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Abstract
Characterizing neural networks in terms of better-
understood formal systems has the potential to
yield new insights into the power and limitations
of these networks. Doing so for transformers re-
mains an active area of research. Bhattamishra
and others have shown that transformer encoders
are at least as expressive as a certain kind of
counter machine, while Merrill and Sabharwal
have shown that fixed-precision transformer en-
coders recognize only languages in uniform TC0.
We connect and strengthen these results by iden-
tifying a variant of first-order logic with count-
ing quantifiers that is simultaneously an upper
bound for fixed-precision transformer encoders
and a lower bound for transformer encoders. This
brings us much closer than before to an exact
characterization of the languages that transformer
encoders recognize.

1. Introduction
Characterizing neural networks in terms of better-
understood formal systems has the potential to yield new
insights into the power and limitations of these networks.
Recurrent neural networks (RNNs) were linked to finite
automata from the start (McCulloch & Pitts, 1943; Kleene,
1956) and have continued to be studied using finite automata
(see, e.g., the survey by Forcada & Carrasco (2001)). Con-
volutional neural networks, too, have been related to finite
automata (Schwartz et al., 2018).

Transformers (Vaswani et al., 2017) have been studied in
relation to counter machines (Bhattamishra et al., 2020),
Boolean circuits (Hao et al., 2022; Merrill et al., 2022; Mer-
rill & Sabharwal, 2023), and programming languages (Weiss
et al., 2021), obtaining various upper and lower bounds on
their expressivity. (Section 7 gives a more detailed survey.)
As a lower bound, Bhattamishra et al. (2020) show that
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Figure 1. Overview of results. Arrows indicate inclusion, and thick
arrows indicate strict inclusion. We show that FOC[+; MOD] is
simultaneously a tighter upper bound on fixed-precision trans-
former encoders than uniform TC0 is, and a tighter lower bound
on transformer encoders than SSCMs are.

transformer encoders are at least as powerful as simplified
stateless counter machines (SSCMs), which test whether
the numbers of occurrences of input symbols satisfy a given
linear constraint. As an upper bound, Merrill & Sabharwal
(2022) restrict to fixed-precision transformer encoders and
show that they are in uniform TC0.

Here, we study transformers in relation to first-order logic.
(Merrill & Sabharwal (2022) also relate them to first-
order logic, but indirectly through circuits.) We define
FOC[+; MOD], which is first-order logic with counting
quantifiers, where positions have modular predicates but
not ordering, and counts have ordering and addition (§4).
We then connect and strengthen the two above-mentioned
results by showing that FOC[+; MOD] is simultaneously an
upper bound for fixed-precision transformer encoders (§5)
and a lower bound for transformer encoders (§6).

These two results counterbalance each other. As an
upper bound on fixed-precision transformer encoders,
FOC[+; MOD] might be imagined to define languages far
beyond the power of transformers, but the lower bound as-
sures us that it does not have any expressivity that does any-
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thing “un-transformer-like.” As a lower bound on (arbitrary-
precision) transformer encoders, FOC[+; MOD] might be
imagined to be far weaker than transformers, but the upper
bound assures us that it can express everything that real-
world (fixed-precision) transformers can. Together, these
two results bring us much closer than before to an exact
characterization of the languages that transformer encoders
recognize.

2. Preliminaries
We write N for the set of natural numbers, which includes 0.
If 0 and 1 are integers, we write [0, 1] for the set {G ∈ Z |
0 ≤ G ≤ 1}, and 0≡< 1 iff 0 and 1 are congruent modulo <.

We make frequent use of the Iverson bracket I[q], which
has the value 1 if the statement q is true, and 0 otherwise.

If " is a matrix, we write "8,∗ for the 8-th row of " and
"∗, 9 for the 9-th column of ". We write 0 for the zero
vector or matrix, 0= for the =-dimensional zero vector, and
I for the identity matrix.

We often work with families of functions 5 =
(
5 (=)

)
=>0

where each 5 (=) : -= → .=. For brevity, we write
5 : -= → .= and apply 5 to strings or vectors of any length.

3. Transformers
A transformer can have an encoder and/or a decoder; follow-
ing previous work (Bhattamishra et al., 2020; Hahn, 2020;
Hao et al., 2022; Merrill et al., 2022; Merrill & Sabharwal,
2023), we focus on transformer encoders.

The input is a string F1 · · ·F=, to which we prepend a spe-
cial symbol CLS at position 0. Thus the network sees a se-
quence of =+1 symbols; to avoid clutter, we write =′ = =+1.
The string is converted to an activation matrix �(0) ∈ R3×=′ ,
where column �

(0)
∗, ? represents symbol F?, and 3 is the

width of the network. A stack of ! layers maps �(0) to
�(1) , �(2) , . . . , �(!) ∈ R3×=′ . Then we apply a sigmoid
layer to the output at CLS (that is, �(!)∗,0 ) to obtain a sin-
gle probability. The network, which we call a transformer
classifier, accepts F iff this probability is at least 1

2 .

The rest of this section describes each of these components
in more detail. Readers already familiar with transformers
may safely skip ahead.

3.1. Input layer

Each input vector �(0)∗, ? is the sum of a word embedding and
a positional encoding.

Definition 1. A word embedding on Σ with width 3 is a
mapping WE : Σ→ R3 from symbols to vectors.

Definition 2. A sinusoidal positional encoding with (even)

width 3 is a mapping from positions to vectors,

PE : N→ R3

? ↦→



sin 2cb1?
cos 2cb1?

...

sin 2cb3/2?
cos 2cb3/2?


b8 ∈ Q

In the original paper, the b8 are set to fixed values (b8 =
8−1
2c ), which are not rational. Here, we assume that they are
rational (needed for Theorem 2), and can be set to arbitrary
rationals (needed for Theorem 5). Since the rationals are
dense in the reals, we can choose them to be as close to the
original values as we want.

3.2. Hidden layers

Each hidden layer has a self-attention followed by a position-
wise feed-forward network.
Definition 3. A self-attention sublayer with width 3 and
key width 3K is a function

SA : R3×=
′ → R3×=′

� ↦→
[
20 · · · 2=

]
where

B@? =
, (Q)�∗,@ ·, (K)�∗, ?√

3
(1)

2@ =

∑=
?=0 (exp B@?), (V)�∗, ?∑=

?=0 exp B@?
(2)

and, (Q),, (K) ∈ R3×3K and, (V) ∈ R3×3 are learned.
Definition 4. A position-wise feed-forward network (FFN)
with width 3 and hidden width 3FF is a function

FF : R3 → R3

G ↦→ , (2)
(
max(0,, (1)G + 1 (1) )

)
+ 1 (2)

where the max(0,−), called a ReLU, is taken elementwise,
and, (1) ∈ R3FF×3 , 1 (1) ∈ R3FF ,, (2) ∈ R3×3FF , 1 (2) ∈ R3
are learned.

We also apply 5 column-wise to matrices � ∈ R3×=′ :

FF(�) =
[
FF(�∗,0) · · · FF(�∗,=)

]
. (3)

Definition 5. A transformer layer with � heads and
width 3 is a function

Layer : R3×=
′ → R3×=′

� ↦→ �′′ where

�′ =
�∑
ℎ=1

SA(ℎ) (�) + �

�′′ = FF(�′) + �′
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where the SA(ℎ) are self-attentions, and FF is a position-
wise FFN. The + � and + �′ terms are known as residual
connections.

We have omitted layer normalization (Ba et al., 2016) to
simplify proofs. Appendix D explains how to add layer
normalization to our definitions and proofs.

