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ABSTRACT

Explainability and uncertainty quantification are two pillars of trustable artificial
intelligence. However, the reasoning behind uncertainty estimates is generally left
unexplained. Identifying the drivers of uncertainty complements explanations of
point predictions in recognizing potential biases and model limitations. It addi-
tionally facilitates the detection of oversimplification in the uncertainty estimation
process. Explanations of uncertainty enhance communication of and trust in deci-
sions. They allow for verifying whether the main drivers of model uncertainty are
relevant and may impact model usage in certain applications. So far, the subject
of explaining uncertainties has been rarely studied. The few exceptions in existing
literature are tailored to Bayesian neural networks or rely heavily on technically
intricate approaches, such as auxiliary generative models, thereby hindering their
broad adoption. We propose variance feature attribution, a simple and scalable so-
lution to explain predictive aleatory uncertainties. First, we estimate uncertainty
as predictive variance by adapting a neural network, for example, by equipping
it with a Gaussian output distribution. We achieve this by adding a variance
output neuron and can thereby rely on pre-trained point prediction models and
fine-tune them for meaningful variance estimation. Second, we apply out-of-the-
box explainers on the variance output of these models to explain the uncertainty
estimation. This two-step method can be easily applied to any neural network
with model-agnostic or model-specific explainers. We evaluate our approach in a
synthetic setting where the data-generating process is known. We show that our
method can explain uncertainty influences more reliably and faster than the estab-
lished literature baseline CLUE, while the uncertainty estimation stage does not
impede the accuracy of the model. As an illustrative application, we fine-tune a
state-of-the-art age regression model to estimate uncertainty and generate attribu-
tions for age prediction uncertainty. Our exemplary explanations highlight reason-
able potential sources of uncertainty, such as laugh lines and frowning. Variance
feature attribution provides accurate explanations for uncertainty estimates with
little modifications to the model architecture and low computational overhead.

1 INTRODUCTION

Researchers have recognized the importance of uncertainty quantification and explainability of ma-
chine learning (ML) predictions to ensure the successful real-world adoption of ML-based systems
in safety-critical applications (Abdar et al., 2021; Vilone & Longo, 2020). These dimensions serve
as key indicators of a model’s trustworthiness, reliability, and fairness, which are crucial for its
broad acceptance and use (Lambert et al., 2022; Lötsch et al., 2022). Predictive uncertainty in ML
refers to the degree of confidence associated with a model’s predictions (Chua et al., 2023). It can
be decomposed into an epistemic and aleatory component (Kendall & Gal, 2017). Epistemic uncer-
tainty arises from the scarcity of data in specific areas of the input space, for example, because a
particular condition may be underrepresented. Principally, it can be reduced by acquiring additional
examples of this condition. Aleatory uncertainty refers to inherent randomness or variability in
the data, representing uncertainty that cannot be reduced by including additional training examples.
Such uncertainty can arise due to measurement errors or certain variables relevant to the observed
process not being collected. Uncertainty estimation is critical in risk management. It allows taking
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conservative action, relying on the model only when it exhibits a high degree of confidence in its
predictions, and avoiding usage outside its area of competence (Kompa et al., 2021).

Explainability encompasses methods that enhance the transparency of ML models by highlight-
ing how features influence the model’s output or by rendering the internal computations of black-
box models more interpretable. Explainability methods enable understanding whether a model has
learned relevant patterns from the input data and can reveal interesting previously unknown associ-
ations (Samek et al., 2021; Schwalbe & Finzel, 2023). Uncertainty quantification and explainability
ensure accountable, informed and, therefore, responsible decision making and help mitigate biases
and risks (Bhatt et al., 2021; Zhou et al., 2022; McGrath et al., 2023).
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Figure 1: Overview of the variance feature attribution pipeline. (A) An original point prediction
model with an output layer with weight matrix W ∈ Rd×1 and a scalar bias. We equip this model
with a Gaussian distribution resulting in (B), a model with output weight matrix W ∈ Rd×2 and bias
b ∈ R2. The two outputs are the mean µ̂ and the variance parameters σ̂2 of the predictive distribu-
tion. (C) From there, we can explain the variance using any suitable explainability method resulting
in input-specific feature attributions that can be used to understand the drivers of the model’s uncer-
tainty.

