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Abstract

Diffusion model based language-guided image editing has achieved great suc-
cess recently. However, existing state-of-the-art diffusion models struggle with
rendering correct text and text style during generation. To tackle this problem,
we propose a universal self-supervised text editing diffusion model (DiffUTE),
which aims to replace or modify words in the source image with another one while
maintaining its realistic appearance. Specifically, we build our model on a diffusion
model and carefully modify the network structure to enable the model for drawing
multilingual characters with the help of glyph and position information. Moreover,
we design a self-supervised learning framework to leverage large amounts of web
data to improve the representation ability of the model. Experimental results show
that our method achieves an impressive performance and enables controllable
editing on in-the-wild images with high fidelity. Our code will be avaliable in
https://github.com/chenhaoxing/DiffUTE.

1 Introduction

Due to the significant progress of social media platforms and artificial intelligence |Xu et al.|[2022a],
Gu et al.|[2023]], Zhang et al.| [2022al], image editing technology has become a common demand.
Specifically, Al-based technology [Niu et al.| [2023]], |Chen et al.[[2023]] has significantly lowered
the threshold for fancy image editing, which traditionally required professional software and labor-
intensive manual operations. Deep neural networks can now achieve remarkable results in various
image editing tasks, such as image inpainting [Feng et al.| [2022]], image colorization [Zhang et al.
[2022b]], and object replacement |Kwon and Ye|[2022]], by learning from rich paired data. Futhermore,
recent advances in diffusion models Brack et al.|[2023]], Brooks et al. [2023]], |Saharia et al.|[2022a]
enable precise control over generation quality and diversity during the diffusion process. By incor-
porating a text encoder, diffusion models can be adapted to generate natural images following text
instructions, making them well-suited for image editing.

Despite the impressive results, existing image editing methods still encounter numerous challenges.
As a typical task, scene text editing is widely used in practical applications such as text-image
synthesis, advertising photo editing, text-image correction and augmented reality translation. It aims
to replace text instances (i.e., the foreground) in an image without compromising the background.
However, the fine-grained and complex structures of text instances raise two major challenges: (i)
How to transfer text style and retain background texture. Specifically, text style includes factors
such as font, color, orientation, stroke size, and spatial perspective. It is difficult to precisely capture
the complete text style in the source image due to the complexity of the background. (ii) How to
maintain the consistency of the edited background especially for complex scenes, e.g., menus and
street store signs.
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Figure 1: Examples of text editing. DiffUTE achieves the best result among existing models.

Numerous studies formulate scene text editing as a style transfer task and approach it by generative
models like GANs[Wu et al| [2019]], Qu et al|[2023]]. Typically, a cropped text region with the target
style is needed as the reference image. Such methods then transfer a rendered text in the desired
spelling to match the reference image’s style and the source image’s background. However, the
two major challenges for scene text editing remains. (i) These methods are currently constrained to
editing English and fail to accurately generate complex text style (e.g., Chinese). (ii) The process
of cropping, transferring style and blending results in less natural-looking outcomes. End-to-end
pipelines are needed for the consistency and harmony.

To address the above issues, we present DiffUTE, a general diffusion model designed to tackle
high-quality multilingual text editing tasks. DiffUTE utilizes character glyphs and text locations in
source images as auxiliary information to provide better control during character generation. As
shown in Figure [T} our model can generate very realistic text. The generated text is intelligently
matched to the most contextually appropriate text style and seamlessly integrated with the background
while maintaining high quality.

The major contribution of this paper is the universal text edit diffusion model proposed to edit scene
text images. DiffUTE possesses obvious advantages over existing methods in several folds:

1. We present DiffUTE, a novel universal text editing diffusion model that can edit any text in
any image. DiffUTE generates high-quality text through fine-grained control of glyph and
position information. DiffUTE is capable of seamlessly integrating various styles of text
characters into the image context, resulting in realistic and visually pleasing outputs.

2. We design a self-supervised learning framework that enables the model to be trained with
large amounts of scene text images. The framework allows the model to learn from the data
without annotation, making it a highly efficient and scalable solution for scene text editing.

3. We conduct extensive experiments to evaluate the performance of DiffUTE. Our method
performs favorably over prior arts for text image editing, as measured by quantitative metrics
and visualization.

