (Non-Small Cell Lung Cancer) tasks, where
all WSIs belong to Non-Small Cell Lung Cancer and the task is to classify subtypes into lung
adenocarcinoma and lung squamous cell carcinoma, after applying the agent-based approach, Gemini-
2.5-Pro sometimes even misclassifies samples as Small Cell Lung Cancer, demonstrating fundamental
diagnostic errors or hallucinations.

This finding validates our progressive training data generation framework, which leverages compre-
hensive WSI reports to guide region-specific descriptions. These targeted descriptions enable us
to prompt Gemini-2.5-Pro to capture multi-scale morphological features across different viewing
perspectives. By understanding which locations contain specific pathological features, we can further
prompt Gemini-2.5-Pro to generate higher-quality navigation paths with enhanced spatial awareness,
which in turn enables more precise and accurate multi-scale, multi-view reasoning generation. This
creates a hierarchical sequence where each stage builds upon the quality of previous stages, resulting
in cascading improvements throughout the entire data generation pipeline.
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C Experimental Details

C.1 Details for MIL-based WSI classification

C.1.1 Details for Training and Testing Dataset

To ensure a fair comparison, MIL-based methods are evaluated using identical training and testing
datasets such as CPathAgent and other comparative LMMs. All datasets were derived from WSI
samples corresponding to the HistGen [49] WSI reports. We select representative subsets suitable for
whole slide image classification tasks, comprising the following datasets:

TCGA-RCC (Renal Cell Carcinoma, train: 422, test: 238): A three-class classification task including
kidney chromophobe, kidney renal clear cell carcinoma, and kidney renal papillary cell carcinoma.

TCGA-NSCLC (Non-Small Cell Lung Cancer) (train: 642, test: 195): A binary classification task
distinguishing between lung adenocarcinoma and lung squamous cell carcinoma.

TCGA-ESCA (Esophageal Carcinoma, train: 83, test: 31): A binary classification task differentiating
adenomas and adenocarcinomas from squamous cell neoplasms.

TCGA-BRCA (Breast Invasive Carcinoma, train: 637, test: 226): A binary classification task
between invasive ductal carcinoma and invasive lobular carcinoma.

TCGA-THCA (Thyroid Carcinoma, train: 323, test: 119): A three-class classification task en-
compassing papillary adenocarcinoma, papillary carcinoma columnar cell, and papillary carcinoma
follicular variant.

TCGA-BLCA (Bladder Urothelial Carcinoma, train: 227, test: 79): A binary classification task
distinguishing papillary transitional cell carcinoma from transitional cell carcinoma.

Additionally, we extract 10% of WSIs from the complete TCGA dataset that are not included in the
HistGen dataset, as training the MIL approach requires a separate validation set. Models with the
best performance on the validation set are selected for evaluation on the test set.

C.1.2 Details for MIL preprocessing

Our WSI preprocessing pipeline follows the approach established by CPath-Omni [10] to implement a
multi-scale MIL-based methodology. The preprocessing workflow consists of several key steps: First,
we employ CLAM [64] to automatically identify and segment tissue regions by applying appropriate
segmentation threshold. From these identified regions, we extract non-overlapping patches of 2048 ×
2048 pixels at 40× magnification. To ensure tissue quality, patches are only retained if they contain
more than 10% valid tissue area. To capture multi-scale information, each 2048 × 2048 patch
undergoes hierarchical subdivision: we maintain the original 2048 × 2048 patch while simultaneously
extracting four 1024 × 1024 patches and sixteen 512 × 512 patches from the same region. Features
are extracted from all these multi-scale patches using CPath-CLIP [10] and subsequently averaged to
generate a unified representation for each 2048-resolution region.

C.1.3 Details for WSI Task-Specific Fine-Tuning

All models are trained for 20 epochs using a fixed learning rate of 1 × 10−5 without any learning
rate scheduling. We employ the Adam optimizer without weight decay, maintaining a batch size of 1
throughout training. To ensure reliable evaluation, we conduct experiments across 5 different random
seeds and report the averaged results.

Model Architecture. The MIL framework commonly used for WSI classification includes three
learnable components: (1) a fully-connected layer to reduce the dimensionality of features to 256, (2)
an attention network to aggregate and transform the instance features, and (3) a final fully-connected
layer for making predictions. We experiment with ABMIL [4] and DSMIL [5], both of which use
the same fully-connected layers for reducing feature dimensionality and making predictions. For the
attention network, ABMIL uses a gated attention mechanism, while DSMIL introduces a dual-stream
architecture.
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C.2 Details for Patch Level Benchmark

PathMMU [48]: An expert-validated pathology benchmark comprising 33,428 multimodal multiple-
choice questions and 24,067 images from diverse sources including PubMed, pathology atlases, expert
social media posts, and educational content. Constructed using GPT-4V with rigorous validation by
seven pathologists, it covers multiple organ systems and pathology subjects for expert-level evaluation
of LMMs’ pathology understanding and reasoning capabilities.

PathMMU-Pro [63]: Building upon PathMMU, PathMMU-Pro introduces more strict assessment
to address a critical limitation in multimodal evaluation: the potential for models to solve questions
using text-only reasoning without truly leveraging visual information. PathMMU-Pro employs a
systematic two-step refinement process: (1) training specialized text-only "question-guessing" models
that receive only textual inputs to identify and filter out questions answerable without examining
pathology images, and (2) enhancing remaining questions by generating more confusing options that
are textually similar but require careful visual examination to distinguish, thereby preventing models
from guessing answers through superficial text patterns. This enhanced benchmark provides a more
strict assessment of models’ intrinsic visual reasoning capabilities in pathology.

C.3 Hardware and Training Cost of CPathAgent

We employ 8 NVIDIA H800-80G GPUs for CPathAgent training, with computational requirements
of 9 hours for Stage 1 (multimodal alignment), 25 hours for Stage 2 (pathology task training), and 39
hours for Stage 3 (agent capability development).