In the majority of applications, the focus of model explainability predominantly lies in interpreting
point predictions (Vilone & Longo, 2020). There is a significant gap in understanding and explain-
ing the drivers of uncertainty estimates. In practice, when a machine learning algorithm is deployed
and yields a substantial uncertainty estimate for a specific instance, the possible courses of action
involve abstaining from employing the model if alternatives are available or accepting an increased
level of risk. With explainable uncertainties, however, users gain the capability to identify the factors
contributing to elevated uncertainty levels. This understanding allows domain experts to judge their
relevance in a given scenario. Additionally, it provides valuable insights concerning necessary mod-
ifications to augment the model’s predictive certainty and performance. In cases where abstaining
from model usage is still necessary, factors influencing the decision can be understood and commu-
nicated. For example, if such an uncertainty factor is a feature indicating a person’s minority status,
it could suggest a potential bias of the model. The bias would be undetectable by naive explanations
if the feature only influences the uncertainty estimation but not the mean prediction.

Explanations can be categorized as either local or global (Schwalbe & Finzel, 2023; Adadi &
Berrada, 2018). Local explanations provide insights into how a model makes predictions for a
specific instance. A local explanation of the model’s uncertainty could foster more transparent dis-
cussions about ML-assisted decisions and risks, leading to increased trust. Global explanations
provide an overview of a model’s behavior across the entire input space. In the realm of uncertainty
explanations, they can be used to detect general drivers of uncertainty and certainty or to partition
the input space into easy- vs. hard-to-predict regions. This knowledge can be utilized to formulate
hypotheses to improve the model or to detect unintended shortcuts in the uncertainty estimation
process, such as spurious correlations or biases.
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There is little prior work on explaining uncertainties, and existing literature mainly focuses on clas-
sification and generally relies on Bayesian neural networks (BNNs) or technical intricacies such as
auxiliary generative models (Antoran et al., 2021; Perez et al., 2022; Ley et al., 2022; Wang et al.,
2023). BNNs assign probability distributions to network weights to capture uncertainty (MacKay,
1992). However, due to their computational complexity and altered training process, BNNs have not
been as widely adopted as classical neural networks. This hinders the adoption of BNN uncertainty
explanation approaches (Lakshminarayanan et al., 2017).

We propose a simple and scalable solution for explaining uncertainties that can be readily integrated
into existing ML pipelines (see Figure 1). We propose extending existing pre-trained point predic-
tion models to additionally estimate parameters of the spread of a given probability distribution. In
this work, we predict parameters of a Gaussian distribution similar to a classic heteroscedastic re-
gression model. We approximate the error distribution by a Gaussian as its variance parameter can
be interpreted as a measure of the aleatory uncertainty of the model. We can then use any state-of-
the-art explainability method to explain the variance estimate provided by this probabilistic model.
By highlighting the features contributing to the variance output, we can identify the input features
that contribute to the model’s uncertainty. While we focus on heteroscedastic regression in this work,
the approach can be generalized to other target spaces, for example, for classification. To evaluate
our method, we construct a synthetic problem where we can control how data is generated and how
features contribute to the aleatory uncertainty present in the data. We train a simple feed-forward
neural network on the regression task and test how many injected uncertainty-driving features we
can recover. We compare our method to the established literature baseline Counterfactual Latent
Uncertainty Explanations (CLUE) (Antoran et al., 2021). Furthermore, we illustrate a potential ap-
plication of our method to an age regression task on images. We extend a pre-trained state-of-the-art
transformer model and analyze the feature-attribution maps obtained for the uncertainty estimate.