3.3. Stacks, encoders and classifiers

Definition 6. A transformer stack with width 3 is a function

Stack : R3×=
′ → R3×=′

Stack = Layer(!) ◦ · · · ◦ Layer(1)

where each Layer(ℓ) is a transformer layer with width 3.

Definition 7. A transformer encoder with width 3 is a
function from strings to sequences of vectors,

Enc : Σ= → R3×=′

F ↦→ Stack(�) where

� =
[
WE(CLS) WE(F1) · · · WE(F=)

]
+

[
PE(0) PE(1) · · · PE(=)

]
where WE is a word embedding, PE is a positional encoding,
and Stack is a transformer stack with width 3.

Definition 8. A transformer classifier with width 3 is a
function

Cls : Σ∗ → R
F ↦→ sigmoid

(
, [Enc(F)]∗,0 + 1

)
(4)

where Enc is a transformer encoder with width 3. We say
that Cls accepts F if Cls(F) ≥ 1

2 , and the language recog-
nized by Cls is {F ∈ Σ∗ | Cls accepts F}.

4. First-Order Logic with Counting
Quantifiers

Instead of characterizing problems (formal languages) us-
ing devices for producing or consuming strings, we can
characterize them using logical formulas that declare what
properties a string must have. The classic result in this ap-
proach is that the languages of finite strings described by
monadic second-order logic are exactly those recognized
by finite automata (Büchi, 1960). Merrill & Sabharwal
(2022) relate the expressivity of transformers to that of first-
order logic with majority quantifiers, but only indirectly via
circuits. Here, we relate the expressivity of transformers
directly to a logic called FOC[+; MOD].

4.1. Examples

We begin with a few examples of sentences of
FOC[+; MOD] that define languages. Assume Σ = {0, 1}.

1. ∀?.&0 (?) ∨ ∀?.&1 (?) defines the language 0∗ ∪ 1∗.
The variable ? ranges over positions of F, and for any
symbol 0 ∈ Σ, &0 (?) is true iff the symbol at position
? is 0. So this sentence says that all symbols are 0 or
all are 1.

2. ∀?.(MOD0
2 (?) → &0 (?) ∧ MOD1

2 (?) → &1 (?)) de-
fines the language (10)∗ ∪ (10)∗1. For any A ≥ 0, < >

0, the predicate MODA< (?) tests whether ? ≡< A. So
this sentence says that all symbols in even positions
are 0’s and those in odd positions are 1’s.

3. ∃G. (∃=G ?.&0 (?) ∧ ∃=G ?.&1 (?)) defines the lan-
guage of strings with an equal number of 0’s and 1’s.
The variable G ranges over numbers. The ∃=G is a
counting quantifier; the subformula ∃=G ?.&0 (?) says
that there are exactly G positions ? that make &0 (?)
true. Similarly, ∃=G ?.&1 (?) says that there are exactly
G occurrences of 1.

4. ∃G.∃H. (∃=G ?.&0 (?) ∧ ∃=H ?.&1 (?) ∧ 2G = H) de-
fines the language of strings with twice as many 1’s
as 0’s. We allow linear equations or inequalities like
2G = H, but only on count variables.

4.2. Definition

We now describe the syntax of FOC[+; MOD], given a fixed
finite alphabet Σ, and its intended interpretation with refer-
ence to finite strings F = F1 · · ·F= over Σ. The syntax has
two sorts (Immerman, 1999, p. 185–187):

• The sort of positions has variables ?, . . . , which stand
for positions of F, that is, integers in [1, =].

• The sort of counts has

– variables G, H, I, . . . , which stand for rational
numbers

– terms 20 + 21G1 + · · · + 2:G: , where each 28 is a
rational number and each G8 is a count variable.

A formula of FOC[+; MOD] is one of:

• > for true or ⊥ for false.

• &0 (?) where 0 ∈ Σ, which is true iff F? = 0.

• MODA< (?) where A ≥ 0, < > 0, which is true iff ?≡<A .

• C1 = C2, C1 < C2, where C1 and C2 are terms (in the sort
of counts).

• q1 ∧ q2, q1 ∨ q2, ¬q1 where q1 and q2 are formulas.

• ∃G.q, ∀G.q where G is a count variable and q is a for-
mula.
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• ∃=G ?.q, where G is a count variable, ? is a position
variable, and q is a formula, which is true iff q is true
for exactly G values of ?. (Note that ∃=G ? binds ? but
leaves G free.)

Connectives q → k and q ↔ k can be expressed as q →
k ≡ ¬q ∨ k and q ↔ k ≡ q → k ∧ k → q. Quantifiers
∃?.q and ∀?.q can be expressed using ∃G.(G > 0∧∃=G ?.q)
and ∃G.(∃=G ?.> ∧ ∃=G ?.q), respectively.

A sentence is a formula with no free variables. If F ∈ Σ∗
and f is a sentence, we write F |= f if F makes f true
under the intended interpretation.

Definition 9. If f is a sentence of FOC[+; MOD], the lan-
guage defined by f is {F | F |= f}.

4.3. Normal form

The part of the logic having to do with position variables
is like monadic first-order logic, in which all predicates
are monadic (that is, they take only one argument). The
part of the logic having to do with count variables is the
theory of rational numbers with ordering and addition (but
not multiplication). Both of these other logics have useful
normal forms: monadic first-order logic has a normal form
that uses only one variable (Boolos et al., 2007, p. 274–275),
while the theory of rationals with ordering and addition has
quantifier elimination (Robinson & Zakon, 1960; Ferrante
& Rackoff, 1975). We can combine these two results to get
a very simple normal form for FOC[+; MOD].
Theorem 1. Every formula q of FOC[+; MOD] is equiva-
lent to a formula of the form

q′ = ∃G1. . . . ∃G: .
(∧
8

∃=G8 ?.k8 ∧ j
)

(5)

where

• Each k8 is quantifier-free and has no free count vari-
ables.

• j is quantifier-free.

Proof. See Appendix A. �

It may seem odd that count variables range over rational
numbers, when counts are always integers. This technicality
simplifies the normal form: if we had used integers, then the
part of the logic having to do with count variables would be
Presburger arithmetic, and the normal form would require
allowing MODA< (G) on count variables as well.

5. From Transformers to FOC[+; MOD]
In this section, we prove the following theorem, which
sets an upper bound on the expressivity of fixed-precision
transformer classifiers.

Theorem 2. Every language that is recognizable by a fixed-
precision transformer classifier is definable by a sentence
of FOC[+; MOD].

We don’t specify exactly when and how a fixed-precision
transformer performs rounding. Our translation to
FOC[+; MOD]] for the most part can accommodate any
rounding scheme, except that in Eq. (6) below, we assume
that the averages over positions ? are computed exactly,
then rounded.

5.1. Representing numbers

Following Merrill & Sabharwal (2022), we use a representa-
tion of real numbers with both limited precision and limited
range. Limited precision might be justified by the fact that
the numbers computed by a neural network are subject to
noise (e.g., from randomness in sampling the training data
and parameter optimization); limited range is justified by
the observation by Hahn (2020) that if all the functions used
in a transformer are Lipschitz continuous, then the absolute
value of all activations has an upper bound not depending
on =. (Appendix D.2 re-proves this result in the presence
of layer normalization, which is not in general Lipschitz
continuous.)

While Merrill & Sabharwal (2022) use floating point num-
bers (?/2 bits for the mantissa and ?/2 bits for the exponent,
where ? = 16 or 32), we use a fixed-point representation,
with A for the integer part and B for the fractional part. There
is no loss of generality, because a floating-point number with
a ?/2-bit mantissa and ?/2-bit exponent can be converted
exactly to a fixed-point number with ?/2 + 2?/2 bits.

