Hyperparameter Optimization via Interacting with Probabilistic Circuits

Jonas Seng*/ Fabrizio Ventola*/

1,2,3,4

Zhongjie Yu! Kristian Kersting

!Computer Science Dept., Technical University of Darmstadt, Germany
2hessian.ai
3Centre for Cognitive Science TU Darmstadt
4German Research Centre for AI (DFKI)

Abstract

Despite the growing interest in designing truly
interactive hyperparameter optimization (HPO)
methods, only a few allow human feedback to be in-
cluded. However, these methods add friction to the
interactive process, rigidly requiring users to de-
fine prior distributions ex ante and often imposing
additional constraints on the optimization frame-
work. This hinders flexible incorporation of ex-
pertise and valuable knowledge of domain experts,
who might provide partial feedback at any time dur-
ing optimization. To overcome these limitations,
we introduce a novel Bayesian optimization ap-
proach leveraging probabilistic circuits (PCs) as
a surrogate model. PCs encode a tractable joint
distribution over the hybrid hyperparameter space
and evaluation scores. They enable tractable and
exact conditional inference and sampling, allowing
users to provide beliefs interactively and gener-
ate configurations adhering to their feedback. We
demonstrate the benefits of the resulting interactive
HPO through an extensive empirical evaluation of
diverse benchmarks, including the challenging set-
ting of neural architecture search.

1 INTRODUCTION

Hyperparameters crucially influence the performance of ma-
chine learning (ML) algorithms and must be set carefully to
fully unleash the algorithm’s potential (Bergstra and Bengiol
2012; |Hutter et al.l 2013; |Probst et al., 2019). Hyperpa-
rameter optimization (HPO) aims to automatize the tedious
and costly manual tuning of hyperparameters (Bischl et al.,
2023). Generally, HPO is framed as a black-box optimiza-
tion with an expensive objective since its functional form is
unknown and its evaluation requires the expensive training

*indicates equal contribution

of ML models. In deep learning, there is also an interest in
optimizing the hyperparameters defining the architecture of
neural models, known as neural architecture search (NAS).

The goal in NAS and HPO is to traverse the search space ef-
ficiently to find good configurations, avoiding unpromising
regions. Bayesian optimization (BO) methods have proven
to be sample efficient and able to converge on good con-
figurations quickly. In each iteration, basing on previously
evaluated configurations, BO methods iteratively update
a surrogate model to capture the characteristics of the un-
known objective. The surrogate is then used by a selection
policy to select the next configuration to evaluate, balancing
the exploration of the search space with the exploitation of
knowledge encoded by the surrogate (Wang et al.| 2022
Garnett, [2023)). Prominent policies delegate the handling
of the exploration-exploitation trade-off to an acquisition
function or employ sampling strategies (see App.[A.T).

Despite the recent advances in HPO and NAS, hyperparam-
eters are often still tuned manually (Bouthillier and Varo{
quaux, 2020), and cutting-edge neural architectures, e.g.,
transformers (Vaswani et al., [2017), are derived by hand.
Given that many ML practitioners perform hyperparameter
tuning purely based on their knowledge, experience, and
intuition, integrating this valuable knowledge to guide HPO
algorithms any time during optimization is of high value
since it can substantially foster the search and mitigate its
cost (for example, see Fig.[I{b), App.[B|&[C). To accommo-
date user priors in BO,|Souza et al.|(2021)) and Hvarfner et al.
(2022)) integrate weighting schemes that alter the behavior
of the acquisition function based on the user-defined priors.
While Souza et al.|(2021)) weight the surrogate’s prediction
with the prior, Hvartfner et al| (2022) directly weight the
acquisition function. Although these approaches are valid
and principled ways to guide an HPO task, their weighting
schemes limit the set of compatible acquisition functions
and selection policies. Furthermore, they require user knowl-
edge to be available ex ante, i.e., before the optimization,
hindering users to adjust their beliefs flexibly, at any itera-
tion of the optimization. Moreover, these approaches might

Accepted for the 7" Workshop on Tractable Probabilistic Modeling at UAI (TPM 2024).

mailto:<jonas.seng@tu-darmstadt.de>?Subject=Interactive HPO
mailto:<ventola@cs.tu-darmstadt.de>?Subject=Interactive HPO
mailto:<yu@cs.tu-darmstadt.de>?Subject=Interactive HPO
mailto:<kersting@cs.tu-darmstadt.de>?Subject=Interactive HPO

0.0 0.5 1.0 1.5 2.0
Hyperparameter R (Image Resolution)

== mBO selection IBO-HPC selection
BOPrO selection —— user-defined prior

(a)

s
subtree ~ I I
g / N,
8 /P‘ wp, Wp,
2 K 3 ¢
] p,P3 +wp,Ps =S, & L Sy <5}
” > g8
g ®) /Hi =2
2| pv) - pw) =ps P 0’%
5 & @ @(
o
o N\
(B [EANE] 3 L3
@ beoeb &b
set {N=16, W=3} optimize {R}
optimize optimize
1teranons
(b)

Figure 1: Interactive Bayesian Hyperparameter Optimization. (a) Accurately reflecting user beliefs is crucial for
interactive HPO to fully leverage human-provided knowledge. IBO-HPC (our method) precisely reflects the user prior
provided over the hyperparameter R (image resolution), while 7BO and BOPrO fail to do so. (b) In this example, users
can guide IBO-HPC by providing knowledge about hyperparameters (here depth multiplier /N and width multiplier W of a
CNN) simply by conditioning the surrogate model (a probabilistic circuit) on their beliefs. This allows IBO-HPC to focus
the optimization on resolution R, thus, improving convergence and the quality of the solutions.

not reflect user knowledge precisely, as defined in the priors,
due to the nonlinear integration of the priors in the acquisi-
tion function. For example, in Fig. Eka), the values selected
for a hyperparameter () by BOPrO (Souza et al., 2021])
and 7BO (Hvarfner et al.|, 2022) during the first 20 iterations
substantially deviate from the given user priors.

To overcome the above limitations we introduce INTERAC-
TIVE BAYESIAN OPTIMIZATION VIA HYPERPARAMETER
PROBABILISTIC CIRCUITS (IBO-HPC). Our novel BO
method provides an elegant and flexible mechanism to in-
corporate user knowledge any time during optimization by
directly conditioning the surrogate on user beliefs. This en-
ables our selection policy to properly reflect the feedback
provided in form of points or distributions over hyperparam-
eter values. For our aim, as surrogate model, we exploit prob-
abilistic circuits (PCs) (Choi et al.,[2020)) that, in contrast to
common choices like Gaussian processes (GPs) (Rasmussen
and Williams)|, 2006) and random forests (RFs) (Breiman,
2001])), provide tractable flexible inference and (conditional)
sampling. We refer to these PCs learned over hyperparame-
ters and evaluations as hyperparameter probabilistic circuits
(HPC). Furthermore, to be robust against misleading user
input, we integrate a decay mechanism that decreases the
influence of user knowledge over time. We show the benefits
of our interactive approach through an extensive empirical
evaluation including both HPO and NAS benchmarks.

