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ABSTRACT

In Autonomous Driving (AD) systems, perception is crucial for both security and
safety. Among the different attacks on AD perception, the physical object-hiding
adversarial attacks are especially severe due to their direct impact on road safety.
However, we find that all existing works so far only evaluate their attack effect at
the targeted AI component level, without any evaluation at the system level, i.e.,
with the entire system semantics and context such as the full AD system pipeline
and closed-loop control. This thus inevitably raise a critical research question: can
these existing research efforts actually effectively achieve the desired system-level
attack effects (e.g., causing vehicle collisions, traffic rule violations, etc.) in the
real-world AD system context? In the paper, we perform the first measurement
study on whether and how effective the existing designs can lead to system-level
effects, where we take the STOP sign-hiding attack as our target. Our evaluation
results show that all the representative prior works cannot achieve any system-
level effect in a classical closed-loop AD setup in road speeds controlled by com-
mon STOP signs. We then point out two limitation hypotheses that appear in all
existing works: 1) the unpractical STOP sign size distribution in pixel sampling,
and 2) missing particular consideration in system-critical attack range. Our results
demonstrate that after overcoming these two limitations, the system-level effects
can be further improved, i.e., the violation rate can increase around 70%.

1 INTRODUCTION

Autonomous Driving (AD) vehicles are now a reality in our daily life, where a wide variety of
commercial and private AD vehicles are driving on the road. For example, the millions of Tesla
cars (Kane, 2021) are equipped with Autopilot (Tesla, 2022). To ensure safe and correct driving, a
fundamental pillar in the AD system is perception, which is designed to detect surrounding objects in
real time. Due to the direct impact on safety-critical driving decisions such as collision avoidance,
various prior works have studied the security of AD perception, especially the ones that aim at
causing the disappearance of critical physical road objects (e.g., STOP signs), or physical object-
hiding adversarial attacks (Jia et al., 2022; Xu et al., 2020; Chen et al., 2018; Wu et al., 2020).

Although a plethora of prior works studied such physical object-hiding adversarial attacks in AD
settings, we find that all of them only evaluate their attack effect at the targeted AI component level
(i.e., judged by per-frame object misdetection rates (Chen et al., 2018; Eykholt et al., 2018; Xu et al.,
2020; Zhao et al., 2019; Jia et al., 2022)), without any evaluation at the system level, i.e., with the
full system semantics and context enclosing such AI component (e.g., the remaining AD system
pipeline such as object tracking, planning, and control, closed-loop control, and the attack-targeted
driving scenario), which we call the system model for such adversarial attacks in this paper (§2).
This thus inevitably raises a critical research question: can these existing works on physical object-
hiding adversarial attacks effectively achieve the desired system-level attack effects (e.g., causing
vehicle collisions, traffic rule violations, etc.) in the real-world AD system context?

To systematically answer this critical research question, we take the necessary first step by perform-
ing a measurement study on prior works with regard to their capabilities in causing system-level
effects. We select STOP sign-hiding attack as our target considering its high representativeness in
physical object-hiding adversarial attack today (Shen et al., 2022), and its direct impacts on driv-
ing correctness and road safety. We first classify the existing STOP sign-hiding adversarial attacks
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based on targeted object detection model designs, and then for each model design, we select the
most effective attack design published so far to perform system-level effect measurement. Due to
the availability of source code, we reproduce multiple STOP sign-hiding adversarial attack works.
Then, we design a simulation-centric evaluation platform to perform the measurement study. More
details will be introduced in §3. Our results show that all the representative existing works, can not
cause any STOP sign traffic rule violation against a representative closed-loop control AD system in
the common speed range for STOP sign-controlled roads in the real world even if the most effective
attack can achieve more than 80% average attack success rate in general on the AI component alone.

We further explore the root causes and find that all the existing works have design limitation to
achieve effective system-level effects due to lack of consideration of system model in AD context.
We propose two design limitation hypotheses: 1) the unpractical STOP sign size distribution in
pixel sampling, and 2) missing particular consideration in system-critical attack range, which will be
detailed in §4. With that, we propose system model-driven attack design, which can be an addon of
the existing attack methodologies to improve system-level effects by overcoming the two limitations.

We evaluate our attack improvement in the platform we designed and show that the system-level
effect can be significant improved, i.e., the system violation rate can be increased around 70%. Ab-
lation studies are also included in the evaluation, which shows the improvement on both component-
and system-level for the setting with anyone of the hypothesis mentioned above and obtains the best
results after applying both two hypotheses. Our code will be released after the double-blind review.

Note that we do not intend to claim to be the first to point out, analyze, measure, or optimize
the gap between AI component errors and their system-level effect in general; there exists a large
body of prior works in various other problem contexts (e.g., camera surveillance, video analytics,
and control) across academia and industry that have studied the characterization, modeling, and/or
optimization of end-to-end system performance with regard to AI/vision component errors (Jain &
Binford, 1991; Ramesh et al., 1997; Thacker et al., 2008; Haralick, 1992; Ji & Haralick, 1999; Zhang
& Zhu, 2018; Phillips et al., 2021; Greiffenhagen et al., 2000; 2001a;b; Philion et al., 2020; Caesar
et al., 2020; Topan et al., 2022; Gog et al., 2021). Nevertheless, to the best of our knowledge, none of
them (1) quantified such gaps in the context of adversarial attacks on autonomous systems, especially
those in real-world system setups; and (2) identified novel designs that can systematically address/fill
such gaps on autonomous systems, which we believe are our novel and unique contributions.

Contributions. To sum up, this paper makes the following contributions:
• We are the first to perform a comprehensive measurement study on the system-level effect

of the representative prior works with the entire AD system pipeline with closed-loop con-
trol on our designed simulation-centric evaluation platform. Our results indicate that all the
representative existing works, cannot cause any STOP sign traffic rule violation in common
speed range for STOP sign-controlled roads in real world.

