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Abstract
We study tensor completion (TC) through the lens
of low-rank tensor decomposition (TD). Many TD
algorithms use fast alternating minimization meth-
ods to solve highly structured linear regression
problems at each step (e.g., for CP, Tucker, and
tensor-train decompositions). However, such alge-
braic structure is often lost in TC regression prob-
lems, making direct extensions unclear. This work
proposes a novel lifting method for approximately
solving TC regression problems using structured
TD regression algorithms as blackbox subroutines,
enabling sublinear-time methods. We analyze the
convergence rate of our approximate Richardson
iteration-based algorithm, and our empirical study
shows that it can be 100x faster than direct meth-
ods for CP completion on real-world tensors.

1. Introduction
Tensor completion (TC) is the higher-order generalization
of matrix completion. It has many applications across data
mining, machine learning, signal processing, and statistics
(see Song et al. (2019) for a detailed survey of applications).
In the TC problem, we are given a partially observed tensor
as input (i.e., only a subset of its entries is known), and the
goal is to impute the missing values. Under low-rank and
other statistical assumptions, we can recover the missing
values by minimizing a loss function over only the observed
entries.

Consider a tensor X ∈ RI1×···×IN with a subset of observed
indices Ω ⊆ [I1]× · · · × [IN ]. The general TC problem is

min
θ
LΩ(X̂(θ),X) +R(θ) , (1)

where θ are the learnable parameters, X̂(θ) ∈ RI1×···×IN is
the reconstructed tensor, LΩ is the loss function defining the
error between X̂(θ) and X on entries in Ω, andR(θ) is the
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regularization term. For brevity, we write X̂ without explicit
dependence on θ. Rank constraints can be incorporated into
(1) by including appropriate penalty terms inR(θ), e.g., by
using ℓ1 or ℓ2 regularization terms to reduce the effective
dimension (Fahrbach et al., 2022).

This work focuses on the sum of squared errors

LΩ(X̂,X) =
∑

(i1,...,iN )∈Ω

(x̂i1...iN − xi1...iN )2 . (2)

To introduce our approach, we use a running example where
X̂ = G×1 A

(1)×2 A
(2) · · · ×N A(N) is a low-rank Tucker

decomposition with core tensor G ∈ RR1×···×RN and factor
matrices A(n) ∈ RIn×Rn . We do not focus on regulariza-
tion in this paper, but our approach extends to regularized
problems, provided there exists an algorithm that accelerates
the corresponding structured and regularized objectives. For
example, Fahrbach et al. (2022) present subquadratic-time
algorithms for Kronecker ridge regression (i.e., ℓ2 regular-
ization).

In general, TC is a nonconvex and NP-hard problem (Hillar
& Lim, 2013). The special case where Ω = [I1]×· · ·× [IN ]
is the widely studied tensor decomposition (TD) problem,
for which alternating least squares (ALS) methods are often
used to compute G,A(1), . . . ,A(N).

Each ALS step fixes all but one of G,A(1), . . . ,A(N), and
optimizes the unfixed component. In the case of TD, each
ALS step is a highly structured linear regression problem.
For example, in the core tensor update for G, ALS solves

min
G′∈RR1×···×RN

∥∥∥∥∥
(

N⊗
n=1

A(n)

)
vec(G′)− vec(X)

∥∥∥∥∥
2

, (3)

where ⊗ is the Kronecker product and vec(G′) ∈ RR is the
flattened version of tensor G′, with R :=

∏N
n=1 Rn.

Diao et al. (2019) and Fahrbach et al. (2022) recently ex-
ploited the Kronecker product structure in (3) to give algo-
rithms with running times that are sublinear in the size of the
full tensor I :=

∏N
n=1 In. These approaches use leverage

score sampling to approximately solve (3).

In TC, however, only a subset of observations appear in the
loss function. Letting A =

⊗N
n=1 A

(n) and b = vec(X),
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the core tensor update becomes

vec(G)← argmin
x∈RR

∥AΩx− bΩ∥2 , (4)

where AΩ is a submatrix of A whose rows correspond to the
indices in Ω. Observe that the Kronecker product structure
in (3) no longer exists for AΩ in (4), hence fast TD methods
do not immediately extend to Ω-masked TC versions.

A natural idea to overcome the lack of structure in the Ω-
masked updates is to lift (4) to a higher-dimensional problem
by introducing variables bΩ, where Ω is the complement of
Ω, i.e., letting the unobserved entries in X be free variables.
This is a convex problem with much of the same structure
as the design matrix in the full TD problem. Further, it gives
the same solution as the TC update in (4):

(x∗,b∗
Ω
) = argmin

x,bΩ

∥Ax− b∥2 . (5)

To our knowledge, such ideas date back to Healy & Westma-
cott (1956) in the experimental design and causal inference
literature. However, it is not clear a priori that lifting is help-
ful for computational efficiency—it restores the structure
of the design matrix, but the new problem (5) is larger and
higher dimensional.

This work proposes solving (5) with a two-step procedure
called mini-ALS. Given a vector x(k) corresponding to an
iterate of a block of variables in the low-rank decomposition,
it repeats the following:

1. Set b(k)

Ω
← AΩx

(k) and b
(k)
Ω ← bΩ // lift

2. Set x(k+1) ← argminx∥Ax− b(k)∥2 // solve

Mini-ALS iterations can still be expensive since A ∈ RI×R

is a tall-and-skinny matrix (i.e., I ≫ R). However, step
two is a structured ALS for TD, so we propose solving it
approximately with row sampling, allowing us to tap into
a rich line of work on leverage score sampling for CP de-
composition (Cheng et al., 2016; Larsen & Kolda, 2022;
Bharadwaj et al., 2023), Tucker decomposition (Diao et al.,
2019; Fahrbach et al., 2022), and tensor-train decomposi-
tion (Bharadwaj et al., 2024).

Returning to the running Tucker completion example, up-
dating the core tensor in step two of mini-ALS via (3) only
requires sampling Õ(R) rows of A, which is a substantially
smaller problem. Further, we can compute b(k) lazily, i.e.,
only the entries corresponding to sampled rows. We call our
lifted iterative method approximate-mini-ALS.

1.1. Our Contributions

We summarize our main contributions as follows:

• In Section 3, we propose using the mini-ALS algorithm
for each step of ALS for TC. We show that it simulates
the preconditioned Richardson iteration (Lemma 3.5).
Our main theoretical contribution is proving that the
second step of a mini-ALS iteration can be performed
approximately. We quantify how small the approxima-
tion error must be for approximate-mini-ALS to con-
verge at the same rate as the Richardson iteration (The-
orem 3.7). This lets us to extend a recent line of work
on leverage score sampling-based TD ALS algorithms
to the TC setting.

• In Section 4, we use state-of-the-art TD ALS algo-
rithms for CP, Tucker, and tensor-train decompositions
as blackbox subroutines in Algorithm 1 to obtain novel
sampling-based TC algorithms. Hence, our lifting ap-
proach for TC also benefits from future TD algorithmic
improvements.

• In Section 5, we show that leverage score sampling is
an effective method for solving large structured regres-
sion problems via the coupled matrix problem. Then
we compare the empirical performance of our lifted al-
gorithm to direct methods for low-rank CP completion
on synthetic and real-world tensors. We observe that
mini-ALS can be orders of magnitude faster than direct
ALS methods, while achieving comparable reconstruc-
tion errors. Finally, we propose an accelerated version
with adaptive step sizes that extrapolates the trajectory
of the iterates x(k) and converges in fewer iterations.

1.2. Related Work

CP completion. Tomasi & Bro (2005) proposed an ALS
algorithm for CP completion that repeats the following two-
step process: (1) fill in the missing values using the current
CP decomposition, and (2) update one factor matrix. Their
algorithm is equivalent to running one iteration of mini-ALS
in each step of ALS. As Tomasi & Bro (2005) discuss, this
can lead to slower convergence and an increased likelihood
of converging to suboptimal local minima because of errors
introduced by the imputed missing values.

