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ABSTRACT

Utilizing synthetic outlier samples has shown great promise in out-of-distribution
(OOD) detection. In particular, impressive results have been achieved by employ-
ing diffusion models to generate synthetic outliers in the low-density manifold.
However, guiding diffusion models to generate meaningful synthetic outliers re-
mains challenging. The synthesized samples often fall either too close to the
in-distribution (ID) data (risking overlap and ambiguity) or too far (leading to visu-
ally unrealistic results). Both extremes have been shown to degrade OOD detection
performance. In this work, we propose a novel OOD synthesis framework that
combines a pre-trained Representation Diffusion Model (RDM) with a simple yet
effective classifier calibration strategy. RDM enables global semantic embedding
generation without requiring auxiliary labels or text, producing diverse yet ID-
relevant outliers, thereby facilitating a more compact ID-OOD decision boundary.
To ensure the utility of these samples, we calibrate a binary classifier on both ID
data and synthesized OODs to assign confidence-based anomaly scores. We find
that mid-confidence outliers, i.e., those balancing realism and deviation, are most
informative, and using them significantly boosts detection performance. Extensive
experimental results validate the superiority of our calibrated OOD sampler over
several strong baselines.

1 INTRODUCTION

Out-of-distribution (OOD) detection (Liu et al., 2020; Wang et al., 2021; Sun et al., 2022; Huang
et al., 2021; Behpour et al., 2023; Sharifi et al., 2024) aims to prevent neural networks from making
overconfident predictions when faced with unseen data. This capability is critical for deploying
trustworthy machine learning systems in open-world environments, particularly as deep models are
increasingly applied to safety-critical domains such as medical diagnostics (Wei & Wang, 2023) and
autonomous driving (Liu et al., 2023a).

The core challenge of OOD detection lies in identifying unknown outliers that deviate from the
training data distribution. Ideally, an OOD detector functions as a binary classifier that exhibits low
uncertainty for in-distribution (ID) data while flagging OOD data as uncertain. A promising recent
direction for enhancing OOD detection focuses on synthesizing latent outliers (Lee et al., 2018a; Du
et al., 2022; Tao et al., 2023), which can provide explicit supervision and help tighten the decision
boundary around the ID manifold.

More recently, Dream-OOD (Du et al., 2023) is proposed to generate visually interpretable OOD
images by sampling low-likelihood embeddings in latent space and decoding them through a pixel-
space diffusion model. Specifically, it first identifies boundary ID points using KNN distances, then
samples outlier embeddings from a Gaussian kernel centered at these points. However, choosing an
appropriate sampling radius is non-trivial: samples drawn too far from ID data often result in visually
meaningless or unrealistic images, while those too close risk overlapping with ID and confusing the
detector. Dream-OOD attempts to balance this by tuning the variance of the Gaussian kernel, but this
hyperparameter is difficult to optimize and often dataset- and class-dependent, making the synthesis
process fragile. Moreover, the diffusion-based image generation process itself introduces inherent
randomness (Ho et al., 2020; Song et al., 2022a; Song et al.), further affecting the reliability of the
synthesized outliers. As a result, the above issues can lead to harmful outliers, either resembling
covariate-shifted ID or being visually implausible. Despite their importance, these concerns have
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been largely underexplored. This raises a key question: Can we synthesize OOD samples that are
anchored to the ID distribution – diverse enough to probe the well-covered boundary, yet reliable in
quality – to better separate ID and OOD distributions?

To achieve the goal, two critical challenges must be overcome: (i) the model should be expressive
enough to synthesize diverse yet ID-relevant OOD samples to facilitate a compact decision boundary,
and (ii) a robust metric is required to measure the quality of generated outliers, enabling the filtering
of harmful samples. To this end, we propose a novel OOD synthesis framework that couples a
representation diffusion model (RDM) (Li et al., 2024) with a classifier calibration strategy to jointly
address both objectives.

Instead of relying on the conventional diffusion models (Rombach et al., 2022), which sample either
in pixel space or instance-level latent space, we adopt the Representation Diffusion Model (RDM) for
its ability to generate global semantic representations. This enables the synthesis of diverse outlier
embeddings that remain semantically aligned with the ID data. This facilitates the construction of
a more compact and robust decision boundary. Moreover, RDM requires no auxiliary class labels
or textual descriptions, which are often unavailable, ambiguous, or costly to acquire in real-world
settings. In our approach, a self-guided minority metric is applied in conjunction with a pre-trained
RDM to generate OOD embeddings, which are subsequently decoded into pixel-space OOD images.

To tackle the second challenge, i.e., evaluating outlier quality, we introduce a simple yet effective
classifier calibration strategy. Using both ID data and the full spectrum of synthesized OOD images
(including unreliable ones), we train a binary classifier whose prediction probabilities of ID or OOD
samples are calibrated to reflect their actual confidence (Guo et al., 2017). Crucially, we observe that
the calibrated classifier can already identify harmful OOD samples: low-confidence outliers often
resemble covariate-shifted ID samples, while high-confidence ones tend to be visually unrealistic or
semantically irrelevant. We show that the performance is improved by retaining the OOD detector
using only mid-confidence OOD samples, i.e., those that strike a balance between diversity and
relevance. Furthermore, we demonstrate that our calibration strategy is model-agnostic and can be
seamlessly integrated into Dream-OOD, leading to substantial gains and highlighting the generality
and practicality of our approach.

Our major contributions can be summarized as follows: (i) We extend a self-guided minority metrics
into latent diffusion space that enables pre-trained RDM to generate diverse ID-relevant synthetic
outliers without any auxiliary class labels or text descriptions, which might be difficult to obtain
in practice. (ii) A classifier calibration strategy is incorporated into OOD synthesis to measure the
anomaly degree of the outliers, thereby preventing harmful OOD data, thus providing more reliable
supervision. We demonstrate that the calibrated classifier captures both semantic and covariate shifts
by evaluating on Syn-IS (Long et al., 2024), a benchmark designed to disentangle different types of
distributional shifts. (iii) Extensive experimental results validate the effectiveness of our proposed
OOD calibration method, which outperforms state-of-the-art outlier synthesizers for OOD detection
on several benchmarks.

2 RELATED WORK

OOD detection with outlier exposure. Motivated by the difficulty of acquiring large, high-quality
OOD datasets, various techniques have emerged to synthesize auxiliary OOD data that can learn an
explicit separation boundary between ID and OOD. Early attempts like Lee et al. (2018a) adopt GAN
to generate pixel-level OOD data in a visually interpretable manner. Later, VOS (Du et al., 2022)
modeled ID features as a multivariate Gaussian and synthesized outliers by sampling from low-density
regions. NPOS (Tao et al., 2023) relaxed the Gaussian assumption by using CLIP (Radford et al.,
2021) features to form semantic clusters, and identified sparse feature regions via k-nearest neighbors.
Dream-OOD (Du et al., 2023) further bridged feature-space synthesis with visual interpretability
by integrating Stable Diffusion (Rombach et al., 2022), enabling image-level realization of outlier
features sampled near the ID boundary. Building upon these advancements, we propose a novel
diffusion outlier guidance strategy that not only retains visual interpretability through diffusion-based
generation, but also enables more precise boundary probing without relying on predefined semantic
priors. Our method improves the quality and diversity of synthetic outliers, leading to more robust
and compact OOD decision boundaries.
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Figure 1: Overview of our proposed method Bad-OOD. Bad-OOD first generates auxiliary OOD samples
by integrating minority guidance into the denoise process. In the second stage, the detector is initially trained
using the entirety of the synthetic OOD samples in conjunction with the ID samples. Subsequent to the beta
calibration of the detector, the calibrated scores are employed to filter the previously synthetic OOD samples,
thereby excluding those with excessively high or low confidence levels. The refined OOD samples, with the ID
samples, are then utilized to retrain the detector from scratch.

