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Abstract

In this work, we address the problem of long-distance navigation for battery electric
vehicles (BEVs), where one or more charging sessions are required to reach the
intended destination. We consider the availability and performance of the charging
stations to be unknown and stochastic, and develop a combinatorial semi-bandit
framework for exploring the road network to learn the parameters of the queue
time and charging power distributions. Within this framework, we first outline
a method for transforming the road network graph into a graph of feasible paths
between charging stations to handle the constrained combinatorial optimization
problem in an efficient way. Then, for the feasibility graph, we use a Bayesian
approach to model the stochastic edge weights, utilizing conjugate priors for the
one-parameter exponential and two-parameter gamma distributions, the latter of
which is novel to multi-armed bandit literature. Finally, we apply combinatorial
versions of Thompson Sampling, BayesUCB and Epsilon-greedy to the problem.
We demonstrate the performance of our framework on long-distance navigation
problem instances in large-scale country-sized road networks, with simulation
experiments in Norway, Sweden and Finland.

1 Introduction

In the coming years, it will be crucial for society to shift the transport sector (personal and commercial)
towards electrification, to reach global targets on reduced greenhouse gas emissions. Range anxiety is
still a major obstacle to the widespread adoption of battery electric vehicles (BEVs) for transportation.
This phenomenon can be characterized as the fear that (potential or current) BEV drivers might
feel about exceeding the electric range of their vehicle before reaching either their destination or a
charging station, thus being stranded with an empty battery.

There is another, perhaps less commonly discussed, but potentially more relevant issue called
charging anxiety. Whereas the range of typical electric vehicles, while still shorter than that of
combustion engine vehicles, has been steadily increasing, the act of charging the battery is still, often,
a cumbersome task. Even at locations with fast chargers, various factors may severely impact the total
travel time of a particular trip. At the highest possible charging power, charging a BEV battery from
nearly empty to close to maximum capacity may take more than 30 minutes. However, maximum
power might not always be provided, in practice. Furthermore, queues to charging stations may
appear due to the (relatively) long charging times and few charging locations. Issues like these might
diminish public trust in BEVs as viable alternatives to combustion engine vehicles.

In this work, we attempt to mitigate any charging anxiety arising due to the aforementioned factors by
developing an online self-learning algorithmic framework for navigation of BEVs, capable of taking
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such charging issues into account. We view the task as a sequential decision-making problem under
uncertainty and model it as a combinatorial semi-bandit problem to address the trade-off between
exploring charging stations to learn more information about them and exploiting previously collected
knowledge to select charging stations that are likely to be good. Within this framework, we employ a
Bayesian approach, with conjugate priors novel to bandit literature. To our knowledge, our work is
the first study that addresses the challenging real-world problem of charging station selection in the
partial information setting using multi-armed bandit (MAB) methods. Thereby, our work provides a
novel framework to develop and investigate advanced multi-armed (combinatorial) bandit methods.
As mentioned, our work is also one of the few large-scale real-world applications of multi-armed
bandits, specifically in the combinatorial setting. To achieve such scalability, we transform the road
graph into a feasibility graph, where feasible paths between charging stations are pre-computed
to improve run-time efficiency. Such a transformation of the problem instances for the purpose of
computational efficiency is novel to the MAB community.

2 Related work

Several works have studied shortest path algorithms to address the problem of energy efficient
navigation, e.g., [5, 39] focusing on minimizing energy consumption, and [7], studying how to
minimize travel time while ensuring that battery energy is not fully depleted (utilizing charging
stations, if necessary). The authors of [41] outline a Dynamic Programming (DP) approach for
adaptive routing of electric vehicles, and model charging station availability and queue / waiting
times, but assume that all distributions are known in advance. A similar work [20] formulates
charging station selection as a stochastic search problem, addressed with a DP-based approach.
BEV navigation problems (including charging station selection) have been modelled as detailed
reinforcement learning problems [31, 36], but often with high computational demands making them
infeasible for long-distance navigation. To our knowledge, this problem has not been studied in
the partial information setting using multi-armed bandits, and our work is the first contribution of
this kind. Prior works on multi-armed bandits for energy-efficient navigation, e.g., in [2, 3], are
significantly simplified without considering travel time and charging. Dealing with charging, in
particular in a computationally efficient way, requires considerably more sophisticated models and
methods, beyond the existing applications of (combinatorial) multi-armed bandit methods, as will be
demonstrated in this paper.

In general, the multi-armed bandit problem is a versatile way of describing how to utilize limited
resources to balance exploration of an environment to gain new knowledge and usage of previously
collected knowledge to increase long-term reward. Thompson Sampling [42] is an early algorithm
attempting to address this trade-off, which has recently increased in popularity due to demonstrated
experimental performance [19, 11] and proven theoretical performance guarantees [1, 29, 9, 37].

Another type of method commonly used for sequential decision-making problems is the Upper
Confidence Bound (UCB) [6] algorithm. Like Thompson Sampling, this method has been adapted to
many different settings, including combinatorial optimization problems [12]. UCB methods have
also been used for MAB problems with sub-exponential rewards [25], e.g., for selection of bike rental
companies with exponential service times, but not in combinatorial settings as far as we are aware.