2 RELATED WORK

BO methods leverage a surrogate model that aims to encode
the behavior of the unknown objective function. Then, a
selection policy queries the surrogate to choose only promis-

ing configurations to be evaluated next (Hutter et al., 2011}
Snoek et al., 20125 Shahriari et al.,|2016). Common choices
for surrogate models are GPs (Rasmussen and Williams|
2006) or RFs (Breiman, 2001). Unfortunately, these models
can answer only to a restricted number of queries limiting
the integration of user knowledge. In NAS, to tame the high
dimensionality, several alternatives to BO have been pro-
posed (Zoph and Lel 2017} |Pham et al.| |2018; [Liu et al.|
2019; |Den Ottelander et al., [2021)). However, these methods
do not allow to easily integrate human feedback.

While several approaches have been proposed to transfer
knowledge between instances of HPO and NAS tasks (Yo4
gatama and Mann, 2014} Wistuba et al., [2015; |Perrone et al.,
2018; |Salinas et al., [2020; [Horvéath et al., [2021), incorpo-
rating user feedback has received little attention. Recent
methods extend standard BO methods to allow users to
incorporate feedback as prior beliefs Ramachandran et al.
(2020); Souza et al.[(2021)); \Hvarfner et al.|(2022). However,
they need an ex ante full specification of the priors and often
impose additional constraints such as requiring invertible
priors (Ramachandran et al., [2020) or a specific acquisition
function (Souza et al., [2021)). Furthermore, these methods
struggle in properly reflecting the provided user knowledge.
We believe that truly interactive HPO methods should not
be limited to the ex ante full specification of user knowledge
and should properly reflect the provided feedback.

3 INTERACTIVE HYPERPARAMETER
OPTIMIZATION

Before introducing IBO-HPC, our flexible and truly inter-
active BO method, we introduce a formal definition of in-

teractive selection policy. We start by recalling a formal
definition of HPO (Kohavi and John, [1995)).

Definition 1 (Hyperparameter optimization). Given hy-
perparameters H = {Hy,..., H,} with associated do-
mains Hq,...,H,, and a set of problem instances X,
we define a search space ® = Hy x --- x H,. For a
given problem instance x € X and evaluation function
f:© x X — R, hyperparameter optimization aims to
solve 0* = argmingce f(0;x).

An interactive BO method should be capable of incorporat-
ing, at any time, the knowledge provided by users. Moreover,
the selection policy should reflect the provided knowledge
as specified by the user. Thus, we formalize the concept of
an interactive selection policy (interactive policy in short)
that adheres to these requirements.

Definition 2 (Interactive Policy). An interactive policy is
a functionp : 8 x © x K — P(O) mapping from the
set of surrogates S and search space © to the set of all
distributions P (@) over the search space © while able to
incorporate user knowledge IC € IC.

Def. [2] can be followed also by ignoring user knowledge.
Thus, we introduce feedback adhering interactive policies
that make sure that (i) user knowledge affects the policy’s
outcome and (ii) user knowledge is reflected in the interac-
tive policy as specified.

Definition 3 (Feedback Adhering Interactive Policy). Given
user knowledge K € IC and surrogate s; € S at itera-
tion t, an interactive policy p is effective if p(®, s, K) #
p(©, s¢,0) where) indicates that there is no user knowl-
edge available for p. If further knowledge is provided as a
distribution q(H) over H C H, we call p feedback adher-
ing if it is effective and f’H\’ﬁL (O, 54, K) = q(H) holds.

Note that Def. |3| does not require user knowledge to have
exclusively positive effects. Equipped with Def. 2] and [3] we
now introduce IBO-HPC adhering to both definitions.

3.1 INTERACTIVE BAYESIAN OPTIMIZATION
WITH HYPERPARAMETER PROBABILISTIC
CIRCUITS

We now present IBO-HPC (see App. for pseudocode).
Since our surrogate is a density estimator, we start off by
sampling J hyperparameter configurations from a prior dis-
tribution p(#) and evaluate them via the objective function
f. After evaluating each sampled configuration 8 we ob-
tain a set D of pairs (0, fo(x)) and fit a HPC s estimating
the joint distribution p(#, F'), where H is the set of hy-
perparameters and ' is a random variable representing the
evaluation score. Then, IBO-HPC runs a feedback adhering
interactive policy to select a new configuration 8. We target

the configurations that improve upon the current incumbent.
Thus, a posterior distribution over the hyperparameter space
is derived by conditioning on the best score observed so
far f* = max; D and (optional) user knowledge K. For
now, KC is assumed to be given in the form of conditions
such as H = h where 2 C # is set to h. Then, a new
configuration is sampled from the posterior:

PH\H|H.F = f*)=s(H\HIHF=f),
0~ p(H\H|H,F=f*).

Since users might be uncertain about hyperparameter values,

defining a distribution ¢(#{) over { can be more reasonable
than setting a fixed value. Interpreting q(#) as a distribution
over conditions % = h where h ~ ¢(#) induces a different

distribution than in Eq. [T}

pP(H\H|H, F = f7)-q(H) = sS(H\H|H, F = [*)-q(H).

)
To allow IBO-HPC to recover from misleading user inter-
actions, K is only used with probability p in each iteration
where p is decreased with a decay factor « over time. When
user knowledge is provided at iteration 7', the distribution
over configurations after 7' 4+ ¢ iterations becomes:

Vo s(H\HIH, F = f)-q(H)+(1-"p)-s(H|F = f).

3)
Representing the distributions in Eq. [2] and 3] as an HPC
(see App.|[D) is not trivial since the prior ¢ is defined over
an arbitrary subset and no further assumptions about ¢ are
made. Thus we approximate Eq. [2| by sampling N times
from (L) and use Eq. to obtain N conditional distribu-
tions following the user prior ¢(#). To select a promising
configuration, for each conditional, IBO-HPC samples B
configurations and chooses the one maximizing the likeli-
hood s(H|F' = f*). This results in IV configurations from
which one is sampled uniformly for the next evaluation. To
foster exploration, by leveraging uncertainty encoded in the
(conditional) distribution of the surrogate, we only retrain
the surrogate every L iterations. An iteration is concluded
by updating the set of evaluations D. The algorithm runs
until convergence or when another condition for termination
1s met.

ey

We now show that IBO-HPC’s policy to select the next
configuration is a feedback adhering interactive policy ac-
cording to Def. [3] Since modeling dependencies among hy-
perparameters is not trivial for users, we assume that users
provide as beliefs a fully (naively) factorized distribution.

Proposition 1 (IBO-HPC Policy is feedback adhering inter-
active). Given a search space © over hyperparameters H,
an HPC s € S, user knowledge IC € K in form of a prior q
over H C H s.t. fﬂ\ﬂ s(H|F = f*) # q(H), the selec-
tion policy of IBO-HPC is feedback adhering interactive.

The proof of Prop.[T]is given in App.[El We now follow with
the empirical evaluation of IBO-HPC.

test error
o o
(=} —_
& o

S
=)
=)

0.16{ |

0.25 0.14 N

5 8 i

£0.20 2o.12fi

() [i

@ ©0.101}
20.15 3

0.08| i

01005 0.06/ i

00 25 50 75 0

wall-clock time (sec.) 1e7

(a) JAHS (CIFAR-10)

wall-clock time (sec.) 1e6

(b) JAHS (C. Histology)

4 (3} 0.0 2.5 5.0 7.5
wall-clock time (sec.) 1e7

(c) JAHS (F-MNIST)

0.0705— T T T
P 0.2{1 |
! ! ! ! —— IBO-HPC
i i ! ! —— IBO-HPC (ben. interaction@>5)
é 0.065% i] § 0.114i T —— IBO-HPC (ben. dist. interaction@5)
E i : 5 : : IBO-HPC (mis. interaction@5)
= ; £ 0.10¢; i —— IBO-HPC (multi. interaction@5,20)
£0.060 eSS 8 \ RS
i 0.09{% TBO
g T ! BOPro
i i Pt LS
0‘055.0 0.5 1.0 1.5 0'080 5000 10000 SMAC

wall-clock time (sec.) 1e6

(d) NAS-Bench-101 (CIFAR-10)

wall-clock time (sec.)