Diffusion models for OOD detection. Unlike traditional OOD detection methods, recent ap-
proaches have leveraged diffusion-based architectures to assess how well a sample aligns with the
learned data distribution—typically by reconstructing the input or quantifying deviation during
the generative process. Liu et al. (2023b) mask a central region of the image and apply diffusion
inpainting, using the restoration quality as an OOD indicator. Gao et al. (2023) combines diffu-
sion inversion with classifier guidance, where high reconstruction error signals a potential OOD
sample. A further extension Yang et al. (2024b) adopts multi-layer representations of samples and
trains a diffusion model to capture reconstruction error. Additionally, Sun et al. (2022) uses the
rate-of-change from a sample toward a standard Gaussian distribution as the OOD score. In contrast
to these reconstruction-based approaches, our proposed method is, to our knowledge, the first to
directly synthesize feature-level outliers via a diffusion model. This enables flexible, visualizable,
and controllable generation of diverse OOD data, which better supports decision boundary learning
without requiring reconstruction-based inference.

Distribution shift measurement. OOD score quantifies how anomalous a sample is concerning
the in-distribution (ID) data. MSP (Hendrycks & Gimpel, 2018) utilizes the highest softmax output
of a classifier as the OOD score. Despite its simplicity, MSP often suffers from overconfident
predictions (Liu et al., 2020), limiting its reliability in estimating OOD severity. ODIN (Liang
et al., 2017) improves the separation between ID and OOD samples via temperature scaling and
input perturbation. Mahalanobis-based scoring (Lee et al., 2018b) estimates confidence using the
distance to the nearest class-conditional Gaussian distribution in feature space. The energy-based
method (Liu et al., 2020) mitigates softmax overconfidence by deriving scores directly from the logit
outputs. GradNorm (Huang et al., 2021) proposes using the norm of gradients with respect to the
input as a signal for OOD detection. KNN-OOD (Sun et al., 2022) utilizes local density differences
based on K-nearest neighbor distances between ID and OOD features. Different from prior works,
our confidence calibration strategy leverages both reliable and unreliable synthesized outliers to
learn an interpretable OOD scoring function. It distinguishes harmful samples from informative
ones by aligning prediction confidence with anomaly severity, enabling more effective and targeted
supervision for OOD detection.

3 OUTLIER SYNTHESIS WITH DIFFUSION MODELS

An overview of the proposed framework is shown in Figure 1, with key components detailed below.

3.1 CONDITIONAL ID DATA REPRESENTATION

Our ultimate goal is to generate outliers conditioned on ID data, such that help build a compact
boundary around ID data. To achieve it, we can first obtain a representation of the conditional ID
data as shown in Figure 1. Specifically, given any ID image x0, we utilize MoCo-v3 (Chen et al.,
2021), which is pretrained using self-supervised contrastive learning, as image encoder to map the
pixel-space image into the latent feature space. The obtained ID image feature z0 intuitively serves
as an anchor point for producing its anomaly variants.
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3.2 LATENT MINORITY SYNTHESIS USING RDM

Given the conditional representation of ID data z0, we employ representation diffusion model (RDM)
(Li et al., 2024) to produce outlier embeddings. We choose RDM since it allows us to sample
from a representation distribution without providing textual conditions, such as class labels or text
descriptions, which might unavailable or difficult to obtain when synthesizing anomalies. Firstly, we
add noise to the conditional representation z0 of each ID image over t time steps to obtain a noisy
version zt. Inspired by Um & Ye (2024), we extend the minority metric into latent space based on the
denoising timestep t and the posterior mean ẑ0, which is obtained via the Tweedie’s formula (Efron,
2011) and the pretrained diffusion model. Formally, it is defined as:

L(z0; t) := Eqαt (zt|z0)[d(z0, ẑ0(zt))], (1)

where d(·, ·) is a distance metric, e.g., L1 or L2, to measure the discrepancy between two features.
Intuitively, a higher minority score indicates sample in a low-likelihood region farther from the anchor
z0, thus being more abnormal. Therefore, we can derive the sampling towards low-likelihood areas
by leveraging the gradient of the minority score. Specifically, for a noisy latent sample zt at timestep
t, we first exploit the pretrained RDM ϵθ(zt, t, c) to denoise zt into z0

t , i.e., the predicted clean latent
at timestep t. We then reintroduce s additional noise steps to obtain ẑs

t , which is denoise again into
ẑ0
t . According to the minority score mentioned above, our guided gradient g can be obtained by:

g(zt, t; s) := ∇ztL(z0
t ; s) = ∇ztEqαs (ẑ

s
t |z0

t )
[d(z0

t , ẑ
0
t )))]. (2)

Lastly, by combining appropriate minority guidance scale with sampling strategy like DDIM (Song
et al., 2022a), the generated samples are pushed away from dense ID regions, resulting in the
outlier representations naturally occupy the periphery of the ID distribution while retaining coherent
structures or semantic cues, as shown in Figure 1.

3.3 OUTLIER IMAGE GENERATOR

Simialr to Dream-OOD, we explicitly generate outliers in pixel space, yielding visually interpretable
samples, preserving fine-grained details such as texture and color, and aligns more naturally with
downstream tasks that operate directly on images. Specifically, MAGE (Li et al., 2023) is leveraged as
the image generator to convert the outlier embeddings in latent space into images. During inference,
a fully masked image serves as the input of generator, and MAGE reconstructs an output guided by
the outlier embeddings.

3.4 ENERGY-BASED OOD REGULARIZER

In order to utilize synthetic OOD samples for the separation of ID and OOD distributions, we apply
the energy-based uncertainty regularization loss following Du et al. (2022). Specifically, assume
the OOD detector’s output logit of the n-th ID class is fn(x; θ), then the energy function can be
formulated as the LogSumExp operation among all these N logits:

E(x; θ) := − log

N∑
n=1

efn(x;θ). (3)

Then the uncertainty loss can be defined using a binary sigmoid loss based on the energy function,
and the threshold for distinguishing ID and OOD should be set to zero:

Luncertainty := EvOOD

[
− log

1

1 + exp−ϕ(E(v;θ))

]
+ ExID

[
− log

exp−ϕ(E(x;θ))

1 + exp−ϕ(E(x;θ))

]
, (4)

where ϕ denotes a nonlinear MLP. The overall training objective is to optimize the cross entropy for
multi-class classification within ID data coupled with the uncertainty regularizer:

Lall = LCE + β · Luncertainty, (5)

where β is to balance the effect of the regularization term. Once obtained the classifier, we can measure
the anomaly degree of OOD samples by the sigmoid of the energy function E(x; θ). Formally, we
obtain:

S(x; θ) := σ(E(x; θ)) =
1

1 + e−E(x;θ)
. (6)
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3.5 CONFIDENCE CALIBRATION