Definition 10. A fixed-precision number with A integer bits
and B fractional bits is a number in FA ,B = {8/2B | −2A+B ≤
8 < 2A+B}. Since A and B are fixed, we normally just write F
in place of FA ,B.

We write 〈G〉8 for the 8-th bit in the two’s-complement repre-
sentation of G. That is,

〈G〉8 =
⌊ G

28
⌋
− 2

⌊ G

28+1
⌋

where bGc is the greatest integer less than or equal to G.

A neural network, given input CLS · F, computes many
real-valued activations, which we can think of as functions
0 : Σ∗ → F. For each activation 0, we will write sentences
that test bits of 0(F).
Definition 11. If 0 : Σ∗ → FA ,B, we say that 0 is defined
by sentences 〈f0

:
〉:∈[−B,A ] (or just 〈f0

:
〉 for short) if, for all
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: ∈ [−B, A], F |= f0
:

iff 〈0(F)〉: = 1.

Similarly, if a : Σ= → F=
′
, we say that a is defined by

〈qa
:
[?], la

:
〉 if [a(F)] ? is defined by 〈qa

:
[?]〉 and [a(F)]0

is defined by 〈la
:
〉.

The finiteness of F ensures the following fact, which we use
repeatedly:

Proposition 3. If 0 : Σ∗ → F is defined by 〈f0
:
〉, then for

any function 5 : F→ F there are sentences that define 5 ◦ 0.
Similarly, if 1 : Σ∗ → F is defined by 〈f1

:
〉, and 6 : F× F→

F, there are sentences that define the function 6◦ (0, 1) (that
is, the function that maps F to 6(0(F), 1(F))).

Proof. Because F is finite, it is easy but tedious to write
sentences that test for all possible inputs and outputs. �

5.2. Input layer

The (function that maps F to the) 8-th component of
WE(F?) is defined by

q: [?] =
∨
0∈Σ

〈[WE(0) ]8 〉:=1

&0 (?)

and l: , which simply encodes the constant value
[WE(CLS)]8 in fixed-precision.

Sinusoidal PEs, rounded to the nearest fixed-precision num-
ber, can be described using modular predicates. For any 8,
there exists a period <8 such that for all ?, [PE(?)]8 =
[PE(? + <8)]8 . Then the (function that maps F to the) 8-th
component of PE(?) is defined by

q: [?] =
∨

0≤A<<8
〈[PE(A ) ]8 〉:=1

MODA<8 (?)

and l: , which simply encodes the constant value [PE(0)]8
in fixed-precision.

5.3. Hidden layers

The position-wise FFNs and residual connections can all be
defined using Proposition 3.

In a self-attention layer, the logits (1) can be defined using
Proposition 3. The equation for context vectors (2) can
be rewritten in terms of averages (not sums, which could
overflow):

2@ =

1
=′

∑
? exp B@?, (V)�∗, ?
1
=′

∑
? exp B@?

. (6)

Everything in this equation except for averaging ( 1
=′

∑
?) can

also be defined using Proposition 3. So the one operation
that remains to be defined is averaging over =′ positions.

Appendix B explains how to do this, one bit at a time. To
sum bits across all positions, we use counting quantifiers; to
divide by =′, we use another kind of number representation
whose least-significant digits are =′ times smaller than those
of fixed-precision numbers.

5.4. Output layer

By composing the constructions from the preceding sections,
we obtain formulas 〈q: [?], l:〉 that define the output of
the encoder at all positions. We are only interested in the
output at CLS, which is defined by 〈l:〉, so we can discard
the q: [?]. By Proposition 3, we can define the top-level
sentence, which applies the final sigmoid layer (4) to 〈l:〉
and tests whether the result is at least 1

2 .

5.5. Complexity analysis

The sentence constructed by Theorem 2 would be quite
large if written out in full, because of repeated subformulas.
We analyze its size assuming that repeated subformulas can
share space.

In the input layer (§5.2), the word embeddings translate to
subformulas with total size $ ( |Σ|3 (A + B)), and the posi-
tional encodings, $ (<3 (A + B)), where < is the maximum
period of any component of PE. In the hidden layers (§5.3),
the position-wise FFNs and residual connections translate
into subformulas with total size $ (!32�), where � is the
maximum size of a subformula constructed by Proposition 3,
which in the worst case could be exponential in the preci-
sion (A + B). The attention layers translate into subformulas
with total size $ (!�32�). Finally, the output layer (§5.4)
translates into a subformula of size $ (32�).

5.6. Relationship to uniform TC0

We conclude this section by showing that FOC[+; MOD]
is strictly less expressive than uniform TC0and therefore a
tighter upper bound on fixed-precision transformer encoders
than that of Merrill & Sabharwal (2022). (On the other hand,
their proof applies to a much more general class of neural
networks than ours does.)

(Non-uniform) TC0 is the class of families of Boolean cir-
cuits with majority gates, unlimited fan-in, polynomial size,
and constant depth. By uniform TC0 we mean circuit fami-
lies in TC0 whose connections can be decided in logarithmic
time (Barrington et al., 1990).

Proposition 4. The language {0=1= | = ≥ 0} is in uniform
TC0 but not definable in FOC[+; MOD].

Proof. For inclusion in uniform TC0, we use the fact that
uniform TC0 is equivalent to first-order logic with majority
quantifiers, addition, and multiplication, and that majority
quantifiers can simulate counting quantifiers (Barrington
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et al., 1990, p. 296). Then {0=1=} is defined by

∃G.
(
∃=G ?.&0 (?) ∧ ∃=G ?.&0 (?)

)
∧ ∀?.∀@.

(
&0 (?) ∧&1 (@) → ? < @

)
.

For non-definability in FOC[+; MOD], suppose that {0=1=}
is definable in FOC[+; MOD] by some sentence f. Let "
be the product of all moduli < used in atomic formulas
MOD<A (?) used in f. Then f cannot distinguish between
positions ? and (?+"), so it cannot distinguish F = 0"1"

and F′ = 10"−101"−1. Since F |= f, it must be the case
that F′ |= f, which is a contradiction. �

6. From FOC[+; MOD] to Transformers
In this section, we prove the following theorem, which sets
a lower bound on the expressivity of (arbitrary-precision)
transformer classifiers.
Theorem 5. Every language that is definable by a sentence
of FOC[+; MOD] is also recognizable by a transformer clas-
sifier.

By Theorem 1, we can assume

f ≡ ∃G1. . . . ∃G: .
(∧
8

∃=G8 ?.k8 [?] ∧ j[G1, . . . , G: ]
)

where every k8 is quantifier-free with one free position
variable and no free count variables, and j is quantifier-
free with no free position variables.

Then the proof constructs a transformer classifier with three
parts. The first, lowest, part of the network computes the
truth values of the k8 [?] at every position ?. The second
part uses uniform self-attention to find each G8 , the number
of positions ? that make k8 [?] true. The third part computes
the truth value of j and of the whole sentence.

We first show how to do this without layer normalization;
Appendix D.3 explains how to modify the construction for
layer normalization.

6.1. Computing the k8 [?]

For each k8 [?], we construct a transformer encoder that
computes its truth-value, in the following sense:
Lemma 6. For any formula k [?] of FOC[+; MOD] which
is quantifier-free with exactly one free position variable ?
and no free count variables, there is a transformer encoder
) with width 3 such that, for all F ∈ Σ∗ and ? ∈ [1, |F |],
[) (F)]3,? = I[F |= k [?]] and [) (F)]3,0 = 0.