(e) NAS-Bench-201 (CIFAR-10)

--— time of interaction

Figure 2: IBO-HPC is truly interactive and effective on HPO and NAS tasks. For 5 tasks across three challenging
benchmarks, IBO-HPC is competitive with state-of-the-art methods when no user knowledge is provided and outperforms
all competitors when the same beneficial (ben.) user feedback is provided to IBO-HPC and to the competitors. Furthermore,
IBO-HPC recovers from misleading (mis.) user beliefs and allows users to adjust their beliefs at any time (multi.).

4 EXPERIMENTAL EVALUATION

We evaluate the performance of IBO-HPC on different HPO
and NAS benchmarks under several conditions: fully au-
tomatic (i.e., no user feedback), interactive with beneficial
user feedback, and with multiple user feedback (misleading
first, then beneficial). We provided user knowledge either
as a distribution or by setting the value for a subset of hy-
perparameters. The surrogates are based on PCs for hybrid
domains (Molina et al.,|2018). In each scenario, we compare
IBO-HPC against five diverse competitors: random search
(RS) (Bergstra et al.,[2011), local search (LS) (White et al.,
2020), SMAC (Hutter et al.L[2011) as standard HPO methods
and BOPrO (Souza et al.,[2021) with 7BO (Hvartner et al.,
2022) which allow ex ante incorporation of user knowledge.
We evaluate IBO-HPC on five real-world image classifica-
tion tasks from three popular benchmarks: CIFAR-10 from
NAS-Bench-101 (Ying et al.} 2019), NAS-Bench-201 (Dong
and Yang| 2020), and JAHS (Bansal et al., 2022), plus
Fashion-MNIST and Colorectal Histology from JAHS. In
our evaluation, we optimize w.r.t the validation accuracy
and run all algorithms with 500 seeds for 2k iterations. We
report the mean test error over the wall-clock time with the
corresponding standard error. See App. [F for details.

Fig.[2]shows that the performance of IBO-HPC without user
interaction (blue) is competitive or superior to SMAC on
most tasks. While in NAS, due to the discrete nature of the
search space, LS performs slightly better than IBO-HPC
and thus confirms to be a strong baseline for NAS (Den Ot{

telander et al.| [2021)). IBO-HPC outperforms SMAC and
LS in the more complex and realistic case of joint archi-
tecture and hyperparameter search spaces (JAHS). When
IBO-HPC is provided with beneficial user feedback after 5
iterations (green, orange), besides outperforming all stan-
dard HPO methods (as expected), it also outperforms 7BO
and BOPrO on 4/5 tasks, although both competitors obtain
user knowledge ex ante. This confirms that IBO-HPC re-
flects and leverages user beliefs more effectively. Finally,
Fig.[2]shows also that IBO-HPC successfully recovers when
misleading user beliefs are provided (pink) and that IBO-
HPC allows users to adjust their beliefs at any time (brown).
Additional experiments and ablation studies are in App. [F6]

S CONCLUSION

We introduced a novel interactive BO method named IBO-
HPC that leverages the flexible inference of probabilistic cir-
cuits to easily incorporate user feedback at any time during
optimization. IBO-HPC is competitive with state-of-the-art
methods when no user knowledge is provided and it out-
performs competitors when available. Moreover, IBO-HPC
reliably recovers from misleading user beliefs and converges
remarkably faster when provided with valuable user knowl-
edge, thus, saving resources. Currently, to leverage new
evaluations, IBO-HPC needs to retrain the surrogate from
scratch. Thus, we envision the exploration of continual learn-
ing techniques to avoid the frequent retraining, increasing
efficiency, and the reuse of knowledge over different tasks.

Acknowledgements

This work was supported by the National High-Performance
Computing Project for Computational Engineering Sciences
(NHR4CES) and the Federal Ministry of Education and
Research (BMBF) Competence Center for Al and Labour
(“KompAKI”, FKZ 02L19C150). Furthermore, this work
benefited from the cluster project “The Third Wave of AI”.

REFERENCES

Bansal, A., Stoll, D., Janowski, M., Zela, A., and Hutter, F.
(2022). Jahs-bench-201: A foundation for research on
joint architecture and hyperparameter search. In Advances
in Neural Information Processing Systems (NeurIPS).

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. In Ad-
vances in Neural Information Processing Systems (NIPS).

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(2).

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter,
J., Coors, S., Thomas, J., Ullmann, T., Becker, M.,
Boulesteix, A., Deng, D., and Lindauer, M. (2023). Hy-
perparameter optimization: Foundations, algorithms, best
practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 13(2).

Bouthillier, X. and Varoquaux, G. (2020). Survey of
machine-learning experimental methods at Neur[PS2019
and ICLR2020. Research report, Inria Saclay Ile de
France.

Breiman, L. (2001). Random forests. 45(1):5-32.

Choi, Y., Vergari, A., and Van den Broeck, G. (2020). Proba-
bilistic circuits: A unifying framework for tractable prob-
abilistic models. Technical report, UCLA.

Den Ottelander, T., Dushatskiy, A., Virgolin, M., and
Bosman, P. A. N. (2021). Local search is a remarkably
strong baseline for neural architecture search. In Evolu-
tionary Multi-Criterion Optimization: 11th International
Conference.

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending
the scope of reproducible neural architecture search. In
International Conference on Learning Representations
(ICLR).

Garnett, R. (2023). Bayesian Optimization. Cambridge
University Press.

Horviath, S., Klein, A., Richtarik, P., and Archambeau, C.
(2021). Hyperparameter transfer learning with adaptive

complexity. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 1378-1386.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Se-
quential model-based optimization for general algorithm
configuration. In Learning and Intelligent Optimization:
Sth International Conference.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Iden-
tifying key algorithm parameters and instance features
using forward selection. In Learning and Intelligent Op-
timization: 7th International Conference.

Hvarfner, C., Stoll, D., Souza, A., Lindauer, M., Hutter,
F., and Nardi, L. (2022). mbo: Augmenting acquisition
functions with user beliefs for bayesian optimization. In
International Conference on Learning Representations
(ICLR).

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Ef-
ficient global optimization of expensive black-box func-
tions. Journal of Global Optimization, 13:455-492.

Kohavi, R. and John, G. H. (1995). Automatic parameter
selection by minimizing estimated error. In International
Conference on Machine Learning (ICML).

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Differ-
entiable architecture search. In International Conference
on Learning Representations (ICLR).

Molina, A., Vergari, A., Mauro, N. D., Natarajan, S., Es-
posito, F., and Kersting, K. (2018). Mixed sum-product
networks: A deep architecture for hybrid domains. In
AAAI Conference on Artificial Intelligence.

Peharz, R., Tschiatschek, S., Pernkopf, F., and Domingos,
P. M. (2015). On theoretical properties of sum-product
networks. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS).