C.4 Training Hyperparameters

For Stages 1 and 2 of CPathAgent training, we follow the hyperparameter configuration of CPath-
Omni. For Stage 3 training, we employ 8 NVIDIA H800-80G GPUs and train the model for a single
epoch using a per-device batch size of 1 with gradient accumulation of 8 steps. We implement a
cosine learning rate scheduler with a base learning rate of 1e-5 and a warmup ratio of 0.03, while
fine-tuning the vision tower with a reduced learning rate of 2e-6.
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D Limitations

While CPathAgent successfully demonstrates the feasibility of mimicking pathologists’ diagnostic
reasoning pathways, several limitations merit future improvement:

1. Synthetic diagnostic pathways. Currently, the diagnostic viewing paths employed by CPathA-
gent are synthetically generated rather than derived from real pathologist workflows. Although our
synthetic paths are designed based on established diagnostic principles and demonstrate effectiveness
in our experiments, they may not fully capture the nuanced decision-making processes and adaptive
strategies employed by experienced pathologists in clinical practice. Future work should incorpo-
rate authentic diagnostic paths collected from pathologists through eye-tracking studies or explicit
annotation of their reasoning sequences.

2. Limited task scope. CPathAgent currently focuses exclusively on diagnostic classification tasks.
While this represents a critical clinical application, computational pathology encompasses a broader
spectrum of tasks including prognostic prediction and biomarker detection. Extending CPathAgent to
these domains is theoretically feasible and would significantly expand its clinical utility.

3. Training data scale. Our model was trained on 5,254 WSIs, which, while sufficient to demonstrate
proof-of-concept, remains considerably smaller than datasets used by state-of-the-art foundation
models such as PRISM (587,196 WSIs) and TITAN (335,645 WSIs). This disparity in scale may
limit the model’s generalization capabilities and its ability to capture rare morphological patterns.
Scaling up the training data represents a clear path toward improved performance and robustness.
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E Examples and Prompts

E.1 Examples of Region Descriptions Extracted from WSI Report Pairs

As shown in Figure A10, we extract relevant region descriptions from WSI reports by identifying
specific diagnostic findings in targeted areas. This process systematically parses pathological reports
to highlight key diagnostic information related to the given region, addressing the limitation in TCGA
datasets where WSI reports exist but region-specific descriptions are missing.

E.2 Examples of PathMMU-HR² Samples

Figure A11 shows the examples of PathMMU-HR² dataset. These VQA samples require multi-scale,
multi-view reasoning to arrive at accurate diagnoses. As illustrated in the examples, the correct
identification of conditions such as fibromatosis (desmoid tumor) and well-demarcated clear cell
tumors necessitates careful examination of architectural patterns and cellular features across different
magnification levels. The diagnostic process requires the model to analyze tissue structure at lower
magnifications while progressively zooming in to evaluate the cellular morphology and stromal
characteristics at higher magnifications. This multi-scale analytical approach reflects real-world
pathological practice, where definitive diagnoses depend on the integration of macro-architectural
features with microscopic cellular details.

E.3 Examples of Region Selection Process Based on WSI Overview

Figure A12 and FigureA13 demonstrate the generated region selection results. As illustrated, the
model segments the WSI overview into distinct regions and identifies which areas require high-
magnification examination. For example, in Figure A12, the model correctly prioritizes core tumor
areas for detailed analysis while also identifying critical tumor interface/periphery regions and margin
assessment areas to evaluate potential residual tumor presence. In addition, the model appropriately
excludes the benign/background breast tissue areas from high-magnification requirements, as these
regions primarily consist of adipose tissue and fibrous stroma that appear benign and uninvolved at
low magnification, thus optimizing the diagnostic workflow by focusing computational resources on
clinically significant regions.

E.4 Examples of Navigation Paths and Multi-Scale Reasoning Generated by CPathAgent

E.4.1 General Navigation Path Planning and Reasoning

Figures A14 and A15 show how CPathAgent navigates and analyzes pathology images like an expert
pathologist. For example, as illustrated in Figure A14, CPathAgent begins with a comprehensive
overview at low magnification (1.0x), scanning the entire tissue to identify distinct regions and
architectural patterns. In this case, it recognizes adipose tissue on the left and dense cellular areas on
the right, establishing the overall tissue landscape.

Next, CPathAgent focuses on the main area of concern, examining the primary tumor mass at moderate
magnification (2.5x). Here it identifies irregular cell clusters and abnormal tissue architecture that
warrant closer investigation. The agent then increases magnification (4.0x) to evaluate cellular details
crucial for grading, such as nuclear pleomorphism, mitotic activity, and tubule formation patterns.
CPathAgent systematically examines the tumor’s relationship with surrounding tissues, checking the
tumor-stroma interface (3.0x) for invasive patterns and examining infiltration into adjacent adipose
tissue. It also assesses the immune response by evaluating lymphocytic infiltrates near tumor edges
(3.5x) and investigates suspicious ductal structures in other regions (3.0x).

To ensure diagnostic accuracy, CPathAgent performs validation checks by examining additional areas
at various magnifications (2.5x, 4.0x), confirming that findings are consistent across different regions
of the tissue. This systematic, multi-scale approach allows CPathAgent to integrate architectural
observations from low magnification with detailed cellular features from high magnification, ulti-
mately reaching a comprehensive diagnosis of invasive ductal carcinoma with appropriate histological
grading—mirroring the thorough diagnostic process used by expert pathologists in clinical practice.
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E.4.2 VQA-oriented Navigation Path Planning and Reasoning

Figure A16 demonstrates CPathAgent’s question-guided reasoning approach for VQA task. When
presented with a specific question about "morphological patterns describing the relationship between
neoplastic cell populations and stromal elements at their interface," CPathAgent tailors its entire
analysis strategy to address this inquiry.