The proof, given in Appendix C.2, is by induction on sub-
formulas. The cases for k1 ∧ k2 and k1 ∨ k2 invoke the
inductive hypothesis for both k1 and k2 and combine them
into a single transformer encoder using the following:

Lemma 7. If )1 and )2 are transformer encoders, then
there is a transformer encoder, called )1 ⊕ )2, such that

()1 ⊕ )2) (F) =
[
)1 (F)
)2 (F)

]
.

Proof. See Appendix C.1. �

Then most cases add one hidden layer on top, whose self-
attention does nothing (, (V) = 0) and whose FFN computes
the relevant function.

Thus, for each k8 [?], we get an equivalent transformer
encoder, which we call Ψ8 .

6.2. Counting quantifiers

The second step is to find the value of each G8 , which is the
number of positions ? for which F |= k8 [?]. Construct a
transformer encoder* such that, for all ?,

[* (F)]∗, ? =
[
I
[
F? = CLS

]
0:+1

]
.

Use Lemma 7 to form Ψ =
⊕:

8=1Ψ8 ⊕*, and add one more
layer. In the self-attention, , (V) projects and permutes
dimensions so that the value vectors are

, (V) [Ψ(F)]∗, ? =



0
I[F |= k1 [?]]

...

I[F |= k: [?]]
I
[
F? = CLS

]

.

The self-attention uses uniform attention to average over ?
(, (Q) = , (K) = 0), and the FFN does nothing (, (1) =
1 (1) = , (2) = 1 (2) = 0). Call this encoder �. Its output, for
all ?, is

[� (F)]∗, ? =
1
=′



0
G1
...

G:
1


.

6.3. Computing j

The third step is to compute the truth value of j given
the values of the G8 . After the division by =′, we can no
longer use 1 for true and 0 for false; instead, we use positive
numbers for true and negative numbers for false.

Lemma 8. If j is a quantifier-free formula of
FOC[+; MOD] with free count variables G1, . . . , G: and no
position variables, then there is a transformer stack - with
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width 3 such that for any � ∈ R3×=′ with

�∗,0 = U



0
G1
...

G:
1


G1, . . . , G: ∈ Z

we have [- (�)]3,0 > 0 if j[G1, . . . , G: ] is true, and
[- (�)]3,0 < 0 if j[G1, . . . , G: ] is false.

Proof. See Appendix C.3. �

Using this lemma, we get a stack of transformer layers
equivalent to j; call it - .

Next, we want to compose � and - . Let 3� and 3- be the
width of � and - , respectively, and let 3 = max{3� , 3- }.
If 3� < 3, construct an encoder / that outputs 03−3� and
let � ′ = / ⊕ � and - ′ = - . Similarly if 3- < 3. Let ) =
- ′ ◦� ′; then [) (F)]3,0 is positive iff the whole sentence is
true.

Finally, the output layer Eq. (4) projects [) (F)]∗,0 to di-
mension 3, so the output probability is greater than 1

2 iff the
whole sentence is true.

6.4. Relationship to counter machines

Bhattamishra et al. (2020) define a kind of counter ma-
chine called simplified stateless counter machine (SSCM).
It has zero or more counters, and upon reading each input
symbol 0, it increments or decrements each counter by an
amount that depends only on 0. At the end of the input
string, the accept/reject decision depends on whether the
counters are zero. Then they prove that any SSCM can be
converted to an equivalent transformer. Since our definition
of transformers and how they accept strings are slightly dif-
ferent from theirs, we give a slightly different definition of
SSCM from theirs. We discuss these differences at the end
of this section.

Definition 12. A simplified stateless :-counter machine
(Merrill, 2020; Bhattamishra et al., 2020), or :-SSCM, is a
tuple (Σ, D, �) where

• Σ is a finite alphabet

• D : Σ→ Z: is a counter update function

• � ⊆ {0, 1}: is an acceptance mask.

Definition 13. Let " be a :-SSCM, and let F = F1 · · ·F=
be an input string. We say that " accepts F if there is a
sequence 20, . . . , 2= ∈ Z: such that

• 20 = 0

• 28 = 28−1 + D(F8) for all 8 ∈ [1, =]

• [2=]8 = 0 iff �8 = 0.

We say that " recognizes a language ! if ! = {F ∈ Σ∗ |
" accepts F}.
Proposition 9. For any simplified stateless :-counter ma-
chine (Bhattamishra et al., 2020) there is a sentence of
FOC[+; MOD] that defines the same language.

Proof. Let Σ = {01, . . . , 0<}, and let " = (Σ, D, �) be a
:-SSCM. Then the following sentence of FOC[+; MOD] is
equivalent to ":

f = ∃G1. . . . ∃G<.
©­«
<∧
9=1
∃=G 9 ?.&0 9 (?) ∧

:∧
8=1

q8
ª®¬

q8 =

{
D(01)G1 + · · · + D(0<)G< = 0 �8 = 0
D(01)G1 + · · · + D(0<)G< ≠ 0 �8 = 1.

�

On the other hand, FOC[+; MOD] can define languages that
SSCMs cannot, making it a tighter lower bound than Bhat-
tamishra et al.’s.

Proposition 10. The language (01)∗ is definable in
FOC[+; MOD] but cannot be recognized by any SSCM.

Proof. The language is definable using the sentence

∃G.(∃=G ?.&0 (?) ∧ ∃=G ?.&1 (?)
∧ ∀?.MOD1

2 (?) ↔ &0 (?)).

To see that this language cannot be recognized by a SSCM,
observe that SSCMs are permutation-invariant. That is,
let " be a SSCM. For any string F = F1 · · ·F= and any
permutation c on [1, =], define c(F) = Fc (1) · · ·Fc (=) .
Then " accepts F if and only if it accepts c(F). Since this
means that " cannot distinguish (01)= from 0=1=, it cannot
recognize (01)∗. �

Bhattamishra et al.’s definition of transformers differs from
ours in two ways. First, their transformer encoders have
so-called causal (or future) masking, in which each posi-
tion only attends to the position to the left. Ours do not,
and indeed it appears that expressing causal masking would
require a binary predicate ? < @, which would break Theo-
rem 1. We leave investigation of transformer encoders with
causal masking for future work. Regardless, masking is not
required for simulating SSCMs, as our Proposition 9 holds
without it.

Second, whereas our definition of transformer classifier
places the output sigmoid layer over CLS, theirs places it
over the last string position. This is an arbitrary decision,

7
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but as a consequence, their definition of SSCM lets the
accept/reject decision depend also on the last input symbol.

Consequently, Theorem 5 does not, strictly speaking, im-
prove on their lower bound. We don’t consider this to be
a critical issue, however, because it doesn’t seem to re-
late to essential properties of either transformers or counter
machines, and it could easily be fixed, for example, by ex-
tending the transformer’s positional encoding with a flag
indicating the end of string and FOC[+; MOD] with a predi-
cate indicating the end of string.

7. Related Work
Neural networks have been studied in relation to proposi-
tional logic from the start (McCulloch & Pitts, 1943). Much
more recently, Barceló et al. (2020) relate graph neural net-
works to first-order logic with threshold counting quantifiers
(∃≥: where : is a constant) and at most two variables.

To our knowledge, the only attempts to relate transformers
to formal logic are that of Merrill & Sabharwal (2022) and
the present paper. But there is a substantial literature on the
expressivity of transformers, and in the rest of this section,
we review some of this work, limiting our attention to results
on transformers as recognizers of formal languages.

7.1. Upper bounds

Transformer encoders under various restrictions have been
shown to fall into various language classes. We have already
discussed the upper bound of Merrill & Sabharwal (2022)
using fixed-precision numbers in §5.6, and review a few
others here.