1.1 RELATED WORK

Uncertainty quantification and explainability are rich areas of research (Abdar et al., 2021; Vilone
& Longo, 2020). Yet, few researchers have recognized the importance of explaining the sources of
uncertainty in predictions. Yang & Li (2023) have developed an explainable uncertainty quantifi-
cation approach for the prediction of molecular properties. They employ message-passing neural
networks and generate unique uncertainty distributions for each atom of a molecule. However, this
approach is inherently specialized for graph-based representations of molecules. Counterfactual La-
tent Uncertainty Explanations (CLUE) (Antoran et al., 2021) and related approaches (Perez et al.,
2022; Ley et al., 2022) derive counterfactual explanations by optimizing for an adversarial input
that is close to the original input but minimizes uncertainty. The adversarial input is constrained
to the data manifold with a deep generative model of the input data to prevent out-of-distribution
explanations. This necessitates an optimization process for each explanation and the training of an
auxiliary generative model, rendering CLUE and its extensions computationally demanding and dif-
ficult to implement. While CLUE is applicable to other probabilistic ML methods, the authors focus
on explaining BNNs. Wang et al. (2023) have developed a gradient-based uncertainty attribution
method for image classification with BNNs. They modify the backpropagation to attain complete,
non-negative pixel attribution and to prevent vanishing gradient issues. To develop a method for de-
tecting deterioration in model performance and explaining its cause, Mougan & Nielsen (2023) use
traditional ML methods and bootstrapping to obtain estimates of epistemic uncertainty. To explain
the sources of uncertainty, they train a model and obtain uncertainty estimates on a test set trans-
formed with an artificial distribution shift. In a second step, they train another model that predicts the
uncertainty estimates obtained in the first step. Subsequently, Shapley values are estimated for the
second model to extract the feature attributions for the uncertainty. Mehdiyev et al. (2023) also focus
on traditional ML methods and employ quantile regression forests in operations research to obtain
prediction intervals that quantify uncertainty. They extract feature attributions for the uncertainty
by estimating Shapley values directly for these prediction intervals as output. Watson et al. (2023)
take an information-theoretic approach and explain uncertainty by extending Shapley values to the
predictive distribution’s higher-order moments in a conditional entropy setting for classification.
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2 METHODS

2.1 DEEP HETEROSCEDASTIC REGRESSION

We want to explain uncertainties in the context of deep distributional neural networks that go be-
yond mere point predictions, i.e., they estimate the parameters of a specified output distribution.
For this work, we focus on deep heteroscedastic regression with a Gaussian output, where we cap-
ture the mean and variance of the target, thereby directly modeling input dependence of the output
noise. Here, we consider a regression setting with n independent training examples {(xi, yi)}ni=1

with input feature vector xi ∈ Rk and targets yi ∈ R, i = 1, . . . , n. Instead of providing a full
picture of the conditional distribution of the target, deep regression models usually only estimate its
conditional mean by optimizing the mean squared error (MSE) or comparable loss functions. As a
result, uncertainty information, which can be essential for decision-making and risk assessment, is
not captured (Li et al., 2021). In contrast, we assume a heteroscedastic Gaussian as the conditional
distribution

y | x ∼ N
(
µx, σ

2
x

)
(1)

and represent its mean µx and variance σ2
x using a neural network fθ : Rk → R×R+ with weights

θ. k is the dimension of the input, and two output neurons produce the mean and variance estimates

fθ (x) = (µ̂x, σ̂
2
x), (2)

respectively. We can then optimize the Gaussian negative log-likelihood

L ∝
n∑

i=1

(
log(σ̂2

xi
) +

(yi − µ̂xi
)2

σ̂2
xi

)
(3)

and interpret the predicted variance as a measure of the aleatory uncertainty of the model. However,
naively optimizing this criterion with overparametrized models such as deep neural networks can be
unstable. These models frequently overfit by excessively shrinking the variance estimate or underfit
by predicting only a mean estimate of the target and fitting the variance to the overall target variation
in the data (Kuprashevich & Tolstykh, 2023; Wong-Toi et al., 2023; Nix & Weigend, 1994; Seitzer
et al., 2022). In practice, these convergence difficulties can be mitigated by initially training the
model using solely the MSE

∑n
i=1 (yi − µ̂xi

)
2 and subsequently switching to the Gaussian loss as

in Equation (3) (Sluijterman et al., 2023). Additionally, instead of applying separate networks, mean
and variance are estimated with shared hidden representations (Stirn et al., 2023).