3 Model

In this section, we describe how to represent the road network as a graph and how to transform it into
a graph of feasible paths between charging stations to allow for computationally efficient charging
station selection. Furthermore, we outline an approach for probabilistic modelling of the queue time
and charging power of each charging station.

3.1 Road network graph

We model the underlying road network using a directed and weighted graph Groad
(
V road, E road, τ road

)
.

Each vertex u ∈ V road corresponds to either an intersection or some other important location of the
road network (e.g., a charging station). Each directed edge e ∈ E road represents a road segment
from a location u ∈ V road to another location u′ ∈ V road, which we may also indicate by writing
e = (u, u′). We further denote the travel time of each road segment e ∈ E road as τ road

e , and the
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vector of all edge travel times as τ road. Additionally, each road segment e ∈ E road has an associated
energy consumption εroad

e , which is the energy needed by a given vehicle to traverse the complete
road segment. A convention we follow throughout the paper is to indicate vectors with bold symbols,
with individual elements indexed by edge or vertex subscripts. Furthermore, we let Vcharge ⊆ V road be
the set of locations which contain charging stations. Each charging location u ∈ Vcharge is associated
with a maximum charging power ϱmax

u which the charging station is able to provide. We also assume
that there is a corresponding value for the minimum charging power ϱmin

u available at each station.
The actual charging power is denoted by ϱcharge

u .

A connected sequence p of edges (or vertices, equivalently) is called a path through the graph. Given
a source vertex usrc ∈ V road and a target vertex utrg ∈ V road (both assumed to be fixed and known),
we denote the set of all paths starting in usrc and ending in utrg as P road

(usrc,utrg). Assuming that we aim
to find a path which minimizes the total travel time, we let, for each edge e ∈ E road, the edge weight
be τ road

e . Then, the shortest path problem, given usrc, utrg and Groad is defined as

p∗ = arg min
p∈P road

(usrc,utrg)

(∑
e∈p

τ road
e

)
, (1)

which may be addressed by one of several classical methods, e.g., Dijkstra’s algorithm [15], the
Bellman-Ford algorithm [40, 16, 8] or the A* algorithm [23]. The A* algorithm, in particular, can
be described as a best-first search method (see e.g., [14]), where a provided heuristic function is
used to guide the algorithm towards promising solutions. An admissible heuristic function should
be able to provide an underestimate of the total weight of any path between a pair of given vertices.
For a road network graph with travel time edge weights, such as Groad, we can use a function which
calculates a travel time value based on the maximum allowed speed in the road network and the
beeline distance between the two vertices. When a good heuristic function is used, the A* algorithm
is computationally more efficient than Dijkstra’s algorithm, while still guaranteeing that the optimal
path is found.

3.2 Construction of feasibility graph

The model described in the previous section is sufficient for many applications. Since fossil fuel
stations are ubiquitous in most road networks, and since the time required for refueling is typically
negligible, the model can be used for navigation of combustion engine vehicles without significant
modifications. For BEVs, however, charging can take more than 30 minutes, and multiple charging
sessions may be required for longer trips. These factors, combined with the relative sparsity of the
charging infrastructure, means that charging should not be disregarded in the navigation problem.

The time spent on charging depends on the amount of energy needed and the charging power provided.
Furthermore, queues may occur if all charging stations at a particular location are occupied at the
same time. In this work, for simplicity, we assume that each charging session has to fully charge
the battery. In principle, it is possible (and may be time optimal) with partial charging, but this
significantly increases the computational complexity of the problem. We also assume that the paths
between charging stations should be chosen to minimize travel time, even if there are alternative
paths with less energy consumption. For clarity, throughout this work when the battery is stated to be
either empty or fully charged, the battery state of charge is actually 10% or 80%, respectively, for
safety and durability reasons.

The general resource-constrained shortest path problem [26] (with energy as the resource) is still
computationally hard, especially when resource replenishment (i.e., charging) is considered. However,
with these assumptions, it is possible to transform the road graph into a feasibility graph, where
feasible paths between charging stations are pre-computed to improve run-time efficiency. We denote
this directed and weighted graph Gfeasible

(
V feasible, E feasible, τ feasible

)
.

We simply let V feasible = Vcharge be the set of charging stations. Then, for any given path p through
Groad, let τ road

p =
∑

e∈p τ
road
e be the travel time of the path and εroad

p =
∑

e∈p ε
road
e be the total energy

consumption of the path. We create a new set of edges Epath =
{
(u, u′) ∈ V feasible × V feasible

}
, where

each edge (u, u′) ∈ Epath corresponds to the shortest path p∗
(u,u′) = argminp∈P road

(u,u′)
τ road
p between

the charging stations, such that we have τ path
(u,u′) = τ road

p∗
(u,u′)

and εpath
(u,u′) = εroad

p∗
(u,u′)

. Finally, given a
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maximum battery capacity εmax and minimum battery capacity εmin, we define the set of feasible
edges as the set of shortest paths between charging stations where the battery capacity exceeds the
energy consumption, i.e., E feasible =

{
e ∈ Epath | εpath

e ≤ εmax − εmin
}

.