In contrast, approximate-mini-ALS runs until convergence
in each step of ALS. By doing this, we establish a connec-
tion to the Richardson iteration and build on its convergence
guarantees. Further, Tomasi & Bro (2005) explicitly fill in
all missing values using the current decomposition, whereas
we only impute missing values required by row sampling,
allowing us to achieve sublinear-time updates in the size of
the tensor. In general, iteratively fitting to imputed missing
values falls under the umbrella of expectation-maximization
(EM) algorithms (Little & Rubin, 2019, Chapter 8).

Statistical assumptions. Similar to minimizing the nu-
clear norm for matrix completion (Fazel, 2002; Candes &
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Recht, 2012), a line of research in noisy TC proposes mini-
mizing a convex relaxation of rank and identifies statistical
assumptions under which the problem is recoverable (Barak
& Moitra, 2016). Two standard assumptions are incoher-
ence and the missing-at-random assumption. In Section 3,
we discuss how these assumptions provide a bound on the
number of steps required for mini-ALS. Alternating mini-
mization approaches have also been applied in this line of
noisy TC research (Jain & Oh, 2014; Liu & Moitra, 2020).
It is also consistently observed that methods based on TD
and tensor unfoldings are more practical and computation-
ally efficient (Acar et al., 2011; Montanari & Sun, 2018;
Filipović & Jukić, 2015; Shah & Yu, 2019; 2023).

2. Preliminaries
Notation. The order of a tensor is the number of its di-
mensions N . We denote scalars by normal lowercase letters
x ∈ R, vectors by boldface lowercase letters x ∈ Rn, matri-
ces by boldface uppercase letters X ∈ Rm×n, and higher-
order tensors by boldface script letters X ∈ RI1×···×IN . We
use normal uppercase letters for the size of an index set, e.g.,
[N ] = {1, 2, . . . , N}. We define I̸=k := I/Ik for k ∈ [N ]
and similarly R̸=k:=R/Rk

. We denote the i-th entry of x by
xi, the (i, j)-th entry of X by xij , and the (i, j, k)-th entry
of a third-order tensor X by xijk.

Linear algebra. A symmetric matrix A ∈ Rn×n is pos-
itive semi-definite (PSD) if v⊤Av ≥ 0 for any v ∈ Rn.
For two symmetric matrices A, B, we use A ≼ B to in-
dicate that B −A is PSD. For a PSD matrix M ∈ Rn×n

and vector v ∈ Rn, we define ∥v∥M := (v⊤Mv)1/2. For
A ∈ Rm×n, b ∈ Rm, and Ω ⊆ [m], we use AΩ ∈ R|Ω|×n

and bΩ ∈ R|Ω| to denote the submatrix and subvector with
rows indexed by Ω. We let ⊗ denote the Kronecker product
and ⊙ denote the Khatri–Rao product.

Tensor algebra. The fibers of a tensor are the vectors ob-
tained by fixing all but one index, e.g., if X ∈ RI×J×K , the
column, row and tube fibers are x:jk, xi:k, and xij:, respec-
tively. The mode-n unfolding of a tensor X ∈ RI1×···×IN

is the matrix X(n) ∈ RIn×(I1···In−1In+1···IN ) that arranges
the mode-n fibers of X as rows of X(n) sorted lexicograph-
ically by index. The vectorization vec (X) ∈ RI1···IN of X
stacks the elements of X lexicographically by index.

For n ∈ [N ], we denote the mode-n product of a tensor
X ∈ RI1×···×IN and matrix A ∈ RJ×In by Y = X×n A,
where Y ∈ RI1×···×In−1×J×In+1×···×IN . This operation
multiplies each mode-n fiber of X by A, and is expressed
elementwise as

(X×n A)i1...in−1jin+1...iN =

In∑
in=1

xi1i2...iNajin .

The inner product of two tensors X,Y ∈ RI1×···×IN is

⟨X,Y⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2...iN yi1i2...iN .

The Frobenius norm of a tensor X is ∥X∥F =
√
⟨X,X⟩.

2.1. Tensor Decompositions

The tensor decompositions of X ∈ RI1×···×IN below can
be seen as higher-order analogs of low-rank matrix factor-
ization. We direct the reader to Kolda & Bader (2009) for a
comprehensive survey on this topic.

CP decomposition. A rank-R CP decomposition repre-
sents X with λ ∈ RR

≥0 and N factors A(n) ∈ RIn×R, for
n ∈ [N ], where each column of A(n) has unit norm. The
reconstructed tensor X̂ is defined elementwise as:

x̂i1...iN =

R∑
r=1

λr a
(1)
i1r
· · · a(N)

iNr .

Tucker decomposition. A rank-r Tucker decomposition
represents X with a core tensor G ∈ RR1×···×RN and N
factor matrices A(n) ∈ RIn×Rn , for n ∈ [N ], where r =
(R1, . . . , RN ) is the multilinear rank (Ghadiri et al., 2023a).
The reconstructed tensor X̂ = G×1 A

(1) ×2 · · · ×N A(N)

is defined elementwise as:

x̂i1...iN =

R1∑
r1=1

· · ·
RN∑

rN=1

gr1...rNa
(1)
i1r1
· · · a(N)

iNrN
.

TT decomposition. A rank-r tensor train (TT) decompo-
sition (Oseledets, 2011) represents X with N third-order
TT-cores A(n) ∈ RRn−1×In×Rn , for n ∈ [N ], using the
convention R0 = RN = 1. The reconstructed tensor X̂ is
defined elementwise as:

x̂i1...iN = A
(1)
:i1:︸︷︷︸

1×R1

A
(2)
:i2:︸︷︷︸

R1×R2

· · · A
(N−1)
:iN−1:︸ ︷︷ ︸

RN−2×RN−1

A
(N)
:iN :︸ ︷︷ ︸

RN−1×1

.

Remark 2.1. All three of these TDs are instances of the more
general tensor network framework (see Appendix A.4).

2.2. ALS Formulations

Alternating least squares (ALS) methods are the gold stan-
dard for low-rank tensor decomposition, e.g., they are the
first techniques mentioned in the MATLAB Tensor Toolbox
(Bader & Kolda, 2023). ALS cyclically minimizes the origi-
nal least-squares problem (1) with respect to one block of
factor variables while keeping all others fixed. Repeating
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this process converges to a nontrivial local optimum and re-
duces the original nonconvex problem to a series of (convex)
linear regression problems in each step (see Appendix A.1).

Updating a block of variables in an ALS step of a TD prob-
lem is often a highly structured regression problem that can
be solved very fast with problem-specific algorithms. We
describe the induced structure of each ALS update for the
tensor decomposition types above.

CP factor matrix update ≡ Khatri–Rao regression. In
each ALS step for CP decomposition, all factor matrices are
fixed except for one, say A(n). ALS solves the following
linear least-squares problem:

A(n) ← argmin
A∈RIn×R

∥∥∥∥∥∥
 N⊙

i=1,i̸=n

A(i)

A⊤ −X⊤
(n)

∥∥∥∥∥∥
F

. (6)

Then, we set λr = ∥a(n):r ∥2 for each r ∈ [R] and normalize
the columns of A(n). Each row of A(n) can be optimized
independently, so (6) solves In linear regression problems
where the design matrix is a Khatri–Rao product.

Tucker core update ≡ Kronecker regression. The core-
tensor ALS update solves the following: for A(n) fixed,

G← argmin
G′∈RR1×···×RN

∥∥∥∥∥
(

N⊗
n=1

A(n)

)
vec(G′)− vec(X)

∥∥∥∥∥
2

,

where the design matrix is a Kronecker product of the fac-
tors.

Tucker factor update ≡ Kronecker-matrix regression.
When ALS updates A(n) with all the other factor matrices
and core tensor fixed, it solves:

A(n) ← argmin
A∈RIn×Rn

∥∥∥∥∥∥
 N⊗

i=1,i̸=n

A(i)

G⊤
(n)A

⊤ −X⊤
(n)

∥∥∥∥∥∥
F

,

where G(n), X(n) are the mode-n unfoldings of G and X.
This is equivalent to solving In independent linear regres-
sion problems, where the design matrix is the product of
a Kronecker product and another matrix. It can be viewed
as solving In instances of structured but constrained linear
regression (Fahrbach et al., 2022).