• We point out two design limitations of the prior works to hinder them in better achieving the
system-level effects and propose system model-driven attack designs to overcome these.

• We further evaluate the validity of the two design limitations proposed in this paper and
show that with our novel designs, the system-level effect can be significantly improved,
i.e., the system violation rate can be increased around 70%

2 BACKGROUND AND SYSTEM MODEL DEFINITION

Camera-based AD perception. Today, camera-based AD perception generally leverages DNN-
based object detection to recognize road objects of various categories (e.g., traffic signs, vehicles,
pedestrians, and cyclists) in consecutive image frames (Carranza-Garcı́a et al., 2020). State-of-the-
art DNN-based object detectors can be generally classified into two categories: one-stage object
detector, and two-stage object detector. The former, such as YOLO v2 (Redmon & Farhadi, 2017),
YOLO v3 (Redmon & Farhadi, 2018), and YOLO v5 (Jocher, 2022), usually has higher detec-
tion speed, while the latter, such as Faster R-CNN (Ren et al., 2015), usually has higher detection
accuracy. Since one-stage object detector processes bounding box (BBox) regression and object
classification concurrently without a region proposal stage, it is generally much faster than two-
stage ones and thus can better meet the real-time requirement in AD context (Carranza-Garcı́a et al.,
2020). In this paper, we focus on the security aspects of camera-based AD perception, and perform
the corresponding experiments on both object detector categories.
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Figure 1: Illustration of the system model for STOP sign-hiding adversarial attacks in AD context.
The minimum brake distance and out-of-sight distance are from the vehicle plant model.

Physical object-hiding adversarial attacks in AD context. Recent works find that DNN models
are generally vulnerable to adversarial example, or adversarial attacks (Goodfellow et al., 2015;
Papernot et al., 2016; Carlini & Wagner, 2017; Madry et al., 2017). Due to the direct reliance of
camera-based AD perception on DNN object detectors, various prior works have explored the fea-
sibility of adversarial attacks in such AD context (Jia et al., 2022; Zhao et al., 2019; Xu et al., 2020;
Zolfi et al., 2021; Wang et al., 2021; Huang et al., 2020). Among them, physical object-hiding adver-
sarial attacks, which typically use physical-world attack vectors such as malicious stickers/patches
to cause the disappearance of important road objects (e.g., vehicles, pedestrians, and traffic signs)
in the object detection results (Jia et al., 2022; Eykholt et al., 2018; Zhao et al., 2019; Xu et al.,
2020; Chen et al., 2018; Wu et al., 2020), are especially severe due to their direct impacts on driving
correctness and road safety. However, as detailed in later sections, we find that so far the consid-
erations/integrations of the corresponding system models (detailed below) in the prior works in this
research space are far from enough in both their attack designs and evaluation, which is found to
substantially jeopardize the meaningfulness of their designs from the end-to-end AD driving per-
spective (§3). In this paper, we perform the first study to fill this critical research gap.

Systems model for AD AI adversarial attacks. To understand the end-to-end system-level impacts
of an adversarial attack against a targeted AI component in an AD system (e.g., whether it can
indeed effectively cause undesired AD system-level property violations such as collisions and traffic
rule violations), we need to systematically consider and integrate the overall system semantics and
context that enclose such AI component into the security analysis (Dreossi et al., 2019; Seshia et al.,
2022). In this paper, we call a systematic abstraction of such system semantics and context the
system model of such AD AI adversarial attacks. Specifically, in the AD context we identify 3
essential sub-components in such system model: (1) the AD system model, i.e., the full-stack AD
system pipeline that encloses the attack-targeted AI components and closed-loop control; (2) the
vehicle plant model, which defines the physical properties of the underlying vehicle system under
control, e.g., maximum/minimum acceleration, deceleration, and steering rates, sensor mounting
positions, etc.; and (3) the attack-targeted operation scenario model, which defines the physical
driving environment setup, driving norms (e.g., traffic rules), and the system-level attack goal (e.g.,
vehicle collision, traffic rule violation, etc.) targeted by the AD AI adversarial attack.

System model for STOP sign-hiding adversarial attack. Fig. 1 illustrates the aforementioned sys-
tem model defined for the STOP sign-hiding adversarial attack, which is so far the most extensively-
studied physical object-hiding adversarial attack in AD context (Shen et al., 2022), and thus will
be the main focus of our study in later sections due to such high representativeness in this research
space. As shown, the AD system model for object detection, the targeted AI component in STOP
sign-hiding adversarial attack, mainly includes its downstream tasks object tracking, planning, and
control, and closed-loop control. The vehicle plant model mainly includes the physical properties
related to longitudinal control, e.g., the minimum brake distance (dmin), and the distance to the stop
line where the STOP sign is out of sight in the camera image doos (depending on the hood length and
the camera mounting position). The operation scenario model includes the speed limit, lane width
of common STOP sign-controlled local roads, the relative positioning and facing of the STOP sign
to the ego lane, the driving norm that the vehicle typically drives at constant speed before it starts
to see the STOP sign (dmax), and the system-level attack goal that triggers the STOP sign violation
(i.e., exceeding the stop line). We will use this system model in our studies in the following sections.
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(a) Benign (b) RP! − Y2 (c) SIB-Y3 (d) SIB-FR (e) FTE-Y3 (f) FTE-Y5

Figure 2: STOP signs attack reproduction (in Table 1) visualisation used for measurement study,
which are printed on ledger-size papers.

3 SYSTEM-LEVEL EFFECT MEASUREMENT OF PRIOR WORKS

Scientific gap in existing works: Lack of system-level evaluation. Despite a plethora of published
attack works on physical object-hiding adversarial attacks in AD context (§2), we find that actually
all of them only evaluate their attack effect at the targeted AI component level (i.e., judged by per-
frame object misdetection rates (Eykholt et al., 2018; Xu et al., 2020; Zhao et al., 2019; Jia et al.,
2022)), without any evaluation at the system level, i.e., with the corresponding system models for
such attacks as described in §2. However, in the Cyber-Physical System (CPS) area, it is widely
recognized that in AD system, AI component-level errors do not necessarily lead to system-level
effects (e.g., vehicle collisions) (Dreossi et al., 2019; Seshia et al., 2022; Jia et al., 2020).