Moreover, we define a vector of travel times for the edges of the feasibility graph, τ feasible. For
each edge (u, u′) ∈ E feasible, we let τ feasible

(u,u′) = τ path
(u,u′) + τ queue

u′ + τ charge
(u,u′), where the charging time

τ charge
(u,u′) = εpath

(u,u′)/ϱ
charge
u′ depends on both the energy consumed on the edge (u, u′) and the provided

charging power at u′, while we assume that the queue time τ queue
u′ only depends on u′.

We note that, even though we assume that each charging session fully charges the battery, the
construction of the feasibility graph (and the entire online learning framework presented in this work)
can be extended in a straightforward way to allow for partial charging. If the state of charge is
discretized into a finite number of levels, vertices can be added for these to each charging station,
where edges between them represent partial charging choices. Then, feasibility graph layers may be
computed for each of the state of charge levels. See, e.g., [41], for another approach using discretized
charging levels for partial charging, applied to a setting with fixed and known parameters.

3.3 Probabilistic queue and charging times

As stated earlier, we consider both the queue time and the charging power of each charging station
to be stochastic and unknown, only to be revealed after the station has been visited. In contrast, we
assume that we are given the travel time and energy consumption of each road segment in the road
network graph (and, in practice, that they are fixed). We further assume that the queue time and
charging power are independently distributed, both with respect to each other, as well as between
different charging stations. In reality, they exhibit a complex interdependence, where low charging
power might cause queues to appear, and the simultaneous charging of many vehicles may cause the
available power to decrease.

3.3.1 Queue time model

The queuing behavior at a particular charging location may be complex, depending on the character-
istics of the location. A charging location has few or many charging stations, where each may have
multiple connectors. The stations may also differ in the maximum charging power provided, as well
as the price of charging. These, and other factors, impact the preferences of drivers towards different
stations, especially if many of the stations at the same location are occupied simultaneously.

Rather than modelling the queues in detail, we take inspiration from a simple model of queuing theory,
the M/M/1 queue [30], and assume that the queue time τ queue

u of each charging station u ∈ V feasible is
exponentially distributed according to an unknown rate parameter λqueue

u . The likelihood function of
the queue time model can then be defined as

P (τ queue
u |λqueue

u ) = Exp(λqueue
u ). (2)

We also take a Bayesian view, and assume that the rate parameter is drawn from a known prior
distribution. In principle, any suitable (positive support) distribution can be used as prior, but for this
likelihood and parameter, the gamma distribution is a conjugate prior (meaning that the posterior
distribution given observations is also a gamma distribution, and thereby the posterior parameters can
be efficiently computed). The prior is then given by

P
(
λqueue
u |αqueue

u,0 , βqueue
u,0

)
= Gamma

(
αqueue
u,0 , βqueue

u,0

)
. (3)

Given a sequence of observed queue times y1, . . . , yt, the parameters αqueue
u,t and βqueue

u,t of the gamma
posterior distribution are given by αqueue

u,t = αqueue
u,0 + t and βqueue

u,t = βqueue
u,0 +

∑t
i=1 yi. Similarly,

incremental updates of the parameters can be performed using αqueue
u,t = αqueue

u,t−1 + 1 and βqueue
u,t =

βqueue
u,t−1 + yt.

3.3.2 Charging power model

Ideally, which is also often the case, any given charging station u ∈ V feasible should be able to provide
the specified maximum charging power ϱmax

u . Occasionally, however, some charging stations provide
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less power. Reasons for this may include, e.g., intermittent high load in the surrounding electric grid,
limitations of the charging station, etc. Moreover, in this work, we assume that the vehicle is able to
fully utilize the charging power provided by the charging station.

While a Gaussian model could be sufficient for the anomalous cases described here, it would have
to be truncated or rectified to represent the sharp peak in density at ϱmax

u for a charging station
functioning as intended. Then, conjugacy properties may not be used for efficient posterior parameter
updates. An alternative, which we describe here, is to use a gamma distribution to model the charging
power. In practice, we still rectify the charging power distribution below ϱmin

u in Section 4 to prevent
negative or zero charging power, but this should have a relatively minor impact on the results since
the density of the charging power distribution is often concentrated close to ϱmax

u with the prior
distributions that we consider. We define the likelihood function as

P
(
ϱmax
u − ϱcharge

u |αcharge
u , βcharge

u

)
= Gamma

(
αcharge
u , βcharge

u

)
. (4)

A conjugate prior distribution for both parameters of the gamma likelihood was derived by [13] and
further analyzed by [33], which [13] refers to as the Gamcon-II prior. The joint prior distribution
over αcharge

u and βcharge
u has a set of parameters πcharge

u,0 > 0, γcharge
u,0 > 0 and ξcharge

u,0 > 0, where
ξ

charge
u,0

√
πcharge
u,0 < 1. Decomposed, the conjugate prior over βcharge

u conditional on αcharge
u is also a

gamma distribution, defined as

P
(
βcharge
u |αcharge

u , γcharge
u,0 , ξcharge

u,0

)
= Gamma

(
ξcharge
u,0 · αcharge

u , γcharge
u,0

)
. (5)