TT-core update≡Kronecker regression. Given a TT de-
composition {A(n)}Nn=1 and n ∈ [N ], the left chain A<n ∈
R(I1···In−1)×Rn−1 and right chain A>n ∈ RRn×(In+1···IN )

are matrices that depend on the cores A(n′) for n′ < n and
n′ > n, respectively (see Appendix A.3 for details). When
ALS updates A(n) with all other TT-cores fixed, it solves

A(n)← argmin
B∈RRn−1×In×Rn

∥∥(A<n ⊗A⊤
>n)B

⊤
(2) −X⊤

(n)

∥∥
F ,

which is equivalent to solving In Kronecker regression prob-
lems in RI ̸=n .

3. Approximate Richardson Iteration
We now present our main techniques for reducing tensor
completion to tensor decomposition. When using ALS to
solve a TC problem, we must efficiently solve least-squares
problems

min
x
∥Px− q∥2.

The rows of the design matrix P correspond to the subset
of observations in the TC problem, which means P does
not necessarily have the structure of the design matrix in the
full TD problem.

A direct approach is to compute the closed-form solution
x∗ = (P⊤P)−1P⊤q, but computing (P⊤P)−1 is often im-
practical. Two techniques are commonly used to overcome
this: (1) iterative methods and (2) row sampling. Iterative
methods repeat the same relatively cheap per-step computa-
tion many times to approximate the original expensive com-
putation. Row sampling methods (e.g., leverage score sam-
pling) randomly pick rows of P and solve a least-squares
problem on the sampled rows to obtain an approximate solu-
tion to the original problem with high probability. Directly
computing leverage scores for a general P, however, is also
prohibitively expensive since it requires computing the same
matrix (P⊤P)−1 (see Appendix A.2 for details).

We show that our approximate-mini-ALS method is a prin-
cipled approach for tensor completion. In Section 3.1, we
prove that lifting restores the structure of the full TD ALS
update step, enabling fast least-squares methods for a larger
but equivalent problem. In Section 3.2, we show that iter-
atively solving the lifted problem (i.e., mini-ALS) is con-
nected to an iterative method called the Richardson iter-
ation (Richardson, 1911), which we can also view as a
matrix-splitting method. In other words, mini-ALS and the
Richardson iteration with a certain preconditioner give the
same sequence of iterates {x(k)}k≥0. Lastly in Section 3.3,
we prove novel convergence guarantees for approximately
solving the lifted problem (i.e., for approximate-mini-ALS).
This allows us to directly use fast leverage-score sampling al-
gorithms for CP decomposition (Cheng et al., 2016; Larsen
& Kolda, 2022; Bharadwaj et al., 2023), Tucker decompo-
sition (Diao et al., 2019; Fahrbach et al., 2022), and TT
decomposition (Bharadwaj et al., 2024) as blackbox subrou-
tines. All missing proofs are deferred to Appendix B.

3.1. Lifting to a Structured Problem

Consider the linear regression problem with P ∈ R|Ω|×R

and q ∈ R|Ω| given by

x∗ = argmin
x∈RR

∥Px− q∥2 . (7)
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If there exists a tall structured matrix A ∈ RI×R with a sub-
set of rows Ω ⊆ [I] such that AΩ = P (permutations of the
rows allowed), then we can lift (7) to a higher-dimensional
problem while preserving the optimal solution.

Lemma 3.1. Let b ∈ RI be the lifted response such that
bΩ = q and bΩ is a free variable. If

(x∗,b∗
Ω
) = argmin

x∈RR,bΩ∈RI−|Ω|
∥Ax− b∥2 , (8)

then x∗ also minimizes (7), i.e., the original linear regres-
sion problem minx∈RR ∥Px− q∥2.

Lemma 3.2. Problem 8 is a convex quadratic program.

Remark 3.3. Problem 8 is not a linear regression problem
with (structured) design matrix A because there are bΩ vari-
ables in the response. However, there is enough structure to
employ block minimization to alternate between minimizing
x and bΩ.

3.2. Iterative Methods for the Lifted Problem

Iterative methods for solving linear systems and regression
problems have a long history and have been used to speed
up several algorithms in theory and practice. The algorithms
we consider use the exact arithmetic model, but all of these
methods can be carried out with numbers with log κ/ε bits,
where κ is the condition number of the matrix (see, e.g.,
Ghadiri et al. (2023b; 2024)). There is a literature on inexact
Richardson iteration for solving linear systems, but they
require the error ε̂ to be smaller than than 1/κ, which is not
achievable with leverage-score sampling (Golub & Overton,
1988; Golub & van der Vorst, 1997).

Lemma 3.4 (Preconditioned Richardson iteration, (Lee &
Vempala, 2024, Lemma 6.1)). Consider the least-squares
problem x∗ = argminx∈RR ∥Px− q∥. Let M be a matrix
such that P⊤P ≼ M ≼ β · P⊤P for some β ≥ 1, and
consider the Richardson iteration:

x(k+1) = x(k) −M−1(P⊤Px(k) −P⊤q) .

Then, we have that

∥x(k+1) − x∗∥M ≤
(
1− 1

β

)
∥x(k) − x∗∥M .

For the rest of this section, let P̃ ∈ RI×R, q̃ ∈ RI be the
zero-masked lifted matrix and vector such that

(P̃Ω, P̃Ω) = (AΩ,0) and (q̃Ω, q̃Ω) = (bΩ,0).

We now present a key lemma showing that alternating mini-
mization between x and bΩ corresponds to preconditioned
Richardson iterations on the original least-squares problem.
Below, one can easily check that A, P̃, and q̃ in our lifted
approach satisfy this condition.

Lemma 3.5. Let A, P̃ ∈ RI×R, q̃ ∈ RI such that P̃−A
and

[
P̃ q̃

]
are orthogonal, i.e., (P̃ −A)⊤

[
P̃ q̃

]
= 0.

Then, the iterative method

q̃(k) = q̃+ (A− P̃)x(k) ,

x(k+1) = argmin
x∈RR

∥Ax− q̃(k)∥22 ,

simulates Richardson iterations with preconditioner A⊤A
for the regression problem minx ∥P̃x− q̃∥22, i.e.,

x(k+1) = x(k) − (A⊤A)−1(P̃⊤P̃x(k) − P̃⊤q̃) . (9)

Remark 3.6. In the tensor completion setting, A− P̃ van-
ishes over Ω, so q̃(k) only updates entries in Ω while main-
taining q on Ω. Thus, computing x(k+1) corresponds to

x(k+1) = argmin
x∈RR

∥Ax− q̃(k)∥22

= argmin
x∈RR

{
∥Px− q∥22 + ∥AΩ (x− x(k))∥22

}
.

3.3. Approximately Solving the Lifted Problem

We have shown that alternating minimization for the lifted
problem (8) is closely connected to preconditioned Richard-
son iteration and inherits its convergence guarantees. For
this to be useful, we need to use fast regression algorithms
for the x(k+1) updates that exploit the structure of A, i.e.,
when solving minx ∥Ax− q̃(k)∥2, where x(k+1) is the vec-
tor produced in iteration k of Algorithm 1.

This is where leverage score sampling comes in to play. We
exploit the structure of A to efficiently compute its leverage
scores, and then we solve the regression problem efficiently
but approximately.

Our next result shows how using approximate least-squares
solutions in each step of block minimization affects the con-
vergence guarantee of our lifted iterative method.
Theorem 3.7. Let A, P̃ ∈ RI×R, q̃ ∈ RI , and β ≥ 1 such
that P̃−A and

[
P̃ q̃

]
are orthogonal, and

P̃⊤P̃ ⪯ A⊤A ⪯ β · P̃⊤P̃ .

Let ε ∈ (0, 1), ε̂ ∈ [0, 1/β2) and approx-least-squares

be an algorithm that for any x̂ ∈ RR and f = q̃+(A−P̃) x̂,
computes x ∈ RR in time O(T ) such that

∥Ax− f∥22 ≤ (1 + ε̂) min
x
∥Ax− f∥22 .