2.2 EXTENDING PRE-TRAINED MODELS TO OUTPUT UNCERTAINTY ESTIMATIONS

The two-stage training process with mean warmup, as described above, naturally fits into the frame-
work of transfer learning: The MSE-based initial training can be seen as a pre-training phase. The
model is subsequently fine-tuned, switching to the Gaussian negative log-likelihood loss to cap-
ture predictive uncertainty (Equation (3)). The variance estimate is constrained to be positive with
an exponential transformation and trained alongside the mean estimate using the Gaussian nega-
tive log-likelihood. In a scenario where pre-training with the MSE-loss and fine-tuning with the
Gaussian negative log-likelihood is conducted jointly, it is possible to directly construct the neural
network with the additional output neuron and exclude it when optimizing the MSE. However, in
practice, it might be interesting to extend existing pre-trained models to capture uncertainty, where,
for example, the model size and associated training costs make full re-training unfeasible. In this
case, we can readily extend such pre-trained regression models by concatenating a column of ran-
domly initialized weights to the weight matrix of the output layer to attain a variance estimate, i.e.,
an additional output neuron. We define the parameter matrix connecting the activations of the last
hidden layer to the output as:

W =

w1

...
wd

 . (4)

Therefore, the final scalar output of a point prediction neural network can be calculated as:

xW + b = ŷ = µ̂x, (5)
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where x = [x1 · · · xd] is the activation vector of the last hidden layer and b is the output layer’s
bias term. To adjust the network to produce both parameters of a Gaussian distribution (µx, σ

2
x) and

not just a point estimate (µx), we inject a parameter column in the last layer’s weight matrix that
will result in an additional output being produced by the neural network:

x×

 w∗
1

W
...
w∗

d

+ [b b∗] = [ŷ1 ŷ2] =
[
µ̂x σ̂2

x

]
, (6)

where w∗ is the randomly initialized new weight vector. Additionally, the bias term needs to be
extended by b∗ to account for the increased number of output neurons. Alternatively, in architectures
with a dedicated multi-layer regression head, it is equally straightforward to achieve an additional
variance output neuron by adding a completely separate multi-layer variance head. We enforce the
positivity of the variance with a suitable activation, such as the exponential function.

2.3 POST-HOC EXPLANATION OF PREDICTIVE VARIANCE

Classical explainability methods focus on explaining the predicted class in a classification scenario
or the point prediction in a regression task. We similarly explain the variance output in a het-
eroscedastic regression model. In these models, variance is an additional output to which we can
apply any existing, appropriate explainability method. Variance feature attribution should not be
understood as a new feature attribution method but as an extension of the scope on which such
methods are applied. The choice of a suitable method follows the same criteria as for the explana-
tion of the mean prediction or point predictions, and relevant literature should be consulted (Vilone
& Longo, 2020; Samek et al., 2021; Schwalbe & Finzel, 2023). In principle, we can formulate our
uncertainty explanation for any parametrized output distribution for which an explicit formulation
of the uncertainty is available. In the case of a Gaussian output distribution, the application is most
direct since the variance, as a parameter of the Gaussian, is an explicit output of the neural network.
Furthermore, unlike distributions such as the Poisson or the exponential distribution, the variance is
uncoupled from the mean output so that factors influencing the mean output are disentangled from
uncertainty drivers.

In this work, we employ a model-agnostic and a model-specific explainability method to explain
uncertainty. Model-specific methods are limited in the type of models that they can explain but may
offer advantages such as lower computational complexity. In contrast, model-agnostic methods can
be applied to any machine learning model (Adadi & Berrada, 2018). For our synthetic evaluation, we
rely on KernelSHAP (Lundberg & Lee, 2017), a model-agnostic, local explainability method. Ker-
nelSHAP approximates Shapley values using a weighted linear surrogate model with an appropriate
weighting kernel. For the age detection experiment, we use the CAM-based approach HiResCAM
(Zhou et al., 2016; Draelos & Carin, 2021), a model-specific, local explainability technique that
extracts an explanation by weighting the last feature map with the gradient of the output with re-
spect to this last layer feature map. It was originally developed for convolutional neural networks
and classification but can be applied to vision transformers and regression. We follow Chefer et al.
(2021) who apply a similar CAM-based approach to the [CLS] token of the last attention layer of
the transformer model. Their approach can be readily adapted for transformers with class attention.