Thus, without system-level evaluation, it can be highly difficult, if not impossible, to scientifically
know whether a proposed attack is actually meaningful from the end-to-end AD driving perspective.
We view this as a critical scientific gap currently in this research space, and to address this, the
necessary first step is to perform a measurement study on the existing works about their system-
level effects. As the first study along this line, we choose to focus on STOP sign-hiding adversarial
attack as our measurement target considering its high representativeness in this research space and
also its direct impacts on driving correctness and road safety (§2).

3.1 ATTACK FORMULATION AND SELECTION OF PRIOR STOP SIGN ATTACK WORKS

Attack formulation. We assume that the attacker can arbitrarily manipulate pixels within restricted
regions, which is known as well-defined adversarial patch attack (Brown et al., 2017; Zhao et al.,
2019; Eykholt et al., 2018) in the prior works. Such a patch attack is easy to deploy in the real-world
and very stealthy. We consider the patch stays on the STOP sign shown in Fig. 2

Selection of prior STOP sign attack works. There are various prior works on physical STOP
sign-hiding adversarial attacks (Lu et al., 2017b; Jia et al., 2022; Eykholt et al., 2018; Zhao et al.,
2019; Xue et al., 2021; Lu et al., 2017a; Chen et al., 2018). So far, all of them focus on studying
the security of the AI component alone rather than with the entire AD system pipeline with closed-
loop control. To perform our system-level effect measurement, we select the most effective ones at
component level (i.e., AI models) as representative prior work examples. Four model designs have
been covered in these prior studies, which generally belong to 2 types (§2): one-stage (e.g., YOLO
family) and two-stage (Faster RCNN) object detection. For each model, we select the most effective
attack design published so far. The attack selection and the its model designs are in Table 1.

3.2 MEASUREMENT METHODOLOGY AND SETUP

To measure system-level effects, we adopt a simulation-centric evaluation methodology (details in
Appendix A), which has been widely adopted both in academia (Wan et al., 2022; Sato et al., 2021)
and in industry (Way, 2021; Sca, 2021) today due to the inherent limitations of real-road AD testing
in cost, safety, efficiency, and corner-case coverage. Thus, we believe that using simulation for
system-level evaluation is on par with the best and validated practices in both academia and industry.

Simulation fidelity. In this paper, we use SVL, an production-grade high-fidelity AD simulator
designed specifically for evaluating production-level AD systems (Rong et al., 2020). It leverages
Unity’s built-in physics engine to accurately simulate the vehicle dynamics and tire-road interac-
tion, and provide photo-realistic simulation of the driving environment that closely matches the real
world (Rong et al., 2020). As repeatedly demonstrated in various prior works, the end-to-end AD
system-level evaluation results in SVL, especially those for adversarial AI attacks, can highly cor-
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Table 1: Selection of prior works to be evaluated in our system-level effect measurement study.
Specifically, for each of the 4 model types targeted by prior works, we select the most effective
attack design published so far. More details are in §3.1

Model YOLO v5 (Y5) YOLO v3 (Y3) YOLO v2 (Y2) Faster RCNN (FR)

Attack FTE (Jia et al., 2022) SIB (Zhao et al., 2019) RP2 (Eykholt et al., 2018) SIB (Zhao et al., 2019)

Table 2: B: benign; ASR: attack success rate. System-level evaluation in the simulation-based
testing (§3.2) and component-level overall ASR for model Y2, Y3, Y5, and FR in benign, RP2-,
SIB-, and FTE-attacked scenarios in common speed ranges for STOP sign-controlled roads. The
results are the STOP sign violation rate. Each speed contains 10 runs with different initialization of
the AD vehicle initial position. For system-level violation rate, we only include the results in which
the benign cases perform 0% violation rate. We calculate the component ASR for attacked cases.

Y2 Y3 Y5 FREvaluation
level

Speed
(mph) B RP2 B SIB FTE B FTE B SIB

System (violation rate) 25, 30, 35 0% 0% 0% 0% 0% 0% 0% 0% 0%

Component (ASR) Overall - 80.1% - 79.7% 59.9% - 46.1% - 5.8%

relate with the same setup tested in the physical world (Wan et al., 2022; Sato et al., 2021). In our
paper, to even further ensure the fidelity of our evaluation results, we further improved the fidelity
of the rendering process by modeling the perception results in the real world with a practical setup
(Appendix A). Similarly, such high simulation fidelity has also been justified multiplied times for
the control process. For instance, a research team at UC Berkeley has tested several representative
scenarios generated in SVL (Fremont et al., 2019) in a physical vehicle testing track, and concluded
that SVL is “effective at synthesizing test cases that transfer well to the track” (Fremont et al., 2020).

3.3 MEASUREMENT RESULTS

We first evaluate our reproduction correctness. More details about the results are in Appendix B

With perception results modeling, we inject the detection rates measured under benign and attacked
scenarios to the AD system (§3.2) to evaluate their targeted system-level attack effect, i.e., STOP

sign violation rate. We define the STOP sign violation rate as
Nviolation

Ntotal
, in which Nviolation means the

number of runs where the AD vehicle exceeds the STOP line and Ntotal is the number of total runs.
Table 2 shows the results where each speed has 10 runs with random initialization of the AD vehicle
position. To our surprise, none of the existing representative attacks were able to trigger STOP sign
violations in any of the common speeds for STOP sign-controlled roads when the benign performs
well, even if most of the attacks are effective in the component (i.e., with over 54% average attack
success rate across the 5 attacks). After inspecting the details, we find that this is because the STOP
sign is always tracked at the object tracking step before reaching the minimum brake distance of the
AD vehicle. Taking RP2-Y2 as an example, the brake distance for 25 mph is around 10 m, and in the
benign scenario, this is in the range (5-10m) where the detection rate in benign scenarios is 100% as
shown in Table 3. The RP2 attack can only reduce the detection rate to 90% (i.e., only 10% attack
success rate) as shown in Table 3. Thus, it is not enough to make the tracking vanished before the
minimum braking distance. Thus, the AD vehicle can always fully stop before the STOP sign.