Then, Algorithm 1 returns an approximate solution x̃ ∈ RR,
using approx-least-squares as a subroutine, such that

∥P̃x̃− q̃∥22 ≤

(
1 +

2ε̂

(1/β −
√
ε̂)2

)
min
x
∥P̃x− q̃∥22

+ ε ∥P̃ (P̃⊤P̃)−1P̃⊤q̃∥22 ,

in O
(

β

1−
√
ε̂β
· T log β/ε

)
time.
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Algorithm 1: approx-mini-als

Data: A, P̃ ∈ RI×R, q̃ ∈ RI , β ≥ 1, ε ∈ (0, 1),
ε̂ ∈ [0, 1/β2) with P̃⊤P̃ ⪯ A⊤A ⪯ β · P̃⊤P̃

Result: x̃ ∈ RR

1 Initialize x(0) = 0

2 for k = 0, 1, . . . ,
⌈

log(2β/ε)

2 (1/β−
√
ε̂)

⌉
do

3 Set q̃(k) ← q̃+ (A− P̃)x(k) // implicit

4 Set x(k+1) to a vector such that
∥Ax(k+1)−q̃(k)∥22 ≤ (1+ε̂) minx ∥Ax−q̃(k)∥22

5 return x(k)

Remark 3.8. To better understand Theorem 3.7, observe
that P̃⊤P̃ = P⊤P is a β-spectral approximation of A⊤A,
ε controls the reducible error ε ∥P̃x∗∥22, and (1 + ε̂) is the
error in the approximate least-square update for each x(k).

Bounding β. First, observe that in the case of TD, we
have P = A, so β = 1. More generally, if rank(A) = s ≤
min{I,R} and A = UΣV⊤ is a compressed SVD, then
A is said to satisfy the standard incoherence condition with
parameter µ (Chen, 2015) if

max
i∈[I]

∥∥e⊤i U∥∥2 ≤√µs

I
, max

r∈[R]

∥∥V⊤er
∥∥
2
≤
√

µs

R
.

The ∥e⊤i U∥22 and ∥V⊤er∥22 values are the leverage scores
of the rows and columns of A. Applying Cohen et al. (2015,
Lemma 4), if each row of A is observed with probability p
such that p ≥ cµs log s

I for some absolute constant c, then

1

2
A⊤A ⪯ 1

p
A⊤

ΩAΩ ⪯
3

2
A⊤A ,

which gives β = 2/p. Let ζ = maxi∈[I]∥ai∥2, where ai is
row i of A. Then, the αζ2-ridge leverage scores of A (i.e.,
a⊤i (A

⊤A+αζ2 ·IR)−1ai), for α ≥ 1, are at most 1/α. If p
is the observation rate, taking α = c log s

p gives the required
incoherence condition. This can be done by introducing an
ℓ2-regularization term to the TC optimization problem (i.e.,
solving a ridge regression problem in each ALS step). Note
that usually α can be chosen to be much smaller in practice.

4. Sampling Methods for Tensor Completion
We are now ready to efficiently solve the unstructured least-
squares problem (7) induced by ALS for tensor completion,
i.e., for P ∈ R|Ω|×R and observations q ∈ R|Ω|, find

x∗ = argmin
x∈RR

∥Px− q∥22 .

As in Algorithm 1, we lift this problem to higher dimension
to get a structured design matrix A, and use a known fast

algorithm for approximately solving the structured least-
squares problem in each step of approximate-mini-ALS. For
a given ε̂ ∈ (0, 1/β2), the approximate solver computes a
solution x ∈ RR in time O(Tε̂) such that

∥Ax− b∥22 ≤ (1 + ε̂) min
x
∥Ax− b∥22 .

Therefore, for a desired ε1 ∈ (0, 1), we set ε̂ = Θ(ε1/β
2)

and use a sufficiently small ε← ε2 in Theorem 3.7. Putting
everything together, Algorithm 1 finds an approximate solu-
tion x̃ ∈ RR in time O(βTε1β−2 log β

ε2
) that satisfies

∥Px̃− q∥22 ≤ (1 + ε1) ∥πP⊥q∥22 + ε2 ∥πPq∥22 , (10)

where πP and πP⊥ are the orthogonal projection matrices
into the column space and null space of P, respectively (see
Appendix A.1). With this in hand, we are ready to present
the running times of our lifted iterative method for TC prob-
lems by combining Theorem 3.7 with state-of-the-art tensor
decomposition results based on leverage score sampling.

4.1. CP Completion

Each ALS update step for CP completion solves a regression
problem where the design matrix is the Khatri–Rao product:
for A(k) ∈ RIk×R, A̸=k :=

⊙N
n=1,n̸=k A

(n) ∈ RI ̸=k×R,
and Q = (X⊤

(k))Ω ∈ R|Ω|×Ik ,

A(k) ← argmin
A∈RIk×R

∥∥(A ̸=k)Ω A⊤ −Q
∥∥

F .

The design matrix (A̸=k)Ω does not necessarily have any
structure, so a direct method relies on solving the normal
equation, which takes O(Rω +R|Ω|(R+ Ik)) time. Thus,
the running time of one round of ALS, i.e., updating all N
factors, is O(N(Rω +R2|Ω|) +R|Ω|

∑N
n=1 In).

Previous work on CP tensor decomposition (Cheng et al.,
2016; Larsen & Kolda, 2022; Bharadwaj et al., 2023) de-
veloped fast methods for efficiently computing the leverage
scores of a Khatri–Rao product matrix. In particular, Bharad-
waj et al. (2023) designed a data structure for computing
and maintaining the leverage scores of A ̸=k during ALS
updates. This approach requires sampling Õ(R/ε) rows
of A ̸=k. Due to the Khatri–Rao product structure, each
row of A ̸=k can be mapped to a sequence of one choice
from the rows of each A(n) for n ∈ [N ]\{k}. Hence, sam-
pling a row from A ̸=k is equivalent to the following: for
each n ∈ [N ]\{k}, sample a row from A(n) according
to some conditional distribution given sampled rows from
A(1), . . . ,A(n−1), and then compute the Hadamard product
of N−1 sampled rows. Maintaining the full In-dimensional
vector for a conditional probability for each n is costly, so
Bharadwaj et al. (2023) developed a binary tree-based data
structure to speed up leverage-score sampling for A ̸=k.
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Applying Bharadwaj et al. (2023, Corollary 3.3), one round
of ALS runs in time Õ(ε−1

∑N
n=1

(
InR

2 +NR3
)
). Using

their CP TD algorithm as the approximate solver in Algo-
rithm 1, and combining its guarantee with Theorem 3.7, we
can extend their approach to CP completion.

Corollary 4.1. There is an ALS CP completion algorithm
such that (i) after a factor matrix update, each row of A(n)

satisfies (10), and (ii) the total running time of one round is

Õ

(
β2

ε1

N∑
n=1

(
InR

2 +NR3
)
log

1

ε2

)
.

Note that there is no dependence on |Ω| in the running time
due to leverage score sampling, i.e., it runs in sublinear time.

4.2. Tucker Completion

Fahrbach et al. (2022) designed block-sketching techniques
and fast Kronecker product-matrix multiplication algorithms
to exploit the ALS structure for Tucker decomposition.

4.2.1. CORE TENSOR UPDATE

Recall that for a Tucker decomposition we use the notation
I :=

∏
n∈[N ] In and R :=

∏
n∈[N ] Rn. The ALS core

tensor update in the Tucker completion problem is

G← argmin
G′∈RR1×···×RN

∥∥∥∥∥
(

N⊗
n=1

A(n)

)
Ω

vec(G′)− vec(X)Ω

∥∥∥∥∥
2

.

The design matrix above restricted to Ω is exactly P in our
general setup.

We compare the running times of the direct method and our
lifting approach. In the former, we can compute an exact
solution to a least-squares problem x∗ = (P⊤P)−1P⊤q in
time O(|Ω|R2 +Rω).