Hao et al. (2022) study transformers with so-called hard
attention, where each position attends to the position with
the highest attention logit. In the case of a tie, the leftmost
position wins. They show (generalizing a result by Hahn
(2020) on PARITY and the Dyck language with two pairs
of brackets) that such transformers recognize languages in
non-uniform AC0 (that is, families of Boolean circuits with
unlimited fan-in, polynomial size, and constant depth).

Merrill et al. (2022) study transformers with saturated at-
tention where, in the case of a tie, attention is distributed
evenly among the tied positions. Additionally, they assume
that all activations are numbers of the form G/2H where
G and H are integers, with certain operations (reciprocal,
square root) rounded to the nearest multiple of 1/2H . They
show that such transformers recognize languages in non-
uniform TC0. In subsequent work (Merrill & Sabharwal,
2023), they show that transformers using full (softmax) at-
tention and numbers with$ (log =) bits recognize languages
in logspace-uniform TC0.

Also worth mentioning is a result by Hahn (2020); he con-

siders transformer classifiers whose activation functions are
Lipschitz continuous (that is, if layer normalization is used,
then n > 0) and which always accept or reject strings with
some (arbitrarily small, but fixed) margin. He shows that
such transformer classifiers cannot recognize PARITY or the
Dyck language with two pairs of brackets.

All of the above upper bounds require some modification
to the definition of transformer. Ours (Theorem 2) is no
exception: although we use full (softmax) attention, we
limit numbers to fixed-precision. Relaxing this restriction
would break Proposition 3 and is left for future investigation.

7.2. Lower bounds

We have discussed the lower bound of Bhattamishra et al.
(2020) already in §6.4. The other lower bounds that we are
aware of involve extensions of transformers. First, Chiang &
Cholak (2022) showed that transformers whose PEs include
a ?/=′ component can recognize PARITY.

Second, RASP (Weiss et al., 2021) is a programming lan-
guage that can be compiled to transformers with saturated
attention and several other extensions that appear to increase
their expressivity. Their attention weights are directly com-
puted from the previous layer, and are not restricted to be
dot-products of query and key vectors; this allows compila-
tion of expressions involving binary predicates like ? = @
or ? < @. Their position-wise FFNs are allowed to compute
arbitrary functions, the rationale being that they can be ap-
proximated by ReLU FFNs by the universal approximation
theorem.

In contrast, our lower bound here follows the definition of
a transformer encoder fairly strictly; the only departure is
allowing the PE to have sine/cosine waves with different
frequencies than the original definition.

Third, Pérez et al. (2021) consider transformers with satu-
rated attention and several extensions. But more importantly,
their result concerns, not encoders, but encoder–decoders.
The encoder reads a string F, and the decoder is allowed
to run for an arbitrary number of steps before making an
accept/reject decision. This makes the model much more
powerful: Pérez et al. (2021) show that it can simulate a
Turing machine.

The use of a decoder is of course standard and not an “exten-
sion.” But our result and theirs are in no way contradictory;
they simply concern two very different configurations of
transformers. Intuitively, one could liken a transformer en-
coder to a system that is prompted with a string and must im-
mediately accept or reject, whereas a transformer encoder–
decoder could be likened to a system that can “think step by
step” (Kojima et al., 2022) before generating a final answer.

8
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8. Discussion
8.1. Relationship with other complexity classes

We have already discussed the relationship of FOC[+; MOD]
with TC0 (§5.6) and SSCMs (§6.4). We can further relate
FOC[+; MOD] to the classes of regular languages and uni-
form AC0:

Proposition 11. The class of languages recognizable by
FOC[+; MOD] is not comparable with the class of regular
languages.

Proof. The language MAJORITY, containing those strings
with more 1’s than 0’s, is definable in FOC[+; MOD] by
the sentence ∃G.∃H. (∃=G ?.&0 (?) ∧ ∃=H ?.&1 (?) ∧ G > H),
but is not regular. On the other hand, 0∗1∗ is regular but
not definable in FOC[+; MOD], by an argument similar to
Proposition 4. �

Proposition 12. The class of languages recognizable by
FOC[+; MOD] is not comparable with uniform AC0.

Proof. The languages used in the proof of Proposition 11
apply here as well: MAJORITY is not in AC0 (Furst et al.,
1984), but 0∗1∗ is in uniform AC0, because AC0 is equivalent
to FO+BIT, which includes the sentence ∃?.∀@.(@ < ? →
&0 (?) ∧ @ ≥ ? → &1 (?)). �

8.2. Transformer variants

Section 7.1 mentioned several restrictions of transform-
ers, proposed to make finding upper bounds easier. We
think these are interesting in their own right, and it
would be worthwhile to clarify the relationships among
them. One relationship is already implied by Theorems 2
and 5. The translation from fixed-precision transformers to
FOC[+; MOD] to arbitrary-precision transformers produces
networks that only use uniform attention, which is a special
case of saturated attention. So fixed-precision transformers
are at most as powerful as saturated-attention transformers.

Similarly, §7.2 mentioned several extensions of transform-
ers, and curiously, all three of these previous lower bounds
include ? or ?/=′ in their PEs (also cf. Yun et al., 2020).
Intuitively, this gives them the ability to translate between
counts and positions, and we think this extension merits
further study, both theoretical and experimental.

8.3. Next steps

Nonetheless, our ultimate goal is to exactly characterize
the expressivity of unrestricted transformers with rational
weights. It might be thought that rational weights would
add too much power, since they can store an unbounded
amount of information; for example, an RNN with rational
weights is equivalent to a Turing machine (Siegelmann &

Sontag, 1995). But this is true only if it is allowed to run
for arbitrarily many time steps; if it runs for = time steps,
it is intermediate in power between real-time Turing ma-
chines and real-time RAM machines (Chen et al., 2017).
Since a transformer encoder only has fixed depth !, we
think it is reasonable to hope for a logic that is both equiv-
alent to rational-weighted transformers and has useful and
interesting properties.

FOC[+; MOD] is a significant step in that direction. By The-
orem 2, we know that it can at least express anything that
real-world transformer encoders can, and by Theorem 5, we
know that it does not have any excess expressivity that does
anything “un-transformer-like.” Crucial to these results is
the normal form of Theorem 1. Just as (with a fixed number
of inputs) arbitrary Boolean functions can be expressed as
a disjunction of conjunctions, or arbitrary continuous func-
tions can be approximated by a FFN, in a similar way (with
variable-length input strings), our normal form allows some
fairly complicated properties to be expressed in a very sim-
ple form that can be mapped to transformers. We speculate
that a normal form result along the lines of Theorem 1 will
make an exact characterization of unrestricted transformer
encoders possible, and that it will provide insight into how
still more complex properties of strings can be computed by
transformers.
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A. Proof of Theorem 1
Theorem 1 says that every formula q of FOC[+; MOD] is equivalent to a formula of the form

q′ = ∃G1. . . . ∃G: .
(∧
8

∃=G8 ?.k8 ∧ j
)

(7)

where

• Each k8 is quantifier-free and has no free count variables.

• j is quantifier-free.

The construction of q′ proceeds in three steps. First, move counting quantifiers inward until they are of the form ∃=G8 ?.k8
where k8 is quantifier-free and has no free count variables. Second, move all subformulas ∃=G8 ?.k8 outward, leaving
behind j, as in Eq. (7). Third, eliminate quantifiers from j.