Since the existence of bad samples within the synthetic OOD, it is vital to establish an effective
mechanism to quantify the degree of anomaly in OOD samples. Therefore, we propose a calibration
refined strategy, which leverages a calibrated detector to score samples from an auxiliary dataset
and systematically selects high-quality data. Essentially, calibration aims to align the confidence
output by the classifier with the actual probability, and the confidence output by a perfectly calibrated
detector can reflect the degree of anomaly. Therefore, we introduce beta calibration (Kull et al., 2017),
which is not only applicable to sigmoid-based output score but also capable of fitting a wide range of
probability distributions. Specifically, given an uncalibrated classifier C and an auxiliary calibration
dataset D, beta calibration learns a map function µbeta that transforms the raw scores S of samples
from D into new scores Sc, ensuring the new scores Sc closely approximate the actual probabilities
within D. The formula for the mapping function follows:

µbeta(s; a, b, c) =
1

1 + 1/
(
ec sa

(1−s)b

) , (7)

where the parameters a, b and c are learnable with a, b ≥ 0. Unlike simpler methods such as
temperature (Liang et al., 2017) or Platt scaling (Berta et al., 2024), beta calibration introduces
parameters (a, b, c in Eq.(7)) that can better capture skewness and heavy tails, which are typical in
the asymmetric, long-tailed score distributions of generated samples. Please refer to Appendix E for
more analysis of adopting beta calibration. Once the detector has been calibrated, it can be used to
evaluate the anomaly degree of the synthetic OOD samples, which is formulated as:

Sc(x; θ) = µbeta(S(x; θ); a, b, c). (8)

4 EXPERIMENTS

In this section, we first compare the OOD detection performance of our approach with several strong
competitors. Then, we provide a thorough analysis about the effectiveness and properties of our
proposed confidence calibrated OOD detector.

4.1 EXPERIMENTAL SETUP

Dataset. To evaluate OOD detection performance, we follow the experimental settings of Tao et al.
(2023); Du et al. (2023) and use ImageNet-100 as the ID dataset, which is carefully selected from the
original ImageNet-1k dataset (Deng et al., 2009). Additionally, we adopt the same OOD test datasets
as in Huang & Li (2021); Tao et al. (2023); Du et al. (2023), including subsets of iNaturalist (Horn
et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2018), and Textures (Cimpoi et al., 2013).
We also follow the common practice of adopting CIFAR-100 as the ID data for training as well. More
details are provided in the Appendix A.1.

Implementation details. We implement our framework with PyTorch. MoCo-v3 ViT-L is utilized
for extracting representation of ID data, then representation diffusion model (RDM) is employed to
generate the synthetic embeddings of outliers, and MAGE-L is adopted for representation-conditioned
image generation to decode the outlier embeddings into pixel space. During outlier embedding
synthesis, we adopt the DDIM (Song et al., 2022a) sampler to predict the denoised version (z0

t ) of the
noisy latent of ID data zt (we empirically set t = 300). To obtain the gradient of the minority metric,
we further perturb z0

t with s = 125 forward DDPM steps. Then given a specific minority guidance
scale, we generate 1,300 OOD samples per class, resulting in a total of 130,000 synthetic outlier
images. To train the OOD detector, we employ ResNet-34 (Liu et al., 2023a) as the default backbone
and train it for 100 epochs using stochastic gradient descent (SGD). We set the learning rate scheduler
with 5 epochs of linear warmup followed by cosine annealing, a momentum of 0.9, a weight decay of
5e-4, an initial learning rate of 0.1, and a batch size of 160. The uncertainty regularization parameter
β is set to 2.0. More details are provided in the Appendix B and C.

Competitors. We compare several strong OOD detection baseline methods, categorized into non-
synthesis-based and synthesis-based methods. The majority of existing methods fall into the non-
synthesis category. Logit-based methods such as MSP (Hendrycks & Gimpel, 2018), ODIN (Liang
et al., 2017), GODIN (Hsu et al., 2020), and Energy (Liu et al., 2020) operate directly on the

5
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Table 1: OOD detection results for IMAGENET-100 and CIFAR-100 as the in-distribution data. The bold and
underlined numerals denote the optimal and suboptimal results among the synthesis-based methods, respectively.

Methods

ImageNet-100 as In-distribution

INATURALIST PLACES SUN TEXTURES Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP (Hendrycks & Gimpel, 2018) 31.80 94.98 47.10 90.84 47.60 90.86 65.80 83.34 48.08 90.01

ODIN (Liang et al., 2017) 24.40 95.92 50.30 90.20 44.90 91.55 61.00 81.37 45.15 89.76
Mahalanobis (Lee et al., 2018b) 91.60 75.16 96.70 60.87 97.40 62.23 36.50 91.43 80.55 72.42

Energy (Liu et al., 2020) 32.50 94.82 50.80 90.76 47.60 91.71 63.80 80.54 48.68 89.46
GODIN (Hsu et al., 2020) 39.90 93.94 59.70 89.20 58.70 90.65 39.90 92.71 49.55 91.628

KNN (Sun et al., 2022) 28.67 95.57 65.83 88.72 58.08 90.17 12.92 90.37 41.38 91.20
ViM (Wang et al., 2022) 75.50 87.18 88.30 81.25 88.70 81.37 15.60 96.63 67.03 86.61
ReAct (Sun et al., 2021) 22.40 96.05 45.10 92.28 37.90 93.04 59.30 85.19 41.17 91.64
DICE (Sun & Li, 2022) 37.30 92.51 53.80 87.75 45.60 89.21 50.00 83.27 46.67 88.19

GAN (Lee et al., 2018a) 83.10 71.35 83.20 69.85 84.40 67.56 91.00 59.16 85.42 66.98
VOS (Du et al., 2022) 43.00 93.77 47.60 91.77 39.40 93.17 66.10 81.42 49.02 90.03

NPOS (Tao et al., 2023) 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04
Dream-OOD (Du et al., 2023) 26.15 95.87 39.90 93.59 38.65 93.09 57.40 84.12 40.52 91.67

w/ Calib. 25.62 95.48 37.29 93.09 36.67 92.95 54.06 86.37 38.41 91.97
Bad-OOD 26.25 95.53 32.29 93.76 34.17 93.48 53.33 86.01 36.51 92.20

ResNetv2-101
RankFeat (Song et al., 2022b) 41.31 91.91 39.34 90.93 29.27 94.07 37.29 91.70 36.80 92.15

Bad-OOD 25.10 95.51 32.50 93.75 32.40 93.72 52.71 86.14 35.68 92.28
CIFAR-100 as In-distribution

SVHN PLACES LSUN TEXTURES ISUN
Fake it (Mirzaei et al., 2022) 85.15 77.53 77.05 76.91 56.40 76.31 70.55 80.77 67.75 84.95

Dream-OOD (Du et al., 2023) 59.00 86.86 72.45 79.98 24.55 95.33 48.10 88.04 2.15 99.21
w/ Calib. 55.74 88.45 70.62 80.32 24.08 95.09 41.05 89.99 1.24 99.22