2.4 SYNTHETIC BENCHMARK PIPELINE

Evaluating explainability methods on real-world data is challenging due to the subjective nature
of interpreting explanations based on expert prior knowledge. To address this, we employ syn-
thetic data with a known data-generating process. Thereby, we can introduce controlled sources
of heteroscedastic, aleatory uncertainty, which we subsequently aim to detect through our method,
variance feature attribution. Specifically, we sample a synthetic ground truth using a linear system

µ = V β (7)

with a design matrix V ∈ Rn×p with entries Vij ∼ N (0, 1), and ground truth coefficients β ∈ Rp

with βi
iid∼ Uniform([−1, 1]). We introduce heteroscedastic noise sources with an absolute-value

transformed polynomial model for the heteroscedastic noise standard deviation:

σ =| ϕ(U)γ + δ |, (8)
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whereby U ∈ Rn×p′
is a design matrix with entries Uij

iid∼ N (0, 1), ϕ(u1, u2, . . . , up′) →
(u1, . . . , up′ , u2

1, u1u2, . . . , u
2
p′) is a second degree polynomial feature map, and δ ∼ N

(
0, σ2

δI
)

is

the uncertainty model error. γ ∈ R(
p′+2

2 )−1 are ground truth noise coefficients with entries sampled
from γi ∼ Uniform([−1,−0.5] ∪ [0.5, 1]) to avoid negligible effects.

We can then sample the target y ∈ Rn with

y ∼ N
(
µ, α · diag(σ2) + σ2

ϵI
)
. (9)

α ∈ R+ determines the overall strength of the heteroscedastic uncertainty and σ2
ϵ ∈ Rn regulates

the homoscedastic noise.

For our experiments, we set α = 2.0, σ2
ϵ = 0.02, and σ2

δ = 0.05 to get non-negligible, feature-
dependent noise that can be modeled. We choose p = 70 and p′ = 5 so that the uncertainty
sources have to be detected among a larger set of features that do not influence the uncertainty. We
sample n = 41, 500 data points and concatenate both design matrices to attain the input X(n×75) =[
U(n×5),V(n×70)

]
which we split into a train set, validation set, and test set of 32,000, 8,000, and

1,500 instances, respectively. We fit a deep neural network that has four hidden layers with 64,
64, 64, and 32 units. The network has two output neurons for the mean and variance prediction.
During training, we apply dropout regularization with a dropout probability of 0.1 to the first two
layers. We use the Adam optimizer and a batch size of 64. We commence the training using the
MSE and subsequently optimize the model using the Gaussian negative log-likelihood as the loss
function. This is akin to acquiring a pre-trained model and then refining it through fine-tuning. In
both training phases, we stop training when improvement on the validation set ceases and choose
the model weights that resulted in the smallest validation loss.

To interpret the uncertainties, we apply the post-hoc feature attribution method KernelSHAP from
the SHAP package (Lundberg & Lee, 2017). We attain a feature importance measure as the mean
absolute estimated Shapley values over the test dataset. We can then scrutinize if the noise sources
ui are rediscovered as the most important features for the uncertainty estimation.

We compare our approach to Counterfactual Latent Uncertainty Explanations (CLUE), for which
we have to train a variational autoencoder on the train data and apply the optimization as detailed
in (Antoran et al., 2021). We calculate the CLUE feature importances as the mean of the absolute
differences between each latent explanation to each original input over the test dataset.

2.5 APPLICATION TO AGE DETECTION

To showcase the applicability of our approach in a non-synthetic setting, we turn to the problem of
age detection. Age detection is a relevant task in computer vision and finds application in a wide
range of areas, from security to retail. We apply MiVOLO (Kuprashevich & Tolstykh, 2023), a re-
cent state-of-the-art transformer-based model that achieves best-of-its-class performance in multiple
age detection benchmarks (Kuprashevich & Tolstykh, 2023; Lin et al., 2022; Zhang et al., 2017).
MiVOLO was designed explicitly for age detection, alongside the related problem of gender detec-
tion, and tackles both problems simultaneously to leverage synergies between the tasks. MiVOLO
builds on VOLO (Yuan et al., 2023), a vision transformer architecture based on a special outlook
attention that employs mechanisms usually used in convolutional neural networks. In contrast to
VOLO, MiVOLO has two separate inputs. The first is the image patch with a person’s face, and
the second is the image patch of the body with the face removed. However, for simplicity, we use
a version of the model that only uses the face input, bringing it closer to the original VOLO. The
model produces a single three-dimensional output tensor, representing the prediction of the male
and female sexes and the person’s age.