CPathAgent begins with a systematic overview at low magnification (1.0x), scanning the tissue
to locate regions relevant to the question. It identifies striking heterogeneity across the tissue and
recognizes that the lower right quadrant contains the key neoplastic-stromal interface mentioned in the
question. With the target area identified, CPathAgent zooms in progressively (2.5x, 4.0x) to character-
ize the neoplastic component, confirming the presence of nested clear cells with high-grade nuclei. At
higher magnification (5.0x), it performs detailed cytological assessment, noting the striking nuclear
features that support high-grade classification. CPathAgent then specifically examines the critical
interface zone at multiple magnifications (3.5x, 4.0x), systematically documenting the relationship
between neoplastic cells and surrounding stromal elements. It identifies key morphological features
including the transitional pattern between clear cell neoplasm and eosinophilic tissue, along with
dense lymphocytic infiltrate at the junction. Finally, CPathAgent moves to eosinophilic areas (3.0x)
to contrast these regions with the neoplastic component, ensuring a comprehensive understanding of
the interface characteristics.

This question-driven navigation allows CPathAgent to methodically evaluate multiple-choice options,
ultimately selecting the answer that best describes the observed "nested clear cells focally transitioning
to solid eosinophilic cells with high-grade nuclei and dense lymphocytes." This demonstrates how
CPathAgent’s reasoning process is specifically optimized to answer targeted pathological questions
through systematic, multi-scale analysis.
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Figure A10: Examples of region description extraction from WSI reports.
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Figure A11: Examples of VQAs from the PathMMU-HR² dataset.
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Figure A12: An example of region selection based on a WSI overview.
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Figure A13: An example of region selection based on a WSI overview.
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Figure A14: An example of CPathAgent’s navigation path planning and multi-scale, multi-view reasoning
process.
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Figure A15: An example of CPathAgent’s navigation path planning and multi-scale, multi-view reasoning
process.

43



Figure A16: An example of CPathAgent’s VQA-oriented navigation path planning and multi-scale, multi-view
reasoning process.
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E.5 Prompts

This section presents the prompts used in our dataset construction and experiments.

Gemini-2.5-Pro Prompts for Dataset Construction: We design a series of prompts to guide
Gemini-2.5-Pro in constructing our pathologist-like planning and reasoning dataset generation
pipeline. Figure A17 presents the prompt used to extract region-relevant descriptions from WSI
reports, while Figure A18 shows the prompt for region selection using WSI overview images and
paired reports. For multi-scale image description generation, Figure A19 displays the prompt that
generates detailed descriptions for image patches at different magnifications. Figure A20 contains
the prompt for creating navigation plans using coordinate-annotated region overviews and multi-
scale descriptions. Finally, Figure A21 shows the prompt that generates pathologist-like diagnostic
reasoning based on extracted patches from navigation paths and paired region descriptions.

For VQA dataset construction, we use several specialized prompts: Figure A22 shows the prompt
that instructs the model to generate VQA samples, Figure A23 presents the prompt for predicting
question answers from text-only inputs (applied to both Gemini-2.5-Pro and DeepSeek-V3), Figure
A24 displays the prompt that guides the model to create question-guided navigation plans, and Figure
A25 contains the prompt for generating reasoning-based answers.

CPathAgent Training and Inference Prompts: The prompts for CPathAgent follow a similar
design, while removing the additional information utilized by Gemini-2.5-Pro (such as pathology
reports), focusing on vision-only pathological analysis that replicates clinical diagnostic processes.
Figures A26, A27, and A28 present the core prompts used for CPathAgent’s training and inference.
These prompts guide CPathAgent to perform navigation planning and reasoning using only visual
input. The VQA-specific prompts shown in Figures A29 and A30 display the prompts that used for
CPathAgent’s question-guided navigation and reasoning.
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Prompt: This is the report for {Tissue Type} whole slide image. What you're seeing now is one specific region from this 

whole slide image. Please determine if there are any descriptions in the report that match this region.

1. First, carefully examine the visual features present in this specific region of the whole slide image.
2. Next, go through each description in the report one by one.
3. For each description, assess whether it could match the visual features you observe in this region.
4. Consider both positive findings (features that are present) and negative findings (features that are explicitly absent).
5. If a description seems to match, evaluate how complete the match is - does it fully match or only partially?
6. For partial matches, consider whether the description might modification.
7. Identify the most detailed and granular matching descriptions from the report.
8. Evaluate whether this specific region is representative of the overall whole slide image diagnosis and, if so, modify or 
attach the final diagnosis to better represent the features observed in this region.
9. If no descriptions match at all, prepare to output 'None'.

Please output your final matched description (start with **matched description:**).

Report: {WSI Report}

WSI Report
Region Overview 

Image

Figure A17: Prompt for Gemini-2.5-Pro to extract description related to a given region from the corresponding
WSI paired pathology report.
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Prompt: This is a thumbnail view of a pathological whole slide image from {Tissue Type}.

As an expert pathologist, I need you to analyze the given pathology image which has been divided into multiple patches 
with pre-drawn IDs. 

I will also provide you with the physician's pathology report for this whole slide image. While you may reference it, please 
conduct your analysis without mentioning you have the report in your reasoning and response.   

Original report:  {WSI Repot}

Please:
1. Design a systematic reading path by grouping the patch IDs based on their visual patterns (should include all patches), 
each patch ID should only belong to one group
2. Order the groups according to standard pathological diagnostic workflow

Note: Be aware that whole slide images may contain:
- Multiple discrete tissue fragments
- Serial sections from the same tissue block
- Different tissue types/organs on the same slide
These variations should inform your grouping strategy and reading path design.

Output the analysis in the following JSON format:
```json
{
    "groups": [
        {
            "name": "[group name]", ## brief description of this group
            "description": "[description of this region]",
            "id_list": [patch IDs in recommended viewing order],
            "require_high_magnification": [true/false],  // = true if the area require detailed high-power examination to confirm 
diagnosis or unsure area
            "severity_reasoning": "[why this severity level was assigned]",
            "diagnostic_priority": [1-5],  // Lower number indicates higher examination priority (1 is highest)
            "observation_points": [
                "key feature 1 need to examine",
                "key feature 2 need to examine",
                ...
            ]
        },
        ...
    ]
}
```

WSI Overview Image WSI Report

Figure A18: Prompt for Gemini-2.5-Pro to generate region selection results given a WSI overview and its paired
pathology report.
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Prompt:  I will provide you with 21 images that were cut from a single large pathology image at three different scales:
- 1 full-size image (the complete pathology image)
- 4 half-size images (dividing each edge into halves, creating a 2x2 grid)
- 16 quarter-size images (dividing each edge into quarters, creating a 4x4 grid)

Image Info: {IMG_INFO (scale, position, bbox)}  

I also provide a reference description for the entire region (which may not be completely accurate or detailed).

