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ABSTRACT

Decentralized collaborative learning under data heterogeneity and privacy constraints has
rapidly advanced. However, existing solutions like federated learning, ensembles, and
transfer learning, often fail to adequately serve the unique needs of clients, especially when
local data representation is limited. To address this issue, we propose a novel framework
called Query-based Knowledge Transfer (QKT) that enables tailored knowledge acquisi-
tion to fulfill specific client needs without direct data exchange. QKT employs a data-free
masking strategy to facilitate communication-efficient query-focused knowledge transfer
while refining task-specific parameters to mitigate knowledge interference and forgetting.
Our experiments, conducted on both standard and clinical benchmarks, show that QKT
significantly outperforms existing collaborative learning methods by an average of 20.91%
points in single-class query settings and an average of 14.32% points in multi-class query
scenarios. Further analysis and ablation studies reveal that QKT effectively balances the
learning of new and existing knowledge, showing strong potential for its application in
decentralized learning.

1 INTRODUCTION

Collaborative model training across distributed sources has made significant progress, where data aggrega-
tion to update a central model has become a widely adopted approach. However, the rapid proliferation of
Internet of Things (IoT) devices and the increasingly stringent data privacy regulations have highlighted the
need for a decentralized machine learning framework. This framework allows models to be trained locally on
devices or within organizations and encourages knowledge transfer between models in the network of clients
without exchanging raw data. Despite its potential, the decentralized paradigm faces substantial challenges,
particularly in addressing the diverse needs of devices and clients in heterogeneous environments.

In heterogeneous environments, each client may have vastly different local data distributions, resulting in
diverse query objectives that might be out of the local distribution but relevant to other clients. For instance,
in medical diagnostics, models may be required to detect rare or emerging diseases that are underrepresented
locally, necessitating the ability to generalize from similar conditions observed in other regions or popula-
tions. Similarly, in fraud detection, the constantly evolving nature of fraudulent activities means that new
tactics may not yet be captured in the historical data of certain clients. Consequently, it is helpful for models
to rapidly learn from fraud patterns detected elsewhere to remain effective.

Previous work has offered valuable solutions to this challenge, but each comes with its own limitations. Col-
laborative methods like Federated Learning (FL) (McMahan et al., 2017) aggregate knowledge across clients
but often struggle to adapt models to the specific needs of individual clients. Personalized FL and clustered
FL (Tan et al., 2022; Ma et al., 2022) provide some level of customization by tailoring the learning process
to each client’s data distribution or by grouping clients of similar characteristics. However, these methods
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Table 1: Comparison of Existing Approaches and QKT in Collaborative Learning

Approach Data Privacy Low Comm. Overhead Customized Models Knowledge Retention Customized Objective

Traditional FL ✓ ✗ ✗ ✗ ✗
Personalized FL ✓ ✗ ✓ ✓ ✗
KD ✓ ✓ ✗ ✗ ✗
Ensemble & Matching (e.g., CLUE) ✓ ✓ ✓ ✗ ✗
Continual Learning (e.g., replay) ✗ ✓ ✓ ✓ ✗
QKT (Our Method) ✓ ✓ ✓ ✓ ✓

overlook the scenarios where critical knowledge might be limited or absent in the local data (Fallah et al.,
2020; Li et al., 2020a). Moreover, existing FL methods often fail to address the communication overhead,
which is crucial when models need to adapt frequently to diverse needs. While approaches such as single-
round FL (Yurochkin et al., 2019), ensemble (Daga et al., 2023), knowledge distillation (KD) (Hinton et al.,
2015), and replay (Chaudhry et al., 2019) offer potential communication-efficient solutions, they encounter
challenges among complex model structures (Wang et al., 2020b), heterogeneous data distributions, privacy
constraints, knowledge interference, and catastrophic forgetting (Alballa & Canini, 2024). Table 1 shows
the pros and cons of the solutions when addressing the challenge.

These challenges points to the need for an approach that effectively tailors the learning to clients’ specific
new needs with data privacy and low communication overhead without compromising the existing needs.

In this work, we explore the existing collaborative learning methods in a decentralized environment and ob-
serve that they often struggle with maintaining the ability of existing knowledge when learning the queried
knowledge. To address this, we propose Query-based Knowledge Transfer (QKT) to enhance a local model,
referred to as the student model, by distilling knowledge from other models in the network, referred to as
teacher models. Specifically, we generate a synthetic dataset to create a mask that filters out teacher models
and parameters associated with irrelevant knowledge during the distillation process. We then introduce a sep-
arate phase dedicated to refining the classification head of the student model. This staged distillation process
ensures that new knowledge is incorporated effectively without disrupting previously acquired information,
thereby mitigating issues such as knowledge interference and forgetting.

We demonstrate the effectiveness of QKT in enhancing model performance on tasks with limited or no local
data representation. The results of various standard and clinical benchmarks show that QKT significantly
outperforms existing collaborative learning methods. QKT improves learning effectiveness while mitigat-
ing key issues in collaborative environments, such as knowledge interference and catastrophic forgetting.
Additionally, QKT reduces communication overhead and preserves flexibility in model architecture, allow-
ing teacher models to function as black boxes, thus eliminating the need for model architecture uniformity
across all devices. Our contribution can be summarized as:

• We explore decentralized learning and identify the limitations of existing collaborative learning methods
in addressing the unique requirements of clients with limited or no local data representation.

• We propose Query-based Knowledge Transfer (QKT) that focuses on query-based learning through two
distinct strategies: Query-Focused Learning and Classification Head Refinement. QKT does not require
direct data exchange and minimizes communication overhead.

• We evaluate QKT on various standard and clinical datasets with multiple heterogeneous distributions and
a range of scenarios of single query and multiple queries with limited or no local data representation.
QKT outperforms existing collaborative learning methods by an average of 20.91% points in single-query
scenarios and an average of 14.32% points in multi-query scenarios.

2 RELATED WORK

Federated learning. FL methods focus on aggregating knowledge across clients to optimize model per-
formance. Approaches like FedProx (Li et al., 2020b) and MOON (Li et al., 2021b) employ regularization
techniques to stabilize learning, but often fall short in addressing the wide range of client-specific require-
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ments. Recent advances in personalized FL (pFL) tailor learning to each client’s data distribution (Qin et al.,
2023; Yu et al., 2022; Huang et al., 2021; T. Dinh et al., 2020; Li et al., 2021c; Luo & Wu, 2022; Kharrat
et al., 2025), and clustered FL groups clients by data similarities to optimize shared models (Li et al., 2021a;
2022; Ghosh et al., 2020; Briggs et al., 2020; Sattler et al., 2020). However, these approaches often fail
when clients require insights that are under-represented or unseen in their data, limiting their applicability in
diverse scenarios. Additionally, FL methods face challenges related to communication efficiency.

Communication-efficient knowledge transfer. Multiple methods in both FL and other fields try to trans-
mit teacher models in a single round to the learner clients and learn from these models. Ensemble methods
apply techniques like bagging, boosting, and stacking (Dietterich, 2000) to combine multiple models and ag-
gregate their predictions. In federated and collaborative learning, ensembles have been employed to mitigate
model heterogeneity (Shi et al., 2024). However, they add computational and storage overhead while not
fully addressing the challenges of knowledge transfer in heterogeneous data environments. Matching meth-
ods, like PFNM (Yurochkin et al., 2019), employ a Bayesian non-parametric model to match and merge
local models into a global one. While it reduces communication rounds, storage, and computation, it strug-
gles with heterogeneity in data distributions and complex model structures (Wang et al., 2020a), leading to
suboptimal performance in diverse environments. CLUE (Daga et al., 2023) introduces a dynamic approach
to knowledge transfer by identifying significant parameters from teacher models and integrating them into
student models using a multi-modal boosting technique. However, replacing or averaging significant pa-
rameters from models trained on different data can degrade performance and cause substantial forgetting in
heterogeneous data settings. KD (Hinton et al., 2015) is an efficient method to transfer knowledge from a
teacher model to a student model in a single communication round. However, it introduces challenges such
as knowledge interference and forgetting, particularly in heterogeneous environments. These challenges and
strategies to address them will be discussed in detail in the next section. Further discussion of other methods,
including additional FL baselines and replay-based continual learning is provided in Appendix A.1.

3 QUERY-BASED KNOWLEDGE TRANSFER (QKT)

3.1 PROBLEM FORMULATION

In this work, we focus on image classification within a collaborative learning environment. Let x ∈ X ⊆ Rm

be images and y ∈ Y ⊆ [C] be labels, where [C] is integers from 0 to C − 1. fθ : X → PC is a
model parameterized by θ that maps an input image to C-dimension probability space representing the
predictive probability for each class. It can be decomposed into two parts, a feature extractor (gν) and the
classification head (hµ), i.e., fθ = hµ ◦ gν . We assume there are L clients, each owning a private dataset
Di = {(x, y)|x ∈ Xi, y ∈ Yi ⊂ Y}. Reflective of the real-world environments, these datasets could vary
in the volume of data and may also exhibit significant differences in their distribution characteristics. Each
client i ∈ [L] creates a model fθi optimized on its local data, i.e., θi = argmin

∑
(x,y)∈Di

L(fθi(x), y),
where L is a supervised loss. After the local training, clients are limited to sharing only the model weights,
with the exchange of raw data strictly prohibited.