The first step is analogous to the proof that a formula of monadic first-order logic can be converted to one with only one
variable (Boolos et al., 2007, p. 274–275), which moves existential quantifiers inwards using the two following facts:
∃G.(q ∨ k) ≡ (∃G.q) ∨ (∃G.k), and if G does not occur free in q, then ∃G.(q ∧ k) ≡ q ∧ (∃G.k). With counting quantifiers,
neither of the above holds, but the following two lemmas serve similar purposes.

Lemma 13. Any formula q = ∃=G ?.∨;
8=1 q8 is equivalent to a formula

q′ = ∃G1. . . . ∃G<.
©­«
<∧
9=1
∃=G 9 ?.k 9 ∧ j

ª®¬ (8)

where the G8 are fresh count variables, each k 9 is a conjunction of a subset of the q8 , and j has no free position variables.

Proof. By induction on ;. The case ; = 1 is trivial. For ; > 1, write

q = ∃=G ?.
(
;−1∨
8=1

q8 ∨ q;

)
≡ ∃G1.∃G2.∃G3.

(
∃=G1 ?.

;−1∨
8=1

q8 ∧ ∃=G2 ?.q; ∧ ∃=G3 ?.

(
;−1∨
8=1

q8 ∧ q;

)
∧ G = G1 + G2 − G3

)
≡ ∃G1.∃G2.∃G3.

(
∃=G1 ?.

;−1∨
8=1

q8︸          ︷︷          ︸
∗

∧ ∃=G2 ?.q; ∧ ∃=G3 ?.

;−1∨
8=1
(q8 ∧ q;)︸                   ︷︷                   ︸
∗

∧ G = G1 + G2 − G3

)

and use the inductive hypothesis on the subformulas marked ∗ to put this into the form (8). �

Lemma 14. If ? does not occur free in q, then

∃=G ?.(q ∧ k) ≡ (¬q ∧ G = 0) ∨ (q ∧ ∃=G ?.k).

Using these facts, we can prove the following:

Proposition 15. Every formula is equivalent to a formula in which

• in every subformula ∃G.q, there are no free position variables.

• in every subformula ∃=G ?.q, q is quantifier-free and the only free variable in q is ? itself.

Proof. By induction on subformulas. Call a subformula clear if it has the two properties listed above.

11
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Case ∃G.q: Write q as a Boolean combination of subformulas q1, . . . , q< that are either atomic or start with quantifiers.
We can put q into DNF in terms of the q8 and distribute the ∃G over the disjuncts. By the induction hypothesis, each of the
q8 is equivalent to a q′

8
which is clear. So q ≡ ∨<

9=1 ∃G.
∧
: k 9: where each k 9: is one of the q′

8
. Consider each k 9: .

• If k 9: is %(?) or ¬%(?), then it can be moved out of the ∃G.

• If k 9: starts with ∃H, ¬∃H, ∃=H ?, or ¬∃=H ?, then (because k 9: is clear) it has no free position variables and does not
need to be moved.

• If k 9: is one of H = I, H < I, H1 + H2 = I, or their negations, then it has no free position variables and does not need to
be moved.

Thus we have constructed a subformula equivalent to ∃G.q that is clear.

Case ∃=G ?.q: Again, write q as a Boolean combination of subformulas q8 that are either atomic or start with quantifiers,
put q into DNF in terms of the q: . By the induction hypothesis, each of the q8 is equivalent to a q′

8
which is clear. Use

Lemma 13 to obtain

q ≡ ∃G1. · · · ∃G<.
(∧
9

∃=G 9 ?.
∧
:

k 9: ∧ j
)

where each k 9: is one of the q′
8
. Consider each k 9: .

• If k 9: starts with ∃H, ¬∃H, ∃=H ?, or ¬∃=H ?, then it has no free position variables and can be moved out of the ∃=G 9 ?
using Lemma 14.

• If k 9: is one of H = I, H < I, H1 + H2 = I, or their negations, then it can be moved out of the ∃=G 9 ? using Lemma 14.

• If q 9: is %(@) or ¬%(@) where @ ≠ ?, then it can be moved out of the ∃=G ? using Lemma 14, and also out of the ∃G8 .

• If q 9: is %(?) or ¬%(?), then it only has free variable ? and does not need to be moved.

Thus we have constructed a subformula equivalent to ∃=G ?.q that is clear. �

This completes the first step. For the second step, let j be the formula obtained as follows: for every subformula ∃=G8 ?.k8 ,
let G ′

8
be a fresh count variable and replace the subformula with G8 = G ′8 . Thus we have

q ≡ ∃G ′1. . . . ∃G
′
: .

(∧
8

∃=G8 ?.k8 ∧ j
)

which is almost in the desired form except that j still has quantifiers.

The third step is the following:

Theorem 16 (Ferrante & Rackoff, 1975). For any formula j with no position variables (free or bound), there is a
quantifier-free formula j′ equivalent to j.

Apply this procedure to j and call the result j′. Finally, let

q′ = ∃G ′1. . . . ∃G
′
: .

(∧
8

∃=G′8 ?.k8 ∧ j′
)
.

B. Expressing averages in FOC[+; MOD]
To compute averages across = positions, we define a new kind of numeric representation, called extra-precision numbers,
that have an extra digit, ranging from 0 to = with 1

=′ of the place value of the least-significant bit of a fixed-precision number.

12
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Definition 14. An extra-precision number with A integer bits, B fractional bits, and extra digit with base =′ is a number in
EA ,B,=′ =

{
8

2<=′
�� −2ℓ+<=′ ≤ 8 < 2ℓ+<=′

}
. For any 0 ∈ EA ,B,=′ , we define

〈0〉extra = b0 · 2B · =′c − b0 · 2Bc · =′

〈0〉fixed = b0 · 2Bc · 2−B .

For example, in E1,2,3, the extra digit has place value 1
22 ·3 =

1
12 . The number 17

12 belongs to E1,2,3 and can be represented as
01.012, because 17

12 = 1 ·1+0 · 12 +1 · 14 +2 · 1
12 . Then

〈 17
12

〉
extra = 2 and

〈 17
12

〉
fixed =

5
4 (or 01.01 in binary). Its negation, − 17

12 , can
be represented as 10.101. The sign bit can be thought of as having place value −2, and − 17

12 = −1 ·2+0 ·1+1 · 1
2 +0 · 1

4 +1 · 1
12 .

Definition 15. If 0 : Σ∗ → EA ,B,=′ , we say that 0 is defined by sentences f0
:

for : ∈ [−B, A] and q0extra [G] (or 〈f0
:
, q0extra [G]〉

for short) if 〈f0
:
〉 defines 〈0(F)〉fixed, and F |= q0extra [G] iff G = 〈0(F)〉extra.

Adding or subtracting two extra-precision numbers is possible because FOC[+; MOD] has addition of count variables:
Proposition 17. Let 0 : Σ∗ → EA ,B,=′ be defined by 〈f0

:
, q0extra [G]〉 and 1 : Σ∗ → EA ,B,=′ be defined by 〈f1

:
, q1extra [G]〉. If,

for all F, (0 + 1) (F) ∈ EA ,B,=′ , then (0 + 1) is defined by some 〈f0+1
:

, q0+1extra〉, and similarly for (0 − 1).

Proof. First, the extra digit of (0 + 1) (F) is obtained by adding the extra digits of 0(F) and 1(F); if the sum is =′ or more,
then subtract =′ and carry a 1 to the least-significant bit. Thus, let

q0+1extra [I] = ∃G.∃H.∃=.
(
f0extra [G] ∧ f1extra [H] ∧ ∃==?.>

∧
(
(G + H < = + 1 ∧ I = G + H)︸                             ︷︷                             ︸

no carry

∨ (G + H ≥ = + 1 ∧ I = G + H − (= + 1))︸                                           ︷︷                                           ︸
carry

) )
.