SONA (Yoon et al., 2025) 3.10 99.39 44.00 88.35 18.20 96.19 58.90 85.20 63.10 86.17
Bad-OOD 54.90 89.16 68.75 86.04 24.54 94.22 40.21 91.56 1.10 99.72

classifier’s output logits, applying post-processing techniques like temperature scaling or energy
scores to differentiate between ID and OOD samples. Distance-based methods, including Mahalanobis
(Lee et al., 2018b) and KNN-OOD (Sun et al., 2022), leverage statistical or geometric distances in
feature space to estimate how far a sample deviates from the training distribution. Feature-based
methods such as ViM (Wang et al., 2022), ReAct (Sun et al., 2021), and DICE (Sun & Li, 2022) further
exploit internal network representations—e.g., by measuring residuals (ViM), clipping activations
(ReAct), or sparsifying weight contributions (DICE)—to improve OOD separability and robustness.
We also compare with RankFeat (Song et al., 2022b), which leverages the difference of singular value
distributions between ID and OOD features for OOD detection. For synthesis-based methods, OOD
generation has evolved from multivariate Gaussians to GANs (Goodfellow et al., 2014), and more
recently to diffusion models (Rombach et al., 2022). Dream-OOD (Du et al., 2023) generates outlier
description features and employs a pre-trained diffusion model as the image decoder. SONA (Yoon
et al., 2025) introduces mutual interference among semantic regions of different categories during the
generation process of the diffusion model, ultimately leading to OOD results. Fake it (Mirzaei et al.,
2022) utilizes early-stopped SDEs to synthesize near-distribution OOD supplementary data.

Evaluation metrics. Three conventional metrics are employed: (i) FPR95 - Measures the false
positive rate of OOD samples when the true positive rate for ID samples is 95%, making it particularly
suitable for scenarios where high recall of OOD samples is required. (ii) AUROC - The area under
the receiver operating characteristic curve, which reflects the detector’s ability to distinguish between
ID and OOD samples across varying thresholds. (iii) AUPR - Area under the precision-recall curve
which places greater emphasis on the detector’s capability to correctly identify OOD samples.

4.2 OOD DETECTION RESULTS

Quantitative Results. As shown in Table 1, our method consistently outperforms baseline models
across multiple key OOD detection metrics. In particular, (i) it achieves a clear improvement
over Dream-OOD (Du et al., 2023), demonstrating the advantage of our RDM-based synthesis
and calibration strategy. (ii) Notably, integrating our confidence calibration into Dream-OOD (w/
Calib. in brown) also yields significant performance gains, highlighting the modularity and general
applicability of our approach. (iii) We observe a further performance boost when upgrading the
backbone from ResNet-34 to ResNet-101, indicating that stronger classifiers can better leverage
our synthesized OOD samples. (iv) Similar trends hold when switching the in-distribution dataset
from ImageNet-100 to CIFAR-100, confirming the robustness and scalability of our framework
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Figure 2: ID reference samples and synthetic OOD of class broccoli, candle, starfish and strawberry. The
anomaly score is provided in the upper right of each sample.

Figure 3: Three types of OOD samples of class broccoli, starfish and strawberry. For OOD-II and OOD-III,
the class predicted by CLIP (Radford et al., 2021) is demonstrated under each image.

across varying ID complexities. Due to space limitations, we refer the reader to the Appendix for
additional results on synthesis methods and architectures variants (Appendix F), generalization and
robustness analysis (Appendix G), similar diffusion-based methods (Appendix H), and fine granularity
OpenOOD v1.5 (Zhang et al., 2023) evaluation (Appendix I).

Qualitative Results. To further gain some insights about the quality of the generated outlier images,
some examples are demonstrated in Figure 2. We can see from the figure that ours can generate
high-resolution, semantically meaningful outlier samples similar to Dream-OOD. Uniquely, our
method is capable of quantifying the abnormality of each OOD image by estimating its probability of
belonging to the ID class, i.e., its classification confidence as ID data. We can figure that a higher
score suggests that the OOD sample closely resembles ID data, while a lower score indicates a greater
degree of covariance shift, i.e., appearance anomaly. Additional visualizations of synthetic OOD
samples alongside their corresponding ID samples are provided in the Appendix J.

4.3 MORE ANALYSIS

Where is bad OOD? We investigate how our confidence-calibrated binary OOD classifier can locate
“toxic” outliers via ablation studies using synthetic OOD samples with varying anomaly levels.

Table 2: Effect with various minority scales.
Min. Scale Calib. FPR95↓ AUROC↑ AUPR↑

Mixed

× 54.06 88.75 86.30
Random 53.52 89.43 86.86
High (0.3-1.0) 51.20 89.20 86.61
Mid (0.3-0.5) 39.69 91.71 87.13
Low (0-0.5) 45.65 90.12 86.84

0.025 Random 52.01 90.00 86.87
✓ 41.46 91.25 86.81

0.05 Random 43.20 91.28 86.89
✓ 36.51 92.20 87.32

0.075 Random 44.09 91.05 86.64
✓ 38.96 92.04 87.33

Specifically, we verify whether using outliers with either
too high or too low OOD scores for training will harm
the performance of OOD detector. To reduce random-
ness, we produce synthetic outliers using multiple minor-
ity guidance scales (i.e., 0.025, 0.05, 0.075), yielding 130k
synthetic outlier samples (denoted as “Mixed”) as OOD
candidates. After filtering with our calibrated classifier,
we train an OOD detector from scratch with all ID samples
(∼ 130k). Results are presented in Table 2. We observe
that: (i) Using all synthetic outliers without filtering (“×”)
yields the worst performance, and randomly selecting 100k
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(a) (b)

Figure 4: (a) The diversity of OOD samples generated by our RDM-based method and Dream-OOD.
(b) Performance using different image generators.

OOD samples achieves similar results. (ii) The best performance is obtained using mid-level anomaly
outliers (OOD scores 0.3–0.5, denoted Mid), likely because these samples are sufficiently distinct
yet still near the ID distribution, facilitating a compact decision boundary. (iii) Including near-OOD
samples (0.5–1, High) significantly degrades performance (FPR95 increases from 39.69 to 51.20)
due to contamination by nearly ID-identical samples; similarly, far-OOD samples provide little
benefit as excessively abnormal samples do not aid in learning a compact boundary. (iv) Experiments
with specific minority guidance scales further confirm that filtering with the calibrated classifier
consistently improves results, demonstrating the robustness of our approach.

Table 3: OOD before and after calibration.

OOD-I OOD-II OOD-III

Before 288 (57.6%) 45 (9.0%) 167 (33.4%)
After 233 (58.4%) 38 (9.5%) 128 (32.1%)
Reduce 55 (19.1%) 7 (15.6%) 39 (23.4%)

What are the OOD samples? To examine the con-
tent of OOD samples before and after filtering with our
confidence-calibrated classifier, we use a pre-trained CLIP
image encoder (Radford et al., 2021) to categorize 500
randomly selected synthetic outliers alongside their cor-
responding ID images. We identify three main types: (i)
OOD-I: covariance shift outliers with shape/style changes but still recognizable as the original class;
(ii) OOD-II: semantic shift outliers, correctly recognized by CLIP but with different class labels; (iii)
OOD-III: severe semantic and appearance changes, hardly recognizable even by humans (examples
in Figure 3, additional visualizations in Appendix J.2). After filtering with the optimal OOD score
threshold (0.3–0.5), most removed samples belong to OOD-I and OOD-III, demonstrating that our
method effectively removes near-ID and meaningless far-OOD samples.