Please provide descriptions for each image at all three scales as a professional pathologist would, covering:

1. For the full-size image (1/1): Provide a comprehensive overview of the entire pathology sample, noting major features, 
patterns, and potential diagnoses.

2. For the half-size images (1/2): Describe key regions with intermediate detail, focusing on distinct areas and their 
pathological significance.

3. For the quarter-size images (1/4): Provide detailed microscopic descriptions focusing on cellular features, architectural 
patterns, and diagnostic indicators visible in each specific portion.

Since all images come from the same large region but at different scales, ensure consistency between your descriptions 
while noting the unique features or variations in each image. Please do not reference other images or their IDs in your 
descriptions.

Output your description for each image in JSON format like this:
```json
{
  "images": [
    {
      "patch_id": "",
      "scale": "",
      "position": "",
      "description": "Provide detailed description for this image, do not mention magnification"
    },
    ...and so on for all 21 images
  ]
}
```
Reference description: {Region Description}

1X

Num:1 Num:4

2X

Num:16

4X4X

Multi-Scale Image 
Patches

poorly differentiated invasive 
ductal carcinoma 

characterized by areas of 
necrosis, and marked nuclear 

pleomorphism with bizarre 
nuclei. The tumor shows….

Region Description

Figure A19: Prompt for Gemini-2.5-Pro to generate descriptions for 1 image at 1X scale, 4 images at 2X scale,
and 16 images at 4X scale, given these images and their paired region descriptions.
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Prompt: Please carefully examine this pathology image and simulate a pathologist's viewing path. For areas showing 
potential pathological changes that warrant careful observation, please analyze using these guidelines:

You can zoom in and out to observe the image. In the default state (1.0x), you see the complete image at 1/5 of its original 
resolution.
For any zoom level Z:  - Field of view: 1/Z² of the total image area (1/Z of each side length)      - Downscale ratio: 5/Z
Examples:
- 2.0x: Shows 1/4 area (downscaled 2.5x)                - 2.5x: Shows 1/6.25 area (downscaled 2x)
- 3.0x: Shows 1/9 area (downscaled 1.67x)              - 3.5x: Shows 1/12.25 area (downscaled 1.43x)
- 4.5x: Shows 1/20.25 area (downscaled 1.11x)      - 5.0x: Shows 1/25 area (downscaled 1x)
You can use any zoom level up to 5.0x, including decimal values (such as 2.3x or 4.5x). Image coordinates are represented in 
relative values ranging from 0 to 1.

**Reference Image Captions**
- I will provide reference images captions at different magnifications:
  - 1.0x (full image)    - 2.0x (4 sections)     - 4.0x (16 sections)
  - These are for reference only - your viewing path should:
  - Not exactly match these reference images' coordinate
  - Consider other magnification levels
  - Create regions that may span across my provided regions

Your viewing path steps should:
- Begin with low-power scanning to identify key histopathological patterns and tissue architecture
- Check and avoid empty/background/unimportant areas that lack diagnostic value
- Focus on diagnostic hotspots (areas showing pathological changes, abnormal cell populations, or architectural distortion)
- Pay special attention to transition zones between normal and abnormal tissue
- Selectively analyze areas with representative features using a diagnostic hierarchy (primary lesions before secondary 
changes)
- Apply systematic differential diagnostic reasoning when examining cellular and tissue features
- Ensure minimal overlap between sampled patches to reduce redundancy, except when:
  * Examining the same region at different magnifications is clinically necessary
  * Comparing similar features across multiple sites is relevant for diagnosis
- Demonstrate logical continuity between each step that reflects pathological reasoning
- Movements between steps should follow a systematic pattern
- Prioritize fields that demonstrate key diagnostic criteria rather than simply sliding the window
- Consider the blue coordinate grid for position reference
- Only Zoom in/Zoom out when necessary

Please provide the viewing path as a JSON list:
```json
[
  {
    "step": [step number],
    "magnification": [zoom level from 2.0x-5.0x],
    "region_coordinate": [x1, y1, x2, y2], #  Coordinates represent [top_left_x, top_left_y, bottom_right_x, bottom_right_y]      
"reasoning": [reasoning for moving to this position],
    "need_to_see": [description of what should be observed at this position],
  },
  ...
]
```

Reference image captions: {Multi-Scale Image Descriptions}'''

Region Overview 
Image with 
Coordinates

poorly differentiated invasive 
ductal carcinoma 

characterized by areas of 
necrosis, and marked nuclear 
pleomorphism with bizarre 
nuclei. The tumor shows….

Multi-Scale 
Image 

Descriptions

Figure A20: Prompt for Gemini-2.5-Pro to generate navigation path planning given the region overview with
coordinates and 21 multi-scale image descriptions generated in the previous step.
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Prompt: This represents a pathologist's logical viewing path for examining a large pathological region, along with 
corresponding field-of-view images. For each step in this systematic examination, please analyze the associated images based 
on the specified observations needed. The viewing parameters are defined as:

"magnification": Zoom level from 1-6x, where 1x shows the entire image
"region_coordinate": Coordinates of the viewing position
"need_to_see": Specific features or structures to be observed at this position
For each area, pay special attention to the structures and features according to its "need_to_see" description.