Whereas the prior distribution over βcharge
u has a convenient form for both sampling and moment

computation, only the unnormalized probability density function for the marginal conjugate prior
distribution over αcharge

u is available. It is defined as

P
(
αcharge
u |πcharge

u,0 , γcharge
u,0 , ξcharge

u,0

)
∝ exp

(
αcharge
u lnπcharge

u,0 − ξcharge
u,0 αcharge

u ln γcharge
u,0

−ξcharge
u,0 ln Γ

(
αcharge
u

)
+ lnΓ

(
ξcharge
u,0 αcharge

u

))
,

(6)

where Γ (·) is the well-known gamma function. The joint unnormalized prior distribution over αcharge
u

and βcharge
u is then the product of Eq. 5 and Eq. 6. With an observed charging power zt, the incremental

updates for the parameters of the joint posterior are given by πcharge
u,t = πcharge

u,t−1 · (ϱmax
u − zt), γ

charge
u,t =

γcharge
u,t−1 + (ϱmax

u − zt) and ξcharge
u,t = ξcharge

u,t−1 + 1. Despite lacking a normalization constant, Eq. 6 can
be used to efficiently find the mode of the posterior, since it is log-concave on the (positive real)
domain. An unnormalized density function can also be used in adaptive rejection sampling methods
to efficiently generate exact samples from the posterior distribution.

4 CMAB formulation

We formulate the problem of selecting paths and charging stations through the road network as a
sequential decision-making problem under uncertainty. Specifically, we see it as a combinatorial
semi-bandit (CMAB) problem [10, 17], a variant of the classical multi-armed bandit (MAB) problem.
For a finite horizon T , and each iteration t ∈ [T ], the agent has to select and execute an action. In
the CMAB setting, this action consists of a subset of objects from a ground set. Often, there are
constraints on which subsets are allowed to be selected by the agent. The environment gives feedback
for each of the objects selected (called semi-bandit feedback), the set of which determines the reward
received by the agent for taking the action.

In our setting, the ground set corresponds to the set of edges in the feasibility graph, i.e., E feasible. For a
source vertex usrc ∈ V feasible and a target vertex utrg ∈ V feasible, fixed for a particular problem instance,
the set of allowed actions corresponds to the set of paths P feasible

(usrc,utrg) from the source to the target in the
feasibility graph. In each iteration t ∈ [T ], the agent selects and travels a path pt ∈ P feasible

(usrc,utrg), and

receives the path travel time τ path
(u,u′), queue time τ queue

u′ and charging time τ charge
(u,u′) as feedback for each

edge (u, u′) ∈ pt. Since the shortest path problem is a minimization problem, we say that an action
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has a loss instead of a reward, where the loss of the travelled path is Lt(pt) =
∑

(u,u′)∈pt
τ feasible
(u,u′) ,

where τ feasible
(u,u′) = τ path

(u,u′) + τ queue
u′ + τ charge

(u,u′). Let θ be an arbitrary vector of model parameters for

the entire feasibility graph, where for each vertex u ∈ V feasible we let θu =
(
λqueue
u , αcharge

u , βcharge
u

)
.

Then, we define the expected loss function of a path p as

fθ(p) =
∑

(u,u′)∈p

(
τ path
(u,u′) +

1

λqueue
u′

+ gαcharge
u′ ,βcharge

u′
(u, u′)

)
, (7)

where gαcharge
u′ ,βcharge

u′
(u, u′) = E

[
εpath
(u,u′)/max

(
ϱmin
u′ , ϱcharge

u′

) ∣∣ αcharge
u′ , βcharge

u′

]
is the expected charg-

ing time, given the parameters αcharge
u′ and βcharge

u′ . Here, the charging power in the denominator
is rectified below the minimum charging power ϱmin

u′ . Throughout this work, gαcharge
u′ ,βcharge

u′
(u, u′) is

approximated as ĝαcharge
u′ ,βcharge

u′
(u, u′) using Monte Carlo estimation, by averaging over charging time

values computed with samples from the charging power model defined in Eq. 4.

MAB algorithms are usually evaluated using the notion of regret until a horizon T , which is defined
as the sum over all iterations t ∈ [T ] of the difference in expected loss of the best action p∗ (defined
as in Eq. 1, but for the feasibility graph) and the action pt selected by the algorithm, such that

Regret(T ) =
∑
t∈[T ]

(fθ∗(pt)− fθ∗(p∗)) , (8)

where θ∗ is the true underlying parameter vector (in which the parameters of the queue time and
charging power distributions are assumed to be drawn from their respective prior distributions). The
objective is to find a policy which minimizes the expected regret, where a sub-linear growth with
respect to T is generally desired.

5 CMAB methods

We adapt three CMAB algorithms for our problem setting: Epsilon-greedy, Thompson Sampling and
BayesUCB. For all three algorithms, a shortest path algorithm is used to find the shortest path through
the feasibility graph. This is usually called an oracle in CMAB literature. While Dijkstra’s algorithm
is a commonly used oracle for CMABs with shortest path problems (see e.g., [17, 32, 44, 2]), we may
use the more efficient A* algorithm since the feasibility graph admits a suitable heuristic function.
Since the vector of path travel times τ path is fixed and known, the direct (beeline) distance between
each pair of charging stations can be divided by the maximum allowed speed in the road network
(e.g., 120 km/h) to get a value which is guaranteed to underestimate the travel time between those
stations. We do not explicitly consider the queue time or charging time in the heuristic function, but
clearly, both are non-negative and implicitly underestimated by zero.