To achieve a fast lifted method, we solve the second step of
Algorithm 1 using the leverage score sampling-based core
tensor update algorithm in (Fahrbach et al., 2022, Theorem
1.2) with running time

Õ

(
N∑

n=1

(
InRn +

Rω
nN

2

ε2

)
+

R2−θ∗

ε

)
,

where θ∗ > 0 is an optimizable constant depending on
{Rn}n∈[N ]. Using this as the approx-least-squares sub-
routine in Theorem 3.7, we achieve the following.

Corollary 4.2. There is an algorithm that computes an ALS
Tucker completion core tensor update satisfying (10) in time

Õ

((
C+

β2R2−θ∗

ε1

)
β log

1

ε2

)
, (11)

where C :=
∑N

n=1(InRn + β4Rω
nN

2ε−2
1 ).

4.2.2. FACTOR MATRIX UPDATE

The ALS factor matrix update for A(k) in the Tucker com-
pletion problem is

A(k) ← argmin
A∈RIk×Rk

∥∥∥∥∥∥
 N⊗

n=1,n̸=k

A(n)

G⊤
(k)


Ω

A⊤−Q

∥∥∥∥∥∥
F

,

where Q = (X⊤
(k))Ω ∈ R|Ω|×Ik is a sparse matrix of ob-

servations. The running time of a direct method that solves
the normal equation is O(Rω

k + Rk|Ω|(R̸=k + Rk + Ik)),
where R̸=k = R/Rk.

The running time of the sampling-based factor-matrix up-
date for A(k) in Fahrbach et al. (2022, Theorem 1.2) for the
full decomposition problem is

Õ

(
N∑

n=1

(
InRn +

Rω
nN

2

ε2
+ IkRRn

)
+

IkR
2−θ∗

̸=k

ε

)
.

Combining this result with Theorem 3.7, Algorithm 1 has
the following running time for a factor matrix update.

Corollary 4.3. There is an algorithm that computes an ALS
Tucker completion factor matrix update for A(k), with each
row of A(k) satisfying (10), in time

Õ

((
C+

β2IkR
2−θ∗
̸=k

ε1
+ IkR

∑N
n=1 Rn

)
β log 1

ε2

)
,

where C =
∑N

n=1(InRn + β4Rω
nN

2ε−2
1 ).

4.3. TT Completion

Each ALS step for TT decomposition solves the following
least-squares problem with a Kronecker product-type design
matrix: for A ̸=k := A<k ⊗ A⊤

>k ∈ RI ̸=k×(Rk−1Rk) and
Q = (X⊤

(k))Ω ∈ R|Ω|×Ik ,

A(k) ← argmin
B∈RRk−1×Ik×Rk

∥∥(A ̸=k
)
Ω
(B(2))

⊤ −Q
∥∥

F
.

Solving this directly with the normal equation takes O(R̄ω
k +

R̄k|Ω|(R̄k + Ik)) time for R̄k := Rk−1Rk. Thus, the time
for one round of ALS is O(

∑N
n=1(R̄

ω
n+R̄n|Ω|(R̄n+In))).

In contrast, Bharadwaj et al. (2024, Corollary 4.4) show that
one round of approximate TT-core updates, if Rn = R for
all n ∈ [N−1], can run in time Õ(R4ε−1

∑N
n=1(N + In)).

See Appendix C for technical details.

Corollary 4.4. There is an ALS TT completion algorithm
such that (i) after a TT-core update, each row fiber of A(n)

satisfies (10), and (ii) the total running time of one round is

Õ

(
β2R4

ε1

N∑
n=1

(N + In) log
1

ε2

)
.
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5. Experiments
In this section, we study the empirical performance of our
algorithm and compare it to direct and expectation maxi-
mization (EM) methods for a coupled matrix problem and
CP completion tasks.1

5.1. Warm-Up: Coupled Matrix Problem

First we consider the coupled matrix problem

AXB⊤ +CYD⊤ = E ,

where A,B,C,D ∈ Rn×d are given, X,Y ∈ Rd×d are
unknown, and E ∈ Rn×n is a matrix with half of its entries
randomly revealed (Baksalary & Kala, 1980). For fixed Y,
we compute X by solving the Kronecker regression problem

argmin
X∈Rd×d

∥(B⊗A) vec(X)− vec(E−CYD⊤)∥2 . (12)

The matrix Y can be updated by solving a similar regression
problem. Therefore, we can apply an alternating minimiza-
tion algorithm to compute X and Y. For these experiments,
we initialize X = Y = I. We present the results in Figure 1,
which are averaged over five trials.

Data generation. The entries of A,B,C,D,X,Y are
sampled independently from a uniform distribution on [0, 1),
and then we set E← AXB⊤ +CYD⊤. We consider the
setting where half of the entries of E are observed (chosen
uniformly at random). We set n = 2000 and d = 10. Note
that since we observe a subset of entries of E, the Kronecker
regression structure is lost.

Algorithms. We compare the direct, mini-als, and
approximate-mini-als methods. The latter two use adap-
tive step sizes based on the trajectory of the iterates x(k) (see
Appendix D.1.2 for details). direct solves the normal equa-
tion in each ALS step and runs in O(|Ω|R2+R3) time since
it computes (P⊤P)−1. mini-als is Algorithm 1 with ε̂ =
0 and ε > 0. mini-als uses the Kronecker product proper-
ties ((B⊗A)⊤(B⊗A))−1 = (B⊤B)−1⊗ (A⊤A)−1 and
(B ⊗A) vec(X) = vec(AXB⊤) for improved efficiency.
approximate-mini-als uses leverage score sampling for
Kronecker products similar to Fahrbach et al. (2022); Diao
et al. (2019), which is a direct application of Corollary 4.2.
For leverage score sampling, we sample 1% of rows in each
iteration of approximate-mini-als.

Results. The left plot in Figure 1 shows the total running
time of these three algorithms across all ALS iterations. The
right plots shows the mean squared error (MSE) at each
step of ALS. Since approximate-mini-als is stochastic, it

1The code is available at https://github.com/fahrbach/
fast-tensor-completion.

Figure 1. Coupled matrix results for E ∈ Rn×n, X,Y ∈ Rd×d

with n = 2000 and d = 10 that compare the direct method, mini-
ALS, and approximate-mini-ALS via leverage score sampling.

does not necessarily attain the minimal error in the matrix’s
kernel space. i.e., the first term on the right-hand side of
(10) can exceed the minimum error by a factor of (1 + ε),
which allows it to follow a different convergence path and
achieve a lower MSE than the other methods around step 15
of ALS.

5.2. CP Completion

Now we compare methods for the CP completion task. For
a given tensor X and sample ratio p ∈ [0, 1], let XΩ be a
partially observed tensor with a random p fraction of entries
revealed. We fit XΩ with a rank-R CP decomposition by
minimizing the training relative reconstruction error (RRE)
∥(X̂−X)Ω∥F/∥XΩ∥F using different ALS algorithms.

Datasets. We consider two real-world tensors. CARDIAC-
MRI is a 256×256×14×20 tensor of MRI measurements in-
dexed by (x, y, z, t) where (x, y, z) is a point in space and t
corresponds to time. HYPERSPECTRAL is 1024×1344×33
tensor of time-lapse hyperspectral radiance images (Nasci-
mento et al., 2016). We also consider synthetic low-rank CP
and Tucker tensors in Appendix D.1.1.

Algorithms. We compare direct, parafac, mini-als,
and accelerated-mini-als methods. direct solves the
normal equation in each ALS step for the original problem
of the form (4) and has running time O(|Ω|R2 +R3) since
it computes (A⊤

ΩAΩ)
−1. mini-als is our lifting approach

in Algorithm 1 with ε̂ = 0 and ε > 0. parafac is the EM
algorithm of Tomasi & Bro (2005), which is equivalent to
running Algorithm 1 for exactly one iteration in each step of
the ALS algorithm. accelerated-mini-als uses adaptive
step sizes based on the trajectory of the iterates x(k).

Results. In Figure 2, we present plots for CARDIAC-MRI
in the top row and HYPERSPECTRAL in the bottom row.