We study the query-based knowledge transfer in a decentralized environment. For a specific student client
s ∈ [L], the objective is to enhance the performance of model fθs on a set of classes, referred to as the
query class(es) Q, leveraging the model weights shared by other clients in the environment, denoted as
teacher clients fθt , t ∈ [L]. That is, the objective is to train a student model fθs with local data Ds and
teacher models fθt such that the empirical risk of the query classes Q is reduced. The selection of the query
class(es) Q are based on the under-representation or absence of the student client’s local data in general but
can also be other triggers such as performance-based or proactive queries.

3.2 CHALLENGES OF KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) is a widely used method to facilitate learning between models without direct
access to raw data (Seo et al., 2022; Qin et al., 2024). In KD, the Kullback-Leibler (KL) divergence is
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Figure 1: Extraneous knowledge, whether from additional classes or non-proficient teachers, can interfere with the query
and local classes, leading to unsatisfactory performance for the query classes.

minimized between the teacher model’s predictions pt(x) = fθt(x) and the student model’s predictions
ps(x) = fθs(x). To maintain the knowledge that the student model has learned from its local data, it is often
combined with the cross-entropy loss on the local dataset Ds. The standard loss for naive KD is:

LKD(fθs) =
1

|Ds|
∑

(x,y)∈Ds
{CE(ps(x), y) + α

∑
t∈T KL(pt(x), ps(x))}, (1)

where KL(·, ·) is the KL divergence, Ds is the dataset of the student client with size |Ds|, CE(·, ·) is the
cross-entropy loss, and α is a weight to balance the two terms.

Through highlights of experiments, we now reveal several key observations that inform the enhancement
of learning outcomes in our QKT framework, including improving knowledge inference and mitigating
forgetting problems. We utilize the naive KD in our decentralized learning environment to transfer the
knowledge for the query classes from the teacher models to the student model and visualize the experiments
of models trained on CIFAR10 (Krizhevsky, 2009) with pathological data distribution. The experimental
setup is detailed in Section 4.1.

Irrelevant knowledge interference. Extraneous irrelevant knowledge can disrupt the learning process by
interfering with both the target and existing knowledge. This irrelevant knowledge might come from teachers
who are less proficient in the target (i.e., query) classes or from additional classes that do not align with the
student’s objectives. As shown in Figure 1, when naive KD is applied to the student model, the student model
acquires the query knowledge (orange bars), as well as the irrelevant knowledge (gray bars), from the teacher
models. This extraneous knowledge negatively impacts the preservation of previously learned information
(illustrated with the drop in blue bars), and the effective learning of the target classes. To mitigate these
issues, it is essential to filter out unhelpful teachers and irrelevant classes to better fulfill the learner’s query.
The challenge, however, is to address the following questions:

(1) How can we effectively estimate the knowledge of each teacher model and mask out irrelevant knowledge
without access to sensitive or unknown statistical information? (2) How can we modify the KD loss to filter
out irrelevant knowledge and focus effectively on the required knowledge?

Critical role of task-related parameters. Figure 2, the scatter plots represent the features obtained through
Principal Component Analysis (PCA) of the extracted features, denoted as gν(x), from samples belonging
to both query and local classes. The background colors in these plots represent the predicted decision
boundaries. These decision boundaries are derived from the model’s classifier, showing which regions of
the feature space are assigned to which class. In the bottom row, heatmaps display each model’s class
accuracy. These heatmaps quantify the decision boundaries’ effectiveness, revealing how accurately the
defined regions in the feature space correspond to correct classifications. The Local Training model achieves
well-defined boundaries for local classes but fails to generalize to the query class Q. Naive KD improves
decision boundaries but struggles to learn the query class Q. In QKT Phase 1, using the query-focused
learning we will introduce later, there is a notable improvement in the accuracy of class Q, although the
performance of certain local classes, like L2, is suboptimal. QKT Phase 2, in which only the classification
head is refined while the feature extractor gν from Phase 1 is frozen, results in a notable accuracy increase
particularly for previously under-performing classes such as L2. Our observations highlight the pivotal role
of task-related parameters, particularly the classification head in classification tasks. It translates features
into specific, actionable class information required by the classification task.

As such, focusing on classification head refinement proves essential in improving learning outcomes. Note
that this finding is consistent with existing research (Kumar et al., 2022) that demonstrates the importance
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Figure 2: Decision boundaries and class accuracy of Local Training, Naive KD, QKT Phase 1, and QKT Phase 2.
Refining the classification head in QKT Phase 2 markedly improves the performance.

of linear probing (only fine-tuning the head) when the model learns an out-of-distribution task. Our work
generalizes this principle to the collaborative learning setting and proposes a head replacement strategy to
retain previously learned knowledge.

3.3 PROPOSED METHOD

Overview. We propose Query-based Knowledge Transfer (QKT) to address the challenges of decentral-
ized learning with two key techniques: Query-Focused Learning and Classification Head Refinement. The
learning process occurs in two distinct phases to optimize the model’s performance: the first phase focuses
on enhancing the feature extractor, while the second phase refines the classification head to ensure effective
integration of new knowledge while preserving previously acquired information, as outlined in Figure 3.

Phase 1: Feature extractor enhancement. In the first phase, we apply Query-Focused Learning to mitigate
the interference of irrelevant knowledge by filtering out irrelevant teachers and classes. To achieve this, we
apply synthetic data to estimate the relevance of the teachers to the student’s query to obtain masks. The
teacher models are pre-trained on their local data distributions; they tend to exhibit overconfidence in the
classes they were originally trained on (Guo et al., 2017). This overconfidence is reflected in their high
probabilities of random input to the learned classes, as we visualize in Figure 5. To this end, a batch of B
input samples x′ ∼ N (0, 1) ∈ Rm generated from a Gaussian distribution is fed into the teacher models to
compute class probabilities. If the average prediction of a class j ∈ [C] surpasses a pre-defined threshold,

TQ = {t | 1
B

∑
x′∼N (0,1) fθt(x

′)[q] ≥ τ,∃q ∈ Q}, (2)

where fθt(x
′)[q] represents the probability of class q predicted by teacher t using the synthetic data x′, and

τ is the threshold. In practice, the threshold τ can be easily set as a small number as the irrelevant classes
have almost zero probability due to the over-confidence we explained above and we analyze in Section 4.3.

For the selected teacher models, we assign a value of λ at positions corresponding to the query classes, 1
at positions corresponding to the student’s local classes (to mitigate forgetting), and 0 elsewhere. The mask
Mt ∈ RC is defined as follows:

∀j ∈ [C], Mt[j] =


λ if j is a query class
1 if j is present in student’s data
0 otherwise

, (3)

where λ controls the emphasis on learning the query class. We discuss the impact of λ in Section 4.3. The
refined Query-based Knowledge Distillation (QKD) loss is then defined as:

LQKD(fθs) =
1

|Ds|
∑

(x,y)∈Ds
{CE(fθs(x), y) + α

∑
t∈TQ

⟨Mt,KL(pt, ps)⟩}, (4)

where CE(·, ·) is the cross-entropy loss, and ps = fθs(x), pt = fθt(x) represent the student and teacher
model predictions, respectively. The term KL is a vector of element-wise cross-entropy between the teacher
and student predictions, specifically pt log ps. The notation ⟨·, ·⟩ indicates an inner product, effectively
applying the mask Mt to the element-wise KL divergence and aggregating the result.

Phase 2: Classification head refinement. The classification head is crucial for defining decision bound-
aries between new and existing tasks, as illustrated in Figure 2. Refining the classification head enhances
learning outcomes while mitigating forgetting of previously acquired knowledge without disrupting the sta-
ble representations learned in the feature extractor.
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Figure 3: Query-based Knowledge Transfer (QKT): noise is applied to estimate the relevance of the teacher models to
the student’s query to obtain masks for each teacher model. Masked distillation is then applied to transfer the knowledge
of the query classes from the teacher models to the student model. We then refine the classification head of the student
model to prevent forgetting the previously learned knowledge.

To achieve this, we first perform Head Replacement by restoring the classification head hµs
to its state before

Phase 1. This head is not influenced by the knowledge distilled from the teacher models, thereby preserving
the classification patterns related to the knowledge that the student model has learned from its local data.
Next, we freeze the feature extractor gνs

and only refine the classification head hµs
of the student model with

the same strategy as in Equation 4. This dual approach ensures that the model effectively assimilates new
knowledge from the query classes while retaining robust decision boundaries for previously learned tasks.
Furthermore, the separation of training into two distinct phases provides enhanced stability, as observed in
Appendix A.6.1. By isolating the refinements to the classification head, the risk of interference is reduced
with stable feature representations. We shall show in Section 4.3 that this strategy significantly improves the
model’s performance on the query classes while maintaining the accuracy of the original tasks.

Efficiency considerations. QKT performs knowledge transfer in a single round, which is significantly more
efficient than traditional centralized and peer-to-peer FL approaches that involve multiple communication
rounds. The computation overhead for trainable parameters in Phase 2 is negligible; for instance, considering
ResNet-18, its classification head comprises only about 0.04% of the total parameters. However, to reduce
computational costs in Phase 1, especially in resource-constrained scenarios, we propose a simplified variant,
termed QKT Light, that performs naive KD using all teachers and all classes to obtain a general feature
extractor in Phase 1. Teacher filtering and class masking are only applied in Phase 2, where each client
refines the classification head based on its specific needs.

By training a general feature extractor once and sharing the Phase 1 model among all clients, QKT Light
substantially reduces the computational burden of Phase 1. Clients then proceed directly to Phase 2, where
they only need to refine the classification head to adapt the general knowledge to their specific needs.