All three algorithms follow the same general structure, as outlined in Algorithm 1, which closely
corresponds to the CMAB description in Section 4, while also including explicit posterior parameter
updates and other details. The primary bottleneck in the computational efficiency of Algorithm 1 is
the shortest path computation on the feasibility graph, with a run-time complexity for each iteration
t ∈ [T ] of O

(
|E feasible|+ |V feasible| log |V feasible|

)
if Dijkstra’s algorithm is used.

5.1 Epsilon-greedy

In each iteration t ∈ [T ], the Epsilon-greedy MAB algorithm selects actions either greedily, according
to current parameter estimates of the loss distributions, or uniformly at random. It selects uniform
exploration with a small probability ϵt (decreasing with t) and greedy otherwise.

In line 3 of Algorithm 1, we retrieve τ̂ queue
u , α̂charge

u and β̂charge
u through MAP estimation, i.e., by

finding the mode of each posterior distribution. This can be done analytically for the gamma prior
/ posterior in Eq. 3, such that τ̂ queue

u ← βqueue
u,t−1/(α

queue
u,t−1 − 1), where we assume that αqueue

u,t−1 > 1.
For α̂charge

u and β̂charge
u , the Gamcon-II prior / posterior over αcharge

u in Eq. 6 has no analytical
formula for the mode, but it can be found numerically. With the mode α̂charge

u , we can calculate
β̂charge
u ← (ξcharge

u,t−1 · α̂
charge
u − 1)/γcharge

u,t−1.
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Algorithm 1 CMAB charging station selection

Input: αqueue
u,0 , βqueue

u,0 , πcharge
u,0 , γcharge

u,0 , ξcharge
u,0

1: for t = 1, . . . , T do
2: for u ∈ V feasible do
3: Compute τ̂ queue

u , α̂charge
u and β̂charge

u

using specified CMAB method
and current posterior parameters
αqueue
u,t−1, β

queue
u,t−1, π

charge
u,t−1, γ

charge
u,t−1, ξ

charge
u,t−1

4: end for
5: for (u, u′) ∈ E feasible do
6: τ̂ feasible

(u,u′) ← τ path
(u,u′) + τ̂ queue

u′ +

ĝα̂charge
u ,β̂charge

u
(u, u′)

7: end for
8: pt ← argminp∈P feasible

(usrc,utrg)

∑
(u,u′)∈p τ̂

feasible
(u,u′)

9: for each travelled edge (u, u′) ∈ pt do
10: Observe feedback τ queue

u′ and τ charge
(u,u′)

11: αqueue
u′,t ← αqueue

u′,t−1 + 1

12: βqueue
u′,t ← βqueue

u′,t−1 + τ queue
u′

13: ϱcharge
u′ ←

εpath
(u,u′)

τ charge
(u,u′)

14: πcharge
u′,t ← πcharge

u′,t−1 ·
(
ϱmax
u′ − ϱcharge

u′

)
15: γcharge

u′,t ← γcharge
u′,t−1 +

(
ϱmax
u′ − ϱcharge

u′

)
16: ξcharge

u′,t ← ξcharge
u′,t−1 + 1.

17: end for
18: end for

In greedy iterations, the calculated estimates are used directly in line 8 to find a path to travel. In
exploration iterations, however, line 8 is changed to provide random exploration of the feasibility
graph. In [12] (supplementary material), a CMAB version of Epsilon-greedy was introduced, which
we adapt here. First, a vertex urand ∈ V feasible is selected uniformly at random. Then, we find the paths
p
(1)
t ← argminp∈P feasible

(usrc,urand)

∑
(u,u′)∈p τ̂

feasible
(u,u′) and p

(2)
t ← argminp∈P feasible

(urand,utrg)

∑
(u,u′)∈p τ̂

feasible
(u,u′) ,

which we concatenate to get pt.

5.2 Thompson Sampling

Thompson Sampling [42] is one of the oldest MAB algorithms, which has recently been adapted to
CMAB problems [43], including shortest path problems with stochastic edge weights for various
applications [43, 2, 4]. Like Epsilon-greedy, it performs randomized exploration, but it does so in
every iteration and in a more guided way. It utilizes the knowledge encoded in the prior and posterior
distributions, by sampling paths according to the probability that they are optimal (given the prior
beliefs and the observations from the environment).

In Algorithm 1, only line 3 needs to be adapted to this method. Here, the expected queue time
τ̂ queue
u and charging power parameters α̂charge

u and β̂charge
u are calculated using parameters sampled

from the current posterior distributions. For the queue time prior distribution in Eq. 3, sampling
the rate parameter λ̂queue

u from the gamma distribution is straightforward, which gives an expected
queue time of τ̂ queue

u ← 1/λ̂queue
u . Similar to the mode calculations in Section 5.1, sampling α̂charge

u

from the Gamcon-II prior and posterior distributions is not as convenient. However, we can utilize
adaptive rejection sampling (ARS) [18] to generate exact posterior samples, since it only requires a
(log-concave, but not necessarily normalized) probability density function, like Eq. 6. In this work,
we specifically use an extension called transformed density rejection (TDR) [24]. Once a sample of
α̂charge
u is obtained, the conditional gamma prior distribution in Eq. 5 can be used to sample β̂charge

u .