• In the first column, we set p = 0.1 and sweep over the
rank R using direct to demonstrate how the train RRE
(solid line) and test RRE ∥X̂−X∥F/∥X∥F (dashed line)
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Figure 2. Algorithm comparison for a low-rank CP completion task on the CARDIAC-MRI and HYPERSPECTRAL tensor datasets. The first
column illustrates convergence rates and relative reconstruction error (RRE) of the ALS algorithm for various CP-decomposition ranks.
The second column plots RRE over ALS steps for direct, parafac, and our method (mini-als) under different ε values. The third
column shows total running time of these algorithms at varying sample ratios, i.e., number of observed entries. Finally, the fourth column
displays total running times for direct, parafac, and accelerated-min-als (instead of mini-als) across different ε settings.

decrease as a function of R and the ALS step count.
Note that the test RRE is the loss on the entire (mostly
unobserved) tensor, and is slightly above the train RRE
curves at all times.

• In the second column, we fix the parameters (p,R) =
(0.1, 16) and study the solution quality of mini-als for
different values of ε compared to direct and parafac.
As ε decreases, we recover solutions in each step of
ALS that are as good as direct, which agrees with the
claim that lifting simulates the preconditioned Richard-
son iteration (Lemma 3.5).

• In the third column, we sweep over p for R = 16 and
plot the total running time of direct, parafac, and
mini-als for 10 rounds of ALS. The running time of
direct increases linearly in p ∝ |Ω| as expected. In-
terestingly, the running time of mini-als decreases as
|Ω| increases, for ε < 0.1, since the lifted (structured)
matrix A⊤A becomes a better preconditioner for the
TC design matrix AΩ (i.e., β → 1 as p → 1). This
means mini-als needs fewer iterations to converge.
Finally, parafac performs one mini-ALS iteration in
each ALS step and is therefore faster but converges at
a slower rate.

• In the fourth column, we compare the total running
time of the accelerated-mini-als algorithm (dash-
dot lines) to mini-als (third column). Our accelerated
method extrapolates the trajectory of the iterates x(k)

during mini-ALS using a geometric series, which al-
lows us to solve collinear iterates in one step. We

illustrate this idea with Figure 4 in Appendix D.1.2.
accelerated-mini-als achieves better solution qual-
ity than mini-als for a given ε and always runs faster,
especially for small values of p.

6. Conclusion
This work introduces a novel lifting approach for tensor com-
pletion. We build on fast sketching-based TD algorithms as
ALS subroutines, extending their guarantees to the TC set-
ting and establishing novel connections to iterative methods.
We prove guarantees for the convergence rate of an approxi-
mate version of the Richardson iteration, and we study how
these algorithms perform in practice on real-world tensors.
One interesting future direction is to analyze the speedup
that adaptive step sizes give in accelerated-mini-als.
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A. Missing Details for Section 2
A.1. Least-Squares Linear Regression

For a design matrix A ∈ Rn×d and response b ∈ Rn, consider the least-squares problem

x∗ = argmin
x∈Rd

∥Ax− b∥2 .

The solution x∗ can be obtained by solving the normal equation A⊤Ax∗ = A⊤b. Therefore, x∗ = (A⊤A)−1A⊤b. If
A⊤A is singular, then we can use the pseudoinverse A+.

The orthogonal projection matrix πA : Rn → Rn onto the image space of A is defined by πA = A (A⊤A)−1A⊤, and
satisfies π2

A = πA and ∥πAv∥2 ≤ ∥v∥2 for any v ∈ Rn. Recall that any v ∈ Rn can be uniquely decomposed as
v = πAv + πA⊥v, where πA⊥ = In − πA is the orthogonal projection to the orthogonal subspace of colsp(A).

Given b = πAb + πA⊥b, the first term is the reducible error by regressing b on x, i.e., taking the optimum x∗ so that
Ax∗ = πAb. The second term πA⊥b is the irreducible error, i.e., min ∥Ax− b∥2 = ∥πA⊥b∥2.

A.2. Leverage Score Sampling for Tensor Decomposition

ALS formulations show how each tensor decomposition step reduces to solving a least-squares problem of the form
minx ∥Ax− b∥2 with a highly structured A. While we can find the optimum in closed form via (A⊤A)+A⊤b, matrix A
has I = I1 · · · IN rows corresponding to each entry of the tensor (i.e., it is a tall skinny matrix), which can make using the
normal equation challenging in practice.

Randomized sketching methods are a popular approach to approximately solving this problem with faster running times
with high probability. In general, these approach sample rows of A according to the probability distribution defined by the
leverage scores of rows, resulting in a random sketching matrix S whose height is much smaller than that of A. For a matrix
A ∈ RI×R with (I ≫ R), the leverage scores of A is the vector ℓ ∈ [0, 1]I defined by

ℓi
def
=
(
A (A⊤A)+A⊤)

ii
.

Then, for a given ε, δ ∈ (0, 1), the sketching algorithm samples Õ(R/εδ) many rows, where the i-th row is drawn with
probability ℓi/

∑
i ℓi = ℓi/rank (A). With probability at least 1− δ, we can guarantee that

min
x
∥SAx− Sb∥2 ≤ (1 + ε) min

x
∥Ax− b∥2 .

The reduced number of rows in SA leads to better running times for the least-squares solves. However, naı̈vely computing
leverage scores takes as long as computing the closed-form optimum since we need to compute (A⊤A)+. This is where the
structure of the design matrix A comes in to play, i.e., to speed up the leverage score computations.

A.3. Tensor-Train Decomposition

Given a tensor-train (TT) decomposition {A(n)}Nn=1 and index n ∈ [N ], define the left chain A<n ∈ R(I1···In−1)×Rn−1

and the right chain A>n ∈ RRn×(In+1···IN ) as:

a<n(i1 . . . in−1, rn−1) =
∑

r0,...,rn−1

n−1∏
k=1

a
(k)
rk−1ikrk

a>n(rn, in+1 . . . iN ) =
∑

rn+1,...,rN

N∏
k=n+1

a
(k)
rk−1ikrk

,

where for any is ∈ [Is] with s( ̸= n) ∈ [N ], i1 . . . in−1 := 1+
∑n−1

k=1(ik−1)
∏k−1

j=1 Ij and in+1 . . . iN := 1+
∑N

k=n+1(ik−
1)
∏k−1

j=n+1 Ij . When ALS optimizes A(n) with all other TT-cores fixed, it solves the regression problem:

A(n)← argmin
B∈RRn−1×In×Rn

∥∥(A<n ⊗A⊤
>n)B

⊤
(2) −X⊤

(n)

∥∥
F ,

which is equivalent to solving In Kronecker regression problems in R
∏

k ̸=n Ik .
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A.4. Tensor Networks

A tensor network (TN) is a powerful framework that can represent any factorization of a tensor, so it can recover the three
decompositions above as special cases. A TN decomposition TN(A(1), . . . ,A(N)) represents a given tensor X with N

tensors A(1), . . . ,A(N) and a tensor diagram. As in the above decompositions, the goal is to compute

argmin
A(1),...,A(N)

∥X− TN(A(1), . . . ,A(N))∥2F .

A tensor diagram2 consists of nodes with dangling edges, where a node indicates a tensor, and its dangling edge represents
a mode, so that the number of dangling edges is the order of the tensor. For example, a node without an edge indicates a
scalar, one with one dangling edge is a vector, and one with two dangling edges is a matrix.

When two dangling edges of two nodes are connected, we say that the two tensors are contracted along that mode (i.e., a
mode product of those two tensors). For example, when a node with two dangling edges shares one edge with another node
with one dangling edge, it indicates a matrix-vector multiplication. Hence, the number of unmatched dangling edges in a
tensor diagram corresponds to the order of its representing tensor.

A notable special case is a fully-connected tensor network (FCTN) (Zheng et al., 2021) decomposition. It consists of N
tensors of the same order, where in its tensor diagram, all pairs of nodes are connected as its name suggests.