4 DESIGN LIMITATION HYPOTHESES AND IMPROVEMENT PROPOSAL

After finding out that the existing works cannot lead to any system-level violation We find out that the
prior works are not fully leveraging the information from the system model and thus, fail to perform
effective system-level effects. We further investigate the system model in AD context and propose
two design limitation hypotheses which leads to low effectiveness in the system-level evaluation.
4.1 DESIGN LIMITATION HYPOTHESIS I

In the prior works (Zhao et al., 2019; Jia et al., 2022), to make the attack robust to different object
sizes, Expectation over Transformation (EoT) (Athalye et al., 2018) is usually used to uniformly
sample the object size in a certain range (Chen et al., 2018; Jia et al., 2022; Athalye et al., 2018).
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Table 3: Detection rates of YOLO v2 (Y2), YOLO v3 (Y3), YOLO v5 (Y5), and Faster-RCNN (FR)
in benign, RP2-, SIB-, and FTE-attacked scenarios from our physical-world experiments. Each
detection rate below is calculated with 400 video frames.

Distance range (m)Object
Detector 4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45

Benign 100% 100% 71.3% 31.3% 0% 0% 0% 0% 0%Y2 RP2 58.2% 90.0% 76.2% 34.6% 0.1% 0% 0% 0% 0%

Benign 100% 100% 100% 100% 80.1% 11.8% 6.7% 1.0% 0%
SIB 93.7% 100% 100% 90.4% 38.2% 0% 0% 0% 0%Y3
FTE 89.9% 100% 100% 87.3% 42.9% 0.6% 0% 0% 0%

Benign 100% 100% 100% 100% 98.7% 89.4% 52.3% 25.3% 0%Y5 FTE 91.2% 100% 100% 99.7% 88.2% 48.4% 3.9% 0% 0%

Benign 100% 100% 100% 100% 100% 100% 100% 100% 100%FR SIB 100% 100% 100% 100% 100% 100% 100% 100% 53.2%

(a) Distribution of exiting work (b) Distribution from simulation (c) Distribution from theoretical analysis
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Figure 3: Different STOP sign size distribution. The distribution from the (a) existing work (Jia
et al., 2022), (b) our experimental analysis on H1, and (c) our theoretical analysis on H1.

However, considering the system model in AD context, we find that such uniform sampling distri-
bution is actually inaccurate, which leads to our first design limitation hypothesis:

Design Limitation Hypothesis I (H1): the STOP sign size in pixel sampled distribution is not uniform
in the attack’s system model (§2) when the vehicle is moving towards the STOP sign.

Experimental analysis of H1. With the same setup in §3, we can simulate the real driving scenario.
During the driving, the STOP sign size in pixels and the distance between the vehicle and the STOP
sign can be directly obtained from the High-Definition (HD) map in the AD system (§3.2). With that,
we can easily plot the frequency distribution histogram over different STOP sign sizes in pixel. Such
distribution is shown in the Fig. 3 (b) after normalization, where the AD vehicle in the simulation
runs for 30 rounds at 25 mph. The distribution is totally different from the uniform distribution used
in the prior works (Chen et al., 2018; Jia et al., 2022). To compare, we also sample the STOP sign
size in the most recent prior work (Jia et al., 2022), in which they design an algorithm to determine
the STOP sign size in a uniform way. We run that algorithm 3 × 104 times and collect the STOP
sign size. The difference between Fig. 3 (a) and (b) indicates that our H1 is held experimentally.

Theoretical analysis of H1. Assuming the AD vehicle performs uniform motion toward a STOP
sign, we can leverage the camera pin-hole model as shown in Fig. 4 to perform the theoretical anal-
ysis. Based on the Fig. 4, we can easily get the relationship of real object size (L), real distance(D),
focal length(f ), and object size in pixel(s) with similar triangles: L

D = s
f . With the system model

shown in Fig. 1, we assume that the initial vehicle to STOP sign distance is the road length D0

and the current vehicle to STOP sign distance is D. Due to uniform motion, the vehicle travelled
distance can be formulated as D1 = v ∗ t, where v is the vehicle speed (usually it is the speed limit)
and t is the time. To know the relationship between the STOP sign size and the sampled frequency
(i.e., the frame number), we formulated the time t as t = F

η , where the F is the number of frames
and the η is the image capturing frequency from the camera with unit frame/s. Due to D1+D = D0

and the similar triangles in the pin-hole model, we can easily obtain the following equation:

D0 = D + v ∗ F

η
=

L ∗ f
s

+ v ∗ F

η
→ F = (D0 −

L ∗ f
s

) ∗ η

v
(1)

Thus, from Eq. (1), we can easily get cumulative distribution function (CDF) of s since the F here is
the accumulated frames. To get the probability density function (PDF), we calculate its derivative:

F ′ =
dF

ds
=

η ∗ L ∗ f
v ∗ s2

(2)
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From Eq. (2), the distribution over the size of the STOP sign in the pixel is not uniform, which
proves the H1. We also plot the curve with Eq. (2) as shown in Fig. 3 (c), where we use the η = 20,
L = 1.5, v = 25mph, and f = 25mm (the parameters here are commonly used in AD system
such as Baidu Apollo). The distribution curve is very similar to the distribution we find in the
experimental analysis shown in Fig. 3 (b), which shows that the H1 is held.

4.2 DESIGN LIMITATION HYPOTHESIS II Image planeCameraObject
Focal length:

f
Real distance:

D

Real object size:
L

Object size in pixel:
s

Figure 4: Theoretical analysis on H1, i.e., the
camera pin-hole model.