2 Preliminaries

In this paper, we adopt Stable Diffusion (SD)[Rombach et al|[2022] as our baseline method to design
our network architecture. SD utilizes a variational auto-encoder (VAE) to enhance computation
efficiency. Through VAE, SD performs the diffusion process in low-dimensional latent space.
Specifically, given an input image x € RF¥*W>3 the encoder &, of VAE transforms it into a latent
representation z € R"WX¢ where a = % = % is the downsampling factor and c is the latent feature
dimension. The diffusion process is then executed in the latent space, where a conditional UNet
denoiser Ronneberger et al.|[2015]] €4 (z;, ¢, y) is employed to predict the noise with noisy latent z;,
generation condition input y and current time step ¢. The condition information y may encompass
various modalities, e.g., natural language, semantic segmentation maps and canny edge maps. To
pre-processing y from various modalities, SD employs a domain-specific encoder 7g to project y into
an intermediate representation ¢ (y) € RM*4= which is then mapped to the intermediate layers of the
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Figure 2: Training and inference process of our proposed universal text editing diffusion model. (a)
Given an image, we first extracted all the text and corresponding bounding boxes by the OCR detector.
Then, a random area is selected and the corresponding mask and glyph image are generated. We use
the embedding of the glyph image extracted by the glyph encoder as the condition, and concatenate
the masked image latent vector x,,, mask m, and noisy image latent vector z, as the input of the
model. (b) Users can directly input the content they want to edit, and the large language model will
understand their needs and provide the areas to be edited and the target text to DiffUTE, which then
completes the text editing.

.
UNet via a cross-attention mechanism implementing Attention(Q, K, V) = softmax( %) -V, where

0= W(Q’) - ¢i(z4), K = WI(;) ~19(y), V = W‘(,’) -19(y). Wg),WI(;),W‘(,') are learnable projection
matrices, d denotes the output dimension of key (K) and query (Q) features, and ¢;(z;) € RV*de
denotes a flattened intermediate representation of the UNet implementing €y. In the scenario of
text-to-image generation, the condition C = 7¢(y) is produced by encoding the text prompts y with a

pre-trained CLIP text encoder 7. The overall training objective of SD is defined as

Loa =Eex).y.e-no.n)r [lle = €o(zet.to ()] M

Therefore, 79 and €4 can be jointly optimized via Equation ().

3 Universal Text Editing Diffusion Model

3.1 Model Overview

The overall training process of our proposed DiffUTE method is illustrated in Figure 2] (a). Based
on the cross attention mechanism in SD |[Rombach et al.|[2022], the original input latent vector z; is
replaced by the concatenation of latent image vector z;, masked image latent vector x,,, and text mask
m. The condition C is also equipped with a glyph encoder for encoding glyph image x,. Introducing
text masks and glyph information enables fine-grained diffusion control throughout the training
process, resulting in the improved generative performance of the model.

3.2 Perceptual Image Compression

Following Rombach et al.|[2022], we utilize a VAE to reduce the computational complexity of
diffusion models. The model learns a perceptually equivalent space to the image space but with



significantly reduced computational complexity. Since the VAE in SD is trained on natural images, its
ability to restore text regions is limited. Moreover, compressing the original image directly through
the VAE encoder causes the loss of dense text texture information, leading to blurry decoded images
by the VAE decoder. To improve the reconstruction performance of text images, we further fine-tune
the VAE on text image datasets. As shown in our experiments (Section 4.4), training VAE directly
on the original image size lead to bad reconstruction results, i.e., unwanted patterns and incomplete
strokes. We propose a progressive training strategy (PTT) in which the size of the images used
for training increases as the training proceeds. Specifically, in the first three stages of training, we
randomly crop images of sizes S/8, S/4 and S/2 and resize them to S for training, where S is the
resolution of the model input image and S = H = W. Thus, the tuned VAE can learn different sizes
of stroke details and text recovery. In the fourth stage, we train with images of the same size as the
VAE input to ensure that the VAE can predict accurately when inferring.

3.3 Fine-grained Conditional Guidance

The pixel-level representation of text images differs greatly from the representation of natural objects.
Although textual information consists of just multiple strokes of a two-dimensional structure, it has
fine-grained features, and even slight movement or distortion lead to unrealistic image generation. In
contrast, natural images have a much higher tolerance level as long as the semantic representation
of the object is accurate. To ensure the generation of perfect text representations, we introduce two
types of fine-grained guidance: positional and glyph.