Perrone, V., Jenatton, R., Seeger, M. W., and Archambeau,
C. (2018). Scalable hyperparameter transfer learning.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 31.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018).
Efficient neural architecture search via parameters shar-
ing. In International Conference on Machine Learning
(ICML).

Probst, P., Boulesteix, A.-L., and Bischl, B. (2019). Tunabil-
ity: Importance of hyperparameters of machine learning
algorithms. The Journal of Machine Learning Research,
20(1):1934-1965.

Ramachandran, A., Gupta, S., Rana, S., Li, C., and
Venkatesh, S. (2020). Incorporating expert prior in
bayesian optimisation via space warping. Knowledge-
Based Systems, 195:105663.

Rasmussen, C. and Williams, C. (2006). Gaussian Processes
for Machine Learning. MIT Press.

Salinas, D., Shen, H., and Perrone, V. (2020). A quantile-
based approach for hyperparameter transfer learning. In
International Conference on Machine Learning (ICML),
pages 8438-8448.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. (2016). Taking the human out of the loop:
A review of bayesian optimization. Proceedings of the
IEEE, 104(1):148-175.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical
bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems
(NIPS).

Souza, A. L. F., Nardi, L., Oliveira, L. B., Olukotun, K., Lin-
dauer, M., and Hutter, F. (2021). Bayesian optimization
with a prior for the optimum. In European Conference
on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. In Advances in Neural Informa-
tion Processing Systems (NIPS).

Wang, X., Jin, Y., Schmitt, S., and Olhofer, M. (2022). Re-
cent advances in bayesian optimization.

White, C., Nolen, S., and Savani, Y. (2020). Exploring the
loss landscape in neural architecture search. In Confer-
ence on Uncertainty in Artificial Intelligence (UAI).

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015).
Sequential model-free hyperparameter tuning. In 2015
IEEE International Conference on Data Mining, pages
1033-1038.

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy,
K., and Hutter, F. (2019). Nas-bench-101: Towards re-
producible neural architecture search. In International
Conference on Machine Learning (ICML).

Yogatama, D. and Mann, G. S. (2014). Efficient transfer
learning method for automatic hyperparameter tuning. In
International Conference on Artificial Intelligence and
Statistics (AISTATS).

Zoph, B. and Le, Q. V. (2017). Neural architecture search
with reinforcement learning. In International Conference
on Learning Representations (ICLR).

Hyperparameter Optimization via Interacting with Probabilistic Circuits
(Supplementary Material)

Jonas Seng*! Fabrizio Ventola*/ Zhongjie Yu' Kristian Kersting'->3*

!Computer Science Dept., Technical University of Darmstadt, Germany
Zhessian.ai
3Centre for Cognitive Science TU Darmstadt
4German Research Centre for AI (DFKI)

A METHOD

In this section of the supplementary material we provide an overview on Bayesian optimization in[A.T|and the pseudocode
of our method in[A2

A.1 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) aims to optimize a black-box objective function f : ® — R which is costly to evaluate, i.e.,
to find the input * € argmingce f(0) (Shahriari et al., 2016). BO typically tackles such problem in sequential steps,
leveraging two key ingredients: a probabilistic surrogate model and a selection policy determining the next 8’ to be evaluated.
Given a set D,, of observations that correspond to the configurations with associated evaluations (0, f(6;));j=1...n, the
surrogate s € S aims to induce p(f|D,,). The selection policy uses s to select the next 8’ € © s.t. it achieves a good
exploration-exploitation trade-off. Prominent selection policies optimize an acquisition functiona : ® x § — R (e.g.
expected improvement (Jones et al.,[1998))) that assigns a utility score of each 8 € ® under a surrogate s € S, or. apply
Thompson sampling (Wang et al.,[2022). The obtained tuple (8, f(0")) is added to D,, and used to update the surrogate
model for the next iteration. This process is repeated until a given budget is exhausted or convergence.

Accepted for the 7" Workshop on Tractable Probabilistic Modeling at UAI (TPM 2024).

mailto:<jonas.seng@tu-darmstadt.de>?Subject=Interactive HPO
mailto:<ventola@cs.tu-darmstadt.de>?Subject=Interactive HPO
mailto:<yu@cs.tu-darmstadt.de>?Subject=Interactive HPO
mailto:<kersting@cs.tu-darmstadt.de>?Subject=Interactive HPO

1
2
3

D-TE-CRE B L N

11
12
13
14

15
16
17
18
19
20
21

A.2 IBO-HPC PSEUDOCODE

Algorithm 1: Interactive BO with HPCs (IBO-HPC). Our interactive BO method allows for flexible incorporation of
user knowledge at any iteration via conditional sampling enabling true interaction with users.

Data: Search space © over H = {H1, ..., H,}, problem instance x € X, prior distribution p(®), objective
f:0© x X — R, user prior q(’}:t) is optional and can be provided at any time, decay -y

D =0;

forie{1,...,J} do

0 ~ p(©);

D =D U{(6,/(6.%)};

while not converged do

every L-th iteration, fit HPC s on D;

f* =max; D;

b ~ Ber(p);

if prior q(#L) given and b = 1 then
sample N conditions h ~ q(#);
C=0;

for condition h; in h do

yeery

0; = argmaxgcg;, s(0'[f7);
c=cues;
0" ~ U(C);
else
| 0"~ s(H[[):
D=DU®,[(6,x);
p="-p

present evaluations D;

B MOTIVATION & REAL-WORLD EXAMPLE

Reflecting user knowledge accurately is crucial for interactive HPO methods to fully benefit from human knowledge and
improve trustworthiness. Existing weighting scheme based methods like 7BO and BOPrO fail to reflect user priors accurately
in their selection policy as it can be seen in Fig.[3[a). Here, we show a 1d-example of a Branin function with an optimum
around x = 0.5. The user prior (in red) is placed at x = 0.3. Both 7BO and BOPrO fail to select the next configuration from
the high-density region of the prior. Thus, the user prior is not incorporated in the selection process as a user would expect.
Our method, IBO-HPC, solves this issue which we now demonstrate based on a real-world example.

To this end, we ran 7BO, BOPrO — both leveraging a weighting scheme to incorporate user priors —, and IBO-HPC on the
CIFAR-10 task of the JAHS benchmark (Bansal et al.,[2022). We specified a prior distribution (Fig.[3[(b), purple) over the
hyperparameter RESOLUTION ([RR) that controls the down-/up-sampling rate of an image fed into a neural network. The
rest of the hyperparameters for this specific task (i.e. the network architecture and all other hyperparameters; see App. D
for details) were optimized by 7BO, BOPrO and IBO-HPC without any user knowledge. All methods received the same
user prior (7BO and BOPrO from the beginning of the optimization; IBO-HPC after 5 iterations). From the iteration the
user prior was provided on, we then considered the values chosen for RESOLUTION by 7BO, BOPrO and IBO-HPC for
the next 20 iterations and estimated a density of selected values for R (see Fig. b)). ‘We obtained that neither the choices
for R by mBO (green dashed line), nor the choices of BOPrO (red dashed line) reflect the user prior as specified. While
7BO’s choices of RESOLUTION are biased towards smaller values, BOPrO does not reflect the user’s uncertainty well in its
choices of RESOLUTION. In contrast, IBO-HPC (blue solid line) precisely reflects the user prior as specified (up to random
variations due to sampling).