ALS for TN decomposition. Given a TN decomposition {A(n)}n∈[N ], when ALS optimizes a tensor A(n) with all others
fixed, it solves a linear regression problem of the form

A(n) ← argmin
B

∥A ̸=nB−X∥F ,

where A ̸=n is an appropriate matricization depending on A(1), . . . ,A(n−1),A(n+1), . . . ,A(N), and B and X are suitable
matricizations of B and X, respectively. Structure of A ̸=n can be specified through a new tensor diagram obtained by
removing the node of A(n) from the original tensor network diagram.

Just as the ALS approaches for other decomposition algorithms, Malik et al. (2022) proposed a sampling-based approach
via leverage scores. First of all, they pointed out that A⊤

̸=nA ̸=n can be efficiently computed by exploiting inherent structure
of A ̸=n (i.e., contract a series of matched edges in a tensor diagram in an appropriate order). They then presented a
leverage-score sampling method that draws rows of A ̸=n without materializing a full probability vector, and in spirit this
approach is similar to one used for the CP decomposition in Section 4.1.

Other tensor decompositions. We also discuss other important special cases of TN decompositions including the tensor
ring (TR) (Zhao et al., 2016) and tensor wheel (TW) (Wu et al., 2022) decompositions. Both decompositions can be
succinctly described through tensor diagram notation.

A TR decomposition consists of N tensors A(1), . . . ,A(N), where for each k ∈ [N ], the node of A(k) is connected to the
two neighboring nodes of A(k−1) and A(k+1) (precisely, the superscripts here refer to modulo with respect to N ) so that
the resulting tensor diagram looks exactly like a ring. Since a fast TR decomposition through leverage-score sampling is
facilitated by Malik & Becker (2021), our approach of lifting and completion can be straightforwardly applied to the TR
decomposition.

A TW decomposition consists of one core tensor C and N factor tensors A(1), . . . ,A(N). As its name suggests, its tensor
diagram is essentially that of the tensor ring (consisting of N factor tensors) with the node representing C connected to all
factor tensors. Thanks to a recent work of Wang et al. (2024) using leverage-score sampling for the TW decomposition, our
approach can be readily applied as well.

The t-SVD (Kilmer & Martin, 2011) and t-CUR (Tarzanagh & Michailidis, 2018) decompositions for third-order tensors
that have been applied to spatiotemporal data. They factor a tensor via the t-product into three tensors; in the case of t-SVD,
one of these factors is f-diagonal (see Kilmer & Martin (2011) for definitions). Tarzanagh & Michailidis (2018) propose fast,
sampling-based algorithms for t-product–based tensor decompositions. These algorithms can be combined with our lifting
method and thus extended to the tensor completion setting.

2We refer readers to https://tensornetwork.org/diagrams/ for more details.
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B. Missing Analysis for Section 3
B.1. Proof of Lemma 3.1

Lemma 3.1. Let b ∈ RI be the lifted response such that bΩ = q and bΩ is a free variable. If

(x∗,b∗
Ω
) = argmin

x∈RR,bΩ∈RI−|Ω|
∥Ax− b∥2 , (8)

then x∗ also minimizes (7), i.e., the original linear regression problem minx∈RR ∥Px− q∥2.

Proof. For any x, we have
∥Ax− b∥22 = ∥AΩx− bΩ∥22 + ∥AΩx− bΩ∥

2
2 ,

so
min
x
∥Px− q∥22 ≤ min

x,bΩ

∥Ax− b∥22 .

Moreover, for any x, taking bΩ = AΩx gives us ∥AΩx− bΩ∥22 = 0, which implies that

min
x
∥Px− q∥22 ≥ min

x,bΩ

∥Ax− b∥22 .

Therefore,
min
x
∥Px− q∥22 = min

x,bΩ

∥Ax− b∥22 ,

and x∗ also minimizes (7).

B.2. Proof of Lemma 3.2

Lemma 3.2. Problem 8 is a convex quadratic program.

Proof. Since q̃ ∈ RI is defined as q̃Ω = bΩ and q̃Ω = 0, we can write (8) in the following equivalent manner:

(x∗,b∗
Ω
) = argmin

x∈RR,bΩ∈RI−|Ω|

∥∥∥∥[A −I:,Ω
] [ x

bΩ

]
− q̃

∥∥∥∥2
2

,

where I is the I × I identity matrix.

B.3. Proof of Lemma 3.5

Lemma 3.5. Let A, P̃ ∈ RI×R, q̃ ∈ RI such that P̃−A and
[
P̃ q̃

]
are orthogonal, i.e., (P̃−A)⊤

[
P̃ q̃

]
= 0. Then,

the iterative method

q̃(k) = q̃+ (A− P̃)x(k) ,

x(k+1) = argmin
x∈RR

∥Ax− q̃(k)∥22 ,

simulates Richardson iterations with preconditioner A⊤A for the regression problem minx ∥P̃x− q̃∥22, i.e.,

x(k+1) = x(k) − (A⊤A)−1(P̃⊤P̃x(k) − P̃⊤q̃) . (9)

Proof. Assume that A⊤A is full rank. Solving the normal equation for x(k+1),

x(k+1) = (A⊤A)−1A⊤q̃(k)

= (A⊤A)−1A⊤(q̃+ (A− P̃)x(k))

= x(k) − (A⊤A)−1A⊤(P̃x(k) − q̃) .

14
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Since P̃−A and
[
P̃ q̃

]
are orthogonal,

A⊤(P̃x(k) − q̃) =
(
P̃− (P̃−A)

)⊤[
P̃ q̃

] [x(k)

−1

]
= P̃⊤(P̃x(k) − q̃) .

Therefore,
x(k+1) = x(k) − (A⊤A)−1(P̃⊤P̃x(k) − P̃⊤q̃) ,

which completes the proof.

B.4. Proof of Theorem 3.7

Theorem 3.7. Let A, P̃ ∈ RI×R, q̃ ∈ RI , and β ≥ 1 such that P̃−A and
[
P̃ q̃

]
are orthogonal, and

P̃⊤P̃ ⪯ A⊤A ⪯ β · P̃⊤P̃ .

Let ε ∈ (0, 1), ε̂ ∈ [0, 1/β2) and approx-least-squares be an algorithm that for any x̂ ∈ RR and f = q̃+ (A− P̃) x̂,
computes x ∈ RR in time O(T ) such that

∥Ax− f∥22 ≤ (1 + ε̂) min
x
∥Ax− f∥22 .

Then, Algorithm 1 returns an approximate solution x̃ ∈ RR, using approx-least-squares as a subroutine, such that

∥P̃x̃− q̃∥22 ≤

(
1 +

2ε̂

(1/β −
√
ε̂)2

)
min
x
∥P̃x− q̃∥22

+ ε ∥P̃ (P̃⊤P̃)−1P̃⊤q̃∥22 ,

in O
(

β

1−
√
ε̂β
· T log β/ε

)
time.

Proof. We show that Algorithm 1 gives the desired output. Suppose approx-least-squares yields x(k+1) for given inputs
A, P̃, q̃, and q̃(k) (i.e., x̂← x(k), f ← q̃(k), and x← x(k+1)), which satisfies

∥Ax(k+1) − q̃(k)∥22 ≤ (1 + ε̂) min
x
∥Ax− q̃(k)∥22 = (1 + ε̂) ∥πA⊥ q̃(k)∥22 .

We can also decompose the LHS using q̃(k) = πAq̃(k) + πA⊥ q̃(k) as follows:

∥Ax(k+1) − q̃(k)∥22 = ∥Ax(k+1) − πAq̃(k)∥22 + ∥πA⊥ q̃(k)∥22 .

Combining the above, we get
∥Ax(k+1) − πAq̃(k)∥22 ≤ ε̂ ∥πA⊥ q̃(k)∥22 .