Positional guidance. Unlike the small differences between natural images, the latent feature distri-
butions of character pixels differ dramatically. Text generation requires attention to specific local
regions instead of the existing global control conditions for natural images |[Zhang and Agrawala
[2023]], [ Mou et al.[[2023]], Cheng et al.| [2023]] (e.g., segmentation maps, depth maps, sketch and
grayscale images). To prevent model collapse, we introduce position control to decouple the distribu-
tion between different regions and make the model focus on the region for text generation. As shown
in Figure 2] (a), a binary mask is concatenated to the original image latent features.

Glyph guidance. Another important issue is to precisely control the generation of character strokes.
Language characters are diverse and complex. For example, a Chinese character may consist of more
than 20 strokes, while there are more than 10,000 common Chinese characters. Learning directly
from large-scale image-text datasets without explicit knowledge guidance is complicated. |L1iu et al.
[2022a] proposes that the character-blinded can induce robust spelling knowledge for English words
only when the model parameters are larger than 100B and cannot generalize well beyond Latin scripts
such as Chinese and Korean. Therefore, we heuristically incorporate explicit character images as
additional conditional information to generate text accurately into the model diffusion process. As
shown in Figure [2] (a), we extract the latent feature of the character image as a control condition.

3.4 Self-supervised Training Framework for Text Editing

It is impossible to collect and annotate large-scale paired data for text image editing, i.e.,
{(xs,xg, m), y}. It may take great expense and huge labor to manually paint reasonable editing
results. Thus, we perform self-supervised training. Specifically, given an image and the OCR
bounding box of a sentence in the image, our training data is composed of {(xm, Xg, m),xs}.

For diffusion-based inpainting models, the condition C is usually text, which is usually processed
by a pre-trained CLIP text encoder. Similarly, a naive solution is directly replacing it with an image
encoder. To better represent glyph images, we utilize the pre-trained OCR encoder [Li et al.| [2023]] as
the glyph encoder. Such naive solution converges well on the training set. However, the generated
quality is far from satisfactory for test images. We argue that the main reason is that the model learns
a mundane mapping function under the naive training scheme: x; + x, - (1 —m) = x,. It impedes
the network from understanding text style and layout information in the image, resulting in poor
generalization. To alleviate such issue, we use a uniform font style (i.e., "arialuni") and regenerate
the corresponding text image, as shown in Figure 2] (a) with the example of "RM 30.00". Thus, we
prevent the model from learning such a trivial mapping function and facilitate model understanding
in a self-supervised training manner.



Table 1: Quantitative comparison across four datasets. T means the higher the better, underline
indicates the second best method.

Model Web ArT TextOCR ICDARI13 Average
OCRT CorT OCRT CorT OCRT CorT OCRT CorT OCRT CorT

Pix2Pix 1724 16 1352 11 1574 14 1548 15 1550 14
SRNet  30.87 42 3122 44 3209 41 3085 44 3126 428
MOSTEL 4893 61 6073 68 4597 53 5376 59 5235 603
SD1 432 5 598 7 743 7 364 6 534 63
SD2 588 7 694 9 929 11 532 8 686 88
SDI-FT 3353 45 3325 47 4972 46 2876 32 3632 425
SD2-FT 4634 51 4969 44 6289 59 4687 46 5145 50
DiffSTE  48.55 50 8272 84 8485 85 8148 81 7430 75

84.83 85 85.98 87 87.32 88 83.49 82 85.41 85.5
+35.90 +24 +3.26 +3 +2.47 +3 +2.01 +1 +11.11  +10.5

DiffUTE

Our self-supervised training process is summarized as follows: (1) An ocr region is randomly selected
from the image and the corresponding text image is regenerated with a uniform font style. (2) The
regenerated character image x, is fed into glyph encoder to get condition glyph embedding e,. (3)
The masked image latent vector x,,, mask m and noisy image latent vector z, is concatenated to form
a new latent vector z; = Concat(x,,, m, z;). After dimension adjustment through a convolution layer,
the feature vector Z, = Conv(z;) is fed into the UNet as the query component. Consequently, the
training objective of DiffUTE is:

Loitute = B, (x,) xgxmam.e~N(0,1)t 1€ = €0 (21, Xgu X, m)|[3] - ()

3.5 Interactive Scene Text Editing with LLM

To enhance the interaction capability of the model, we introduced the large language model (LLM),
i.e., ChatGLM |Zeng et al.[[2023]]. Moreover, we fine-tuned ChatGLM using the extracted OCR data
to facilitate a better understanding of structured information by ChatGLM, The inference process
of DiffUTE is show in Figure 2] (b). We first provide the OCR information extracted by the OCR
detector and the target that the user wants to edit with to LLM, which will return the target text and
its corresponding bounding box. Then, we use bounding boxes to generate mask and masked images,
and generate images through a complete diffusion process (r = {T',T — 1, ...,0}) by DDIM[Song et al.
[2020] sampling strategy. By using ChatGLM to understand natural language instruction, we avoid
requiring users to provide masks for the areas they want to edit, making our model more convenient.