—~=- w. mBO acquistion =~ —— 7BO acquistion x Observations

0.15
3.0
g 0.10 n
5= I\
z 0.05 8§ 25 I
& 7)
12
S 0.00 3 220 HI.
Q .0 g G \
m © 515 1 \
5 0.075 © a
~ ~
2 & 101 === \
@ 0.050 5 y > \
L 057 oD
a 0.025 /4 \\ \
/)
~ e
0 ———eee e’ e = S 10.000 0.0 0.5 1.0 1.5 2.0
-1.0 —-0.5 0.0 0.5 1.0 1.5 2.0 Hyperparameter R (Image Resolution)
X == mBO selection IBO-HPC selection
~ = BOProO selection —— user-defined prior
—— User prior —— BOPrO acquistion - --w. BOPrO acquistion b
===+ 1D Branin Function % Next configuration (b)

(a)

Figure 3: IBO-HPC reflects user priors as specified. In contrast to other weighting scheme based methods like 7BO and
BOPrO, IBO-HPC reflects the user prior as specified in its selection policy.

C WORKING EXAMPLE

In the following, we consider a more detailed example of our proposed method from a user perspective. We assume that we
optimize only 3 hyperparameters here, width multiplier W, depth multiplier /V, and resolution R of a CNN (see the JAHS
benchmark (Bansal et al.l, 2022).

The optimization starts where each of the hyperparameters gets optimized by our method. At some point, the user interacts
with the optimization process and sets 1V and N to a fixed value (blue in Fig.[d). From then on, the model only optimizes
the remaining hyperparameter R (green in Fig. d)), using conditional sampling from the resulting conditional distribution
that the HPC represents after the interaction.

7N
Py P
/
K \
S 4 L3
& B®O @B
3 P4 5 P6
® (
optimize L L1 5 L L7 Lo optimize

,/(/ . >
1terations

Figure 4: Example of IBO-HPC. A user specifies certain aspects of the hyperparameter search space during optimization.
Afterward, IBO-HPC takes user knowledge into account when sampling new configuration candidates.

D OUR SURROGATE MODELS: PROBABILISTIC CIRCUITS

Since probabilistic circuits (PCs) are a key component of our method, we provide more details on these models in the
following. Let us first start with a rigorous definition of PCs.

Definition 4. A probabilistic cricuit (PC) is a computational graph encoding a distribution over a set of random variables
X. It is defined as a tuple (G, ¢) where G = (V, E) is a rooted, directed acyclic graph and ¢ : V — 2% is the scope function
assigning a subset of random variables to each node in G. For each internal node N of G, the scope is defined as the union
of scopes of its children, i.e. (N) = Unsech(n). Each leaf node L computes a distribution/density over its scope ¢(L). All
internal nodes of G are either a sum node S or a product node P where each sum node computes a convex combination of its
children, i.e., S = ZNGCh(S) ws NN, and each product computes a product of its children, i.e., P = HNGCh(P) N.

With this definition at hand, we describe the tractable key operations of PCs relevant to our method in more detail.

Inference. Inference in PCs is a bottom-up procedure. To compute the probability of given evidence X = x, the densities of
the leaf nodes are evaluated first. This yields a density value for each leaf. The leaf densities are then propagated bottom-up
by computing all product/sum nodes. Eventually, the root node holds the probability/density of x. Note that typically,
multiple leaf nodes correspond to the same random variable. Thus, if the children of a sum node have the same scope, we
can interpret sum nodes as mixture models. Conversely, if the children of a product node have non-overlapping scopes,
a product node can be interpreted as a product distribution of two (independent) random variables. We call these two
properties smoothness and decomposability. More formally, smoothness means that for each sum node S € V' it holds that
d(N) = ¢(N’) for N, N" € ch(S). Decomposability means that for each product node P € V it holds that #(N) N ¢(N') = 0
for N, N” € ch(P), N # N’. Hence, PCs can be interpreted as hierarchical mixture models.

Marginalization. Decomposability implies that marginalization is tractable in PCs and can be done in linear time of the
circuit size. This is because integrals that can be rewritten by nesting single-dimensional integrals can be computed only in
terms of leaf integrals, which are assumed to be tractable as they follow certain distributions (e.g., Gaussian). Computing
such nested integrals only in terms of leaf integrals is possible because single-dimensional integrals commute with the
sum operation and affect only a single child of product nodes. For more details on the computational implications of
decomposability, refer to (Peharz et al.| 2015)).

Practically, there are two ways to marginalize certain variables from the scope of a PC. One approach is structure-preserving,
and marginalization is achieved by setting all leaves corresponding to the set of random variables that are supposed to be
marginalized to 1. The second approach constructs a new PC representing the marginal distribution, i.e. the structure of
the PC is changed. The second approach is beneficial if samples should be drawn from the marginalized PC because the
sampling procedure remains the same, i.e. the PC is adopted to obtain the marginal distribution, not vice versa.

Conditioning. Computing a conditional distribution p(X;|Xs2) = T £ (;(()x) where X; U Xy = X and X; N Xy = Qs
X2

achieved by combining marginalization (denominator) and inference (numerator). Since inference is tractable for PCs in
general and marginalization is tractable for decomposable PCs, conditioning is also tractable.

Sampling. Sampling in PCs is a top-down procedure and recursively samples a sub-tree, starting at the root. Each sum
node S holds a parameter vector w s.t. Zii%(s)l w; = 1. Based on the distribution induced by w, one of the children of S is
sampled as a sub-tree. By decomposability, the scope of the children of a product node is non-overlapping. Thus, sampling
from a product node corresponds to sampling from all its child nodes. If a leaf node is reached, a sample is obtained from

the distribution at that leaf.

Given the hybrid nature of hyperparameter search spaces, in this work, we focus on a type of PCs tailored for hybrid domains
named mixed sum-product networks (MSPNs) (Molina et al.,[2018)). An MSPN is a decomposable and smooth PC with
piecewise polynomial leaves. These properties allow MSPNSs to represent valid distributions (Peharz et al.l |2015) over hybrid
domains (i.e., discrete and continuous variables).

E PROOFS

In this section we provide the proof of Proposition 1 of the main paper.

10

E.1 IBO-HPC’S POLICY IS FEEDBACK ADHERING INTERACTIVE

Proposition 1 (IBO-HPC Policy is feedback adhering interactive). Given a search space ® over hyperparameters #,
an HPC s € S, user knowledge X € K in form of a prior ¢ over H C H s.t. f?—t\’ﬁt s(H|F = f*) # q(*H), the selection
policy of IBO-HPC is feedback adhering interactive.

Proof. We have to show that the policy of IBO-HPC is feedback adhering, i.e. it conforms with Def. 3: The distribution over
the configuration space used to obtain new configurations is different if user knowledge is provided from the distribution used
if no user knowledge is provided (policy is effective) and the provided user knowledge is represented during configuration
selection as specified (feedback adhering).

We first show that the selection policy of IBO-HPC is effective.