However, because QKT Light confines the query-focused knowledge transfer to the classification head, it
may pose a higher risk of forgetting compared to the full QKT approach. Despite this, QKT Light still
outperforms the existing solutions in meeting the diverse needs of query clients and is particularly effective
for rapid adaptation scenarios.

4 EVALUATION

4.1 SETUP

Task, datasets and models. We evaluate our approach on image classification tasks using the following
datasets: CIFAR10 (Krizhevsky, 2009), with 60,000 images across 10 classes; CIFAR100 (Krizhevsky,
2009), featuring 100 classes with 600 images per class, to test generalizability across more classes; CINIC10
(Darlow et al., 2018), which combines samples from ImageNet (Russakovsky et al., 2015) and CIFAR10,
introducing natural distribution shifts (Luo et al., 2021); PathMNIST (Yang et al., 2023), a medical dataset
containing 9 classes of colorectal cancer images; and BloodMNIST (Yang et al., 2023), featuring 8 classes
of blood cell microscope images. Our experiments assume a distributed cross-silo training scenario with 10
clients. We use the ResNet-18 architecture (He et al., 2016) and the Adam optimizer (Kingma & Ba, 2017).
More details are in Appendix A.2.

6



Published as a conference paper at ICLR 2025

Table 2: Average accuracy on various datasets. The best are in bold, and the second-best are underlined.

CIFAR10 CIFAR100 CINIC10 BloodMNIST PathMNIST Average

Comm Path Dir Path Dir Path Dir Path Dir Path Dir Path Dir
Si

ng
le

C
la

ss
Q

ue
ry

FedAvg 100 52.33 60.55 53.12 37.59 22.30 30.39 43.34 63.13 49.88 60.81 44.19 50.49
FedProx 100 49.69 61.15 53.63 41.57 24.22 32.31 63.65 72.75 62.12 63.74 50.66 54.30
Moon 100 43.17 50.28 31.50 19.09 40.99 39.50 72.97 62.04 60.06 67.44 49.74 47.67
FT-FedAvg 100 46.20 49.15 34.95 34.19 45.55 44.18 46.99 60.98 44.71 55.28 43.68 48.76

FedAvg(1) 1 10.95 08.73 00.50 00.95 08.86 03.73 14.88 19.78 11.14 00.51 09.27 06.74
Ensemble 1 24.84 49.92 34.83 23.70 30.22 43.61 56.08 69.35 60.03 59.86 41.20 49.29
PFNM 1 10.66 03.29 00.54 00.37 19.27 23.83 08.85 20.15 22.21 11.90 12.31 11.91
CLUE 1 07.66 15.90 06.40 00.97 26.23 12.47 20.67 19.29 14.07 11.96 15.01 12.12
KD 1 51.97 51.00 39.84 29.39 49.64 50.64 43.77 56.40 58.18 32.40 48.68 43.97

QKT Light 1 75.78 61.44 68.17 49.37 71.27 70.41 78.15 74.70 77.25 78.31 74.12 66.85
QKT 1 74.56 71.35 68.48 51.42 71.02 73.50 77.65 75.23 83.41 77.95 75.02 69.89

M
ul

ti-
C

la
ss

Q
ue

ry

FedAvg 100 51.27 59.92 46.29 43.90 27.95 46.17 53.33 73.76 41.35 57.51 44.04 56.25
FedProx 100 51.90 59.42 46.21 47.78 27.56 46.55 67.94 81.78 49.92 59.85 48.71 59.08
Moon 100 41.58 49.15 22.44 24.72 38.30 46.16 72.45 71.80 47.16 62.80 44.39 50.93
FT-FedAvg 100 28.35 33.23 12.50 25.09 27.80 45.20 32.29 45.28 25.87 38.09 25.36 37.38

FedAvg(1) 1 10.95 06.63 00.11 00.79 11.06 03.75 17.09 14.73 21.12 00.75 12.07 05.33
Ensemble 1 37.38 49.14 39.67 30.77 26.31 39.78 61.15 64.19 44.63 60.37 45.13 48.85
PFNM 1 08.46 06.89 01.70 01.13 19.09 12.75 17.43 15.49 16.43 11.51 12.62 09.55
KD 1 43.04 40.24 22.05 25.37 39.53 37.57 38.04 52.87 44.40 33.93 37.41 38.00

QKT Light 1 65.28 58.44 54.60 48.27 61.71 51.06 67.16 64.26 50.62 67.11 59.87 57.83
QKT 1 65.60 61.08 54.98 48.46 62.13 54.57 69.52 63.14 67.03 69.32 63.57 59.31

Data distribution. To simulate non-IID data distribution among clients, we adopt two commonly used
schemes: Pathological non-IID (Path) (McMahan et al., 2017; Qin et al., 2023; Luo & Wu, 2022; Huang
et al., 2021), where each client receives samples from M exclusive classes with a random number of samples
per class (with M = 3 by default), and Dirichlet distributions (Dir) (Yurochkin et al., 2019; Wang et al.,
2020b), where the proportion pi,s of samples from class i assigned to client s is drawn from DirC(α) (with
α = 0.1 by default). We also vary M and α to explore different heterogeneity levels in the ablation study
(Table 5), with further details in Appendix A.3.

Baselines. We evaluate our QKT framework against several established baselines. This includes the widely
used FL method, FedAvg (McMahan et al., 2017), and its one-round variant FedAvg(1), FL methods like
FedProx (Li et al., 2020b), and Moon (Li et al., 2021b), specifically designed to handle heterogeneous data
distributions. We also incorporate FT-FedAvg (Wang et al., 2020a; Yu et al., 2022), a strong baseline for per-
sonalized FL methods (Jiang & Lin, 2023). We further compare QKT with methods that achieve knowledge
transfer in a single peer-to-peer communication round. These include the Ensemble method (Dietterich,
2000), which combines predictions from multiple teacher models by averaging them; PFNM (Yurochkin
et al., 2019), where local models are matched and merged into a global model using a probabilistic frame-
work; CLUE (Daga et al., 2023), which dynamically integrates significant parameters from a helper model
into the target model through multi-model boosting; and KD (Hinton et al., 2015), which performs naive
distillation from all teacher models. We also assess a lighter variant of our approach, QKT Light, which
simplifies the first phase of QKT by replacing Equation 4 with Equation 1 (the naive KD loss), and applies
filtering and masking only in Phase 2 when refining the classification head. In Table 2, we evaluate the
version where Phase 1 is performed locally by each client, without a central coordinator. Further details and
comparisons of additional QKT Light variants are provided in Appendix A.4.

Learning objectives. In our experiments, each client issues a query to learn or improve a single class
or multiple classes. We evaluate both scenarios for each client. The specific classes and, in the case of
multi-class queries, the number of classes, are both selected randomly from the client’s data distribution.
Classes are chosen from the set of underrepresented classes in the client’s data based on a predefined sample
threshold (50 samples by default). The selection process follows a uniform distribution, ensuring that each
eligible class has an equal probability of being selected.
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Figure 4: Forgetting vs. Query Accuracy Gain across datasets. Each column shows one dataset, while rows correspond
to different data distributions (Pathological/Dirichlet) and query types (Single-Class/Multi-Class). Points closer to the
upper-right corner represent lower forgetting and higher query accuracy gain.

Evaluation metrics. For any dataset D , we define a subset Dj = {(x, y) ∈ D, y = j}
containing all the samples from class j; then the per-class accuracy of a model fθ is acc(j) =∑

(x,y)∈Dj
Iargmaxkfθ(x)[k]=y/|Dj |. For each client, we compute weighted average per-class accuracy as

Average Accuracy, that is, acc = 1∑
j∈YS∪YQwj

∑
j∈YS∪YQ

wjacc(j), where wj is the weight of class j,
YS is set of local classes and YQ is the set of query classes (Chen & Chao, 2021; Dai et al., 2023; Yu et al.,
2022). The reported average accuracy (Acc) is the averaged acc(·) across all clients’ models. We also report
the improvement in query class accuracy after knowledge transfer as Query Acc. Gain, and the decrease
in accuracy on local classes post-learning as Forgetting. More details are in Appendix A.2. Finally, Comm
represents the number of communication rounds required. For centralized FL methods, we follow a standard
cross-silo FL setting where each round involves all clients sending their models to the server, followed by
receiving the updated global model for the next round. In the other peer-to-peer approaches, a round entails
each client receiving model weights from all other clients.

4.2 MAIN RESULTS

Table 2 provide a comprehensive comparison of the performance of QKT with FL baselines, as well as
computationally efficient matching and ensemble-based methods across a variety of datasets.

QKT across tasks and datasets. For single-class queries, QKT consistently outperforms existing methods,
achieving average improvements of 17.28% points on Pathological and 11.25% points on Dirichlet distri-
bution. When querying for multiple classes, QKT demonstrates superior performance, with up to 21.18%
points improvement on Pathological and up to 8.02% points on Dirichlet distribution. The larger margin
of improvement on the Pathological distribution suggests that while QKT performs exceptionally well in
handling pathological data, where the distribution shift is more pronounced, it remains highly competitive
even in more balanced scenarios like the Dirichlet distribution. Figure 4 further visualizes the learning of
query classes versus the forgetting of local classes for QKT and the baselines. The results show that QKT
achieves a better balance between learning and forgetting compared to the existing methods.