I will also provide a reference description for this region (which may not be entirely accurate and detailed). You should only 
use this description for reference but pretend you have no prior knowledge of it during your analysis and do not include step 

index. Reference caption:  {Region Description}
Then describe this image in detail, including reasoning, thinking as you observe, like a doctor. You should use first person 
perspective and follow this framework for analyzing pathological images:

1. Initial Positioning:
  - Establish normal histological standards as reference                 - Describe key features in overall field of view

2. Systematic Observation Process:
  Use a "four-layer progressive" observation mode:
  - Basic layer: tissue structure and basic construction
  - Cellular layer: cellular morphological features (size, shape, arrangement)
  - Tissue layer: stromal reaction, inflammatory manifestation, vascular changes
  - Integration layer: special pathological changes (such as necrosis, fibrosis, etc.)

3. Field of View Switching Strategy:
A. Systematic scanning:
  - Start with low magnification (overall view)          - Gradually increase magnification    - High-power observation in key areas

B. Dynamic movement description:
  - Clearly state current observation position (e.g., "moving to upper left corner")
  - Describe movement path (e.g., "scanning from left to right")
  - Record reasons for position changes (e.g., "noticed xxxx in this area, let me zoom in")

4. Multi-scale Observation  (1.0x-6.0x, Low magnification-High magnification):
- Available magnifications  1.0x to 6.0x                     - Normalized coordinates (0-1) for each view as (x1, y1, x2, y2)
- Your viewing window is 1/6 of original resolution where:
* 1.0x shows full image   * 2.0x shows 1/2 image length      * 3.0x shows 1/3 image length

5. Reasoning Process Requirements:
A. Use "thought flow" expression:
  - Think while observing                                    - Record thinking process in real-time (give the box coordinate)
  - Allow returning for re-observation              - Record thinking turning points
B. Diagnostic reasoning strategy:
  - Establish initial impression                             - Propose diagnostic hypotheses
  - Seek supporting evidence                              - Consider contrary evidence
  - Modify diagnostic hypotheses                       - Deepen analysis and argumentation
  - Think about whether the diagnosis of subclasses can be further determined

6. Differential Diagnosis Method:
Use systematic approach to consider diagnostic possibilities (include but not limited to):
  - Basic lesions (e.g., inflammation, degeneration)            - Neoplastic lesions (benign vs malignant)
  - Special lesions (e.g., cystic changes)                                 - Possibility of rare conditions

7. Evidence Usage Method:
  - Positive supporting evidence                          - Negative exclusion evidence, provide reasons for non-conformity

8. Diagnostic Requirements:
A. Clear statement:
  - Main pathological findings            - Secondary supporting features           - Special/atypical presentations

9. Special Considerations:
  - Reflect real-time observation and thinking process       - Allow for thought repetition and correction
  - Maintain professional diagnostic prudence

Please use a more natural approach when describing pathology observations - act as a pathology specialist who's naturally 
examining and thinking through what they see, rather than teaching students. The description should flow as a cohesive 
narrative **in one paragraph** rather than a bulleted list of observations. 
Finally, please output an additional breif summary of this region start with **Pathological Report:** in one paragraph.  

……

Overview Zoom in Move Focus
poorly differentiated 

invasive ductal 
carcinoma characterized 
by areas of necrosis, and 

marked nuclear 
pleomorphism with 
bizarre nuclei. The 

tumor shows….

Region 
Description

Cropped Images from Navigation Path

Figure A21: Prompt for Gemini-2.5-Pro to generate multi-scale multi-image reasoning for description and
diagnosis based on the planned navigation path, given the cropped images along the navigation path and the
overall region description extracted from the previous step.
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Prompt: Please carefully examine this large-region pathology image. I will provide descriptions from different magnification 
levels and viewpoints. Your task is to craft a challenging, expert-level multiple-choice question that tests advanced visual 
reasoning skills across multiple magnifications and requires constant zooming in and out across different fields of view to 
answer correctly. The question should be suitable for board examinations or specialist assessments.

For this challenge, the magnification notation refers to the level of zoom relative to the base image:
1x: Original base image             2x: 2 times magnified from base image 
3x: 3 times magnified from base image    4x: 4 times magnified from base image         5x: 5 times magnified from base image 

Follow these guidelines:
1. Construct a question stem that:
   - Presents a neutral framing without revealing diagnostic clues
   - Requires the test-taker to analyze the image independently
   - Uses language that forces visual examination rather than recall of facts
   - Demands integration of findings across multiple magnification levels and viewpoints
   - Requires step-by-step visual reasoning to solve correctly.
2. Create multiple answer choices (3-6 options) where:
   - The correct answer accurately describes what can be observed across multiple magnifications
   - Each distractor option must be visually plausible based on partial examination of the image
   - All options must be indistinguishable in correctness WITHOUT seeing the image
   - Place the correct answer in any position (A-E)
   - Ensure consistent terminology and level of detail across all options
   - Include plausible misinterpretations that would occur if only examining a single magnification level
3. Document your analytical process in <analysis></analysis> tags, including:
   - Critical visual features across multiple magnifications that determine the correct answer
   - Potential visual misinterpretations that make distractors compelling
   - Why cross-scale integrative reasoning is necessary to arrive at the correct answer
   - How isolated examination at any single magnification would lead to incorrect conclusions
4. I will provide reference image descriptions at different magnification levels:
   - Coordinates are given as four values (x1,y1,x2,y2) representing the top-left and bottom-right points, ranging from 0-1
   - These include:
     - 1.0x (full image overview)
     - 2.0x (4 quadrant sections)
     - 4.0x (16 detailed sections)
   - Your question should:
     - Not be limited to these exact reference coordinates
     - Integrate findings across multiple magnification levels
     - Potentially require examination of regions that span across my provided sections
     - Force the test-taker to zoom in and out repeatedly to solve the problem
5. Coordinate System:
   - Use a consistent coordinate system for all regions (x1,y1,x2,y2 with values from 0-1)
   - Include reference points at multiple magnifications (minimum of 4 different zoom levels)
   - Ensure critical diagnostic features span across multiple reference regions
7. Present the final question in this JSON format :
```json
{
  "question_stem": "Concise questions", ## within 20 words
   "options": [
    {"id": "A", "text": ""},
    ...
  ],
  "correct_answer": "ID of correct option",
  "reasoning_pathway": "Step-by-step visual reasoning process required across magnifications",
  "visual_integration_challenges": "Explanation of why cross-scale analysis is necessary"
}
```

Reference image captions:  {Multi-Scale Image Descriptions}

poorly differentiated invasive 
ductal carcinoma 

characterized by areas of 
necrosis, and marked nuclear 
pleomorphism with bizarre 
nuclei. The tumor shows….