IBO-HPC selection policy is effective. Since the decay mechanism allowing IBO-HPC to recover from misleading
knowledge can be treated as a constant in each iteration, it is enough if s(# \ H|H = h,F = f*)-q(# = h) #

s(H\ H|H =0, F = f*) - q(# = 0) holds for any surrogate s representing a joint distribution over search 'space H and
prior g over H C H to make the policy effective. Note that we assume that /C is given in form of a prior q(’H) over H as
before. Since () ¢ H is assumed, our policy ignores any prior if no user knowledge is provided. Thus, in this case, the policy
samples from the distribution

SCHIF = f7) = s(HA\HFLF = 7). / CS(HIF = f). @

H\H

Since s(H \ 7:L|?:L F = f*) is the same, regardless of whether user knowledge is given or not, user knowledge will lead
to a different distribution if fﬂ\ﬂ s(H|F = f*) # q(*H) holds. Since Prop. 1 demands that this is the case, our policy is
effective according to Def. 2.

We can now proceed and show feedback adherence of the IBO-HPC selection policy.

IBO-HPC selection policy is feedback adhering. The proof that our policy is feedback adhering directly follows by
design: If a user prior q(’H) is given, Eq. 3 is approximated by sampling NV conditions h}_ N q(’H) and computing N
conditionals s(H \ H|H = b, F = f*),...,s(H \ H|H = kly, F = f*). We can approx1mate q(#H) arbitrarily close
with N — oo. To select the next configuration, we sample B configurations from each of the N conditionals and select the
configuration maximizing s(#|F = f*) for each conditional. This leaves us with N candidates. Note that at this point, the
hyperparameters 7 still follow () with N — oo as the conditions of s(H \ H|H = b}, F = f*),...,s(H \ H|H =
Ry, F = f*) remain fixed and only hyperparameters of the set H \ H can vary/are sampled. Thus, maximizing the
likelihood s(#|F = f*) is only done w.r.t. hyperparameters in 7 \ 7. This implies that sampling hyperparameters H. \ 7
can be biased while sampling from q(’H) is unaffected because the conditions h’ . are sampled first in i.i.d. fashion. Our
policy selects the configuration evaluated next by uniformly sampling from the remalmng N candidates. Since uniformly
sampling L times from a set of IV samples from a distribution g results in approximating ¢ arbitrarily close for N — oo and
L — o0, we conclude that user priors are exactly reflected as specified in our selection policy. This concludes our proof that
the selection policy of IBO-HPC is effective and feedback adhering. O

F EXPERIMENTAL DETAILS

Here we present additional details of our empirical evaluation. We provide our code at |https://
github.com/ml-research/ibo-hpc| and provide all logs and data at https://ldrv.ms/u/s!
Aty3JfFPZnuutVz0eNifHh6Uhvjz?e=hX2chn,

F.1 DEFINING USER INTERACTIONS

For the experiments, beneficial and misleading user interactions have been defined as user priors for each benchmark.
To define priors, we randomly sampled 10k configurations and kept the best/worst performing ones, denoted as h™* and
h~, respectively. To demonstrate that user priors over a few hyperparameters are enough to improve the performance of
IBO-HPC considerably, we defined beneficial interactions by selecting a small subset of hyperparameters H C H. Then,

11

https://github.com/ml-research/ibo-hpc
https://github.com/ml-research/ibo-hpc
https://1drv.ms/u/s!Aty3JfFPZnuutVz0eNifHh6Uhvjz?e=hX2chn
https://1drv.ms/u/s!Aty3JfFPZnuutVz0eNifHh6Uhvjz?e=hX2chn

we defined a prior over each H € H s.t. the probability of sampling the value of H given in h™, denoted by h*[H], is
1000 times higher than sampling a different value than h™ [H]. For misleading interaction, H was chosen to be large to
demonstrate that IBO-HPC recovers even if a large amount of misleading information is provided. We then defined priors
over H as for beneficial interactions; however, this time the probability to sample h™~[H] is 1000 times higher than for other
values for each H € #. The priors were chosen to be rather strong since, as emphasized in Sec. |1} the stronger the prior, the
better TBO and BOPrO reflect user knowledge in their selection policy. To aim to a fair comparison, we opted for such
strong priors. Furthermore, we aimed to show that IBO-HPC reliably recovers from receiving large amounts of strongly
misleading knowledge. Sometimes, it is easier for users to specify a concrete value for certain hyperparameters instead of
defining a distribution. Thus, we also conducted experiments with priors defined as points.

F.2 SEARCH SPACE EXTENSION OF JAHS

To make the HPO on JAHS more challenging, we decided to extend the search space slightly as JAHS — as a surrogate
benchmark — allows us to query hyperparameter values which were not actually evaluated in the benchmark. We defined
three search spaces for JAHS which are presented in the following Table [I]

S1 S2 S3
Activation [Mish, ReLU, Hardswish] [Mish, ReLU, Hardswish] [Mish, ReLU, Hardswish]
Learning Rate [1e-3, 1e0] [1e-3, 1e0] [1e-3, 1e0]
Weight Decay [1e-5, 1e-2] [1e-5, 1e-2] [1e-5, 1e-2]
Trivial Argument | [True, False] [True, False] [True, False]
Opl 0-6 0-6 0-6
Op2 0-6 0-6 0-6
Op3 0-6 0-6 0-6
Op4 0-6 0-6 0-6
Op5 0-6 0-6 0-6
Op6 0-6 0-6 0-6
N 1-15 1-11 1-5
W 1-31 1-23 1-16
Epoch 1-200 1-200 1-200
Resolution 0-1 0-1 0-1

Table 1: JAHS Search Space. We define three versions of the JAHS search space, ranging from simpler to harder spaces.

12

F.3 INTERACTIONS

Here we provide the interactions used for our experiments.

JAHS. The following JSON code shows the interactions performed in our JAHS experiments. The first interaction is a

misleading interaction, followed by a beneficial interaction and a no interaction (for recovery).

{ "type": "bad",
"intervention": {"Activation": 1, "LearningRate":
"Opl": 3, "Op2": 4, "Op3": 1, "Op4": 2, "Resolution":
"TrivialAugment": 0, "W": 14,

"WeightDecay": 0.002697686639935806, "epoch": 10},

"iteration": 5

}I

{
"type": "good",
"intervention": {"N": 3, "W": 16, "Resolution": 1},
"iteration": 15

}I

{
"type": "good",
"intervention": null,
"iteration": 20

}I

{
"type": "good",
"kind": "dist",
"intervention": {"N": {"dist": "cat", "parameters":
r., 1, 1, 1e4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11},
"W": {"dist": "cat", "parameters":
1, 2, », 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1ledly,
"Resolution": {"dist": "uniform", "parameters": [0.98,
"iteration": 5

}

0.8201676371308472,
0.5096959403985494,

"N" H

1.02]1},

NAS-Bench-101. The following JSON code shows the interactions performed in our experiments on NAS-Bench-101. The
first interaction is a misleading interaction, followed by a beneficial interaction and a no interaction (for recovery).

"type": "bad",
"kind": "point",
"intervention": (0O, 1, 1, 0, O, O, O, 1, 0, 0O, O, 1, O,
"iteration": 5
I
{
"type": "good",
"kind": "point",
"intervention": (1, O0, 1, O, 1, 1, 1, 0, O, 0, O, O, 1,
"iteration": 12
b
{
lltype": |lgoodl|,

13

15,

"kind":

"intervention": null,
"iteration": 20
"type": "good",
"kind": "dist",
"intervention": {
"e_0_1": {"dist":
"e_0_2": {"dist":
"e_0_3": {"dist":
"e_0_4": {"dist":
"e_0_5": {"dist":
"e_0_6": {"dist":
"e_1_2": {"dist":
"e_1_3": {"dist":
"e_ 1 _4": {"dist":
"e_1 5": {"dist":
"e_1_6": {"dist":
"e_2_3": {"dist":
"e_2_4": {"dist":
"e_ 2_5": {"dist":
"e_2_6": {"dist":
"e_3_4": {"dist":
"e_3_5": {"dist":
"e_3_6": {"dist":
"e_4_5": {"dist":
"e_4_6": {"dist":
"e_5_6": {"dist":

by

"iteration":

"point",

"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",
"cat",

"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":

NAS-Bench-201. The following JSON code shows the interactions performed in our experiments on NAS-Bench-201. The
first interaction is a misleading interaction, followed by a beneficial interaction and a no interaction (for recovery).