In the EoT process of prior works, uniformly
sampling the STOP sign size in a range is
generally used. However, without the system
model ( §2), it is difficult to precisely obtain
the STOP sign size range, and thus, in the prior
works, they just treat these as hyper-parameters
but without any reasoning for selection (Chen
et al., 2018; Jia et al., 2022). However, in prac-
tice, not every range is equivalent to achieving the system-level effects. For instance, within dmin in
Fig 1, even if the AD vehicle applies the maximum deceleration, it still cannot fully stop before the
STOP line (i.e., exceed the minimum brake distance), then the attack effectiveness does not matter
in such a range, which indicates that such a range is not important to achieve system-level effects.
However, none of the prior works consider such a system-critical range in their designs due to a lack
of consideration of the system model. This thus comes to our second design limitation hypothesis:

Design Limitation Hypothesis II (H2): Prior works generate the attack without considering the
system-critical range systematically (can be obtained from the system model in §2), which leads to
low effectiveness in the system-level effect.

Note that here blindly using a large range of STOP sign size to attack, it will provide lower attack
effectiveness compared to the small certain range of STOP sign size. For instance, when the STOP
sign size is small (common cases when the AD vehicle is far away from the STOP sign), it is very
difficult to make the attack converge (Jia et al., 2022), which indicates that it is harder to perform
the attack. Thus, in generally, if we can find a more optimal range rather than a super large range
to generate the attack, it will benefit the attack effectiveness. We also have experimental analysis
on this claim and more details can be found in the Appendix E. To validate H2, we will design the
experiments and ablation study with our improvement proposal in §4.3 to further evaluate it in §5.

4.3 PROPOSAL: SYSTEM MODEL-DRIVEN ATTACK DESIGN

In order to overcome the two design limitations mentioned above, we propose the following im-
provement based on the system model in the AD context. Here, our improvement proposal is to
design an addon of existing attacks, which is orthogonal to the original attack designs and can better
overcome the two limitations to achieve high system-level effectiveness.

To overcome H1, we apply a new transformation distribution. As shown in Eq. (2), the relationship
between the number of frames and the STOP sign size is F ′ ∝ 1

s2 , where F ′ is the number of
frames and s is the STOP sign size in pixel. Thus, we define S = {s1, s2, ..., sN} as a discrete
distribution, where si is the a STOP sign size in pixels. Based on Eq. (2), the probability of si is
p(si) =

1
s2i
/
∑N

k=1
1
s2k

. With that, we can apply this new distribution with a new objective:

argmin
pa

Es∼S [L(M(pa, O, s), ∗)] (3)

The L is the loss function used in the prior attacks, pa is the adversarial patch, O is the STOP
sign, and function M(pa, O, s) indicates applying the adversarial patch pa to the STOP sign O and
resizing the STOP sign size in pixel to s, ∗ means other inputs for loss function in the prior works
such as the bounding box information, detection threshold, and S is the distribution mentioned
above. With Eq. (3), we can simulate the distribution obtained from the real world to balance the
attack success rate between the far distance and near distance.

However, one missing part for the Eq. (3) is the STOP sign size but such important information can
be obtained from the system model (Fig. 1) by overcoming H2 (details in Appendix D). With the
system-critical range, the next step is to transfer the system-critical range in the physical world to
the pixel range in the image. We use a camera-based rendering technique and leverage nuScenes
dataset (Caesar et al., 2020) to achieve our goal since it directly provides some APIs to render an
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Table 4: Attack success rates of RP2-Y2, FTE-Y3, and FTE-Y5 for system model-driven attack
design evaluation from our physical-world experiments. Each detection rate below is calculated
with 600 video frames.

Distance (m)

4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45

H1 4.4% 13.7% 51.2% 99.3% 100% 100% 100% 100% 100%
H2 5.6% 44.9% 57.8% 98.7% 100% 100% 100% 100% 100%RP2-Y2

H1 + H2 36.1% 65.8% 88.0% 100% 100% 100% 100% 100% 100%

H1 0% 0% 0% 14.0% 72.2% 95.9% 100% 100% 100%
H2 0% 0% 0% 13.4% 81.4% 94.4% 97.2% 100% 100%FTE-Y3

H1 + H2 5.3% 0% 34.7% 94.0% 99.4% 100% 100% 100% 100%

H1 0.3% 0% 0% 1.3% 32.7% 81.9% 94.1% 99.0% 100%
H2 1.5% 0% 0.1% 1.7% 13.9% 69.3% 99.0% 100% 100%

H1 + H2 16.5% 0% 4.3% 47.2% 93.4% 99.7% 100% 100% 100%FTE-Y5

H1 + H2 (TV) 43.6% 51.7% 42.1% 26.3% 23.8% 66.1% 97.7% 99.7% 100%

object into an image. Specially, we render the four corners of the STOP sign with physical-world
properties (e.g., real-world size) and obtain the STOP sign size in pixel by measuring the distance
between these four points in the image, i.e., the height and width. With Eq. (3), we can embed the
system-model property into the attack generation to improve the system-level effects.

5 HYPOTHESIS VALIDATION

We adopt a same evaluation methodology and setup used in §3.2 but just replace the STOP sign
patch with the newly generated ones. In this section, we only select some of the attacks on one-
stage object detectors, i.e., YOLO-based object detectors including Y2, Y3, and Y5, since one-stage
object detectors have better real-time performance than two-stage ones and they are used in the
Autoware.AI (Kato et al., 2018), an industry-grade full-stack AD system. With that, we select RP2

and FTE as the corresponding attacks due to their representativeness discussed in §3.1. The detailed
combination for object detectors and attacks are as follows: RP2-Y2, FTE-Y3, and FTE-Y5.

5.1 SYSTEM MODEL-DRIVEN ATTACK DESIGN EVALUATION AND ABALTION STUDY

Attack generation. We adopt the methodology in §4.3, of which details are in Appendix F.