QKT vs. FL. Existing FL methods, such as FedAvg, FedProx, and Moon, are designed to optimize a
single global model that can generalize across all clients. They perform reasonably well in both single-class
and multi-class query scenarios but fall short of QKT by an average of 15.32% points in single-class and
5.78% points in multi-class queries, highlighting QKT’s advantage in focusing on queried classes. The only
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Table 3: Ablation study of QKT com-
ponents.

Method Acc Query Acc.
Gain Forgetting

KD 51.97 23.56 -8.43
KD + TQ 63.13 81.55 -38.21
KD + TQ + Mt 69.37 66.11 -15.02
QKT 74.56 77.97 -16.81

Table 4: Impact of λ.

Lambda Acc Query Acc.
Gain Forgetting

λ = 1 69.77 58.52 -9.71
λ = 1.5 74.56 77.97 -16.81
λ = 2 74.31 87.11 -24.62
λ = 4 68.47 96.59 -42.73

Table 5: Average accuracy in different
levels of data heterogeneity.

Method Path(M=4) Path(M=2) Dir(α=0.01)

FedAvg 53.96 12.29 29.57
Ensemble 49.12 16.04 27.29
KD 51.62 39.92 37.06
QKT 77.65 54.72 55.95

exception is BloodMNIST in the multi-class query scenario, where FL methods outperform QKT. This is
likely due to the well-defined visual characteristics of the blood cell types, which allow the global model to
generalize effectively even with limited training examples per class. However, when querying single classes
in BloodMNIST, FL methods struggle with irrelevant classes, emphasizing the value of QKT’s targeted
learning. Additionally, FL methods require multiple communication rounds to converge, whereas QKT
completes learning in a single round, making it more efficient in communication-limited environments. We
also include FT-FedAvg, a strong personalized FL baseline (Jiang & Lin, 2023). While personalized methods
are inherently limited in addressing client needs for under-represented classes, our results confirm these
limitations, which similarly apply to other personalized or clustered FL approaches. For a fair comparison,
we also include FedAvg(1), which performs only a single communication round. As expected, FedAvg(1)
performs significantly worse due to insufficient communication, underscoring the limitations of FL in such
settings.

QKT vs. ensemble and matching-based methods. In comparison, ensemble and matching-based meth-
ods, such as Ensemble, PFNM, and CLUE, are designed for efficient knowledge transfer in a single round.
However, these methods perform significantly worse than QKT. The primary limitation of these methods
is their dependence on model architecture and the homogeneity of data distributions. Additionally, they do
not account for irrelevant knowledge, which is a key focus in QKT’s design. Among single-round methods,
KD performs reasonably well but suffers from forgetting issues, particularly in multi-class queries, as we
discussed in Section 3.2. This demonstrates the importance of managing the learning-forgetting trade-off,
which QKT addresses more effectively.

QKT Light generally outperforms existing methods, effectively addressing the diverse needs of query clients.
Although there is a performance gap between QKT Light and the full QKT in some scenarios, QKT Light
is well-suited for rapid adaptation in environments with limited computational resources.

4.3 ABLATION AND ANALYSES

We conducted ablation studies on the CIFAR10 dataset using a pathological distribution and a single-class
query to evaluate various aspects of the QKT method.

Ablation study of QKT components. Table 3 shows the ablation of the QKT method. We compare the
naive KD, the KD with only teacher set in Equation 2 (KD + TQ), the KD + Mask in Equation 3 (KD +
TQ + Mt), and our QKT method with masked distillation and two-phase training. The results show that the
full QKT method, which encompasses both feature extractor enhancement (Phase 1) and classification head
refinement (Phase 2), outperforms these configurations in both accuracy and query accuracy gain, while
effectively managing the trade-off with forgetting.

Impact of λ. Table 4 explores the effect of varying the λ parameter, which determines the weight of the loss
contribution for query classes within the mask Ms. This parameter balances the trade-off between learning
new query-specific knowledge and retaining previously learned information. Our results demonstrate that a
value of λ between 1.5 and 2 provides a good balance between learning and forgetting across most datasets.
For more complex datasets like CIFAR100, slightly increasing λ (between 2.5 and 3.5) allows QKT to better
prioritize query learning while still mitigating forgetting. Notably, even without tuning, the default λ = 1
remains effective, demonstrating QKT’s robustness to this parameter under typical settings.

We propose an additional approach detailed in Appendix A.5, to control the balance between learning and
forgetting. This approach, Selective Weight Masking for Mitigating Forgetting, uses weight importance
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detection to selectively freeze critical weights in the classification head during Phase 2 of QKT. We included
this in the appendix due to space limitations as mitigating forgetting is not the primary focus of this paper.
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Figure 5: Comparison of actual data distribution (left) and predicted proba-
bilities (right) for each client using noise-based filtering. The left heatmap is
normalized to facilitate comparison, and the prediction error is shown in MSE.

Effect of data heterogeneity. Ta-
ble 5 presents the performance
across varying levels of hetero-
geneity, highlighting QKT’s con-
sistent superiority over other meth-
ods. Main baselines are shown
here, with additional baselines and
detailed results provided in Ap-
pendix A.3.

Effectiveness of noise-based fil-
tering. In Fig. 5, the left heatmap
shows the normalized actual data
distribution, making it easier to
compare with the average predicted
probabilities (right) generated by inputting a batch of noise (20 samples per model). Each noise sample was
shaped according to the model’s input dimensions to ensure compatibility with the teacher models’ archi-
tecture. We also report the Mean Squared Error (MSE) to measure prediction error. The low MSE values
across all clients confirm the effectiveness of our noise-based method in identifying the classes each client
model was trained on.

By setting an appropriate relevance threshold for these predicted probabilities, we can estimate which teacher
models are most pertinent to a given class. Across various datasets, we found that a threshold of 0.01
effectively detected the meaningful presence of a class in a teacher’s training data. This threshold can be
adjusted to control the sensitivity: a higher threshold reduces false positives but may exclude some relevant
teachers, while a lower threshold increases inclusiveness but may introduce noise. When the predicted
probability for a class exceeds the pre-defined threshold, it indicates that the teacher has substantial training
data for that class, making it a valuable source of knowledge for the student’s learning process. This selective
filtering ensures that the student model focuses on learning only from the most relevant parts of the teacher
models’ knowledge, enhancing learning efficiency and minimizing interference from irrelevant information.

Additional ablation studies, including QKT’s scalability with more clients and the impact of different model
architectures, are presented in Appendix A.6.

5 CONCLUSION

We focused on the problem of customized queries in decentralized collaborative learning with heterogeneous
data, privacy concerns, and communication efficiency. To this end, we introduced a Query-based Knowledge
Transfer (QKT) framework to enable query-specific knowledge distillation from teacher models, where a
data-free masking strategy is employed to filter out irrelevant knowledge to prevent knowledge inference and
staged training is applied to mitigate the forgetting in task-specific parameters. Our extensive experiments
on both standard and clinical benchmarks demonstrated that QKT consistently outperforms state-of-the-art
methods. By effectively addressing issues like knowledge interference and catastrophic forgetting, QKT
offers a robust solution for decentralized learning while minimizing communication overhead. Future work
may explore the application of QKT in real-time and highly dynamic scenarios, pushing the boundaries of
what decentralized models can achieve in practical, privacy-preserving settings.
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A APPENDIX

A.1 EXTENDED DISCUSSION ON RELATED WORK

Model Compression, Quantization, and Sparsification in FL. To address communication costs in feder-
ated learning, techniques like model compression, quantization, and sparsification aim to reduce communi-
cation costs in FL by minimizing update sizes (Konečný et al., 2017; Sattler et al., 2019), but they can pose
challenges in maintaining model accuracy and ensuring efficient convergence across heterogeneous clients.

Replay-Based Continual Learning and Transfer Learning. Data-free continual learning and transfer
learning methods (Li & Hoiem, 2017; Kirkpatrick et al., 2017; Zenke et al., 2017) focus on preserving
previously learned knowledge while adapting to new tasks. However, these methods assume access to a
well-defined source and target, making them less suitable for decentralized learning environments with data
privacy concerns and high heterogeneity.

Peer-to-Peer Collaborative Learning Enhancements. Cartel (Daga et al., 2019) enhances peer-to-peer
collaborative learning by enabling dynamic task-specific interactions among nodes with similar workloads.
This personalization improves model adaptability and efficiency under changing data and resource condi-
tions. However, its focus on shallow models and metadata sharing limits its applicability for deeper, het-
erogeneous models typical in FL scenarios. CLUE (Daga et al., 2023), an extension of Cartel, introduces
multi-modal boosting to dynamically integrate significant parameters from helper models into learner mod-
els. While effective in controlled environments, CLUE suffers from performance degradation when applied
to models trained on divergent data distributions, exacerbating issues of forgetting and irrelevant parameter
integration.

A.2 EXPERIMENTAL DETAILS

Baselines Implementation Details.
• For all experiments, we use the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1× 10−3, a

weight decay of 4× 10−4, and a batch size of 32, consistent with prior studies (Meng et al., 2023; Alballa
& Canini, 2023).

• During local training, each client’s model is pre-trained on its local dataset for up to 100 epochs, with
early stopping applied if validation performance does not improve for 10 consecutive epochs.

• In FL approaches, the number of local training epochs per communication round (E) is set to 2.

• For generalized FL approaches (FedAvg, FedProx, Moon, FedAvg(1)), we adhere to the standard practice
in personalized FL, where each client independently evaluates the global model, and the average accuracy
across clients is reported.