5.3 BayesUCB

MAB algorithms based on upper confidence bounds (UCB) [6] use high probability overestimates
of actions’ expected rewards to explore the environment. By doing this, UCB methods follow the
principle of optimism in the face of uncertainty to select promising actions. UCB methods have
been shown to have good performance in many different problem settings, and have been adapted to
CMAB settings [12], including shortest path problems.

We adapt a Bayesian version of UCB called BayesUCB [28, 27] to this setting, so that we can
utilize the prior distributions for exploration. Again, like for Thompson Sampling, we only have
to modify line 3 of Algorithm 1 to implement this method. BayesUCB uses (lower, in this case)
quantiles of the posterior distributions over expected action losses as optimistic estimates. Given
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a probability distribution χ and a probability ν, the quantile function Q (ν, χ) is defined such that
Prx∼χ {x ≤ Q (ν, χ)} = ν. For the queue time τ̂ queue

u , a high rate parameter λ̂queue
u results in a

low expected travel time τ̂ queue
u ← 1/λ̂queue

u . Hence, an upper quantile of Eq. 3 should be sought,
i.e., λ̂queue

u ← Q
(
1− 1/t, P

(
λqueue
u |αqueue

u,t−1, β
queue
u,t−1

))
, where we use the probability value (1− 1/t)

suggested by [28]. Since the Gamcon-II prior and posterior distributions do not admit a convenient
way of computing quantile values, we settle on using the mode of Eq. 6 to obtain α̂charge

u . However,
we utilize the mode α̂charge

u to compute an upper confidence bound for βcharge
u using Eq. 5, such

that β̂charge
u ← Q

(
1− 1/t, P

(
βcharge
u |α̂charge

u , γcharge
u,t−1, ξ

charge
u,t−1

))
. Then, as before, we can calculate an

optimistic (low) estimate of the mean charging time.

6 Experiments

To evaluate the feasibility graph construction procedure described in Section 3 and the CMAB
methods outlined in Section 5, we perform realistic experiments in country-sized road networks. We
define three different problem instances, characterized by their origins and destinations, across the
northern European countries of Sweden, Norway and Finland. We utilize open datasets for the road
network map data [35] and the charging station data [34] of each country. Our CMAB simulation
framework is based on the code of [38], though significantly modified.

6.1 Energy consumption and travel time

For the vehicle energy consumption, we use a simplified vehicle longitudinal dynamics model based
on [21], where we only consider the maximum speed of each road segment in the road network, i.e.,
disregard accelerations, decelerations and altitude changes. The vehicle parameters that we use are
(arbitrarily) for a medium duty truck, similar to the one used in [2]. For an edge e ∈ E road, the model
is defined as

εroad
e =

mgCrd
road
e + 0.5CdAρdroad

e (vroad
e )2

3600η
, (9)

where m is the vehicle mass (13700 kg), g is the gravitational acceleration (9.81 m/s2), Cr is the
rolling resistance coefficient (0.0064, assumed to be the same for the entire road network), droad

e is
the length of the road segment (m), Cd is the air drag coefficient of the vehicle (0.7), A is the frontal
surface area of the truck (8 m2), ρ is the air density (1.2 kg/m3, assumed to be the same everywhere),
vroad
e is the maximum speed of the road segment (m/s), and η is the battery-to-wheel energy conversion

efficiency (assumed to perfect, i.e., 1). The battery capacity (2.5 · 108Ws ≈ 69.4kWh) of the vehicle
is assigned to be very low, so that it is required to charge often. The travel time of the edge is assumed
to be τ road

e = droad
e /vroad

e .

6.2 Experimental setup

First, each of the country road network graphs is transformed into a feasibility graph according to the
procedure described in Section 3. For simplicity, we remove all charging stations with lower specified
power than 10 kW, since slower charging stations should be less relevant for long-distance travel.
Furthermore, we assume that each charging location has a single charging station (by removing all
except the one with the highest specified charging power, as well as any duplicates). The sizes of
the original road networks Groad

(
V road, E road

)
and the feasibility graphs Gfeasible

(
V feasible, E feasible

)
, as

well as further details about the results are outlined in Appendix A.

For each vertex u ∈ V feasible and the queue time prior distribution defined in Eq. 3, we assign the
prior parameters as αqueue

u,0 = 2 and βqueue
u,0 = 2400, and for the charging power prior distribution in

Eq. 5 and Eq. 6, we set the parameters so that πcharge
u,0 = exp (13.5), γcharge

u,0 = 300 and ξcharge
u,0 = 3.