4 Experiments

4.1 Data Preparation

Due to the lack of large-scale datasets for generating text image compositions, we collect SM images
by combining the web-crawled data and publicly available text image datasets, including CLDA [Li,
XFUND [Xu et al.|[2022b], PubLayNet Zhong et al.|[2019] and ICDAR series competitions |[Zhang
et al.[[2019]], Nayef et al. [2019]], [Karatzas et al.|[2015], to prepare our training dataset. To verify
the effectiveness of our model, we randomly selected 1000 images from ArT |Chng et al.| [2019],
TextOCR [Singh et al.|[2021]], ICDAR13 |[Karatzas et al.| [2015]] and web data collected by ourselves to
form the test set, respectively. All the images are cropped/resized to 512 X 512 resolution as model
1mputs.

4.2 TImplementation Details and Evaluation

Implementation details. Our DiffUTE consists of VAE, glyph encoder and UNet. To obtain better
reconstruction ability for text images, we first fine-tuned the VAE, which is initialized from the
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Figure 3: Visualization comparison. Our DiffUTE beats other methods with a significant improve-
ment.

Table 2: Ablation study results. (Pos.: position control, Gly.: Glyph control.)

Web ArT TextOCR ICDARI13 Average
OCRT CorT OCRT CorT OCRT CorT OCRT CorT OCRT Cor?

w/o PTT  44.73 47 45.29 41 60.83 52 41.22 39 48.02 44.8
w/o Pos.  49.84 53 50.89 47 65.72 63 49.72 47 54.04  52.5
w/o Gly. 46.34 51 49.69 44 62.89 59 46.87 46 51.45 50.0
83.49
+33.77

Model

84.83 85 85.98 87 87.32 88 82 8541 855

DifUTE 13499 432 +35.00 +40 42160 +25 35 43137 +33

checkpoint of stable—diffusion-2-inpaintingEl The VAE is trained for three epochs with a batch size
of 48 and a learning rate of 5e-6. We use a pre-trained OCR encoder as our glyph encoder, i.e.,
TROCR [Li et al.|[2023]. During the training of DiffUTE, we set the batch size to 256, the learning
rate to le-5, and the batch size to 5. Note that the weights of the glyph encoder and VAE were frozen
during the training of DiffUTE.

Evaluation and metrics. In our evaluation, we evaluate the accuracy of the generated text. We
report OCR accuracy, calculated separately using pre-trained recognition model [2021]]
and human evaluation of the correctness between the generated text and the target text, denoted as
OCR and Cor, respectively.

Zhttps://huggingface.co/stabilityai/stable-diffusion-2-inpainting



Image

rosy glow

Text

apny bapog appy
IMPORTED IMPORTED IMPORTED IMPORTED

BEER FROM BEER FROm BEER FRom BEER FROM
MEXICO MEXICO MEXICO MEXICD

IMPORTED
BEER FROM
MEXICO

Image

Text

Image

ung#7 Eastern Nati

Bus Timess

- e : -— - — ) | - - — _ | - - — = |
- BUS t:MeSs RBUS 11N BUS TINSSS RBLUS FINeS
1% young
o
= g ,y : ) - " , ; v 7 _;",» 7
g = =
g DU UOU K"OW Qnyonf : S‘nm\l:wun: Student Account L o 4 ] Student Account s 9
— starting university Do you Know anyone

Do you Know anyone | Do you Know anyone | Do you Know anyone

this year?

starting Paraselize starting Parasdize starting Plzaolize starting Parasolize

Parasolize

this year? this year? this year?

this year?

Input w/o Pos. w/o Gly. w/o PTT DifftUTE

Text

Figure 4: Sample results of ablation study.