OOD Samples Diversity. Intuitively, compared to Dream-OOD (Du et al., 2023), our approach
replaces class-conditional anchors with ID reference samples for OOD generation, removing the
dependency on class labels and enabling sampling from a broader latent space. To quantify the
diversity of synthesized OOD samples, we assess both cross-category and within-category diversity.
Specifically, we generate OOD samples from 100 randomly selected ID categories, with 100 samples
per category. For cross-category diversity, we use a pretrained ResNet-50 classifier to predict labels
for all synthesized samples and compute the ratio of unique predicted categories to the total number
of ID categories. For within-category diversity, we adopt the metric used in ImageNet (Deng et al.,
2009), measuring the average JPEG file size of OOD samples within each category as a proxy for
visual variability. As shown in Figure 4a, the RDM produces OOD samples with greater within-
category diversity, which in turn encourages a more compact boundary around ID data and improves
the generalization ability of the OOD detector.

Impact of Image Generators. We further investigate the how different image generators affect the
quality of synthesized OOD samples and, consequently, the performance of the OOD detector. As
illustrated in Figure 4b, we evaluated three image generator architectures—MAGE (Li et al., 2023),
DiT (Peebles & Xie, 2023), and LDM (Rombach et al., 2022)—under the MoCo-B & unconditional
RDM configuration (config 1). We can see that MAGE-generated images contribute more effectively
to regularizing the OOD detector. We hypothesize that compared to the diffusion-based generator,
masked image modeling-based generation demonstrates stronger content understanding, which
facilitates the OOD detector’s learning process. Additionally, we tested other variants, including
MoCo-L & class-conditional RDM (config 2) and MoCo-L & unconditional RDM (config 3), to
further assess the role of encoder-decoder combinations.
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Covariate Shift
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Figure 5: Comparison of our approach and other competitors. In each graph, the semantic shift
increases from top to bottom, and the covariate shift increases from left to right. All the scores are
rescaled to range between 0 and 1, and the color red indicates a higher anomaly degree.

Computation Cost Analysis. Since our method samples features at a fixed timestep and filters them
with a lightweight confidence model, it is much cheaper than iterative diffusion approaches. The
most time-consuming step is image generation via MAGE (single forward pass). On a single Nvidia
3090 GPU, generating 100 OOD ImageNet-100 images takes∼50s, 2.9s for MoCo feature extraction,
18.2s for RDM perturbation and minority guidance, and 30.3s for latent-to-pixel generation.

4.3.1 GENERALIZABILITY ON SEMANTIC AND COVARIATE SHIFT

In this section, we demonstrate that our confidence-calibrated OOD detector effectively captures
both semantic and covariate shifts. To this end, we evaluate it on Syn-IS (Long et al., 2024), a
benchmark specifically designed to disentangle and quantify different types of distributional shifts,
which contains high-quality generated images with more diverse covariate contents.

Dataset. SynIS (Long et al., 2024), which systematically quantifies different semantic and covariance
shifts relative to the ImageNet-1K dataset, is employed for evaluation. Specifically, images in SynIS
are partitioned into several subsets representing eight levels of semantic shift and eight levels of
covariance shift, resulting in a total of 64 distinct levels combined semantic and covariance shift for
OOD images (More details are provided in the Appendix A.2).

Competitors. We compare our approach with several other methods, including: MSP (Hendrycks &
Gimpel, 2018), which is a softmax-based score with the higher value indicating the higher probability
of being OOD. KNN (Sun et al., 2022) uses the feature distance, with the larger distance indicating
the higher probability of being OOD. GradNorm (Huang et al., 2021) adopts gradient information,
with the higher back-propagated gradient indicating the higher probability of being OOD.

Evaluation Metrics. We calculate the average anomaly scores of the 64 subsets to compare the beta
score employed in our method against other classical scoring metrics.

Results. As shown in Figure 5, different scoring methods exhibit distinct preferences toward
distributional shifts: softmax-based scores such as MSP tend to respond primarily to semantic
anomalies while showing low sensitivity to covariate shifts; in contrast, distance-based methods like
KNN are more sensitive to covariate shifts but often fail to capture semantic deviations. Gradient-
based approaches such as GradNorm struggle to reflect the degree of abnormality in both cases. In
comparison, our confidence-calibrated detector more accurately reflects the severity of abnormalities,
regardless of whether they arise from semantic or covariate shifts. This improved sensitivity to
diverse distributional deviations stems from our minority-guided generation strategy, which promotes
a compact and discriminative decision boundary between ID and OOD samples.

5 CONCLUSION

In this work, we introduced a novel OOD synthesis approach that integrates a classifier confidence
calibration strategy with a pre-trained latent diffusion model. Unlike prior methods, our approach
enables controlled sampling in the latent space without relying on auxiliary labels or text descriptions,
ensuring the synthesized OOD samples remain both diverse and semantically relevant to the ID
distribution. Moreover, we demonstrated that a confidence-calibrated classifier can effectively
measure the anomaly degree of synthetic OOD samples, allowing for the removal of harmful outliers
that could hinder OOD detection performance. Our findings suggest that utilizing mid-confidence
OOD samples leads to a more compact decision boundary and improved detection robustness.
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ETHICS STATEMENT

We are aware of the potential biases in the training data that may lead to the generation of misleading
content. Measures have been taken using the method like probability calibration. Overall, our
approach is in line with ethical standards, aiming to enhance the reliability and robustness of the
model and is reliable for its intended purpose.

REPRODUCIBILITY STATEMENT

We clarify that the sources of all datasets used in the experiments have been provided in Appendix A.
Moreover, the theoretical derivations and properties of the diffusion model and beta calibration have
been included in the Appendix B and C, which aids in understanding the rationale for employing
these methods. Lastly, the model weights and training code will be made publicly available in due
course.
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Bad-OOD: Discovering Harmful Diffusion Outliers via
Confidence Calibration for OOD Detection (Appendix)

A DETAILS OF DATASETS

A.1 QUANTITATIVE EVALUATION OF OOD DETECTOR PERFORMANCE

We follow the settings of (Tao et al., 2023; Du et al., 2023) to evaluate the performance of OOD
detectors, where the classes of OOD test sets do not overlap with ID dataset. For the ImageNet-100
benchmark, we collect subsets from iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010), Places
(Zhou et al., 2018), and Texture (Cimpoi et al., 2013) as large-scale OOD datasets. For the CIFAR-100
(Krizhevsky, 2009) benchmark, SVHN (Netzer et al., 2011), Places (Zhou et al., 2018), LSUN (Yu
et al., 2015), iSUN (Xu et al., 2015), and Textures (Cimpoi et al., 2013) are employed as OOD
datasets. We provide a brief introduction for each dataset as follows.

ImageNet-100 is created from ImageNet-1k (Deng et al., 2009) train split by randomly sampling 100
classes, and each class contains approximately 1,300 images with a resolution of 256 × 256.

CIFAR-100 (Krizhevsky, 2009) comprises 100 fine-grained labels, each containing 600 color images
with a resolution of 32 × 32. Among these, 500 images per class are designated for the training
set, while 100 images are allocated to the test set. We utilize its training set to assist in training the
detector and employ its test set to evaluate the detector.

iNaturalist (Horn et al., 2018) contains images of natural world. It has 13 super-categories and 5,089
sub-categories covering plants, insects, birds, mammals, and so on. We use the subset that contains
110 plant classes which do not overlap with ImageNet-1k.

SUN (Scene UNderstanding) (Xiao et al., 2010) contains 899 categories that cover more than indoor,
urban, and natural places with or without human beings appearing in them. We use the subset which
contains 50 natural objects not in ImageNet-1k.