[

{
"type": "good",
"kind": "point",
"intervention": {"Op_O": 2, "Op_1": 2, "Op_2": 0},
"iteration": 5

}I

{
"type": "bad",
"kind": "point",
"intervention": {"Op_O": 1, "Op_1": 2, "Op_2": 1},
"iteration": 5

}I

{
"type": "good",
"kind": "point",

"intervention": null,

14

"iteration": 20

"type": "good",

"kind": "dist",

"intervention": {"Op_O0": {"dist": "cat", "parameters": [1, 1, le4, 1, 11},
"Op_1": {"dist": "cat", "parameters": [1, 1, le4, 1, 11},
"Op_2": {"dist": "cat", "parameters": [led4, 1, 1, 1, 11}},

"iteration": 5

F.4 HYPERPARAMETERS OF IBO-HPC

IBO-HPC comes with a few hyperparameters itself, which have to be set. For our experiments, we set the number of
iterations the surrogate is not retained to L. = 20 and the decay value to v = 0.9. For a fair comparison, we let all methods
optimize for 2000 iterations. The learning algorithm of our surrogate models, i.e. PCs for hybrid domains (Molina et al.,
2018), also has some hyperparameters to be set. Its structure learning algorithm splitting procedure employs the RDC
independence test, thus, we set the threshold to detect independencies between random variables to 0.3 (Molina et al.;[2018).
Furthermore, we set the minimum number of instances per leaf u to 40. Refer toMolina et al.| (2018) for further details on
the learning algorithm.

F.5 HARDWARE

We ran all our experiments on DGX-A100 machines and used 10 CPUs for each run, thus, parallelizing some sub-routines
(e.g. learning of PCs). We did not use any GPUs as we queried the selected benchmarks to provide the performance of
configurations. The JAHS benchmark requires a relatively large RAM (> 16G B) to run smoothly as it loads large ensemble
models.

F.6 ADDITIONAL RESULTS & ABLATION STUDIES

In this section, we provide further results and ablations. Fig. [5|demonstrates that IBO-HPC’s convergence rate remarkably
increases when beneficial user beliefs (either as points or distributions) are provided at various points in time. In general,
early beneficial interactions lead to faster convergence, i.e., the earlier a beneficial interaction is done, the faster IBO-HPC
converges. However, also later beneficial interactions lead to a significant speed-up, as shown in Fig. Besides the
speed-up, the quality of the solution found is considerably better when beneficial beliefs are provided.

The capabilities of IBO-HPC to recover reliably are shown in Fig.[6] Here, we provided a strongly misleading user beliefs
(as points) at iteration 5. It can be seen that, without further user interaction, IBO-HPC manages to recover and achieves
almost the same performance as if no interaction was provided. Moreover, the results show that IBO-HPC successfully
incorporates multiple user interactions (here at iteration 5 (misleading) and iteration 20 (beneficial)). It can be seen that after
the misleading belief is provided, IBO-HPC starts to recover, and when provided with a beneficial belief, its convergence
speed remarkably increases. Furthermore, the quality of the solutions found has improved considerably.

Fig. [7] shows the CDF of test accuracy across the baselines and IBO-HPC. It can be seen that IBO-HPC spends more
computational resources in good-performing configurations than other methods while achieving state-of-the-art or better
results. In other words, IBO-HPC avoids exploration in unpromising regions of the search space. This is because IBO-HPC
samples configurations from a conditional distribution where the condition is the best evaluation score obtained so far. Thus,
exploration is purely data-driven and focuses on regions that perform similarly to the incumbent solution at a particular
1teration.

Fig.[8|shows the influence of the decay parameter v in cases where harmful or misleading user knowledge was provided to
IBO-HPC at an early iteration (10 in this case). It can be seen that for higher v, IBO-HPC requires more time to recover
than for smaller . This aligns with our expectations since a larger y corresponds to a high likelihood of the user knowledge
being used for many iterations. In contrast, if «y is small, likely, the user knowledge is only considered for a certain number
of iterations with high likelihood. Thus, for smaller v IBO-HPC can recover faster.

15

o 0.16
0.25{ ! 0.14 0.10
5 [B i 5
£0.20(4i i £0.120 £
] . I () [} 0 08
% “ﬁ\\ ©%0.10 7 2
80.15{ i\ 3 3 |
i i',_ 0.08 0.06 i
1 T . |
01015 0.06f i i L
0.0 2.5 5.0 7.5 0 2 4 6 0.0 2.5 5.0 7.5
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) le7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.0703+ T T
i i 0.12f ' !
1 1 [
i i 1 —— IBO
50.065 i i 50.11 l l IBO (w/ interaction@10)
] i i g I —— IBO (w/ interaction@5)
e A\ ! 2 o010k " ! —— IBO (w/ dist. intervention@5)
%) 1 8 : L RS
+0.0607 i s - i 7BO
: : 0.09 [\ BOProO
L i | LS
0.055— - 0.08+—— SMAC
0.5 Lo 1.5 0 5000 10000 —._. time of interaction
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 5: IBO-HPC outperforms state of the art. For 5 tasks across three challenging benchmarks, IBO-HPC is competitive
with state-of-the-art methods when no user knowledge is provided. When beneficial user beliefs (vertical dotted line) are
provided, either as distributions (green) or point values (orange, cyan), it outperforms all competitors w.r.t. convergence and
solution quality on most tasks. Early interactions (green/orange=5th iteration, cyan=10th iteration) speed convergence up.

Fig. E| shows the effect of conditioning on the {0.25, 0.5, 0.75}-quantile of the obtained evaluation scores instead of the
maximum evaluation score. As expected, the higher the quantile, the better the performance of IBO-HPC as we aim to
maximize the objective function. Thus, conditioning on higher values guides the optimization algorithm to configurations
that yield better evaluation scores.

Lastly, Fig. [I0]depicts the effect of changing L, i.e., the number of samples drawn from the surrogate before the surrogate is
updated. We found that the sample size has no effect on the overall performance of IBO-HPC. However, for some tasks
(JAHS CIFAR-10 and CO), depending on the choice of L, we detect a relevant variation of convergence speed in early
iterations. Choosing L = 20 seems to lead to fast and stable convergence.

In Fig.[BHI0] we followed the same experimental protocol as for all other experiments except that each algorithm has been
run on each task with different random seeds 100 times instead of 500 times.