Furthermore, we scale the samples and expected values of the gamma distribution in Eq. 4 by 300 to
achieve a sufficiently high charging power variance. For the rectification of the charging power below
ϱmin
u , we assume ϱmin

u = ϱmax
u /2. We choose N = 1000, and can then estimate the expected charging

time using Monte Carlo sampling, such that ĝαcharge
u′ ,βcharge

u′
(u, u′) = 1

N

∑N
k=1

εpath
(u,u′)

max(ϱmin
u ,ϱmax

u −300zk)
,

where zk ∼ Gamma
(
αcharge
u′ , βcharge

u′

)
.
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Method Sweden Norway Finland

GR 1.8 · 106(±1.3 · 106) 6.2 · 105(±8.6 · 105) 1.8 · 106(±1.7 · 106)
E-GR 4.4 · 106(±5.4 · 105) 3.2 · 106(±1.1 · 106) 2.3 · 106(±9.2 · 105)
TS 4.0 · 105(±2.7 · 105) 2.2 · 105(±2.2 · 105) 4.4 · 105(±1.9 · 105)
B-UCB 7.6 · 105(±2.4 · 105) 2.7 · 105(±1.3 · 105) 5.2 · 105(±3.3 · 105)

Table 1: Final average (± standard deviation) of regret at iteration T = 1000 for all problem instances

For Epsilon-Greedy, we let ϵt = 1/
√
t. Moreover, for Thompson Sampling, we experience that

TDR occasionally fails to produce samples when the posterior distribution over αcharge
u gets too

concentrated, typically after a few hundred observations. When this happens, we switch to the mode
of the distribution for the specific charging station u, while continuing posterior sampling for all
other charging stations. Besides Epsilon-Greedy (E-GR), Thompson Sampling (TS) and BayesUCB
(B-UCB), we also include a pure greedy method (GR) in the experiments (i.e., Epsilon-Greedy with
ϵt = 0), as a baseline.

6.3 Results
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Figure 1: Plots of cumulative regret as a function of the iteration t, for each of the problem instances,
and the CMAB methods Greedy (GR), Epsilon-Greedy (E-GR), Thompson Sampling (TS) and
BayesUCB (B-UCB)

We run all experiments with a horizon T = 1000. We include the following problem instances:
Sweden (Gothenburg to Stockholm), Norway (Oslo to Trondheim) and Finland (Helsinki to Vaasa).
For all pairs of problem instances and CMAB methods, we run the same experiment 10 times, with
different random seeds. The regret results are summarized in Table 1, as well as through regret plots
in Figures 1a, 1b and 1c.

In general, the Epsilon-Greedy method incurs the highest final regret of all the methods, for all
problem instances. This can be explained by the uniformly random selection of charging stations,
which means that the method takes very long detours, sometimes to the other side of the country.
Following close behind is the Greedy method, which quickly converges to sub-optimal paths. This
becomes even more apparent in the regret plots, which show the regret (averaged over 10 runs) as a
function of the iteration t. For each of the problem instances, the Greedy method exhibits a linear
increase in regret, while the other methods (even Epsilon-greedy) continuously find better paths. For
all problem instances, Thompson Sampling performs slightly better than BayesUCB, which may be
due to the more optimistic exploration of BayesUCB resulting in a wider spread of explored paths
(and consequently, occasionally more regret incurred).

7 Conclusion

In this work, we developed a combinatorial semi-bandit framework for navigation and charging
station selection in road networks where the queue time and charging power of each charging station
are stochastic with unknown distributions, the parameters of which are generated from known prior
distributions. We utilized conjugate prior distributions for the exponential and gamma models to
estimate the loss distributions and induce exploration. We then demonstrated the performance of our
framework on several country-sized road and charging networks.
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A Appendix

In this Appendix, we report further details on the experiments than in the main paper. We run
all experiments with a horizon T = 1000. We include the following problem instances: Sweden
(Gothenburg to Stockholm), Norway (Oslo to Trondheim), and Finland (Helsinki to Vaasa). Table 2
shows the number of vertices and edges in the initial road graph and constructed feasibility graph
of each problem instance. Figures 2a, 2c and 2e visualize all edges of the road network graphs of
Sweden, Norway and Finland, respectively, as well as examples of the explored paths and charging
stations visited when Thompson Sampling is applied to the problem. Figures 2b, 2d and 2f show
the corresponding feasibility graphs for each of the networks. In the feasibility graphs, we can see
that some parts of the road networks are unreachable from the rest of the road network, given the
specified battery capacity of 69.4 kWh. We want to emphasize that the methods developed in this
work may be applied to problem instances with changing source and target vertices (for either single
or multiple vehicles), which would require exploration of much greater parts of the road networks
than what is shown in Figure 2.

For all pairs of problem instances and CMAB methods, we run the same experiment 10 times,
with different random seeds. To further illustrate the regret results summarized in the main paper,
we also include regret plots with standard error regions in Figures 3a, 3b and 3c. In Table 3, we
report the average and standard deviation of the per-iteration run-time (in seconds) of each method
and problem instance. The CMAB methods are implemented with Python using the SciPy library,
for implementations of statistical functions, including the Transformed Density Rejection method
[24], and the NetworkX library [22], for the implementation of the A* algorithm. All run-time
measurements were performed on a single core of a laptop with an Intel(R) Core(TM) i7-10850H
CPU (2.70 GHz) and 32.00 GB RAM.

The notation used throughout the paper is summarized in Table 4.