Places is a large scene photographs dataset (Zhou et al., 2018), which contains photos that are labeled
with scene semantic categories from three macro-classes: Indoor, Nature, and Urban. The subset we
use contains 50 categories that are not present in ImageNet-1k.

Textures (Describable Textures) (Cimpoi et al., 2013) contains images of textures and abstracted
patterns. As no categories overlap with ImageNet-1k, we use the entire dataset as in (Huang & Li,
2021).

SVHN (Street View House Numbers) (Netzer et al., 2011) includes 10 classes and each represents a
digit from 0 to 9. We use the subset which contains 10,000 samples across all classes.

LSUN (Large-scale Scene UNderstanding) (Yu et al., 2015) contains 10 scene categories, such as
dining room, bedroom, chicken, outdoor church, and so on. We use the subset which contains 10,000
samples not in CIFAR-100.

iSUN (Xu et al., 2015) contains eye tracking ground-truth images derived from the SUN (Xiao et al.,
2010) dataset, and we use the entire set of 8926 samples.

A.2 ADDITIONAL DATASETS USED

In addition to evaluating OOD detection performance, we also introduce the following datasets at
the confidence calibration stage and the generalization assessment stage, respectively. Using the
ImageNet-OOD (Yang et al., 2024a) dataset, we calibrate our OOD scores with respect to semantic
shifts, thereby balancing the model’s sensitivity to both semantic and covariate shifts. The detailed
calibration procedure is described in Appendix C.2. Additionally, we employ the SynIS (Long et al.,
2024) dataset to assess the ability of various OOD scores to capture both types of distributional shifts.

ImageNet-OOD (Yang et al., 2024a) is a dataset designed to evaluate the anomaly degree of OOD
detection methods purely on semantic shifts, comprising 31,807 images from 637 categories selected
directly from ImageNet-21K (Ridnik et al., 2021). It provides a standard test of model performance
under semantic shifts.
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SynIS (Long et al., 2024) consists of 64 subsets, each containing 5,000 images, covering 8 levels of
semantic shift and 8 levels of covariate shift, simulating distribution changes by altering semantic
content and visual features. This dataset provides diverse distribution shift scenarios for the comple-
ment of IS-OOD benchmark, enabling the evaluation of model generalizability under semantic and
covariate variations.

B PRELIMINARIES

Diffusion models (Ho et al., 2020; Song et al., 2022a; Song et al.) are generative frameworks that
learn data distributions through a gradual denoising process, which enable controlled generation by
incorporating external guidance (e.g., class labels, text prompts) during training and sampling.

Given a data sample x0 ∼ q(x0) and a condition y, the forward process gradually corrupts x0 by
adding Gaussian noise over T timesteps. The noised sample xt at timestep t is defined as:

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (9)

where βt ∈ (0, 1) controls the noise schedule. The marginal distribution at timestep t can be expressed
in closed form:

q(xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
, (10)

with αt = 1− βt and ᾱt =
∏t

s=1 αs.

The reverse process learns to iteratively denoise xt while conditioning on y, parameterized by a
neural network ϵθ:

pθ(xt−1|xt,y) = N (xt−1;µθ(xt, t,y),ΣtI) , (11)

where the mean µθ is derived from:

µθ(xt, t,y) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t,y)

)
. (12)

Lastly the sampling procedure with time dependent constants σt follows:

xt−1 = µθ(xt, t,y) + σtz, z ∼ N (0, I). (13)

Logistic calibration. A logistic regression classifier is said to be well-calibrated if its predicted
scores align with the empirical class distribution of the data (Kull et al., 2017). Formally, for a binary
classifier predicts scores s = f(x) ∈ [0, 1], it’s required that the proportion of positive instances
among those assigned score s equals s. Mathematically, this is expressed as:

s = E[Y | f(X) = s], (14)

where X and Y denote the input sample and binary label of a randomly drawn instance from the
dataset. The expectation in equation 14 can be computed empirically as:

E[Y | f(X) = s] =

∑n
j=1 yj · I[f(xj) = s]∑n

j=1 I[f(xj) = s]
, (15)

where I[·] is the indicator function, and n is the total number of instances.

For any fixed classifier f , there exists a unique calibration map µ(s) = E[Y | f(X) = s] that
achieves perfect calibration on the training data. However, such a map risks severe overfitting,
particularly when f assigns unique scores to individual instances. In this case, the calibration map
collapses to µ(si) = yi, resulting in overconfident 0/1 predictions that generalize poorly to unseen
data. Thus, the goal of calibration methods is to learn a generalizable map µ(s) that preserves
ordinality while aligning predictions with empirical frequencies on held-out data.
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C BETA CALIBRATION

C.1 DERIVATION OF BETA CALIBRATION.

We provide a core derivation of the beta calibration method (Kull et al., 2017). The key assumption
is that the classifier’s output scores for each class follow the beta distributions. Therefore, this
distribution function can be used to derive the confidence calibration procedure for sigmoid-based
binary classification.

Class-conditional score distributions. Assume the scores s for positive (Y = 1) and negative
(Y = 0) instances follow beta distributions with parameters (α1,β1) and (α0,β0), respectively:

p(s | Y = 1) =
sα1−1(1− s)β1−1

B(α1, β1)
, (16)

p(s | Y = 0) =
sα0−1(1− s)β0−1

B(α0, β0)
, (17)

where B(·, ·) is the beta function.

Likelihood ratio derivation. The likelihood ratio (LR) between the two classes is:

LR(s) =
p(s | Y = 1)

p(s | Y = 0)
=

sα1−α0(1− s)β0−β1

B(α1, β1)/B(α0, β0)
. (18)

Let a = α1 − α0, b = β0 − β1, and K = B(α1, β1)/B(α0, β0). Reparameterizing K = e−c, the
LR becomes:

LR(s; a, b, c) =
sa

(1− s)b
· ec. (19)

Calibrated probability mapping. The calibrated probability µbeta(s) is derived from the posterior
odds under a uniform class prior:

µbeta(s; a, b, c) =
1

1 + LR(s; a, b, c)−1
=

1

1 + (1−s)b

saec

. (20)

Simplifying yields the beta calibration family:

µbeta(s; a, b, c) =
1

1 + 1
ec· sa

(1−s)b

. (21)

Monotonicity constraints. To ensure the calibration map is non-decreasing, parameters a and b
must satisfy a, b ≥ 0. This preserves the ordinal relationship between classifier scores and calibrated
probabilities.

C.2 DETAILED IMPLEMENTATION OF BETA CALIBRATION.

We provide a detailed description of the beta calibration method for OOD detectors in Algorithm 1.
Specifically, the algorithm takes as input an uncalibrated classifier and calibration datasets, where the
ID validation set is drawn from 10% of the held-out data in ImageNet-100, and the OOD validation
set is constructed from the ImageNet-OOD (Yang et al., 2024a) dataset. The calibration parameters
"abc" are initialized at the beginning of the algorithm. By iterating over both the ID and OOD
validation sets, the algorithm computes the pre-calibration probabilities for each sample and fits the
calibration parameters according to the sample labels. The final output is a classifier calibrated with
beta parameters.
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Algorithm 1 Beta Calibration of OOD Detector
Input: Uncalibrated classifier Fθ, validation ID dataset Din, validation OOD dataset Dout

Output: Calibrated classifier F ′
θ

Initialize Beta calibration parameters a0, b0, c0, empty probability list P = [ ] and label list Y = [ ]
foreach mini-batch (xid, yid), (xood, yood) in Din, Dout do

Compute p=Fθ(concat(xid, xood))
P ← p, Y ← concat(yid, yood)

end
Fit beta calibration: a, b, c← fit(P, Y)
Predict beta calibration: P̂ ←predict(P )
return calibrated model F ′

θ with beta calibration applied

D PARAMETER ANALYSIS ON THE PERTURBATION STEPS t.