As for the remaining bits, by Proposition 3, 〈0〉fixed + 〈1〉fixed is definable by some 〈f0
:
〉. Similarly, if there was a carry from

the extra digit, 〈0〉fixed + 〈1〉fixed + 1 is definable by some 〈f1
:
〉. Then let

f0+1: = ∃G.∃H.∃=.
(
f0extra [G] ∧ f1extra [H] ∧ ∃==?.> ∧

(
(G + H < = + 1 ∧ f0

: )︸                    ︷︷                    ︸
no carry

∨ (G + H ≥ = + 1 ∧ f1
: )︸                     ︷︷                     ︸

carry

) )
.

To get subtraction, it suffices to define negation. Recall that in two’s complement representation, negation means inverting
all the digits and adding 1. For the extra digit, “inverting” means subtracting from =. If the extra digit is 0, invert it to get =,
then increment it to 0 with a carry to the least-significant bit.

q−1extra [I] = ∃H.∃=.
(
f1extra [H] ∧ ∃==?.> ∧

(
(H > 0 ∧ I = = + 1 − H)︸                        ︷︷                        ︸

no carry

∨ (H = 0 ∧ I = 0)︸             ︷︷             ︸
carry

) )
.

Write ∼ for bitwise negation. By Proposition 3, ∼ 〈1〉fixed is definable by some 〈f0
:
〉, and ∼ 〈1〉fixed + 1 is definable by some

〈f1
:
〉. Then

f−1: = ∃H.∃=.
©­­­«f

1
extra [H] ∧ ∃==?.> ∧

(
(H > 0 ∧ f0

: )︸          ︷︷          ︸
no carry

∨ (H = 0 ∧ f1
: )︸          ︷︷          ︸

carry

)ª®®®¬ . �

Finally, we can show how to define averages over =′ positions.
Proposition 18. Given a function a : Σ= → F=′A ,B, defined by 〈qa

:
[?], la

:
〉, the function

ā : Σ∗ → EA ,B,=′

F ↦→ 1
=′

=′∑
8=1
[a(F)] ?

is approximated with error at most 2−B by a function that is definable by some 〈fā
:
〉.

13
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Proof. Observe that

[a(F)] ? = −
〈
[a(F)] ?

〉
A
· 2A +

A−1∑
:=−B

〈
[a(F)] ?

〉
:
· 2:

so the average can be written as

ā(F) = 1
=′

=′∑
?=0
[a(F)] ?

= − 1
=′

=′∑
?=0

〈
[a(F)] ?

〉
A
· 2A +

A−1∑
:=−B

1
=′

=′∑
?=0

〈
[a(F)] ?

〉
:
· 2:

= − 1
2B=′

=′∑
?=0

〈
[a(F)] ?

〉
A︸                     ︷︷                     ︸

EA

· 2A+B +
A−1∑
:=−B

1
2B=′

=′∑
?=0

〈
[a(F)] ?

〉
:︸                     ︷︷                     ︸

E:

· 2:+B . (9)

Each E: is the sum of all the :-th bits, written in the extra digit’s place. It is defined by

f
E:
:
= ⊥

q
E:
extra [G] = ∃H.

(
(la

: ∧ G = H + 1 ∨ ¬la
: ∧ G = H) ∧ ∃

=H ?.qa
: [?]

)
.

Then use Proposition 17 to define Eq. (9). The multiplications by powers of 2 can be accomplished by repeated addition, as
can the summation over : . �

C. Proofs for Section 6 (From FOC[+; MOD] to Transformers)
C.1. Proof of Lemma 7

If one encoder is less deep than the other, add layers to it that compute the identity function: For the self-attention, just set
, (V) = 0, and for the FFN, set, (1) = 0 and 1 (1) = 0. In both cases, the sublayer computes the identity function thanks to
the residual connections.

Concatenate the word and position vectors:

WE(0) =
[
WE1 (0)
WE2 (0)

]
PE(?) =

[
PE1 (?)
PE2 (?)

]
.

Although we only ever concatenate layers whose self-attentions compute the identity function, we show how to concatenate
self-attentions for completeness. For each pair of multi-head self-attentions, SA(1)1 , . . . , SA(�1)

1 and SA(1)2 , . . . , SA(�2)
2 ,

create a multi-head self-attention with �1 + �2 heads:

, (ℎ,Q) =
[
,
(ℎ,Q)
1 0

]
(1 ≤ ℎ ≤ �1) , (ℎ,Q) =

[
0 ,

(ℎ−�1 ,Q)
2

]
(�1 + 1 ≤ ℎ ≤ �1 + �2)

, (ℎ,K) =
[
,
(ℎ,K)
1 0

]
, (ℎ,K) =

[
0 ,

(ℎ−�1 ,K)
2

]
, (ℎ,V) =

[
,
(ℎ,V)
1 0
0 0

]
, (ℎ,V) =

[
0 0
0 ,

(ℎ−�1 ,V)
2

]
For each FFN1 and FFN2, create a FFN:

, (1) =

[
,
(1)
1 0
0 ,

(1)
2

]
1 (1) =

[
1
(1)
1
1
(1)
2

]
, (2) =

[
,
(2)
1 0
0 ,

(2)
2

]
1 (2) =

[
1
(2)
1
1
(2)
2

]
.

14
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C.2. Proof of Lemma 6

The following lemma implies that we can always modify a FFN to cancel out its residual connection:

Lemma 19. If 5 : R3 → R3 is a FFN, there is a FFN 5− such that 5− (G) = 5 (G) − G.

Proof.

, (1)− =


, (1)

I
−I

 1 (1)− =


1 (1)

0
0


, (2)− =

[
, (2) −I I

]
1 (2)− = 1 (2) . �

To prove Lemma 6, we first prove the following slightly modified claim, by induction on subformulas:

Lemma 20. For any formula k [?] of FOC[+; MOD] which is quantifier-free with exactly one free position variable ?
and no free count variables, there is a transformer encoder ) with width 3 such that, for all F ∈ Σ∗ and ? ∈ [1, |F |],
[) (F)]3,? = I[F |= k [?]].

Then the final step will be to set [) (F)]3,0 = 0.

In the following cases, we give diagrams of FFNs rather than writing out their weight matrices. In these diagrams, a node
with a value underneath it stands for the component of the input vector that contains that value. A node is a ReLU unit,
and a node is a linear unit. Edges are connections, with their connection weights written next to them. If a unit has
nonzero bias, the bias is written next to it. When the residual connection is not cancelled out using Lemma 19, we draw the
residual connection as an edge with weight 1.

Case k = &0 (?): Construct a transformer encoder with just an input layer (! = 0):

WE(0′) =
[
I[0′ = 0]

0

]
PE(?) =

[
sin 0
cos 0

]
=

[
0
1

]
.

Then add one hidden layer, whose self-attention does nothing (, (V) = 0) and whose FFN is

0′ = 0 1

1

1

Apply Lemma 19 to cancel out the residual connection.

Case k = MODA< (?): Any function on integer positions with period < can be expressed as a linear function of a sinusoidal
PE with width 2< using a discrete Fourier series. But here we exploit ReLUs to give a more compact network. Let

WE(0) =
[
0
0

]
PE(?) =

[
sin 2c?

<

cos 2c?
<

]
.

Then add one hidden layer, whose self-attention does nothing, and whose FFN is

15
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sin 2c?
< cos 2c?