Baseline methods. We compare DiffUTE with state-of-the-art scene text editing methods and
diffusion models, i.e., Pix2Pix [Isola et al|[2017], SRNet Wu et al. [2019], MOSTEL [Qu et al.
2023]), SD Rombach et al| [2022]], ControlNet Zhang and Agrawala [2023]] and DiffSTE [Ji et al.
2023|]. Pix2Pix is an image translation network. To make Pix2Pix network implement multiple
style translations, we concatenate the style image and the target text in depth as the network input.
Training of SRNet requires different texts to appear in the same position and background, which
does not exist in real-world datasets. Therefore, we use synthtiger|Yim et al | to synthesize
images for fine-tuning. For MOSTEL, we fine-tuned it on our dataset. For SD, we selected two
baseline methods, i.e., stable-diffusion—inpaintingEl (SD1) and stable-diffusion-2-inpainting (SD2).
For fair comparison, we fine-tuned SD1 and SD2 by instruction tuning. The resulting models are
termed as SD1-FT and SD2-FT. In the NLP field, instruction tuning techniques are used to train
models to perform tasks based on task instructions. We aim to accurately map text instructions to
corresponding text edits using the SD model. To achieve this, we constructed a dataset for fine-tuning.
Each sample in the dataset consists of a language instruction describing the target text, a mask, and
the ground truth. ControlNet is an image synthesis method that achieves excellent controllability by
incorporating additional conditions to guide the diffusion process. To adapt this method to our text
editing problem, we take the glyph image as the input to the ControlNet network. DiffSTE introduces
an instruction tuning framework to train the model to learn the mapping from textual instruction to
the corresponding image, and improves the pre-trained diffusion model with a dual encoder design.
We followed the original setup to train DiffSTE.

4.3 Comparison results

The quantitative results for text generation are shown in Table [, We can find that our DiffUTE
achieves state-of-the-art results on all datasets. For example, DiffUTE improves average OCR

3https://huggingface.co/runwayml/stable-diffusion-inpainting
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Figure 5: Examples of image reconstruction with our method DiffUTE.

accuracy and human-evaluated text correctness by 14.95% and 14.0% compared with the second best
method DiffSTE. Moreover, our method achieves better results than the diffusion model and the fine-
tuned diffusion model because our fine-grained control can provide the model with prior knowledge
of glyph and position. Furthermore, the poor performance of the diffusion model for instruction
fine-tuning also demonstrates the superiority of our inference approach combining ChatGLM, which
can achieve better editing effects.

We further conducted a visualization experiment. As shown in Figure 3] our method successfully
achieved the transfer of foreground text and background texture, resulting in a regular textual structure
and consistent font with the original text. Moreover, the background texture was clearer, and the
overall similarity with real images was improved. In contrast, the results edited using the diffusion
model often deviated from the target text, further validating the effectiveness of the glyph condition
we introduced. Furthermore, other methods perform poorly when faced with more challenging
Chinese text generation tasks, whereas DiffUTE still achieves good generation results.

4.4 Ablation results

The Ablation studies examine three main aspects, namely 1) the effectiveness of the progressive
training strategy of VAE, and 2) the impact of position control and glyph control on the image
generation performance of DiffUTE. The experimental results are shown in Table [2] Figure @ and

Figure[3]

Progressive training strategy. Without using the progressive training strategy, the editing results
become distorted and the accuracy of text generation significantly decreases. The reason for such
poor results is the complexity of the local structure of the text, whereby the VAE may need to learn
the reconstruction ability of local details efficiently by focusing when there are too many characters
in the image. And using our proposed progressive training strategy, the reconstruction ability of the
model is significantly improved and more realistic results are obtained. The experimental results
validate the effectiveness of this strategy and highlight the pivotal role of VAE in the diffusion model.

Fine-grained control. When position control is not used, the mask and masked images at the input
of the UNet are removed. When glyph control is not used, the latent code obtained from the text
through the CLIP text encoder is used as the condition. When position control and glyph control are
not used, there is a significant drop in performance. For example, when position control is not used,
the OCR accuracy of the model drops by 36.7%, and the Cor drops by 38.6%. When glyph control
is not used, the model cannot generate accurate text and the OCR accuracy of the model drops by
39.8%, and the Cor drops by 41.5%. These results show that position control can help the model
focus on the area where text is to be generated, while glyph control can provide prior knowledge of
the shape of the characters to help the model generate text more accurately.

Visualisation. In Figure[] we provide some examples edited by DiffUTE. DiffUTE consistently
generates correct visual text, and the texts naturally follow the same text style, i.e. font, and color,
with other surrounding texts. We can see from the experiment that DiffUTE has a strong generative
power. (i) In sample N1, DiffUTE can automatically generate slanted text based on the surrounding
text. (ii) As shown in sample N2, the input is 234, and DiffUTE can automatically add the decimal
point according to the context, which shows that DiffUTE has some document context understanding
ability. (iii) In the sample CN4, DiffUTE can generate even artistic characters very well.
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Figure 6: More visualization results of text editing.