• The hyperparameters used for each baseline generally follow the values recommended in their respective
original papers: for FedProx, µ is set to 0.01; for Moon, µ is set to 5 and the temperature (T ) is set to 0.5.
In FT-FedAvg, 2×E local epochs are performed after executing FedAvg for 100 rounds, and the resulting
average test accuracies are reported.

• For all KD-based approaches (naive KD and QKT), we use a default α parameter and temperature of 1,
and use the student’s data as the transfer set. Training is conducted over E epochs using the transfer set,
where E is set to 25 for CIFAR10 and CINIC10, and 10 for all other datasets. To maintain simplicity,
the same E is used across all clients and both phases of full QKT. However, we explore varying E in
Appendix A.6.4 to highlight potential areas for further improvement. For QKT Light, E is set to 5 for
Phase 2.

Evaluation Metrics.
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• Average Accuracy: For each client, we have the weighted average of per-class accuracy of query classes
and local classes i.e.,

acc =

∑
j∈YS∪YQ

wjacc(j)∑
j∈YS∪YQ

wj
,

where YS is set of local classes, YQ is the set of query classes, acc(j) for the query and local class j is
the per-class accuracy, and wj is the weight of class j. If the test set is balanced, for local classes wj is
determined based on the class ratio in the client’s training dataset, and is set to 1 for query classes (Chen
& Chao, 2021; Dai et al., 2023; Yu et al., 2022). In other words, Average Accuracy for each client is the
weighted sum of per-class accuracy, normalized by the summation of the weights. The overall average
accuracy (Acc) is then computed by averaging acc across all clients’ models.

• Query Acc. Gain: It measures the improvement in query class accuracy after knowledge transfer. For a
query set Q, Query Acc. Gain is computed as

1

|Q|
∑
i∈Q

(accpost(i)− accpre(i)),

where “post” and “pre” denote post- and pre-learning per-class accuracy, respectively.

• Forgetting: It measures the decrease in accuracy on local classes post-learning relative to pre-learning.
For the student’s label set YS , the forgetting is measured by∑

j∈YS
min(0, accpost(j)− accpre(j))

|YS |

• Uniform Accuracy: This additional evaluation metric follows the approach suggested by (Dai et al., 2023),
setting the weight wj to 1 for all classes while using a uniform test set. This adjustment ensures that each
class is treated with equal importance, distinct from the original accuracy metric (Acc), which prioritizes
local classes based on their prevalence in the local data distribution. While the uniform accuracy metric
offers a measure of a model’s generalization ability across all classes, its utility may be limited in highly
imbalanced data distributions. This limitation is due to our specific objective, which deviates from gener-
alized methods that aim for universal class representation. Our primary objective with QKT is to enhance
knowledge about query classes while minimizing the forgetting of existing knowledge, which naturally
reflects the data distribution of local classes. For example, in the Dir distribution, certain classes may con-
tain only a single data point, making it unrealistic to expect models to gain significant knowledge about
these classes if they are not represented enough in the local data and are not part of the query.
It is worth highlighting that QKT still delivers strong uniform accuracy performance under the Path dis-
tribution, showcasing its robustness. However, its performance in the Dir distribution is understandably
lower, aligning with our expectations and our specific objective.
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A.3 QKT PERFORMANCE ACROSS DIFFERENT LEVELS OF DATA HETEROGENEITY

This section provides the results of our experiments across different levels of data heterogeneity, using both
Pathological and Dirichlet distribution schemes.

Method Acc Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 53.96 54.49 -27.24 58.62
FedProx 58.62 60.52 -24.22 62.04
Moon 46.51 44.00 -30.78 52.06
CLUE 12.30 10.00 -72.15 11.15
Ensemble 49.12 48.36 -31.99 52.47
KD 51.62 31.50 -12.12 63.80
QKT 77.65 87.59 -17.25 69.86

Multi-Class Queries
FedAvg 51.97 54.29 -27.24 55.25
FedProx 56.09 58.37 -24.22 58.86
Moon 47.83 50.70 -30.78 50.19
Ensemble 57.48 61.96 -31.99 55.58
KD 44.98 34.49 -12.12 56.13
QKT 64.84 72.70 -31.99 58.17

Table 6: Detailed results for the Pathological distribution with M = 4.

Method Acc Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 12.29 4.91 -68.40 16.21
FedProx 16.62 12.72 -67.00 19.87
Moon 39.41 26.72 -52.36 33.54
CLUE 9.13 17.33 -85.38 9.11
Ensemble 16.04 14.58 -73.71 15.18
KD 39.92 13.50 -22.55 50.16
QKT 54.72 44.00 -26.20 58.36

Multi-Class Queries
FedAvg 12.63 9.64 -68.40 14.57
FedProx 14.19 11.12 -67.00 16.40
Moon 29.78 27.03 -52.36 31.75
Ensemble 25.12 26.68 -73.71 23.36
KD 22.89 12.38 -22.55 30.49
QKT 33.72 33.70 -53.63 34.11

Table 7: Detailed results for the Pathological distribution with M = 2.

16



Published as a conference paper at ICLR 2025

Method Acc Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 29.57 43.82 -76.55 28.32
FedProx 44.80 58.38 -59.06 39.99
Moon 42.46 59.56 -65.79 38.52
CLUE 6.62 2.59 -86.29 10.47
Ensemble 27.29 39.71 -77.07 27.23
KD 37.06 9.77 -29.65 31.38
QKT 55.95 27.80 -11.44 44.19

Multi-Class Queries
FedAvg 17.39 18.44 -76.55 17.67
FedProx 32.53 35.73 -59.06 32.77
Moon 29.49 32.15 -65.79 29.51
Ensemble 20.81 24.09 -77.07 21.03
KD 22.79 6.13 -29.65 22.14
QKT 34.75 23.89 -41.55 29.92

Table 8: Detailed results for the Dirichlet distribution with α = 0.01.
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A.4 QKT LIGHT VARIANTS

In this section, we explore the variants of QKT Light, a simplified version of our QKT framework, which
replaces Query-Focused Learning with naive KD in Phase 1, and applies teacher filtering and class masking
only during Phase 2 to refine the classification head for query-specific knowledge transfer.

Phase 1 of QKT Light can be implemented in several ways: (1) each client independently performs naive KD
using local data, (2) a central server consolidates all models to perform naive KD once for all clients using
an unlabeled dataset, or (3) a volunteer client with sufficient resources performs KD on behalf of others.

In Table 2 of the main text, we evaluate the version where Phase 1 is performed locally by each client,
without a central coordinator. Although this variant does not reduce computational costs in the decentralized
setup, it demonstrates the feasibility of building a general feature extractor before refining the classification
head in Phase 2.

Detailed results of all three QKT Light variants, along with the QKT approach, are presented in the tables
below. Notably, all QKT Light variants outperform traditional baselines across datasets, though they exhibit
slightly increased forgetting in some setups compared to full QKT due to the simplified Phase 1 design.

Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
QKT 74.56 77.97 -16.81 74.28
QKT light Student data 75.78 85.50 -20.83 72.14
QKT light Centralized server 75.75 88.15 -23.51 70.63
QKT light Volunteer client 74.46 86.01 -24.00 69.61

Multi-class queries
QKT 65.60 71.40 -32.63 60.13
QKT light Student data 65.29 70.85 -32.24 59.99
QKT light Centralized server 66.83 73.84 -36.37 59.98
QKT light Volunteer client 66.83 73.84 -36.37 59.98

D
ir

Single class queries
QKT 71.35 71.63 -13.52 52.29
QKT light Student data 61.44 54.61 -13.32 47.80
QKT light Centralized server 75.35 84.86 -15.86 51.41
QKT light Volunteer client 77.91 88.91 -15.80 54.06

Multi-class queries
QKT 61.08 57.16 -21.55 48.69
QKT light Student data 58.44 58.87 -28.98 46.27
QKT light Centralized server 60.68 60.49 -28.24 47.59
QKT light Volunteer client 63.31 64.14 -26.13 49.40

Table 9: Performance of QKT Light variants and QKT on CIFAR10 for single-class and multi-class queries under both
Pathological and Dirichlet distributions.
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Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
QKT 68.48 72.80 -3.10 64.07
QKT light Student data 68.17 71.60 -3.02 64.41
QKT light Centralized server 62.63 64.50 -5.65 60.48
QKT light Volunteer client 63.29 66.10 -6.04 60.11

Multi-class queries
QKT 54.98 54.56 -10.19 55.06
QKT light Student data 54.60 54.16 -10.37 54.87
QKT light Centralized server 49.60 47.89 -9.42 54.23
QKT light Volunteer client 48.93 47.16 -9.36 53.91

D
ir

Single class queries
QKT 51.42 44.00 -3.36 33.39
QKT light Student data 49.37 41.30 -3.83 30.99
QKT light Centralized server 53.62 53.20 -5.56 32.43
QKT light Volunteer client 54.91 55.10 -5.28 32.65

Multi-class queries
QKT 48.46 44.50 -6.01 36.62
QKT light Student data 48.27 44.33 -5.78 37.34
QKT light Centralized server 47.18 43.78 7.45 36.29
QKT light Volunteer client 48.64 45.34 -6.82 37.25

Table 10: Performance of QKT Light variants and QKT on CIFAR100 for single-class and multi-class queries under
both Pathological and Dirichlet distributions.

Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
QKT 71.02 82.68 -22.02 65.42
QKT light Student data 71.27 82.70 -21.67 65.71
QKT light Centralized server 68.02 83.00 -26.33 61.95
QKT light Volunteer client 70.17 85.37 -24.76 64.28

Multi-class queries
QKT 62.13 72.80 -44.10 49.80
QKT light Student data 61.71 71.93 -43.62 49.72
QKT light Centralized server 60.67 70.82 -44.20 48.58
QKT light Volunteer client 62.17 72.46 -43.47 50.22

D
ir

Single class queries
QKT 73.48 72.68 -13.49 46.73
QKT light Student data 70.14 82.50 -24.77 42.62
QKT light Centralized server 69.62 81.44 -24.31 42.23
QKT light Volunteer client 67.48 82.47 -29.85 38.51

Multi-class queries
QKT 54.57 55.38 -24.93 43.58
QKT light Student data 51.01 59.07 -38.21 38.72
QKT light Centralized server 46.50 53.78 -41.76 34.78
QKT light Volunteer client 51.09 58.41 -38.52 39.22

Table 11: Performance of QKT Light variants and QKT on CINIC10 for single-class and multi-class queries under both
Pathological and Dirichlet distributions.
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Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
QKT 77.65 88.42 -24.71 71.91
QKT light Student data 78.14 88.03 -24.35 72.55
QKT light Centralized server 79.29 92.30 -25.68 72.41
QKT light Volunteer client 79.39 90.19 -24.03 72.97

Multi-class queries
QKT 69.52 76.72 -39.85 62.67
QKT light Student data 67.16 70.73 -36.81 63.11
QKT light Centralized server 69.83 77.89 -40.25 62.62
QKT light Volunteer client 68.38 77.69 -42.16 60.30

D
ir

Single class queries
QKT 75.23 77.37 -29.31 52.18
QKT light Student data 74.70 76.45 -28.11 52.14
QKT light Centralized server 75.33 76.12 -28.76 52.32
QKT light Volunteer client 76.60 76.24 -26.35 53.45

Multi-class queries
QKT 63.12 55.12 -33.31 54.16
QKT light Student data 64.26 56.16 -31.87 55.53
QKT light Centralized server 66.67 59.45 -33.05 56.96
QKT light Volunteer client 62.21 54.29 -33.91 53.92

Table 12: Performance of QKT Light variants and QKT on BloodMNIST for single-class and multi-class queries under
both Pathological and Dirichlet distributions.

Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
QKT 83.41 80.88 -10.36 80.85
QKT light Student data 77.25 90.37 -22.89 71.10
QKT light Centralized server 76.91 97.36 -30.63 66.64
QKT light Volunteer client 79.25 95.16 -27.57 69.63

Multi-class queries
QKT 67.03 71.28 -38.76 62.88
QKT light Student data 50.62 55.97 -45.38 47.38
QKT light Centralized server 47.58 55.11 -51.33 43.83
QKT light Volunteer client 50.20 54.44 -45.33 46.99

D
ir

Single class queries
QKT 77.95 72.56 -14.95 54.54
QKT light Student data 78.13 73.71 -15.36 55.29
QKT light Centralized server 78.26 74.16 -15.77 55.21
QKT light Volunteer client 77.10 69.60 -13.86 55.87

Multi-class queries
QKT 69.32 65.52 -14.75 54.82
QKT light Student data 67.11 67.01 -28.33 50.40
QKT light Centralized server 65.27 64.86 -24.61 49.28
QKT light Volunteer client 66.56 66.12 -24.62 51.38

Table 13: Performance of QKT Light variants and QKT on PathMNIST for single-class and multi-class queries under
both Pathological and Dirichlet distributions.
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A.5 SELECTIVE WEIGHT MASKING FOR MITIGATING FORGETTING.

To help mitigate forgetting during the QKT we explore a novel approach that can be applied during Phase 2
in QKT. The approach utilizes Weight Importance Detection to identify the important weights in the classifi-
cation head hµs

based on their contribution to the student’s original tasks. This is achieved by calculating L2
norm-based importance scores for each weight, derived from gradients during backpropagation and averaged
over the student’s training batches. Once the important weights are identified, we apply Weight Masking.
Masks are created based on the top Z% of the importance scores. During this process, the important weights
are frozen to mitigate forgetting, while the gradients of less important weights are preserved. This selective
adjustment allows the model to focus on learning the query task without compromising the integrity of the
original task. Finally, Fine-tuning is performed with the feature extractor gνs frozen and only the classifica-
tion head hµs being refined, ensuring the model effectively incorporates new knowledge from the query task
while maintaining the stability of the learned feature representations from Stage 1.

It is important to note that this strategy is not aimed at enhancing overall performance but rather at man-
aging the balance between learning and forgetting, thereby achieving similar performance while mitigating
forgetting.

Figure 6 illustrates the trade-off between learning and forgetting for different values of Z%, showing how
different levels of weight masking affect both query accuracy gain and forgetting. The results, summarized
in Table 14, demonstrate that increasing the masking percentage (Z%) effectively reduces forgetting but
can lead to a decrease in query accuracy gain. This highlights the inherent balance that must be managed
between learning new tasks and retaining previously learned information.

Z% Acc. Query Acc. gain Forgetting
0 74.26 81.74 -20.01
0.5 73.93 77.90 -17.43
1 73.03 71.79 -14.23
2.5 66.67 52.63 -9.49
5 54.73 26.67 -04.67
10 46.63 03.17 -01.60

Table 14: Effect of different masking percentages (Z%) on the trade-off between query accuracy gain, and forgetting
during QKT.
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Figure 6: Trade-off between query accuracy gain vs. forgetting for different values of Z%. Each point represents a
specific masking percentage, illustrating how different levels of weight masking affect both query accuracy gain and
forgetting.
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A.6 ADDITIONAL ABLATION STUDIES

A.6.1 DYNAMIC PERFORMANCE DURING QKT PHASES

This subsection analyzes the dynamic performance of the two phases in QKT. While Table 2 demonstrates
the overall performance of the two stages, we further compare the validation accuracy after each epoch
during Phase 1 and Phase 2 for a random subset of clients trained on CIFAR10. The plot in Figure 7 also
includes the initial local accuracy before Phase 1 for reference.

• Performance Improvement Across Phases: Both Phase 1 and Phase 2 of QKT show substantial
improvements over the local accuracy baseline (orange). These results highlight the effectiveness
of QKT in leveraging knowledge transfer to enhance model performance.

• Phase 2 Stability: Phase 2 exhibits remarkable stability compared to Phase 1, as freezing the fea-
ture extractor preserves its learned representations. By focusing exclusively on classification head
refinement, Phase 2 avoids the fluctuations observed in Phase 1 caused by simultaneous updates to
both the feature extractor and classification head.

This analysis highlights how the two-phase design balances adaptability and stability, addressing the chal-
lenges of heterogeneous collaborative learning environments.

(Local: 0.4581) (Local:  0.4236)

(Local: 0.4685) (Local: 0.4037)

Phase2 Phase1

Figure 7: Dynamic validation accuracy across epochs during Phase 1 and Phase 2 for a subset of clients trained on
CIFAR10. Initial local accuracy (orange) is also shown for reference.
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A.6.2 PERFORMANCE EVALUATION WITH INCREASING NUMBER OF CLIENTS

To evaluate QKT’s performance with a larger number of clients, we expanded our experiments to include
50 clients using CIFAR10 under a pathological distribution, building on the experimental setup described in
Section 4.1. The same evaluation metrics outlined in Appendix A.2 were used to ensure consistency with
our main experiments.

We selected the main baselines that achieved competitive results in earlier experiments. To handle the
increased number of clients, we adopted typical participation rates (P%) of 10% (Table 15) and 20% (Ta-
ble 16), as commonly used in cross-device federated learning. For FL methods, this represents the number of
clients selected for each round, while for single-round methods like QKT, it represents the number of clients
participating in the single knowledge transfer round. Additionally, the “Ensemble (all models)” baseline was
included to assess performance when utilizing all client models simultaneously.

At a larger scale, with 50 clients, QKT consistently outperformed other baselines, achieving higher accu-
racy, greater query accuracy gain, and lower forgetting rates. Moreover, QKT’s single-round knowledge
transfer significantly reduces communication, storage, and computational demands compared to traditional
FL methods.

Participation Rate (P%) 10%

Method Acc. Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 0.355533 0.346319 -0.421399 0.3601400
Ensemble (all models) 0.377580 0.391380 -0.420330 0.3706799
Ensemble 0.224559 0.238380 -0.580839 0.217650
KD 0.321850 0.158440 -0.291293 0.40355
QKT 0.590206 0.512379 -0.122973 0.629119

Multi-Class Queries
FedAvg 0.372590 0.377289 -0.421399 0.3693679
Ensemble (all models) 0.361797 0.348241 -0.420330 0.366202
Ensemble 0.2205406 0.224228 -0.558339 0.217794
KD 0.270026 0.180399 -0.291293 0.340036
QKT 0.442319 0.480412 -0.318020 0.430587

Table 15: Performance comparison with 50 clients and participation rate (P%) = 10%. Results are reported as average
values for accuracy metrics.
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Participation Rate (P%) 20%

Method Acc. Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 0.325116 0.304820 -0.439373 0.335264
Ensemble (all models) 0.377580 0.391380 -0.420330 0.3706799
Ensemble 0.28953 0.31402 -0.524606 0.277285
KD 0.33096 0.235680 -0.346913 0.378609
QKT 0.645558 0.652679 -0.144859 0.642039

Multi-Class Queries
FedAvg 0.379309 0.399826 -0.439373 0.365998
Ensemble (all models) 0.361797 0.348241 -0.420330 0.366202
Ensemble 0.255061 0.252811 -0.548939 0.254010
KD 0.28853 0.252986 -0.395126 0.316938
QKT 0.442734 0.488701 -0.410544 0.409805

Table 16: Performance comparison with 50 clients and participation rate (P%) = 20%. Results are reported as average
values for accuracy metrics.
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A.6.3 ABLATION STUDY ON MODEL ARCHITECTURES

In addition to our primary experiments using ResNet-18, we further investigate the impact of model architec-
ture by evaluating two alternative models: a smaller model consisting of two convolutional layers followed
by a fully connected layer, and a larger model using the ResNet-50 architecture. This ablation study enables
us to analyze how model capacity influences the performance and stability of different methods. The re-
sults, shown in Tables 17 and 18, include the main baselines that achieved competitive results in the primary
experiments.