We use a pre-trained version of MiVOLO and, following our procedure introduced in Section 2.2,
extend the parameter matrices of the MiVOLO head, auxiliary head, and their respective bias terms.
We initialize the extension of the parameter matrices using a Gaussian distribution following Glorot
& Bengio (2010) and set the new bias terms to zero. The new dimension of the output vector is
four, including the age prediction variance. After we have equipped the model with a Gaussian
distribution, we train it using the IMBD-clean dataset (Lin et al., 2022), using the annotations and
pre-processing by Kuprashevich & Tolstykh (2023). We fine-tune the model with the Gaussian
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negative log-likelihood as our loss function. Consequently, we turn the previous point prediction
for age into the mean of our estimated Gaussian distribution. The loss term for the gender detection
remains a BinaryCrossEntropy loss. We use an Adam optimizer with a learning rate of 1e-5, a
weight decay of 1e-2, and a batch size of 176. We use the validation set only for model selection.
To detect and visualize the drivers of uncertainty in the images, we use HiResCAM as described in
Section 2.3.

3 RESULTS

3.1 DETECTION OF NOISE SOURCES IN SYNTHETIC DATASETS

We examine the capability of our method to identify the drivers of uncertainty, which are features
that correlate with the magnitude of the heteroscedastic noise. For the synthetic dataset, we know
the data-generating process and, therefore, the ground truth noise sources and aim to rediscover
them using variance feature attribution. An analysis of the quality of the uncertainty estimate can
be found in the Appendix A.1. The results indicate that the uncertainty estimates generated by
our model are meaningful; however, for them to be used to guide decision-making in practical
applications, we argue that they should be explainable and ascertain if our method can detect the
features influencing the heteroscedastic noise in the data. We use variance feature attribution with
estimated Shapley values to delineate each feature’s contribution to the model’s uncertainty on 200
random test examples. The SHAP summary, depicted in Figure 2, offers an aggregated view of
feature impacts, including their directionality. The five ground truth noise features are accurately
identified as the top five contributors to model uncertainty (Figure 2 A).

A B

Figure 2: Explanations for uncertainty and mean predictions for the synthetic dataset. We display
SHAP summaries for the 10 most important features of model uncertainty (A) or mean prediction (B)
ordered by the mean of their absolute estimated Shapley values. We employ a neural network trained
on synthetic data with heteroscedastic noise that non-linearly depends on 5 of 75 input features.
By interpreting the variance output, we identify the key factors driving the aleatory uncertainty of
the model. The attribution of the mean output offers complementary information but disregards
uncertainty features.

In practice, explaining uncertainties is particularly relevant in instances with very high or very low
uncertainty. In addition to random instances, we, therefore, apply variance feature attribution to
the 200 highest and lowest uncertainty instances of the 1,500 test samples. We depict the resulting
feature importance, measured as mean absolute estimated Shapley values, in Figure 3 A, C, E. For
comparison, we explain the same instances for the same model using CLUE (Antoran et al., 2021)
as an alternative explainer of model uncertainty (see Figure 3 B, D, F). We calculate CLUE feature
importance as the mean absolute difference between CLUE uncertainty counterfactuals and the orig-
inal sample. We find that variance feature attribution and CLUE both effectively identify uncertainty
drivers for high-uncertainty instances. Variance feature attribution also delivers stable performance
for random and low uncertainty examples while CLUE’s detection capability deteriorates. This
suggests that, unlike CLUE, variance feature attribution can elucidate the factors contributing to
certainty in addition to those relevant to uncertainty. To compare the runtimes, we use an Intel(R)
Core(TM) i5-12600K machine with an NVIDIA RTX 3060 Ti. We apply the post-hoc explanation
of both methods to the same trained model 15 times. A run takes 81± 34 seconds for variance fea-
ture attribution and 1012± 33 seconds for CLUE. Notably, the uncertainty estimation training stage
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only marginally reduces the accuracy of the regression model in our experiment. The MSE is 0.79
after the MSE pre-training stage and 0.80 after the uncertainty-aware fine-tuning stage. Naturally,
the ability of variance feature attribution to detect drivers of uncertainty depends on the train dataset
size and magnitude of the noise signal. We analyze this in Appendix A.2.