Multi-Scale 
Image 

Descriptions

Region Overview 
Image

Figure A22: Prompt for Gemini-2.5-Pro to generate VQA samples given the region overview and the 21 multi-
scale image descriptions generated from the previous step.
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This question was originally meant to be paired with an image. No image is provided, so please answer based on 
the text alone.

{Question}

Think step by step.
You must **ensure** that your answer ends with "The answer is X", where X is your final answer index.

Figure A23: Prompt for Gemini-2.5-Pro to conduct educated guesses given only the text portion of the generated
VQA samples.

52



Prompt: Please analyze this pathology image by creating a step-by-step viewing path that simulates how a professional 
pathologist would examine the specimen to answer the given question. Focus specifically on areas relevant to the question 
and potential pathological changes.

## Image Viewing Mechanics
- The default view (1.0x) shows the complete image at 1/5 of its original resolution
- You can zoom to any level up to 5.0x (including decimal values like 2.3x)
- Image coordinates use relative values from 0 to 1
- At any zoom level Z:
  * Field of view: 1/Z² of total image area (1/Z of each side length)
  * Downscale ratio: 5/Z

## Zoom Level Examples
- 1.0x: Full image (downscaled 5x)                    - 2.0x: Shows 1/4 area (downscaled 2.5x)
- 3.0x: Shows 1/9 area (downscaled 1.67x)      - 4.0x: Shows 1/16 area (downscaled 1.25x)
- 5.0x: Shows 1/25 area (original resolution)

**Reference Image Captions**
    - I will provide reference images captions at different magnifications:
      - 1.0x (full image)   - 2.0x (4 sections)   - 4.0x (16 sections)
    - These are for reference only - your viewing path should:
      - Not exactly match these reference images' coordinate
      - Consider other magnification levels
      - Create regions that may span across my provided regions
      
## Viewing Path Guidelines
Your viewing path should follow these principles:
1. Begin with low-power scanning to assess tissue architecture and identify key patterns
2. Focus exclusively on areas relevant to the given question
3. Avoid empty or background areas lacking diagnostic value
4. Prioritize regions showing key diagnostic criteria for the specific question
5. Use appropriate magnification for each observation (only changing zoom when necessary)
6. Follow a logical diagnostic hierarchy (primary lesions before secondary changes)
7. Ensure minimal redundant overlap between examined areas
8. Demonstrate systematic movement and reasoning between viewing steps

provide the viewing path as a JSON list, where each step includes:
```json
[
  {
    "step": [step number],
    "magnification": [zoom level from 2.0x-5.0x],
    "region_coordinate": [x1, y1, x2, y2], # # Coordinates represent [top_left_x, top_left_y, bottom_right_x, bottom_right_y]  
    "reasoning": [reasoning for moving to this position],
    "need_to_see": [description of what should be observed at this position],
  },
  ...
]
```

Reference image captions: {Multi-Scale Image Descriptions}

Question: {Question}

Region Overview 
Image with 
Coordinates

Question: Considering 
architectural patterns, 
cellular atypia, and 
stromal interactions 
across scales, what is the 
diagnosis?
A. Well-differentiated 
HCC, prominent fibrosis

Question

poorly differentiated 
invasive ductal 

carcinoma 
characterized by 

areas of necrosis, and 
marked nuclear ….

Multi-Scale 
Image 

Descriptions

Figure A24: Prompt for Gemini-2.5-Pro to generate navigation path planning given the region overview with
coordinates, 21 multi-scale image descriptions and the question generated in the previous step.
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Prompt: You are a pathology specialist , you are examining images from a pathologist's viewing path through a pathological 
region. Based on these images, you need to provide detailed reasoning to answer a specific question or select the most 
appropriate option from multiple choices.
        

For each image in the viewing path, you will receive:
- Magnification: Zoom level from 1.0x to 5.0x (where 1.0x shows the entire image)
- Region coordinates: Position you're viewing within the image (normalized from 0-1)
- Need to see: Specific features or structures to observe at this position

I will provide reference descriptions for overall region caption. Use these descriptions only as reference - pretend you don't 
have prior knowledge of them when conducting your analysis. 

Region captions: {Region description}

When analyzing the images, follow this structured approach:
1. Observational Evidence
   - Document key findings visible in each image relevant to the question
   - Be specific about which image/region shows each finding
   - Describe cellular morphology, tissue architecture, and special features

2. Evidence Integration
   - Connect and compare findings across different images in the viewing path

3. Option Analysis (for multiple-choice questions)
   - Evaluate how the observed evidence supports or contradicts each option
   - Explain why incorrect options don't align with the visual evidence
   - Justify why the best option is supported by your findings

4. Question-Specific Reasoning
   - Apply pathological principles directly to the question
   - Explain how specific visual clues lead to your conclusion
   - Address any ambiguities or limitations in the visible evidence

5. Multi-scale Observation  (1.0x-5.0x, Low magnification-High magnification):
- Consider how features appear across different magnifications (1.0x-5.0x)
- Note how your viewing window represents portions of the original image at different zoom levels
- Your viewing window is 1/5 of original resolution where:
* 1.0x shows full image
* 2.0x shows 1/2 image length
* 3.0x shows 1/3 image length

6. Reasoning Process Requirements:
 Use "thought flow" expression:
  - Think while observing
  - Record thinking process in real-time (give the box coordinate)
  - Allow returning for re-observation
  - Record thinking turning points

Present your analysis as a natural, flowing narrative from a first-person perspective. Think and reason as you observe, like an 
experienced pathologist examining the images in real-time. Record your thought process, including any moments when you 
need to revisit certain images or when your thinking changes based on new observations. The description should flow as a 
cohesive narrative **several paragraphs** rather than a bulleted list of observations. 