5 Related Works

5.1 Scene Text Editing

Style transfer techniques based on Generative Adversarial Networks (GANSs) have gained widespread

popularity for scene text editing tasks [Roy et al.| [2020], [2022]], [Kong et al] [2022],
Lee et al.| [2021]), [Shimoda et al.| [2021]], [Yang et al.| [2020], Zhan et al.| [2019]. These methods

typically involve transferring text style from a reference image to a target text image. STEFANN
[2020], for instance, leverages a font-adaptive neural network and a color-preserving model
to edit scene text at the character level. Meanwhile, SRNet [2019] employs a two-step
approach that involves foreground-background separation and text spatial alignment, followed by a




fusion model that generates the target text. Mostel |Qu et al.| [2023]] improves upon these methods
by incorporating stroke-level information to enhance the editing performance. However, despite
their reasonable performance, these methods are often constrained in their ability to generate text in
arbitrary styles and locations and can result in less natural-looking images.

5.2 Image Editing

Text-guided image editing has attracted increasing attention in recent years among various semantic
image editing methods. Early works utilized pretrained GAN generators and text encoders to
progressively optimize images based on textual prompts Bau et al.|[2021]],|Gal et al.| [2021]], |Pérez
et al.|[2003]]. However, these GAN-based manipulation methods encounter difficulties in editing
images with complex scenes or diverse objects, owing to the limited modeling capability of GANs.
The rapid rise and development of diffusion models Rombach et al.|[2022], |Saharia et al.| [2022b],
Ruiz et al.| [2023]] have demonstrated powerful abilities in synthesizing high-quality and diverse
images. Many studiesBrack et al.|[2023]], Brooks et al.| [2023] have employed diffusion models for
text-driven image editing. Among various diffusion models, Stable Diffusion Rombach et al.|[2022]
is one of the state-of-the-art models, which compresses images into low-dimensional space using an
auto-encoder and implements effective text-based image generation through cross-attention layers.
This model can easily adapt to various tasks, such as text-based image inpainting and image editing.

However, it has been observed that diffusion models exhibit poor visual text generation performance
and are often prone to incorrect text generation. Only a few studies have focused on improving the
text generation capability of diffusion models. Recently, one study trained a model to generate images
containing specific text based on a large number of image-text pairs [Liu et al.| [2022b]. However,
this work differs from ours in terms of application, as they focus on text-to-image generation,
while ours concentrates on editing text in images. Another ongoing work, ControlNet Zhang and
Agrawala|[2023]], has demonstrated remarkable performance in image editing by providing reference
images such as Canny edge images and segmentation maps. While ControlNet achieves remarkably
impressive results, it performs poorly on text editing tasks. To obtain better editing results, we
incorporate auxiliary glyph information into the conditional generation process and emphasize local
control in all diffusion steps.

5.3 Large Language Model

Large language models (LLMs) refer to language models that contain billions (or more) of parameters,
which are trained on massive amounts of text data, such as models like GPT-3 |Brown et al.|[2020],
Galactica [Taylor et al.|[2022]], LLaMA |Touvron et al.| [2023]] and ChatGLM Zeng et al.| [2023]].
Among them, ChatGLM is a billion-scale language model with rudimentary question-answering and
conversational capabilities. It differs from BERT |Devlin et al.|[2018]], GPT-3 and T5 [Xue et al.|[2021]
architectures and is a self-regressive pre-training model that includes multiple objective functions. In
this paper, we use ChatGLM to enhance the interaction capability of our model.

6 Conclusion and Limitations

In this paper, we argue that the current diffusion model can not generate realistic text in images. To
tackle this problem, we present a novel method DiffUTE, a diffusion-based universal text editing
model. DiffUTE generates high-quality text through fine-grained control of glyph and position
information, and benefits from massive amounts of text images through a self-supervised training
approach. Moreover, by integrating a large language model (i.e., ChatGLM), we can use natural
language to edit the text in images, enhancing the editing usability and convenience of model.
Extensive experiments have shown that DiffUTE excels in textual correctness and image naturalness.

The main limitation of our method is that the accuracy of generated text will decrease as the number of
characters to be edited in the image increases. This is due to the fact that as the number of characters
increase, the spatial complexity of the characters will also increase, making the generation process
more challenging. Therefore, our future work will focus on improving the generation quality and
solving the problem of rendering long texts.
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