Results analysis. The STOP sign attack images are as shown in Fig. 6 from Appendix G. As shown
in Table 5, with our system model-driven attack designs, the system violation rate can increase by
around 70% on average. Note that in Table 5, we only include the results where the benign cases
can perform 0% system-level violation rate. With H1 + H2, the overall component attack success
rate can increase around 12% on average due to the practical setup. Especially, in the system critical
range, the attack success rate can increase by 38%, which can significantly improve the system-level
effects. Taking FTE-Y5 at 35 mph as an example, the brake distance of 35 mph is around 20 m and
the attack success rate from 20 - 35 m shown in Table 4 is around 98%, which indicates that it has
a very high chance to make the STOP sign not tracked before the brake distance. This leads to the
100% system violation rate shown in Table 5. For FTE-Y5 at 25 mph, due to the low effectiveness
(i.e., around 4%) from 10 m to 15 m, it is very difficult to achieve any system-level effects because
of the tracking, which leads to a 0% system violation rate. Based on results in Table 4, in general,
the attack success rate in a near distance between the STOP sign and the vehicle is lower (i.e., more
difficult to attack), which aligns well with the prior work results (Zhao et al., 2019). This leaves a
space for future works that could improve the AI component attack success rate in near distance. In
this paper, we provide small improvement for FTE-Y5 at 25 mph shown in §H.

The results for the ablation study are also summarized in Table 5. Although in the majority of cases,
H1 only cannot significantly improve the system-level effects (20% on average), the component at-
tack success rate in the system-critical range is improved, which further demonstrates the usefulness
of the H1. Compared to H1, H2 has better system-level effects (around 30% on average) and attack
success rate in the system critical range, but it still cannot achieve significant improvement on the
system-level effects. Combining H1 and H2 can further benefit the results for system-level effects
(around 70% on average), which shows the necessaries of both H1 and H2.
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Table 5: None: without H1 or H2; H1: with H1 only; H2: with H2 only; H1 + H2: with H1 and
H2; SCR: System-critical range (§4.2). System-level violation rate (with P-Value) and component-
level ASR evaluation for system model-driven attack design evaluation and its baseline (i.e., prior
works and ablation studies). Each speed contains 10 runs with different initialization of the AD
vehicle initial position in the system-level evaluation. The number of frames is over 600 for the
component-level evaluation (Table 4). Generally, with our H1 and H2, the system-level violation
rate and component ASR (especially in SCR) is improved compared to prior works and its ablation
studies. “Nan” in P-Value calculation is caused by the means are the same for the two samples.

RP2 FTE-Y3 FTE-Y5Evaluation
level

Speed
(mph) None H1 H2 H1 + H2 None H1 H2 H1 + H2 None H1 H2 H1 + H2

25 0% 90% 100% 100% 0% 0% 0% 40% 0% 0% 0% 0%
30 - - - - 0% 0% 30% 100% 0% 0% 0% 80%

System
(violation

rate) 35 - - - - - - - - 0% 30% 40% 100%

P-Value - 4.4×10−8 0.00 0.00 - Nan 0.08 7.2×10−8 - 0.08 0.04 1.4×10−8

Overall80.1% 74.2% 78.6% 87.8% 59.9%53.6%54.0% 70.4% 46.1%45.1%49.4% 62.3%Component
(ASR) SCR 33.1% 54.7% 67.1% 84.6% 33.8%36.4%37.8% 65.6% 26.6%34.2%40.8% 57.4%

Statistical significance. To quantify the statistical significance, we calculate the P-Value in Table 5
for all trials compared with the None column. The P-Value is generally at the statistically significant
level (e.g., generally < 0.05 or at a similar magnitude, especially for the most important H1+H2).

We also improve the system-level results for low speed one by leveraging the total variation (TV)
loss as prior works (Eykholt et al., 2018; Cao et al., 2021), which is discussed in the Appendix H.

6 GENERAL RESEARCH TAKEAWAYS

We summarize various general research takeaways from this research effort beyond the specific
application scenario that we evaluate on: (1) From the measurement point of view, in AD systems, the
gap between the component-level and system-level attack effects can be much larger than what prior
works thought. For instance, SIB paper (Zhao et al., 2019) claims that “our AEs could potentially
cause serious problems for autonomous driving cars.” However, in our paper, we evaluated the SIB
in our practical AD setup and found that it can actually only achieve 0% system-level violation
rate. Such a huge gap in this domain clearly suggests the need for system-level evaluation like
what we performed in §3. (2) From the new attack methodology design point of view, our two
validated hypotheses are both generalizable to improve the system-level attack effect in other AD
attack settings. For instance, if considering a pedestrian-hiding attack (instead of STOP sign), due
to the motion of the vehicle, the different distribution and the system-critical range both still exist,
and thus systematically considering them in the attack generation can help to improve the system-
level effect. (3) From the general solution direction point of view, our system model-driven designs
also provide general takeaways from secure/robust model training perspective. To train the AD
AI model to avoid undesirable behaviors at the system level, it is highly desired to first have such
concrete attack examples that can be meaningful/effective at the system level. In our paper, we
improve the AD system-level effects of the adversarial AI attack generation process with novel
systematic integration of system models. The system models may inspire the integration of the
system model into further model training process to generally improve model security, robustness,
or even accuracy in any AI-enabled systems instead of just for AD.