The parameter analysis on perturbation steps t during OOD synthesis reveals critical insights into
the trade-offs between detection performance and model robustness. Notably, t = 300 achieves the
optimal balance, while further increasing t to 400 introduces a marginal degradation in FPR95 and
ID ACC, despite a slight AUPR improvement.

Table 4: Analysis on the perturbation steps during OOD synthesis.

t FPR95↓ AUROC↑ AUPR↑ ID ACC↑
200 45.78 90.89 86.87 87.74
300 43.20 91.28 86.87 88.22
400 43.52 90.84 87.06 87.44

E COMPARISON WITH OTHER CALIBRATION STRATEGIES

We conducted a comparison with temperature scaling (Liang et al., 2017) and isotonic regres-
sion (Berta et al., 2024), which are two widely-used calibration techniques. As shown in Table 5, beta
calibration consistently yields better AUROC and FPR@95% results across multiple benchmarks,
demonstrating its superiority in aligning anomaly scores with the underlying uncertainty of generated
OOD data.

Table 5: Comparisons of different calibration strategies with ImageNet-100 as in-distribution data.

Methods iNaturalist Places Sun Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Beta calibration 26.25 95.53 32.29 93.76 34.17 93.48 53.33 86.01 36.51 92.20
Temperature scaling 38.85 92.50 51.04 88.34 55.73 85.56 53.65 89.10 49.82 90.38
Isotonic Regression 41.77 90.26 53.44 86.86 55.94 83.37 54.38 89.31 51.38 88.95

F COMPARISON OF OUTLIER SYNTHESIS METHODS AND MODEL
ARCHITECTURES

In this section, we separately evaluate the impact of outlier embedding generation methods and model
architectures. It is important to note that all experiments in this part are conducted under calibrated
settings. We first introduce Gaussian noise at each denoising step of RDM (Li et al., 2024) for outlier
synthesis and observe that its performance is significantly inferior to that of the minority guidance
approach, indicating that the low-likelihood target provided by minority guidance is more explicit.
Furthermore, we assess our method on both ResNet-101 (He et al., 2016) and T2T-ViT (Yuan et al.,
2021) architectures. Compared to RankFeat (Song et al., 2022b), our results show that the samples
selected after calibration contain more effective boundary information than those based on singular
value.
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Table 6: Comparison of outlier synthesis methods and model architectures.

Outlier Synthesis Architecture FPR95↓ AUROC↑ AUPR↑

Add Gaussion Noise ResNet-34 57.14 87.24 83.89
Minority Guidance ResNet-34 36.51 92.20 87.32

RankFeat (Song et al., 2022b) ResNet-101 36.80 92.15 -
Minority Guidance ResNet-101 35.68 92.28 87.37

RankFeat (Song et al., 2022b) T2T-ViT 51.58 85.60 -
Minority Guidance T2T-ViT 50.21 89.47 84.58

G GENERALIZATION AND ROBUSTNESS ANALYSIS

G.1 GENERALIZABILITY ON SEMANTIC AND COVARIATE SHIFT.

In this section, we provide more evaluation results of the generalizability of different anomaly mea-
surement approaches and the impact of using different OOD synthesizers. First, we comprehensively
present the score performance of more softmax-based methods, distance-based methods, and gradient-
based methods on the SynIS (Long et al., 2024) dataset (see Figure 6). In addition, we also assess the
previously proposed NPOS (Tao et al., 2023) and Dream-OOD (Du et al., 2023) methods (see Figure
7 & 8).

Figure 6: Full results of beta score and other metrics. In each graph, the semantic shift increases
from top to bottom, and the covariate shift increases from left to right. All the scores are rescaled to
range between 0 and 1, and the color red indicates a higher anomaly degree.

Figure 7: Full results of SynIS using NPOS (Tao et al., 2023). In each graph, the semantic shift
increases from top to bottom, and the covariate shift increases from left to right. All the scores are
rescaled to range between 0 and 1, and the color red indicates a higher anomaly degree.
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Figure 8: Full results of SynIS using Dream-OOD (Du et al., 2023). In each graph, the semantic
shift increases from top to bottom, and the covariate shift increases from left to right. All the scores
are rescaled to range between 0 and 1, and the color red indicates a higher anomaly degree.

Specifically, given an input image, the classifier generates a prediction, after which different methods
compute their respective scores. We provide a detailed introduction to each method as follows.

• Maximum Softmax Probability (Hendrycks & Gimpel, 2018) method uses the largest
softmax output of the classifier as the score.

• Temperature Scaling (Liang et al., 2017) method outputs the maximum softmax probability
after temperature calibration.

• ODIN introduces (Liang et al., 2017) input preprocessing to enhance the separation between
ID and OOD samples, and combines this with temperature scaling to produce the highest
softmax score.

• Energy-based (Liu et al., 2020) method replaces the softmax probability with an energy
score, addressing the issue of overconfident softmax predictions.

• Mahalanobis Distance (Lee et al., 2018b) method first learns a class-conditional Gaussian
distribution on the ID data, and then uses the Mahalanobis distance between the OOD input
and the nearest class Gaussian as the anomaly score.

• KNN-OOD (Sun et al., 2022) method computes the K-nearest neighbor distance between
the OOD input and ID samples as the score.

• GradNorm (Huang et al., 2021) optimizes the KL divergence between the softmax output
and a uniform distribution, and uses the norm of the backpropagated gradient vector as the
anomaly score.

G.2 ROBUSTNESS UNDER INTRA-CLASS AND INTER-CLASS VARIABILITY.

While ImageNet-100 and CIFAR-100 already exhibit a reasonable degree of intra-class variability
and inter-class semantic proximity (e.g., fine-grained animal species or visually similar objects), we
believe that evaluating under more challenging settings would further strengthen the validation of our
framework. To this end, we have conducted additional experiments using in-distribution datasets with
increased semantic ambiguity—specifically, 10 manually selected ImageNet-100 classes with high
inter-class similarity, and 10 randomly selected ImageNet-R classes with higher intra-class variability.
As shown in Table 7, our proposed model consistently outperforms baseline methods, indicating its
robustness in these ambiguous scenarios. We believe this robustness stems from RDM’s operation in
the feature space of ID data, where the diversity-aware generation strategy naturally encourages the
synthesis of boundary-sensitive samples, regardless of the inherent class separability.

G.3 ROBUSTNESS UNDER CLASS-IMBALANCED SETTING.

While our main experiments were conducted on balanced datasets, we further examined the effec-
tiveness of the proposed strategy under class-imbalanced setting by randomly removing a varying
number of samples (ranging from 0 to 1200) from each class in ImageNet-100, resulting in a new
imbalanced version of the dataset. As shown in Table 8, our minority guidance strategy still yields
consistent and noticeable improvements over Dream-OOD under these imbalanced conditions. This
empirically suggests that our approach is inherently robust to class imbalance.
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Table 7: Generalization capacity of our RDM for outlier synthesis beyond standard benchmarks.