The results illustrate the impact of model architecture on the performance and stability of different methods
under Single-Class and Multi-Class query scenarios. With the smaller model, QKT achieves the highest
accuracy and query accuracy gain across both query types, while maintaining a relatively low forgetting
rate. This highlights QKT’s effectiveness even with limited model capacity, outperforming the other base-
lines in both performance and stability. Moreover, with the larger model, QKT maintains its performance,
showcasing the highest accuracy and query accuracy gains with the least variability.

In contrast, other methods, such as FedAvg and Ensemble, show varying levels of performance and stability
depending on the model architecture, with Ensemble achieving moderate gains in accuracy but exhibiting
instability in forgetting, especially with the larger model. These findings suggest that while model architec-
ture plays a role, QKT’s design offers inherent stability that is less dependent on model capacity than other
methods, making it a versatile option for collaborative learning across a range of architectures.

Method Acc. Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 0.5140 0.4715 -0.2710 0.5727
Ensemble 0.4241 0.4293 -0.4386 0.4420
KD 0.5482 0.3188 -0.1207 0.6546
QKT 0.6905 0.7110 -0.1869 0.7077

Multi-Class Queries
FedAvg 0.5530 0.5554 -0.2710 0.5796
Ensemble 0.3702 0.3612 -0.4386 0.3996
KD 0.4456 0.2855 -0.1207 0.5538
QKT 0.5888 0.5702 -0.2590 0.5868

Table 17: Performance comparison using a smaller model architecture. Results are reported as average values for
accuracy metrics.
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Method Acc. Query Acc. Gain Forgetting Uniform Acc.

Single-Class Queries
FedAvg 0.3256 0.3325 -0.4478 0.3636
Ensemble 0.3868 0.3718 0.3836 -0.4193
KD 0.4372 0.1943 -0.1327 0.5662
QKT 0.6945 0.8010 -0.2195 0.6554

Multi-Class Queries
FedAvg 0.3055 0.2716 -0.4478 0.3429
Ensemble 0.3306 0.3255 -0.4193 0.3531
KD 0.3890 0.2534 -0.1310 0.4944
QKT 0.5573 0.5947 -0.2893 0.5237

Table 18: Performance comparison for the larger model architecture (ResNet-50). Results are reported as average values
for accuracy metrics.
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A.6.4 THE EFFECT OF VARIABLE TRAINING EPOCHS FOR EACH CLIENT

We explore using a variable E for each client, tuned with a validation set consisting of 1% of the training
data for CINIC10 and 10% for other datasets. Note that such validation sets are not assumed available in our
main experiments; we present this exploration to highlight potential areas for further improvement.

CIFAR10 CIFAR100 CINIC10 BloodMNIST PathMNIST

Uniform E Var E Uniform E Var E Uniform E Var E Uniform E Var E Uniform E Var E

Pa
th Single-class Q 0.7456 0.7629 (↑ 2.3%) 0.6848 0.6905 (↑ 0.8%) 0.7102 0.7269 (↑ 2.3%) 0.7765 0.7979 (↑ 2.8%) 0.8341 0.8457 (↑ 1.4%)

Multi-class Q 0.6560 0.6746 (↑ 1.8%) 0.5498 0.5631 (↑ 1.3%) 0.6071 0.6283 (↑ 2.1%) 0.6952 0.7148 (↑ 1.9%) 0.6703 0.6814 (↑ 1.1%)

D
ir Single-class Q 0.7135 0.7360 (↑ 2.3%) 0.5142 0.5373 (↑ 2.3%) 0.7348 0.7503 (↑ 1.6%) 0.7523 0.8003 (↑ 4.8%) 0.7795 0.7866 (↑ 0.9%)

Multi-class Q 0.6108 0.6272 (↑ 1.7%) 0.4846 0.5037 (↑ 1.9%) 0.5457 0.5610 (↑ 1.5%) 0.6312 0.6686 (↑ 3.7%) 0.6932 0.6987 (↑ 0.6%)

Table 19: Improvement of Var E over Uniform E across various datasets, highlighting the gains observed in both single-
class and multi-class queries for different distributions (Path and Dir).
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A.7 DETAILED RESULTS

Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
(Local: Acc = 44.87, Query class acc = 0.0)
FedAvg 52.33 48.26 -31.40 50.29
FedProx 49.69 45.63 -30.28 54.70
Moon 43.17 44.25 -39.92 46.44
FT-FedAvg 46.20 0.00 0.00 67.95
fedAvg(1) 10.95 10.00 -73.61 15.00
CLUE 7.66 10.00 -79.16 9.99
PFNM 14.62 17.55 -79.61 12.42
Ensemble 46.59 47.71 -38.83 48.31
KD 51.97 23.56 -8.43 65.91
QKT 74.56 77.97 -16.81 74.28
QKT light 75.78 80.00 -17.10 72.14

Multi-class queries
(Local: Acc = 27.58, Query class acc = 0.0)
FedAvg 51.27 49.96 -31.40 54.02
FedProx 51.90 50.65 -30.28 54.76
Moon 41.58 41.44 -39.92 44.35
FT-FedAvg 28.36 0.00 0.00 48.54
fedAvg(1) 10.95 10.00 -73.61 15.00
PFNM 6.79 8.30 -83.27 5.83
Ensemble 41.43 40.90 -38.83 44.22
KD 43.04 24.99 -8.50 55.59
QKT 65.60 71.40 -32.63 60.13
QKT light 65.29 70.85 -32.24 59.99

D
ir

Single class queries
(Local: Acc = 44.40, Query class acc = 0.21)
FedAvg 60.55 63.80 -21.71 65.04
FedProx 61.15 63.72 -21.05 64.99
Moon 50.28 54.03 -27.48 55.09
FT-FedAvg 49.16 5.66 0.00 55.95
FedAvg(1) 8.73 9.79 -63.71 7.88
CLUE 15.90 29.79 -64.87 11.77
PFNM 3.29 0.48 -64.32 7.29
Ensemble 49.45 45.03 -32.52 40.89
KD 51.00 21.19 -6.60 54.47
QKT 71.35 71.63 -13.52 52.29
QKT light 61.44 54.61 -13.32 47.80

Multi-class queries
(Local: Acc = 25.98, Query class acc = 3.04)
FedAvg 59.92 54.78 -21.71 62.10
FedProx 59.51 53.62 -21.05 62.04
Moon 49.46 44.29 -27.48 52.13
FT-FedAvg 33.23 8.91 0.00 44.89
FedAvg(1) 6.63 1.13 -63.71 6.79
PFNM 6.89 6.00 -64.61 8.73
Ensemble 48.89 47.47 -32.52 43.13
KD 40.24 21.49 -6.60 47.23
QKT 61.08 57.16 -21.55 48.69
QKT light 58.44 58.87 -28.98 46.27

Table 20: CIFAR10 (Path and Dir distributions)
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Acc Query Acc. gain Forgetting Uniform Acc.

Pa
th

Single class queries
(Local: Acc = 31.91, Query class acc = 0.0)
FedAvg 53.12 59.50 -15.34 49.76
FedProx 53.63 59.70 -14.79 50.26
Moon 31.50 37.00 -35.93 27.79
FT-FedAvg 34.95 0.00 -2.65 66.08
FedAvg(1) 0.50 0.00 -62.66 1.00
CLUE 6.40 5.00 -56.68 7.71
PFNM 0.54 0.00 -61.34 0.58
Ensemble 34.83 34.30 -29.50 36.16
KD 39.86 30.20 -14.10 48.42
QKT 68.48 72.80 -3.10 64.07
QKT light 68.17 71.60 -3.02 64.41

Multi-class queries
(Local: Acc = 10.75, Query class acc = 0.0)
FedAvg 46.29 45.80 -15.34 48.72
FedProx 46.21 45.43 -14.79 49.11
Moon 22.44 21.01 -35.93 26.42
FT-FedAvg 12.50 0.59 -2.65 52.94
FedAvg(1) 1.11 1.11 -62.66 1.11
PFNM 1.70 1.68 -61.07 1.50
Ensemble 39.67 40.70 -29.50 37.03
KD 15.99 16.00 -14.10 41.60
QKT 54.56 54.56 -10.18 55.06
QKT light 54.59 54.16 -10.37 54.87

D
ir

Single class queries
(Local: Acc = 30.68, Query class acc = 02.89)
FedAvg 37.59 27.90 -7.64 48.13
FedProx 41.57 32.40 -6.15 50.38
Moon 19.09 10.60 -16.03 26.61
FT-FedAvg 34.19 5.40 -3.93 36.69
FedAvg(1) 0.51 -2.90 -35.31 1.50
CLUE 0.97 0.00 -35.25 0.66
PFNM 0.37 0.00 -35.94 0.87
Ensemble 23.70 23.70 -19.60 26.11
KD 29.39 10.30 -6.31 34.37
QKT 51.42 43.99 -3.36 33.39
QKT light 49.37 41.30 -3.83 30.98