Instance |V road| |E road| |V feasible| |E feasible|
Sweden 6.8 · 105 1.5 · 106 1.7 · 103 1.6 · 105
Norway 3.6 · 105 7.6 · 105 1.1 · 103 8.5 · 104
Finland 4.3 · 105 9.5 · 105 5.5 · 102 7.0 · 104

Table 2: Sizes of the road and feasibility graphs for all problem instances

Method Sweden Norway Finland

GR 2.04(±0.18) 2.61(±0.27) 3.09(±0.37)
E-GR 2.80(±0.51) 2.83(±0.79) 3.38(±0.77)
TS 2.79(±0.78) 2.92(±0.62) 2.93(±0.36)
B-UCB 3.47(±0.32) 2.97(±0.37) 3.46(±0.42)

Table 3: Average (over 1000 iterations) per-iteration run-time (s) (± standard deviation) of each
CMAB method, for different problem instances

Notation Description

Groad Road graph
V road Road graph vertices
E road Road graph edges
τ road Vector of road graph edge travel times
τ road
e Road graph travel time of edge e
τ road
p Road graph travel time of path p
εroad
e Road graph energy consumption of edge e
εroad
p Road graph energy consumption of path p

Table 4: Summary of the notation used throughout the paper

Continued on the next page
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Notation Description

Vcharge Charging station vertices
ϱcharge
u Charging station power (actual) of vertex u

ϱmax
u Charging station maximum power of vertex u

ϱmin
u Charging station minimum power of vertex u

u A vertex
u′ A vertex (alternative)
usrc Source vertex
utrg Target vertex
e An edge
p A path
p∗ Shortest path (implicitly between specified source and target vertices)
p∗
(u,u′) Shortest path between vertices u and u′

P road
(usrc,utrg) Set of paths in road graph between source and target vertices
Gfeasible Feasibility graph
V feasible Feasibility graph vertices
E feasible Feasibility graph edges
Epath Edges corresponding to shortest paths between charging stations in road graph
τ path
(u,u′) Path travel time between vertices u and u′

τ charge
(u,u′) Charging time required for travel between vertices u and u′

τ queue
u Queue time required for charging station at vertex u
τ feasible
e Feasibility graph travel time of edge e

εpath
(u,u′) Path energy consumption between vertices u and u′

εmax Maximum battery capacity of vehicle
εmin Minimum battery capacity of vehicle
λqueue
u Queue time distribution rate parameter of vertex u

αqueue
u,0 Shape prior parameter for queue time rate parameter, of vertex u

βqueue
u,0 Rate prior parameter for queue time rate parameter, of vertex u

αqueue
u,t Shape posterior parameter for queue time rate parameter, at time t and vertex u

βqueue
u,t Rate posterior parameter for queue time rate parameter, at time t and vertex u

αcharge
u Charging power distribution shape parameter of vertex u

βcharge
u Charging power distribution rate parameter of vertex u

πcharge
u,0 First prior parameter for charging power parameters, of vertex u

γcharge
u,0 Second prior parameter for charging power parameters, of vertex u

ξcharge
u,0 Third prior parameter for charging power parameters, of vertex u

πcharge
u,t First posterior parameter for charging power parameters, at time t and vertex u

γcharge
u,t Second posterior parameter for charging power parameters, at time t and vertex u

ξcharge
u,t Third posterior parameter for charging power parameters, at time t and vertex u
t Time step
T Time horizon
pt Path (action) selected by CMAB algorithm at time t
Lt(p) Loss of path p at time t
θ Vector of all parameters of feasibility graph
θ∗ True underlying (unknown) vector of all parameters of feasibility graph
θu Vector of parameters

(
λqueue
u , αcharge

u , βcharge
u

)
of vertex u

fθ(p) Expected loss function, w.r.t. parameter vector θ, applied to path p
gα,β(u, u

′) Expected charging time of edge (u, u′), given parameters α and β
ĝα,β(u, u

′) Estimated charging time of edge (u, u′), given parameters α and β
Regret(T ) Regret of CMAB algorithm at horizon T
ϵt Exploration probability of the Epsilon-greedy CMAB algorithm
τ̂ queue
u Estimate of mean queue time, for vertex u

Table 4: Summary of the notation used throughout the paper

Continued on the next page

14



Notation Description

λ̂queue
u Estimate of queue time rate parameter, for vertex u

α̂charge
u Estimate of charging power shape parameter, for vertex u

β̂charge
u Estimate of charging power rate parameter, for vertex u

Q (ν, χ) Quantile function for distribution χ and probability value ν
m Vehicle mass
g Gravitational acceleration
Cr Rolling resistance coefficient
droad
e Length of the road segment, for edge e

Cd Air drag coefficient
A Frontal surface area of vehicle
vroad
e Maximum speed of the road segment, for edge e
ρ Air density
η Battery-to-wheel energy conversion efficiency

Table 4: Summary of the notation used throughout the paper.
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(a) Road graph: Sweden (b) Feasibility graph: Sweden

(c) Road graph: Norway (d) Feasibility graph: Norway

(e) Road graph: Finland (f) Feasibility graph: Finland

Figure 2: Road and feasibility graphs for each of the problem instances in blue, with Thompson
Sampling exploration of paths in red and charging stations in green, where opaqueness indicates
degree of exploration for both
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(a) Cumulative regret: Sweden
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(b) Cumulative regret: Norway
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(c) Cumulative regret: Finland

Figure 3: Plots of cumulative regret averaged over 10 runs (with standard error regions), as a function
of the iteration t, for each of the problem instances, and the CMAB methods Greedy (GR), Epsilon-
Greedy (E-GR), Thompson Sampling (TS) and BayesUCB (B-UCB)
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