Mean feature Noise feature

0.0 0.2 0.4 0.6

Variance attribution for highest uncertainty instancesA

0.0 0.3 0.6 0.9

CLUE for highest uncertainty instancesB

0.0 0.1 0.2 0.3

Variance attribution for random instancesC

0.00 0.25 0.50 0.75

CLUE for random instancesD

0.00 0.05 0.10 0.15 0.20
Feature Importance

Variance attribution for lowest uncertainty instancesE

0.00 0.25 0.50 0.75
Feature Importance

CLUE for lowest uncertainty instancesF

Figure 3: Top 20 variance feature attribution importances and CLUE feature importances on a syn-
thetic dataset. A, B: From a test set of 1,500 samples with 70 mean and 5 noise features, we explain
the 200 instances with the highest predicted uncertainty. Our variance attribution method (A) and
CLUE (B) both faithfully assign high importance to the ground truth uncertainty sources. C, D:
For 200 random instances, variance attribution delivers accurate explanations (C), while CLUE is
unreliable (D). E, F: Variance feature attribution also can attribute (un-)certainty for the 200 lowest
uncertainty predictions (E), while CLUE performance deteriorates (F).

3.2 FINDING POTENTIAL DRIVERS OF UNCERTAINTY IN AGE DETECTION

We investigate the application of variance feature attribution to a non-synthetic age detection task
using the MiVOLO model (Kuprashevich & Tolstykh, 2023) and the IMDB-clean dataset (Lin et al.,
2022). Similar to our synthetic experiment, we also evaluate the quality of the uncertainty estimate,
and the results can be found in the Appendix A.3. The results similarly suggest that the uncertainty
estimates are relevant.

Applying our method to the MiVOLO model using HiResCAM as the explanation method reveals
reasonable potential explanations for the predictive uncertainty (see Figure 4). The explanations
mainly focus on areas around the eyes, mouth, nose, and forehead. These areas seem to be high-
lighted especially strongly when the person in the image shows emotions such as joy and anger that
lead to distortions of these facial areas that the model might confuse with age-induced wrinkles.
Similar highlights in the explanations are present throughout a majority of images in the test dataset.
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Figure 4: Examples of uncertainty explanations for images from MiVOLO’s (Kuprashevich &
Tolstykh, 2023) IMDB-clean-based (Lin et al., 2022) test set. Variance feature attribution using
HiResCAM (Draelos & Carin, 2021) mainly highlights facial distortions such as laugh lines and
frowning. The corresponding input images are depicted in Appendix A.3.

4 DISCUSSION AND CONCLUSION

In this work, we have proposed variance feature attribution, a simple strategy for explaining predic-
tive aleatory uncertainties. This approach requires minimal modifications to existing neural network
regressors, making it a practical solution for broad adoption. We use neural networks with Gaussian
output distribution to estimate uncertainty and apply appropriate explanation methods to the vari-
ance output. Thereby, we are able to provide explanations for the sources of uncertainty estimates.
In synthetic experiments, the resulting explanations can be generated faster while matching CLUE
baseline performance or outperforming it in situations with low and medium uncertainty. Further,
estimating the uncertainty does not considerably impede prediction accuracy. Generally, the Gaus-
sian assumption may be unsuitable in some applications. In principle, we can extend this framework
to predict parameters of various other distributions, such as more heavy-tailed or mixture distribu-
tions, providing the opportunity for explainable uncertainties tailored to specific problem domains.
Since conventional evaluation metrics are not directly applicable, we have introduced an evaluation
protocol designed to assess uncertainty explainers involving the use of synthetic data with a known
ground-truth noise profile. We aim to expand this approach using more diverse data-generating pro-
cesses or by fusing real data with synthetic noise sources. Generally, we inherit practical limitations
of uncertainty estimation, such as overconfidence, as well as challenges related to explainability,
such as issues with faithfulness and consistency. Nonetheless, significant advancements are occur-
ring in both of these domains, which can be seamlessly integrated into our method. Future work
might involve the study of synergies of the explanations of point and uncertainty predictions. For
example, in the context of explainable active learning (Ghai et al., 2021), a shared visualization of
both explainability modes could be beneficial.
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REPRODUCIBILITY STATEMENT

Our research findings can be reproduced using the code and data provided in our
anonymous git repository available at https://anonymous.4open.science/r/
vfa-variance-feature-attribution-0E63, including scripts to create the figures
and information on the requirements. For the synthetic experiment, this includes the pipeline that
can be used to create additional datasets to probe the method further. Details on how to run the
synthetic experiments and how to download the age detection data and reproduce our explanations
are in the repository’s README.
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A APPENDIX