Conclude with a brief one-sentence summary of your answer, followed by "Therefore, the answer is (X).

Question: {Question}

……

Overview Zoom in Move Focus

poorly differentiated 
invasive ductal 
carcinoma……..

Region 
Description

Cropped Images from Navigation Path
Question: Considering 
architectural patterns, 
cellular atypia, and ………

Question

Figure A25: Prompt for Gemini-2.5-Pro to generate VQA-oriented reasoning based on the planned navigation
path, given the cropped images along the navigation path, the overall region description extracted from the
previous step, and the target question.
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Prompt: This is a thumbnail view of a pathological whole slide image from {Tissue Type}.

As an expert pathologist, I need you to analyze the given pathology image which has been divided into multiple patches 
with pre-drawn IDs.'''

Please:
1. Design a systematic reading path by grouping the patch IDs based on their visual patterns (should include all patches), 
each patch ID should only belong to one group
2. Order the groups according to standard pathological diagnostic workflow

Note: Be aware that whole slide images may contain:
- Multiple discrete tissue fragments
- Serial sections from the same tissue block
- Different tissue types/organs on the same slide
These variations should inform your grouping strategy and reading path design.

Output the analysis in the following JSON format:
```json
{
   "groups": [
       {
           "name": "[group name]", ## brief description of this group
           "description": "[description of this region]",
           "id_list": [patch IDs in recommended viewing order],
           "require_high_magnification": [true/false],  // = true if the area require detailed high-power examination to confirm 
diagnosis or unsure area
           "severity_reasoning": "[why this severity level was assigned]",
           "diagnostic_priority": [1-5],  // Lower number indicates higher examination priority (1 is highest)
           "observation_points": [
               "key feature 1 need to examine",
               "key feature 2 need to examine",
               ...
           ]
       },
       ...
   ]
}
```'''

WSI Overview Image

Figure A26: Prompt for CPathAgent to generate region selection results given a WSI overview.
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Prompt: Please carefully examine this pathology image and simulate a pathologist's viewing path.
You can zoom in and out to observe the image. In the default state (1.0x), you see the complete image at 1/5 of its original 
resolution.
For any zoom level Z:
- Field of view: 1/Z² of the total image area (1/Z of each side length)
- Downscale ratio: 5/Z

Your viewing path steps should:
- Check and Avoid empty/background/unimportant area
- Pay special attention to transition zones
- Selectively analysis areas with representative features (avoid redundant areas)
- Ensure minimal overlap between sampled patches (except when examining the same region at different magnifications) to 
reduce redundancy
- Demonstrate logical continuity between each step - movements between steps, including zooming in/out, should follow a 
systematic and logical pattern
- Consider the blue coordinate grid for position reference (you can specify positions between grid points)

Please provide the viewing path as a JSON list where each step includes:
```json
[
  {
    "step": [step number],
    "magnification": [zoom level from 2.0x-5.0x],
    "region_coordinate": [x1, y1, x2, y2], # # Coordinates represent [top_left_x, top_left_y, bottom_right_x, bottom_right_y] 
## Avoid empty area
    "reasoning": [reasoning for moving to this position],
    "need_to_see": [description of what should be observed at this position],
  },
  ...
]
```

Region Overview 
Image with 
Coordinates

Figure A27: Prompt for CPathAgent to generate navigation path planning given the region overview with
coordinates.
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Prompt: This represents a pathologist's logical viewing path for examining a large pathological region, along with 
corresponding field-of-view images. For each step in this systematic examination, please analyze the associated images based 
on the specified observations needed. The viewing parameters are defined as:

"magnification": Zoom level from 1-5x, where 1x shows the entire image
"region_coordinate": Coordinates of the viewing position
"need_to_see": Specific features or structures to be observed at this position

For each area, pay special attention to the structures and features according to its "need_to_see" description.

Then describe this image in detail, including reasoning, thinking as you observe, like a doctor. You should use first person 
perspective and follow this framework for analyzing pathological images:

1. Multi-scale Observation  (1.0x-6.0x, Low magnification-High magnification):
- Available magnifications  1.0x to 6.0x
- Normalized coordinates (0-1) for each view as (x1, y1, x2, y2)
- Your viewing window is 1/6 of original resolution where:
* 1.0x shows full image
* 2.0x shows 1/2 image length
* 3.0x shows 1/3 image length

2. Reasoning Process Requirements:
A. Use "thought flow" expression:
  - Think while observing
  - Record thinking process in real-time (give the box coordinate)
  - Allow returning for re-observation
  - Record thinking turning points

B. Diagnostic reasoning strategy:
  - Establish initial impression
  - Propose diagnostic hypotheses
  - Seek supporting evidence
  - Consider contrary evidence
  - Modify diagnostic hypotheses
  - Deepen analysis and argumentation
  - Think about whether the diagnosis of subclasses can be further determined

3. Evidence Usage Method:
  - Positive supporting evidence
  - Negative exclusion evidence, provide reasons for non-conformity

4. Special Considerations:
  - Reflect real-time observation and thinking process
  - Allow for thought repetition and correction
  - Maintain professional diagnostic prudence

Finally, please output an additional breif summary of this region start with **Pathological Report:** in one paragraph.

……

Overview Zoom in Move Focus

Cropped Images from Navigation Path

Figure A28: Prompt for CPathAgent to generate multi-scale multi-image reasoning for description and diagnosis
based on the planned navigation path, given the cropped images along the navigation path.
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Prompt: Please analyze this pathology image by creating a step-by-step viewing path that simulates how a professional 
pathologist would examine the specimen to answer the given question. Focus specifically on areas relevant to the question 
and potential pathological changes.