16

0.16

T T T T
1 1 I i
I i I i
0.14fi i 0.108; |
o 5 i i) i i
£ go.12fi i B P
o e Y i e i i
g E’ 0.10 1 g, L.
0.08
0.06{i i P
0.0 25 5.0 75 0 2 4 6 0.0 2.5 5.0 7.5
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.070 T T T
[0.12¢1 !
[o
[o — IBO
50.065 i i 50.1171 i —— IBO (w/ interaction@5)
B i 5 o —— IBO (w/ interaction@5,15)
2 e 20104} RS
£0.060) v TNCEE 2 ' BO
PR N 0.09{ 4> = LS
Lo — . r—— SMAC
[} [} 1 I
. . . BOPrO
0.055 05 10 15 00 5000 10000 -~ time of interaction
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 6: IBO-HPC recovers from misleading interactions. IBO-HPC automatically recovers (solid pink) from misleading
feedback provided as points at the 5Sth iteration of the search (1st grey dash-dotted vertical line). After providing beneficial
beliefs at iteration 20 (2nd grey dash-dotted vertical line), IBO-HPC (solid brown) catches up with or outperforms 7BO and
BOPrO.

17

1.0 1.0
0.8 0.8
w 0.6 w 0.6
o) a
Co.4r i ©o0.4
0.21 i 0.2
0t & 0.01 L= 0.0 ——=disitimmmmr
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Test Accuracy (%) Test Accuracy (%) Test Accuracy (%)
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
1.0 1.0
0.8 0.8 —— IBO
IBO (w/ interaction@5)
i 0.6 m 0.6 —— IBO (w/ interaction@5,20)
[a)] [} IBO (w/ interaction@10)
Co4 Co4 IBO (w/ interaction@5)
—— IBO (w/ dist. intervention@5)
0.2 0.27 e T RS
e g — HBO
0.0+ iz - : 0.0 S I P BOPrO
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 ;;Ac
Test Accuracy (%) Test Accuracy (%)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 7: CDF of test accuracy. IBO-HPC samples represent better configurations than most other BO baselines on most
tasks. Thus, IBO-HPC invests more computational resources in good configurations than other methods. We conjecture that
this is because IBO-HPC selects configurations s.t. they are likely to perform similarly to the incumbent solution in each
iteration. Interestingly, RS also samples several good configurations on the JAHS benchmark.

18

0.300

—— IBO y=0.3 0.16 —— IBO y=0.3 0.11 — IBO y=0.3
0.275 —— IBO y=0.7 —— IBO y=0.7 —— IBO y=0.7
0.14 - 0.10 -
£0.250 —— IBO y=0.99 50 —— IBO y=0.99 5 —— IBO y=0.99
£ 5 £0.09
©0.225 30.12 3
g g %0 08
20.200 =010 50.
0.07
0.175 0.08
0158525 50 75 0 34 6 0-08% 25 50 75
wall-clock time (sec.) 1e7 wall-clock time (sec.) 16 wall-clock time (sec.) 17
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.0700
—— IBO y=0.3 0.12 —— IBO y=0.3
0.0675 —— IBO y=0.7 —— IBO y=0.7
— - 50.11 —— IBO y=0.99
50.0650 IBO y=0.99 :
[} [}
20.0625 50.10
3 3
0.0600 0.09
0.0575
0.0 05 1.0 1.5 0.085 5000 10000
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 8: Ablation: Effect of v on recovery of IBO-HPC. As expected, we found that IBO-HPC recovers faster for smaller
values of . This is due to the smaller + values leading to a higher decay of the probability of conditioning on the provided
user knowledge. Thus, with faster decay, IBO-HPC recovers faster from harmful or misleading user knowledge (provided at
iteration 10).

19

0.30
—— IBO q=0.25 0.16 —— 1IBO q=0.25 0.11 —— IBO q=0.25
—— IBO gq=0.5 —— IBO g=0.5 —— IBO g=0.5
0.14 = 0.10 -
5 0.25 —— IBO q=0.75 5 —— IBO g=0.75 5 —— IBO g=0.75
£ & £0.09
5 ©0.12 ©
4 - -
£0.20 3 80.08
= ~0.10 =
0.07
0.15 o—————— 0.8 0.06
0) 4 6 0 2 4 (1] 2 4 6
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.0700
—— IBO q=0.25 0.12 —— IBO g=0.25
0.0675 —— IBO g=0.5 — IBOg=0.5
— = £0.11 —— IBO q=0.75
E 0.0650 180 q=0.75 g
) [}
0.0625 5 0.10
3 3
0.0575
0.0 05 1.0 0.085 5000 10000
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 9: Conditioning on suboptimal evaluation scores slows down IBO-HPC. Conditioning on the evaluation score
of good configurations is crucial for the performance of IBO-HPC. To analyze the effect of conditioning on evaluation
scores of suboptimal configurations, we conditioned on the {0.25, 0.5, 0.75}-quantile of all evaluation scores obtained until
iteration t. As expected, for higher quantiles (i.e., better evaluation scores), IBO-HPC finds better configurations.

20

IBO @ 5 samples

IBO @ 10 samples
IBO @ 20 samples
IBO @ 30 samples

2 4

6
wall-clock time (sec.) 1e7

() JAHS (CIFAR-10)

0.0700
—— IBO @ 5 samples

0.0675) —— IBO @ 10 samples
i —— IBO @ 20 samples
5]
E 0.0650 —— IBO @ 30 samples
% 0.0625
3

0.0600

0.0575

0.5

1.0
wall-clock time (sec.) 1e6

(d) NAS-Bench-101 (CIFAR-10)

IBO @ 5 samples

IBO @ 10 samples
IBO @ 20 samples
IBO @ 30 samples

o
MR
W~

test error

0 1 2 3 4
wall-clock time (sec.) 1e6

(b) JAHS (C. Histology)

o
—_
(=]

e
o
©

test error

c <
o o
NS

e

o

)
o

IBO @ 5 samples

IBO @ 10 samples
IBO @ 20 samples
IBO @ 30 samples

2 4 6
wall-clock time (sec.) 1e7

(c) JAHS (F-MNIST)

0.12 —— IBO @ 5 samples
—— IBO @ 10 samples

£0.11 —— IBO @ 20 samples
E —— IBO @ 30 samples
+£0.10
8

0.09

0‘080 5000

10000

wall-clock time (sec.)

(e) NAS-Bench-201 (CIFAR-10)

Figure 10: L has no considerable effect on IBO-HPC’s performance. We found that updating the surrogate model
every L = {5, 10, 20, 30} iterations does not lead to considerable differences in the performance and convergence speed of
IBO-HPC. We observed a considerable variation in convergence speed only in early iterations with JAHS, on CIFAR-10 and
CO tasks. However, these variations vanish in the course of the optimization.

18
16
14

Speedup

S N B~ O

—— Interaction@10
—— Interaction@5

i

NAS-101 NAS201 JAHS JAHS JAHS
(C-10) (C-10) (C-10) (FM) (CH)
Benchmark

Figure 11: User beliefs speed up IBO-HPC. Beneficial interactions lead to significant median convergence speed-ups, from

2to 10x.

21

	Introduction
	Related Work
	Interactive Hyperparameter Optimization
	Interactive Bayesian Optimization with Hyperparameter Probabilistic Circuits

	Experimental Evaluation
	Conclusion
	Method
	Bayesian Optimization
	IBO-HPC pseudocode

	Motivation & Real-World Example
	Working Example
	Our Surrogate Models: Probabilistic Circuits
	Proofs
	IBO-HPC's Policy is Feedback Adhering Interactive

	Experimental Details
	Defining User Interactions
	Search Space Extension of JAHS
	Interactions
	Hyperparameters of IBO-HPC
	Hardware
	Additional Results & Ablation Studies