Multi-class queries
(Local: Acc = 13.08, Query class acc = 0.0)
FedAvg 43.99 40.83 -7.64 47.89
FedProx 47.78 44.70 -6.15 50.25
Moon 24.72 21.43 -16.03 26.47
FT-FedAvg 18.12 5.68 -3.93 34.54
FedAvg(1) 1.14 -2.55 -35.31 1.41
PFNM 1.47 0.00 -35.80 1.22
Ensemble 30.76 27.67 -19.60 26.56
KD 25.37 17.47 -6.31 33.51
QKT 48.46 44.50 -6.01 36.62
QKT light 48.27 44.33 -5.78 37.34

Table 21: CIFAR100 (Path and Dir distributions)
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Acc Query Acc. gain Forgetting Uniform Acc.
Pa

th

Single class queries
(Local: Acc = 44.58, Query class acc = 0.0)
FedAvg 22.30 16.30 -46.53 28.04
FedProx 24.22 17.59 -45.27 32.76
Moon 40.99 44.22 -37.37 43.90
FT-FedAvg 45.55 0.00 0.00 61.58
FedAvg(1) 8.87 10.00 -69.37 10.00
CLUE 26.23 38.78 -63.98 22.22
PFNM 19.27 21.61 -68.47 14.13
Ensemble 30.22 31.95 -48.37 34.63
KD 49.64 24.13 -9.53 61.35
QKT 71.02 82.68 -22.02 65.42
QKT light 71.27 82.70 -21.67 65.71

Multi-class queries
(Local: Acc = 27.04, Query class acc = 0.0)
FedAvg 27.95 27.44 -46.53 29.71
FedProx 27.56 23.17 -45.27 32.41
Moon 38.30 38.95 -37.37 41.75
FT-FedAvg 27.79 0.00 0.00 44.04
FedAvg(1) 7.99 8.33 -69.37 8.33
PFNM 19.08 10.54 -63.57 14.47
Ensemble 26.31 23.75 -48.37 30.98
KD 39.53 23.91 -10.69 50.93
QKT 62.13 72.80 -44.10 49.80
QKT light 61.71 71.93 -43.62 49.72

D
ir

Single class queries
(Local: Acc = 42.65, Query class acc = 0.0)
FedAvg 30.39 18.52 -31.67 47.61
FedProx 32.31 20.12 -30.71 47.38
Moon 39.50 28.70 -27.87 47.52
FT-FedAvg 25.00 1.11 1.11 46.54
FedAvg(1) 3.73 0.00 -66.45 7.61
CLUE 12.47 19.79 -60.26 12.88
PFNM 23.83 17.38 -57.47 14.47
Ensemble 43.61 37.36 -32.14 45.30
KD 50.64 27.81 -10.61 50.45
QKT 73.48 72.68 -13.49 46.73
QKT light 70.14 82.50 -24.77 42.62

Multi-class queries
(Local: Acc = 23.29, Query class acc = 0.0)
FedAvg 46.16 41.38 -31.67 50.71
FedProx 46.55 42.27 -30.71 50.19
Moon 46.16 43.16 -27.87 47.88
FT-FedAvg 25.00 1.11 -1.36 37.64
FedAvg(1) 10.64 9.17 -66.45 10.79
PFNM 12.75 13.64 -61.05 10.68
Ensemble 39.78 38.36 -32.14 41.69
KD 37.54 25.18 -9.92 43.82
QKT 54.57 55.38 -24.93 43.58
QKT light 51.01 59.07 -38.21 38.72

Table 22: CINIC10 (Path and Dir distributions)
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Acc Query Acc. gain Forgetting Uniform Acc.
Pa

th

Single class queries
(Local: Acc = 45.99, Query class acc = 0.0)
FedAvg 43.34 29.77 -38.34 48.82
FedProx 63.65 50.89 -15.97 71.76
Moon 72.97 69.63 -16.74 75.78
FT-FedAvg 46.99 0.00 -2.88 70.45
FedAvg(1) 14.89 10.00 -76.96 12.50
PFNM 8.85 10.00 -81.49 10.00
CLUE 20.67 20.00 -74.16 17.50
Ensemble 56.08 43.81 -26.97 60.93
KD 43.76 5.27 -9.58 64.73
QKT 77.65 88.42 -24.71 71.91
QKT light 78.14 88.03 -24.35 72.55

Multi-class queries
(Local: Acc = 31.62, Query class acc = 0.0)
FedAvg 53.33 51.25 -38.34 53.26
FedProx 67.94 63.31 -15.97 72.39
Moon 72.45 72.99 -16.74 73.92
FT-FedAvg 32.29 0.00 -2.88 54.98
FedAvg(1) 17.09 10.33 -76.96 15.27
PFNM 17.43 27.83 -84.82 12.77
Ensemble 61.11 57.21 -26.97 62.58
KD 38.04 14.58 -9.58 56.05
QKT 69.52 76.72 -39.85 62.67
QKT light 67.16 70.73 -36.81 63.11

D
ir

Single class queries
(Local: Acc = 57.20, Query class acc = 20.58)
FedAvg 63.13 35.79 -11.95 70.51
FedProx 72.75 47.30 -7.93 77.96
Moon 71.80 34.61 -12.39 68.66
FT-FedAvg 60.99 3.89 -2.16 66.06
FedAvg(1) 19.98 0.00 -62.21 13.85
CLUE 19.29 0.00 -61.74 12.18
PFNM 20.15 0.00 -52.78 15.28
Ensemble 69.35 43.84 -18.90 65.04
KD 56.40 23.26 -13.58 62.30
QKT 75.23 77.37 -29.31 52.18
QKT light 74.70 76.45 -28.11 52.14

Multi-class queries
(Local: Acc = 37.66, Query class acc = 18.19)
FedAvg 73.76 58.71 -11.95 75.82
FedProx 81.78 64.15 -7.93 81.79
Moon 71.40 56.25 -12.39 73.73
FT-FedAvg 45.28 7.97 -2.16 55.95
FedAvg(1) 14.73 0.00 -62.21 13.45
PFNM 15.49 0.00 -52.74 15.48
Ensemble 64.19 41.14 -19.59 65.25
KD 52.87 28.15 -11.90 59.22
QKT 63.31 55.11 -33.31 54.16
QKT light 64.26 56.16 -31.87 55.53

Table 23: BloodMNIST (Path and Dir distributions)
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Acc Query Acc. gain Forgetting Uniform Acc.
Pa

th

Single class queries
(Local: Acc = 43.61, Query class acc = 0.0)
FedAvg 49.88 60.88 -43.80 49.12
FedProx 62.12 76.11 -33.22 60.11
Moon 60.06 71.90 -38.94 57.63
FT-FedAvg 44.72 0.00 -5.89 65.38
FedAvg(1) 11.11 0.00 -62.79 21.19
CLUE 14.07 11.19 -77.74 10.52
PFNM 22.21 30.00 -70.66 15.06
Ensemble 60.03 74.55 -41.80 53.49
KD 58.13 32.08 -8.66 70.14
QKT 83.41 80.88 -10.36 80.85
QKT light 77.25 90.37 -22.89 71.10

Multi-class queries
(Local: Acc = 24.95, Query class acc = 0.0)
FedAvg 41.35 47.41 -43.80 42.91
FedProx 49.92 55.49 -33.22 51.64
Moon 47.16 51.00 -38.94 49.34
FT-FedAvg 25.87 0.00 -5.89 45.78
FedAvg(1) 21.12 23.30 -62.79 25.77
PFNM 16.43 21.03 -70.74 12.58
Ensemble 44.63 44.86 -41.80 44.58
KD 44.40 27.78 -8.66 57.35
QKT 67.03 71.28 -38.76 62.88
QKT light 50.62 55.97 -45.38 47.38

D
ir

Single class queries
(Local: Acc = 50.32, Query class acc = 11.21)
FedAvg 60.81 47.04 -22.49 66.94
FedProx 63.74 49.78 -19.88 68.79
Moon 67.44 56.11 -16.15 69.98
FT-FedAvg 55.28 5.89 0.00 56.40
FedAvg(1) 3.05 0.00 -67.31 11.65
CLUE 11.96 0.00 -64.46 8.31
PFNM 11.90 10.14 -69.73 12.16
Ensemble 59.86 48.54 -24.26 59.02
KD 63.29 32.40 -8.90 58.13
QKT 77.95 72.56 -14.95 54.54
QKT light 78.13 73.71 -15.36 55.29

Multi-class queries
(Local: Acc = 34.08, Query class acc = 05.39)
FedAvg 57.51 44.86 -22.49 66.58
FedProx 59.85 47.82 -19.88 67.94
Moon 62.80 55.04 -16.15 67.55
FT-FedAvg 38.10 3.58 0.00 46.77
FedAvg(1) 7.51 0.43 -67.31 13.69
PFNM 16.43 21.03 -70.74 12.58
Ensemble 60.37 56.08 -24.26 61.87
KD 52.84 33.93 -8.90 53.37
QKT 69.32 65.52 -14.75 54.82
QKT light 67.09 67.01 -28.33 50.39

Table 24: PathMNIST (Path and Dir distributions)
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