<

− cos 2c
<

sin 2cA
< cos 2cA

<

1
1−cos 2c

<

Apply Lemma 19 to cancel out the residual connection. So (using the identity cos(G − H) = cos G cos H + sin G sin H) the
output vectors are

[) (F)]∗, ? =


0
max

{
0,cos 2c (?−A )

<
−cos 2c

<

}
1−cos 2c

<


and for ? an integer, this simplifies to

[) (F)]∗, ? =
[

0
I[? ≡< A]

]
.

For example, the graph below shows the case A = 1, < = 5:

2 4 6 8 10
−1

0
1

?

[)
(F
)]

2,
?

Case k = ¬k1: By the induction hypothesis, let )1 be a transformer encoder that computes k1. Add one new layer. The
self-attention does nothing (, (V) = 0), and the FFN performs the negation:

k1

1

1

−1

Then apply Lemma 19 to cancel out the residual connection. This computes the negation in the last dimension.

Case k = k1∧k2: By the induction hypothesis, let)1 and)2 be transformer encoders that compute k1 and k2 (respectively).
By Lemma 7, we construct )1 ⊕ )2. Then we add one new layer. The self-attention does nothing (, (V) = 0), and the FFN
computes the minimum of its two inputs. In this case, we do not use Lemma 19, as we make use of the residual connection.

k1 k2

−1
1

−1

1

16
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Case k = k1 ∨ k2: The FFN computes the maximum of its two inputs:

k1 k2

1
−1

1

1

Finally, to set [) (F)]3,0 = 0, construct a transformer encoder # such that, for all ?, [# (F)]∗, ? =
[
I
[
F? ≠ CLS

] ]
, and use

Lemma 7 to form ) ⊕ # . Add a new layer whose self-attention does nothing, and whose FFN computes the minimum, just
as in the case for ∧ above.

C.3. Proof of Lemma 8

By induction on the structure of j. For simplicity, we set U = 1; since all the FFNs do not have bias, the construction will
work for any U > 0 as well.

Case 20 +
∑
8 28G8 > 0: Add a new layer whose self-attention does nothing and whose FFN (after applying Lemma 19)

computes the piecewise linear function shown at right.

G1

· · ·
G: 1

21 2:

20 21
2: −1

1

2
−2 −1

−2 −1 0 1 2
−1

0

1

20 +
∑
8 28G8

Case 20 +
∑
8 28G8 = 0: Same as above, but with the following FFN.

G1

· · ·
G: 1

21
2:

20 + 1
21 2:

21
2:

−1
1

2
−4 2 −1

−2 −1 0 1 2
−1

0

1

20 +
∑
8 28G8

Case ¬j1: Since we are using a different representation of truth values, this is different from Lemma 6.

j1

1 −1

−1 1

17
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Case j1 ∧ j2: By the induction hypothesis, there are stacks of transformer layers of widths 31 and 32, respectively, that
compute j1 and j2. Concatenate them by Lemma 7. Add a layer at the bottom whose self-attention does nothing and whose
FFN copies the input from the first half to the second half:

G1

· · ·
G: 1

· · ·
0

· · ·
0 0

· · ·

31 units 32 units

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Finally, add a layer on top whose self-attention does nothing and whose FFN computes the minimum of the outputs of the
two halves, as in the conjunction case of Lemma 6.

Case j1 ∨ j2: Same as the previous case, but compute the maximum instead of the minimum, as in the disjunction case of
Lemma 6.

D. Layer Normalization
Layer normalization shifts and scales a vector to have some learned mean and standard deviation (Ba et al., 2016). In this
appendix, we give a brief definition of layer normalization as it relates to our other definitions, and describe how to modify
the proof of Theorems 2 and 5 to take layer normalization into account.

D.1. Definition

Definition 16. Layer normalization with width 3 is a function

LN : R3 → R3

[LN(G)]8 = W8
G8 − Ḡ√

Var(G) + n
+ V8

where

Ḡ =
1
3

∑
8

G8

Var(G) = 1
3

∑
8

(G8 − Ḡ)2

and W, V ∈ R3 are learned. If � ∈ R3×=′ , we can write LN(�) by analogy with Eq. (3).

The term n is added in all implementations we are aware of for numerical stability, although the original definition (Ba et al.,
2016) has n = 0.

Then the equations for a transformer layer (Definition 5) are modified to:

Layer : R3×=
′ → R3×=′

� ↦→ �′′ where

�′ = LN(1)
(
�∑
ℎ=1

SA(ℎ) (�) + �
)

�′′ = LN(2) (FF(�′) + �′)

18
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where LN(1) and LN(2) are layer normalizations. Although some variants place layer normalization before each layer (Wang
et al., 2019; Nguyen & Salazar, 2019), we follow the original definition, which places layer normalization after the residual
connection.

D.2. Modified proof of Theorem 2

In §5, we justified the use of limited-precision, limited-range numbers by the fact that in a transformer whose activation
functions are all Lipschitz continuous, the activations are bounded (Hahn, 2020). However, layer normalization with n = 0 is
not Lipschitz continuous. Fortunately, we can show that activations are bounded even with n = 0.

Proposition 21. For any transformer encoder with layer normalization with n = 0, there exists A such that, for all ℓ, 8,
and ?, if �(ℓ)

8 ?
exists then |�(ℓ)

8 ?
| < 2A .

Proof. For any G ∈ R3 , let I8 =
G8−Ḡ√
Var(G)

. Then

1
I2
8

=

∑3
9=1 (G 9 − Ḡ)2

3 (G8 − Ḡ)2
≥ 1
3

so |I8 | ≤
√
3, and layer normalization is bounded. The fact that all other sublayers are continuous implies that all activations

are also bounded. �

As for the proof of Theorem 2 itself, defining layer normalization in FOC[+; MOD] is straightforward by Proposition 3.

D.3. Modified proof of Theorem 5

In §6, we proved Theorem 5 without layer normalization. Adding layer normalization complicates the construction
somewhat.

In the first step (computing the k8), we modify the encoding of truth values so that layer normalization has no effect. Instead
of representing a truth value or a count using a single activation, we use a pair of activations (following Chiang & Cholak
(2022)). In the first step (§6.1), we use the pair (1, 0) for true and (0, 1) for false. This makes it possible to guarantee that
activation matrices have the following property.

Definition 17. We say that a matrix � ∈ R3×=′ has row-mean ` and row-variance f if �:, ? has mean ` and variance f for
all ?. Then a function 5 : Σ∗ → R3×=′ is self-normalizing if 5 (F) has row-mean and row-variance not depending on F, and
a function 5 : R3×=′ → R3×=′ is self-normalizing if 5 (�) has row-mean and row-variance depending only on �’s row-mean
and row-variance.

Self-normalization makes it possible to set the parameters of layer normalization so that it has no effect.

Proposition 22. If 5 : R3×=′ → R3×=′ is self-normalizing then there exist V, W such that LN( 5 (�); V, W) = 5 (�).

It is easy to modify the proof of Lemma 6 for the new representation of truth values and to guarantee that the resulting
transformer encoder is self-normalizing. In particular, Lemma 7 constructs a self-normalizing )1 ⊕ )2, provided )1 and )2
are self-normalizing.

The second step (computing counting quantifiers) produces values of the form G8
=′ , which we now modify to produce pairs of

values ( G8
=′ ,−

G8
=′ ) to guarantee that activation matrices have a row-mean of zero. We can no longer guarantee that activations

matrices have known row-variance, so layer normalization will rescale activations.

Consequently, in the third step (§6.3), we use (+X,−X) for true and (−X, +X) for false, where X can be any positive number.
It is easy to show that Lemma 8 still holds.
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