Denoting x∗ = (P̃⊤P̃)−1P̃⊤q̃ = argminx ∥Bx− q̃∥2 and using the triangle inequality,

∥Ax(k+1) −Ax∗∥2 ≤ ∥Ax(k+1) − πAq̃(k)∥2 + ∥πAq̃(k) −Ax∗∥2
≤
√
ε̂ ∥πA⊥ q̃(k)∥2 + ∥πAq̃(k) −Ax∗∥2 . (13)

We now bound each term in the RHS. As for the second term, since q̃(k) = q̃+ (A− P̃)x(k) and (P̃−A)⊤
[
P̃ q̃

]
= 0,

by Lemma 3.5,

(A⊤A)−1A⊤q̃(k) = argmin
x

∥Ax− q̃(k)∥2

= x(k) − (A⊤A)−1(P̃⊤P̃x(k) − P̃⊤q̃) ,
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which is exactly a Richardson iteration with preconditioner M ← A⊤A in Lemma 3.4 (satisfying P̃⊤P̃ ⪯ A⊤A ⪯
β P̃⊤P̃). Thus, ∥(A⊤A)−1A⊤q̃(k) − x∗∥A⊤A ≤ (1− β−1) ∥x(k) − x∗∥A⊤A, and

∥πAq̃(k) −Ax∗∥2 ≤
(
1− 1

β

)
∥Ax(k) −Ax∗∥2 . (14)

Regarding the first term in (13), since Ax(k) is in the column space of A,

πA⊥ q̃(k) = πA⊥
(
q̃+ (A−B)x(k)

)
= πA⊥(q̃− P̃x(k)) .

Therefore,

∥πA⊥ q̃(k)∥22 ≤ ∥q̃− P̃x(k)∥22
= ∥P̃x∗ − P̃x(k)∥22 +min

x
∥P̃x− q̃∥22

≤ ∥Ax∗ −Ax(k)∥22 +min
x
∥P̃x− q̃∥22 ,

where the last inequality follows from P̃⊤P̃ ⪯ A⊤A. Thus,

∥πA⊥ q̃(k)∥2 ≤ ∥Ax∗ −Ax(k)∥2 +min
x
∥P̃x− q̃∥2 . (15)

Combining (13), (14), and (15), we have

∥Ax(k+1) −Ax∗∥2 ≤
(
1− 1

β
+
√
ε̂

)
∥Ax∗ −Ax(k)∥2 +

√
ε̂ min

x
∥P̃x− q̃∥2 .

Denoting α = 1− 1
β +
√
ε̂ , by induction, we have

∥Ax(k) −Ax∗∥2 ≤ αk ∥Ax∗ −Ax(0)∥2 + (1 + α+ α2 + · · ·+ αk−1)×
√
ε̂ min

x
∥P̃x− q̃∥2

= αk ∥Ax∗ −Ax(0)∥2 +
1− αk

1− α
×
√
ε̂ min

x
∥P̃x− q̃∥2 . (16)

We also have

∥P̃x(k) − q̃∥22 = ∥P̃x(k) − πP̃q̃∥
2
2 + ∥πP̃⊥ q̃∥22

= ∥P̃x(k) − P̃x∗∥22 +min
x
∥P̃x− q̃∥22 . (17)

We then bound the first term by using P̃⊤P̃ ⪯ A⊤A ⪯ β P̃⊤P̃ and (16) as follows:

∥P̃x(k) − P̃x∗∥22 ≤ ∥Ax(k) −Ax∗∥22

≤ 2α2k ∥Ax∗ −Ax(0)∥22 + 2

(
1− αk

1− α

)2

× ε̂ min
x
∥P̃x− q̃∥22

≤ 2βα2k ∥P̃x∗ − P̃x(0)∥22 + 2

(
1− αk

1− α

)2

× ε̂ min
x
∥P̃x− q̃∥22 .

Putting this bound back into (17),

∥P̃x(k) − q̃∥22 ≤ 2βα2k ∥P̃x∗ − P̃x(0)∥22 +

(
1 + 2ε̂

(
1− αk

1− α

)2
)

min
x
∥P̃x− q̃∥22 .

Setting

k =

⌈
log(2β/ε)

2 (1/β −
√
ε̂)

⌉
,

we have

∥P̃x(k) − q̃∥22 ≤ ε ∥P̃x∗ − P̃x(0)∥22 +

(
1 +

2ε̂

(1/β −
√
ε̂)2

)
min
x
∥P̃x− q̃∥22 ,

which completes the proof with x(0) = 0.
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C. Additional Details for Section 4
Bharadwaj et al. (2024) proposed a sampling-based ALS algorithm that relies a canonical form of the TT decomposition
with respect to the index k. Any TT decomposition can be converted to this form through a QR decomposition, which
ensures that (A ̸=k)⊤A ̸=k = IRk−1Rk

. It follows that the leverage scores of A ̸=k are simply the diagonal entries of

A ̸=k(A ̸=k)⊤ = (A<kA
⊤
<k)⊗ (A⊤

>kA>k).

It follows from properties of the Kronecker product that

ℓi̸=k(A ̸=k) = ℓi<k
(A<k) · ℓi>k

(A⊤
>k) ,

where i̸=k = i1 · · · ik−1ik+1 · · · iN , i<k = i1 · · · ik−1, and i>k = ik+1 · · · iN (see Appendix A.3 for definition). Therefore,
efficient leverage score sampling for A ̸=k reduces to that for A<k and A>k. To this end, Bharadwaj et al. (2024) adopt an
approach similar to Bharadwaj et al. (2023) for leverage score-based CP decomposition. Each row of A<k corresponds to a
series of one slice for each third-order tensor A(n) for n < k, which results in a series of conditional sampling steps using a
data structure adapted from the one used for CP decomposition.

D. Additional Details for Section 5
All experiments are implemented with NumPy (Harris et al., 2020) and Tensorly (Kossaifi et al., 2019) on an Apple M2 chip
with 8 GB of RAM.

D.1. CP Completion

D.1.1. SYNTHETIC TENSORS

We run the same set of experiments as in Section 5 on two different random low-rank tensors:

• RANDOM-CP is a 100× 100× 100 tensor formed by reconstructing a random rank-16 CP decomposition.

• RANDOM-TUCKER is a 100×100×100 tensor formed by reconstructing a random rank-(4, 4, 4) Tucker decomposition.

Figure 3. Algorithm comparison for a low-rank CP completion task on the RANDOM-CP and RANDOM-TUCKER tensor datasets.

D.1.2. ACCELERATED METHODS

We explain how to accelerate the Richardson iteration.
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Figure 4. In the one-variable case, our approach proceeds in the following order: (x(0), b
(0)

Ω
) → (x(1), b

(0)

Ω
) → (x(1), b

(1)

Ω
) → · · · .

1. For odd iterations (e.g., the first iteration), run mini-ALS normally.

2. For even iterations, compute x̂(k+1) using normal mini-ALS, but then set

x(k+1) = x(k) +
1

1− α

(
x̂(k+1) − x(k)

)
,

where α = ∥x̂(k+1)−x(k)∥2

∥x(k)−x(k−1)∥2
.

Note that setting α = 0 is equivalent to running mini-ALS normally. We explain the intuition behind this accelration with
the example in Figure 4, which illustrates the case where x and bΩ both have only one variable. As mentioned previously, the
lifted problem is a convex quadratic problem (see Lemma 3.2), and the iterations of mini-ALS alternate between optimizing
x and optimizing bΩ. In Figure 4, the star (⋆) denotes the optimal point, and the ellipses denote the level sets of the quadratic
function. In the steps where we optimize x, we search for the point on the line that is parallel to the x axis that crosses our
current point and touches the smallest ellipse among the points on the line. Similarly, when we update bΩ we search on the
line that is parallel to the bΩ axis.

Following the points in Figure 4, one can see that the points obtained through our iterations in the one-variable case form
similar triangles, where the ratio of corresponding sides for every two consecutive triangles are the same. Therefore, if we
denote the side length of the first triangle with 1, then the side length for the next triangles are α, α2, α3, . . .. Using the
notation in Figure 4, α = ℓ(2)

ℓ(1)
. The sum over this geometric series is equal to 1

1−α , which inspires our adaptive step size in
even iterations.

Note that in the one-variable case, we can recover the optimal solution with only two iterations as the lines connecting
(x(k), b

(k−1)

Ω
) go through the optimal solution. While this does not necessarily hold in higher-dimensional settings,

our experiments demonstrate that acceleration improves the number of iterations and the running time of our approach
significantly, especially when the number of observed entries are small (i.e., when β is large).
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