A.1 UNCERTAINTY EVALUATION IN THE SYNTHETIC EXPERIMENT

We assess the model’s ability to learn meaningful uncertainties by adapting a calibration curve for
regression uncertainties as described by Kuleshov et al. (2018). Precisely, we calculate the cumula-
tive probability of the observations with respect to the predicted distribution

Fi = CDFGaussian

(
(yi − µ̂(xi))√

σ̂2(xi)

)
(10)

and calculate the empirical cumulative probability distribution at 20 probability levels p̃j =
0.05j; j = 1, 2, ..., 20:

p̂j =
| {yi | Fi < p̃j , i = 0, 1, 2, ..., n} |

n
. (11)

In Figure 5 (A), we plot the empirical frequency p̂j against the probability levels p̃j and expect
p̂j → p̃j when n → ∞ for perfectly calibrated models. The uncertainty estimates are overall well
calibrated.

We further look at the reduction in test MSE we can achieve by limiting the test set to quantiles of the
test set with the lowest uncertainty. This mimics a scenario where users would opt out of utilizing
the prediction for high-uncertainty instances. As seen in Figure 5 (B), limiting the test set to low
uncertainty predictions starkly reduces the test error. We compare this to a baseline where instances
are included based on them having a low absolute distance from the mean prediction. The reduction
is close to the theoretical optimum, where instances are removed based on the ground truth standard
deviation of the heteroscedastic noise.
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Figure 5: (A) Uncertainty calibration is illustrated by binning predictions into 20 probability level
intervals and plotting the expected against the empirical frequency of observing the true target in
each interval. The dashed line indicates theoretical uncertainties with perfect calibration (Kuleshov
et al., 2018). (B) The MSE of the trained deep heteroscedastic regression model. The test set is
iteratively limited to the quantile of the test data with the lowest predicted uncertainty (red), to
instances with the lowest ground truth standard deviation of the heteroscedastic noise (green), or as
a baseline based on instances with the lowest distance from the mean (blue).

A.2 UNCERTAINTY DRIVER DETECTION: NOISE MAGNITUDE AND DATASET SIZE

Like in every supervised machine learning task, a model’s ability to learn and detect the signal,
which in this case is the noise characteristic, depends on the signal-to-noise ratio and the size of the
available dataset. We investigate the precision of noise feature detection across varying dataset sizes
and signal strengths. For uncertainty estimation, the scaling factor α of Equation (9) used for the
heteroscedastic noiser serves as an indicator of signal strength. Fig. 6 displays the precision of the
detection of heteroscedastic noise features for various dataset sizes and noise scalers. We compute
the precision as the ratio of noise features that appear among the top five most important features. As
the dataset size and the magnitude of the representable uncertainty grow, the capability to identify
the origins of uncertainty improves.

A.3 UNCERTAINTY EVALUATION AND INPUT IMAGES OF THE AGE DETECTION
EXPERIMENT

We verify that our model has learned to estimate uncertainty via the variance of the predicted distri-
bution. We use the same approach as in our synthetic experiment (see Appendix A.1) and iteratively
remove the sample with the highest predicted variance from our testing set and compare the devel-
opment of the MSE when removing samples based on their predicted age (see Figure 7). We show
all exemplary explanations and their corresponding input in Figure 8.
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Figure 6: Precision of the detection of heteroscedastic uncertainty features vs. the dataset size and
intensity of the heteroscedastic noise effect in the synthetic dataset. We use our proposed method in
single trial runs. Small effects can be detected in large datasets.

Figure 7: The test set MSE of the age detection MiVOLO model, fine-tuned for uncertainty esti-
mation. The test set is iteratively limited to the quantile of the test data with the lowest predicted
uncertainty (red). As a baseline, we remove instances according to the predicted age (blue), which
consistently produces a set with higher MSE.
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Figure 8: Input images and uncertainty explanations for images from MiVOLO’s (Kuprashevich
& Tolstykh, 2023) IMDB-clean-based (Lin et al., 2022) in our age detection experiment. Variance
feature attribution using HiResCAM (Draelos & Carin, 2021) mainly highlights facial distortions
such as laugh lines and frowning.
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