7 CONCLUSION

In this paper, we propose an interesting and important research question: can previous works actu-
ally achieve system-level effects (e.g., vehicle collisions, traffic rule violation) under real-world AD
settings with closed-loop control? To answer such a question, we perform the first measurement
study on whether and how effective the existing designs can lead to system-level effects, where we
take the STOP sign-hiding attack as our target. Our evaluation results show that all representa-
tive prior works cannot achieve any system-level effect in a classical closed-loop AD setup in road
speeds controlled by common STOP signs due to lack of consideration of the system model. Exper-
imental results demonstrate that with the system model-driven designs, the system-level effects can
be further improved, i.e., the violation rate can increase around 70%. We hope that the concept of
the system model could guide further security analysis to achieve better system-level effects.
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A MEASUREMENT METHODOLOGY AND SETUP DETAILS

Evaluated AD system pipeline. In this paper, we design a simulation-centric testing, including
the simulation-based evaluation setup with SVL simulator, an production-grade Unity-based AD
simulator (Rong et al., 2020), leveraged by prior works to perform evaluation in AD context (Cao
et al., 2021; Wan et al., 2022; Zhang et al., 2022; Hallyburton et al., 2022). The comparison of SVL
simulation results and real runs indicate SVL provides certain level fidelity (Fremont et al., 2020).
In SVL, we perform the experiment with the San Francisco map in a sunny day at noon shown in
Fig. 5 (b) from Appendix §C as the operation scenario in Fig. 1. The AD system pipeline that we
use includes representative downstream tasks and setups after object detection, which includes (1)
a tracking step using a general Kalman Filter based multi-object tracker (Luo et al., 2021), (2) a
planning step using a lane-following planner from Baidu Apollo (Apollo, 2022), an industry-grade
full-stack AD system, and (3) a control step using classic controllers such as PID for longitudinal
control used in OpenPilot (OpenPilot, 2022), a production Level-2 AD system, and Stanley (Hoff-
mann et al., 2007) for lateral control.

Attack reproduction. All the STOP sign attacks that we want to investigate in Table 1 do not
provide the source code. We tried to contact the authors of the attack in Table 1 for the source code,
but they all cannot provide it. Thus, we try our best to reproduce some of the works and will release
our reproduction in the future to benefit future researchers. Currently, we only have the reproduction
for RP2 and FTE. For SIB, the authors of that paper share the STOP sign images that they used in
their physical-world experiments. Thus, we directly use the ones provided by them. We print the
real-world high-resolution STOP signs on multiple ledger-size papers and concatenate them together
to form a full-size real STOP sign. The STOP signs used for measurement study are shown in Fig. 2

Perception results modeling. To better address the perception fidelity in simulators, we model the
perception results in the real world with a practical setup. We did not directly apply the setup from
the existing works (Zhao et al., 2019; Jia et al., 2022) due to their unrealisticness. In the prior works,
when they collected the video frames, they would directly move towards to the STOP sign and
change the angles based on the rotation of the STOP sign. Such a setup is not practical since in the
real world, the AD vehicle will not directly drive towards the STOP sign and the STOP sign should
be located on the roadside as shown in Fig. 1. To improve such unrealistic setups, we follow the
system model that we defined in §2 to put the STOP sign on the road side and control the movement
of AD vehicle in the road center. We recorded several pieces of video along the D using an iPhone
12 Pro Max starting from 45 m to 4 m (4 m is the doos introduced in §2). We choose 45m since
(1) it is a brake distance for above 50 mph, which exceeds the usual maximum speed of STOP sign
areas, and (2) it is already much larger than the maximum distance evaluated in all the prior STOP
sign-hiding attack works. We separate the whole range into 9 pieces, each spanning 5 m except the
one near the STOP sign, which is 1 m from 4 m to 5 m. Then, we record a video in each region and
feed the video into the object detectors in Table 1. Note that for each region, we collect more than
400 video frames, which is much larger than prior works (Chen et al., 2018; Eykholt et al., 2018;
Jia et al., 2022). We perform these experiments on sunny days. The sample photo of collecting
data for modeling perception results is shown in Fig. 5 (a) from Appendix §C. With the real world-
measured STOP sign detection rate in each 5 m long range, we perform perception results injection
at the output of the object detection task in our created AD system following such detection rate,
i.e., first read the ground-truth STOP sign detection results from the simulator and then drop/keep
the detection results based on detection rate. For instance, if the attack success rate is 60% for that
distance range and the vehicle to STOP distance is within that range, for the object detection output,
we will have 60% possibility to drop that STOP sign detection results, i.e., remove the STOP sign
detection from the detection output.

Speed selection. The driving speed we select is from 25 to 35 mph, with a step size of 5 mph, which
is the most common speed range for STOP sign-controlled roads in the real world. Specifically,
25 mph (Atlanta, 2020) is the common speed limit for the STOP sign-controlled road intersections,
which is more likely to avoid a crash. On the other hand, 35 mph (California, 2022) is the most
common speed limit for city streets (i.e., which STOP sign are designed for).
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(a) Physical-world scene (b) Simulation scene

Figure 5: Scene for the experiment. (a) Real-world scene for collecting the data including real road
and injected STOP sign (b) SVL simulation scene in the San Francisco map with STOP sign.

B STOP SIGN ATTACK REPRODUCTION RESULTS

For the STOP sign reproduction shown in Fig. 2, we follow the original paper’s description with
the new setup for perception results modeling and the results are as shown in Table 3. Note that
we also try our reproduction with their original evaluation setups and find that the results are gen-
erally similar, which thus shows that our reproduction is correct. For instance, the original RP2

paper (Eykholt et al., 2018) reports around 63.5% attack success rate from 0 - 10 feet, while if we
follow the same setup (outdoor environment) as the original paper (less practical setup in AD con-
text), we can achieve 61.0% attack success rate which is very close to the original results. Note that
here the SIB attack with FR object detector looks weird since only from 40 - 45 m, the attack has
around 47% attack success rate while in other range, it is always 0% attack success rate. Although
we directly use the patch provided by the authors, the FR object detector could be different, where
we use the MMDetection (Chen et al., 2019), an open source object detection toolbox based on
PyTorch. Thus, leveraging the low transferability, the attack may not be effective compared to the
results shown in original paper. However, this is already our best efforts to reproduce their results.

C SCENE FOR THE EXPERIMENTS

Fig. 5 shows the scene for our experiment in physical-world and simulation-based testing environ-
ment.