## Image Viewing Mechanics
- The default view (1.0x) shows the complete image at 1/5 of its original resolution
- You can zoom to any level up to 5.0x (including decimal values like 2.3x)
- Image coordinates use relative values from 0 to 1
- At any zoom level Z:
  * Field of view: 1/Z² of total image area (1/Z of each side length)
  * Downscale ratio: 5/Z

## Zoom Level Examples
- 1.0x: Full image (downscaled 5x)                    - 2.0x: Shows 1/4 area (downscaled 2.5x)
- 3.0x: Shows 1/9 area (downscaled 1.67x)      - 4.0x: Shows 1/16 area (downscaled 1.25x)
- 5.0x: Shows 1/25 area (original resolution)

## Viewing Path Guidelines
Your viewing path should follow these principles:
1. Begin with low-power scanning to assess tissue architecture and identify key patterns
2. Focus exclusively on areas relevant to the given question
3. Avoid empty or background areas lacking diagnostic value
4. Prioritize regions showing key diagnostic criteria for the specific question
5. Use appropriate magnification for each observation (only changing zoom when necessary)
6. Follow a logical diagnostic hierarchy (primary lesions before secondary changes)
7. Ensure minimal redundant overlap between examined areas
8. Demonstrate systematic movement and reasoning between viewing steps

Please provide the viewing path as a JSON list:

```json
[
  {
    "step": [step number],
    "magnification": [zoom level from 2.0x-5.0x],
    "region_coordinate": [x1, y1, x2, y2], # # Coordinates represent [top_left_x, top_left_y, bottom_right_x, bottom_right_y] 
## Avoid empty area
    "reasoning": [reasoning for moving to this position],
    "need_to_see": [description of what should be observed at this position],
  },
  ...
]
```

Question: {Question}

Region Overview 
Image with 
Coordinates

Question: Considering 
architectural patterns, 
cellular atypia, and 
stromal interactions 
across scales, what is the 
diagnosis?
A. Well-differentiated 
HCC, prominent fibrosis

Question

Figure A29: Prompt for CPathAgent to generate VQA-oriented navigation path planning given the region
overview with coordinates and the question.
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Prompt: You are a pathology specialist , you are examining images from a pathologist's viewing path through a pathological 
region. Based on these images, you need to provide detailed reasoning to answer a specific question or select the most 
appropriate option from multiple choices.

For each image in the viewing path, you will receive:
- Magnification: Zoom level from 1.0x to 5.0x (where 1.0x shows the entire image)
- Region coordinates: Position you're viewing within the image (normalized from 0-1)
- Need to see: Specific features or structures to observe at this position

When analyzing the images, follow this structured approach:
1. Observational Evidence
   - Document key findings visible in each image relevant to the question
   - Be specific about which image/region shows each finding
   - Describe cellular morphology, tissue architecture, and special features

2. Evidence Integration
   - Connect and compare findings across different images in the viewing path

3. Option Analysis (for multiple-choice questions)
   - Evaluate how the observed evidence supports or contradicts each option
   - Explain why incorrect options don't align with the visual evidence
   - Justify why the best option is supported by your findings

4. Question-Specific Reasoning
   - Apply pathological principles directly to the question
   - Explain how specific visual clues lead to your conclusion
   - Address any ambiguities or limitations in the visible evidence

5. Multi-scale Observation  (1.0x-5.0x, Low magnification-High magnification):
- Consider how features appear across different magnifications (1.0x-5.0x)
- Note how your viewing window represents portions of the original image at different zoom levels
- Your viewing window is 1/5 of original resolution where:
* 1.0x shows full image
* 2.0x shows 1/2 image length
* 3.0x shows 1/3 image length

6. Reasoning Process Requirements:
 Use "thought flow" expression:
  - Think while observing
  - Record thinking process in real-time (give the box coordinate)
  - Allow returning for re-observation
  - Record thinking turning points

Present your analysis as a natural, flowing narrative from a first-person perspective. Think and reason as you observe, like an 
experienced pathologist examining the images in real-time. Record your thought process, including any moments when you 
need to revisit certain images or when your thinking changes based on new observations. The description should flow as a 
cohesive narrative **several paragraphs** rather than a bulleted list of observations.

Conclude with a brief one-sentence summary of your answer, followed by "Therefore, the answer is (X).

Question: {Question}

……

Overview Zoom in Move Focus

Cropped Images from Navigation Path

Question: Considering 
architectural patterns, 
cellular atypia, 
and ………

Question

Figure A30: Prompt for CPathAgent to generate VQA-oriented reasoning based on the planned navigation path,
given the cropped images along the navigation path and the target question.

59


	Introduction
	Related Work
	Pathology Foundation Models
	Agent-based Models
	Pathology Benchmarks and Datasets

	Methods
	Reasoning Workflow of CPathAgent
	CPathAgent-Instruct Dataset Construction
	PathMMU-HR² Dataset Construction
	CPathAgent Model Architecture and Training

	Experiments
	Patch Understanding Evaluation
	Huge Region Understanding Evaluation
	WSI Classification
	Out of Distribution Evaluation

	Conclusion
	Acknowledgements
	
	 
	Additional Details of Proposed Dataset
	Details of CPathAgent-Instruct
	Details of PathMMU-HR²

	Additional Experiments and Discussion
	Comparison of Description Generation Performance Among Pathology-specific LMMs
	Pathologist evaluation results
	Additional Results on PathMMU-Pro
	Ablation Study on Agent Components
	Ablation Study on Applying Gemini-2.5-Pro as an Agent for WSI Tasks

	Experimental Details
	Details for MIL-based WSI classification
	Details for Training and Testing Dataset
	Details for MIL preprocessing
	Details for WSI Task-Specific Fine-Tuning

	Details for Patch Level Benchmark
	Hardware and Training Cost of CPathAgent
	Training Hyperparameters

	Limitations
	Examples and Prompts
	Examples of Region Descriptions Extracted from WSI Report Pairs
	Examples of PathMMU-HR² Samples
	Examples of Region Selection Process Based on WSI Overview
	Examples of Navigation Paths and Multi-Scale Reasoning Generated by CPathAgent
	General Navigation Path Planning and Reasoning
	VQA-oriented Navigation Path Planning and Reasoning

	Prompts