Settings (In-distribution Data) Ours Dream-OOD
FPR95 (Avg.) AUROC (Avg.) FPR95 (Avg.) AUROC (Avg.)

10 Random classes from ImageNet-100
(stingray, jellyfish, Chihuahua, tiger, grasshopper, zebra, accordion, basketball, castle, lipstick) 66.85 77.41 68.59 76.93

10 Semantic overlap classes from ImageNet-100
(coyote, tabby, leopard, lion, tiger, zebra, hog, ox, impala, mink) 68.62 79.55 78.91 69.40

10 Intra-class variability classes from ImageNet-R
(stingray, jellyfish, Chihuahua, tiger, grasshopper, zebra, accordion, basketball, castle, lipstick) 69.64 75.19 79.66 70.34

Table 8: OOD detection results using the imbalanced version of ImageNet-100 as in-distribution.

Methods iNaturalist Places Sun Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Ours 34.27 87.10 42.15 84.31 48.65 89.03 49.85 85.60 43.88 85.03
Dream-OOD 50.62 82.24 50.31 80.41 59.48 76.37 46.77 78.04 54.30 79.26

H COMPARISON WITH SIMILAR DIFFUSION-BASED METHODS

We conducted additional experiments comparing our method against SONA (Yoon et al., 2025) and
Fake it till you make it (Mirzaei et al., 2022). The results are summarized in Table 9. We can see
that our method achieves better performance in terms of both average FPR95 (37.10) and AUROC
(92.97), compared to SONA (FPR95: 37.46 and AUROC: 91.06) and Fake it till you make it (FPR95
at 71.38 and AUROC at 79.29).

Notably, although SONA also utilizes semantic/nuisance disentanglement, our approach differs in
two key aspects: (i) Instead of relying on architectural constraints for disentanglement, we employ
a classifier-guided calibration that allows flexible and fine-grained control over semantic shift and
harmful perturbations; (ii) Our approach is also computationally more efficient. We conducted
a dedicated comparison of generation and inference times, showing that our method is 3x faster
compared to SONA. This improvement is largely attributed to our use of the lightweight RDM model,
which does not require additional conditioning inputs, in contrast to SONA’s reliance on SD2 (),
whose joint image-text reasoning introduces higher computational overhead.

Table 9: OOD detection results of diffusion-based methods using CIFAR-100 as in-distribution data.

Methods SVHN Places LSUN Textures iSUN Average Inference Time
Per 100 Samples (s)FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Ours 54.90 89.16 68.75 86.04 24.54 94.22 40.21 91.56 1.10 99.72 37.10 92.97 50
SONA 3.10 99.39 44.00 88.35 18.20 96.19 58.90 85.20 63.10 86.17 37.46 91.06 160
Fake it 85.15 77.53 77.05 76.91 56.40 76.31 70.55 80.77 67.75 84.95 71.38 79.29 -

I FINE GRANULARITY EVALUATION ON OPENOOD V1.5

OpenOOD v1.5 (Zhang et al., 2023), as a standardized benchmark in the field of OOD detection,
encompasses a variety of settings with multiple ID and OOD datasets. Among them, we have selected
ImageNet-200 as the ID dataset, together with near-OOD datasets (SSB-hard, NINCO), far-OOD
datasets (iNaturalist, Textures, OpenImage-O), and non-semantic OOD variants (ImageNet-V2,
ImageNet-C, ImageNet-R).

I.1 IMAGENET-200 BENCHMARK.

We applied both our model and SONA on ImageNet-100 to generate outliers, and then evaluated the
resulting classifiers on ImageNet-200 (used as the ID dataset) together with near-OOD and far-OOD
datasets. As shown in Table 10, our method consistently outperforms SONA across all categories,
with more pronounced gains on far-OOD and covariate-shifted ID cases, demonstrating superior
robustness and generalization.

We attribute this improvement to a fundamental difference in design principle: whereas SONA
primarily enhances decision boundaries by training on semantically similar hard negatives, our
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approach focuses on generating diverse and realistic OOD samples in pixel space, thereby improving
classifier resilience to a wider range of distribution shifts.

Table 10: Evaluation of diffusion-based methods on ImageNet-200 benchmark.

Methods Near-OOD AUROC Far-OOD AUROC ID Acc
SSB-hard NINCO Avg iNaturalist Textures OpenImage-O Avg

Ours 61.41 68.80 65.11 83.12 64.85 72.11 73.36 23.92
SONA 59.31 66.77 63.04 79.61 64.09 68.44 70.71 22.28

I.2 IMAGENET-200 FULL-SPECTRUM BENCHMARK.

Additionally, we conducted the evaluation under the full-spectrum setting, which included non-
semantic OOD datasets. As shown in Table 11, our method exhibits more pronounced gains over
Dream-OOD, particularly on far-OOD and non-semantic OOD benchmarks in OpenOOD v1.5,
underscoring our superior robustness under diverse types of distribution shifts. We attribute this
improvement to our method’s ability to generate OOD samples that more faithfully reflect real-world
distributional variations, thereby providing more effective supervision for classifier training.

Table 11: Evaluation of diffusion-based methods on ImageNet-200 full-spectrum benchmark.

Methods Near-OOD AUROC Far-OOD AUROC ID Acc
(Covariate-shifted)SSB-hard NINCO Avg iNaturalist Textures OpenImage-O Avg

Ours 48.50 56.45 52.53 74.36 52.62 60.70 62.30 55.12
Dream-OOD 48.12 56.01 52.06 73.65 50.88 56.80 60.44 51.63

J ADDITIONAL VISUAL RESULTS

J.1 VISUALIZATION OF SYNTHETIC OOD.

In addition to the four categories presented in the main text—broccoli, candle, starfish, and strawberry,
we also include ID images of the jeep category and their corresponding OOD results. Furthermore,
we provide the anomaly score for each image using our proposed method.

Figure 9: ID samples and synthetic OOD of class jeep for detector training. The severity score is
provided in the upper right corner of each figure.

J.2 VISUALIZATION OF OOD SAMPLES AS THREE TYPES.

In addition to the three categories presented in the main text—broccoli, starfish, and strawberry, we
also supplement the OOD synthesis results for the candle and jeep categories, involving three types of
OOD (semantic shift, covariate shift, and the ones with severe semantic and appearance changes). It
should be further noted that for OOD-II and OOD-III, our zero-shot classification results are obtained
based on CLIP. Specifically, we utilize the image encoder and text encoder of CLIP (Radford et al.,
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2021) to compute the cosine similarity between a given image and the textual descriptions of the 1,000
categories in ImageNet-1k, then assigning the category with the highest similarity as the predicted
class.

Figure 10: OOD samples of class candle. For OOD-II and OOD-III, the class predicted by CLIP
(Radford et al., 2021) is demonstrated under each image.

Figure 11: OOD samples of class jeep. For OOD-II and OOD-III, the class predicted by CLIP
(Radford et al., 2021) is demonstrated under each image.

K SOFTWARE AND HARDWARE

We run all experiments with Python 3.8.5 and PyTorch 1.13.1, using six NVIDIA GeForce RTX 3090
GPUs.
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L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the process of writing this paper, we only employed LLMs as tools for polishing writing and
retrieving relevant knowledge (e.g., finding related work).
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