D METHODOLOGY FOR OBTAINING THE STOP SIGN SIZE

One missing part for the Eq. (3) is the STOP sign size and such important information can be ob-
tained from the system model (Fig. 1) by overcoming H2. When it comes to H2, there must be a
system-critical range to generate the attack with the system model. Several components in the AD
system affect the range, such as object detection, object tracking, and control (e.g., brake). Such
designs are all AD system specific and thus to obtain a general system-critical range, we use a rea-
sonably large range to generate the attack. As shown in the attack’s system model in Fig. 1, the
dmin of such a system-critical range definitely will be the minimum brake distance, since within the
brake distance the detection results will not affect the system-level effects. When it comes to the
dmax, many tasks in the AD system will be considered. For object detection, the maximum dis-
tance should be the longest distance for the benign object detector to detect the STOP sign, which
is measured in Table 3. For tracking, we consider a very conservative tracking Jia et al. (2020) to
perform the attack since the attacker in the real world may not directly get the tracking parameter in
the targeted AD system and a conservative tracking provides a larger system-critical range, which
can cover the system-critical range in general cases. In order to achieve system-level effects, the
STOP sign should not be tracked when the vehicle reaches the brake point. Due to taking a very
conservative tracking in the AD system (introduced in §3.2), such tracking distance (i.e., if within
this distance, the STOP sign can never be detected, the tracker will delete the STOP sign) is usually
larger than the distance where the object detector can detect the benign STOP sign. Thus, we can
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Table 6: RP2 attack success rate modeling in the simulation environment. The attacks are generated
with different STOP sign size range in pixel. Small: the small range of the STOP sign is from 30 to
100. Large: the large range of the STOP sign is from 30 to 416, i.e., the largest range in which the
benign STOP sign can be detected by the object detector, i.e., Y2.

Distance (m)

4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 Average

Small 6.7% 37.1% 68.3% 81.1% 100% 100% 100% 70.5%Component ASR Large 98.6% 6.1% 0% 1.0% 58.5% 99.1% 100% 51.9%

Table 7: Detailed settings for attack parameters

Value
Parameter RP2 FTE-Y3 FTE-Y5

Attack iteration 3× 104 6× 104 2× 104

Initial learning rate 0.5 0.03 0.05
System-critical range (m) (5, 20) (5, 30) (5, 35)

Batch size 1 6 16
λ in (Eykholt et al., 2018) 1.0 - -
(c, k) in (Jia et al., 2022) - (100, 10) (100, 10)

GPU device RTX 3090 RTX 2080 Ti RTX 3090

simplify this process and select an effective range as minimum brake distance (dmin) and the first
distance (dmax) where the benign STOP sign can be detected with small detection rate.

E BASELINE EXPERIMENTS FOR H2

In this section, we perform the experiment on the attack with small and large range of the STOP sign
size in the attack generation EoT part, and compare them.

We follow the similar evaluation setup as in §3 but use a pure simulation-based setup and measure
the attack success rate across different ranges with RP2 attack. The small range of the STOP sign
is from 30 to 100, which is a critical range shown in §4, while the large range of the STOP sign is
from 30 to 416, i.e., the largest range in which the benign STOP sign can be detected by the object
detector, i.e., Y2. We generate the STOP sign attack and run them in the simulation.

Table 6 shows the results. The small range one has higher attack success rate compared to the
large one, especially within the system-critical range shown in Table 7. The large range one seems
to converge well in small distance (i.e., when the STOP sign is very near to the AD vehicle) but
performs worse from 5 to 30 m. This indicates that it is very difficult to directly set large range to
achieve better performance in the system-critical range.

F DETAILED ATTACK GENERATION

We adopt the methodology introduced in §4.3. The detailed attack generation parameters are shown
in Table 7. Based on §4.3, we can easily calculate the system-critical range for the attack. For
example, in RP2, the brake distance for 25 mph is around 10 m, and considering that a safety buffer
is usually applied in AD system (Apollo, 2022), thus, the dmin for the system-critical range that we
use is 5 m (considering a buffer distance). For the dmax, the STOP sign can be detected at around
20 m, which could be used directly to generate the attack.

In order to further validate the effectiveness of our two proposed design limitation hypotheses, we
perform ablation studies. We generate the attack with the system model-driven attack design on H1
only, and H2 only, and compare them to the attack generated with/without both H1 and H2. Details
of attacks without H1 and H2 are in §3. For the details of H1 only, we use our new distribution (in 4)
with EoT introduced in §4.1 and for H2 only, we use the range from Table 7.
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a RP! − Y2

H1 H2 H1 + H2

(b) FTE-Y3 (c) FTE-Y5

H1 H2 H1 + H2 H1 H2 H1 + H2

Figure 6: STOP signs attack generation with system model-driven design and their ablation studies.
H1: attack only with H1; H2: attack only with H2; and H1 + H2: attack with both H1 and H2.

Figure 7: FTE-Y5 H1 + H2 with TV loss STOP signs attack generation, which is printed on ledger-
size papers.

G STOP SIGN VISUALIZATION FOR §5

The STOP sign visualization for §5 is in Fig. 6

H IMPROVEMENT AT THE LOW SPEED

Methodology and setup. the FTE-Y5 attack at 25 mph speed has a 0% system-level violation rate
(Table 5) due to the ineffective attack (Table 4) from 5 - 20 m. We apply the total variation (TV) loss
as prior works (Eykholt et al., 2018; Cao et al., 2021) to improve the smoothness and thus, benefit
the attack effectiveness in a larger range. All the setups are the same as the ones in §5.1.

Results analysis. The perception modeling results are shown in Table 4 and the STOP sign with
the new patch is shown in Fig. 7. The attack success rate from 4 - 15 m is improved around 7 times
though the attack success rate from 15 - 40 m becomes worse. We try this modeling results in the
AD system (§3.2) which is the same setup as the one in §5.1 and find that at 25 mph, the system
violation rate is 10% for 10 runs. Based on the results in Table 4, it is not trivial to balance the attack
success rate between far distance and near distance, which could be a future direction.
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