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Abstract
The growing use of machine learning (ML) has
raised concerns that an ML model may reveal pri-
vate information about an individual who has con-
tributed to the training dataset. To prevent leakage
of sensitive data, we consider using differentially-
private (DP), synthetic training data instead of real
training data to train an ML model. A key desir-
able property of synthetic data is its ability to pre-
serve the low-order marginals of the original dis-
tribution. Our main contribution comprises novel
upper and lower bounds on the excess empirical
risk of linear models trained on such synthetic
data, for continuous and Lipschitz loss functions.
We perform extensive experimentation alongside
our theoretical results.

1. Introduction
Machine learning (ML) is extensively utilized at present,
but a major concern is that the trained ML model may reveal
private information about an individual who has contributed
to the training dataset (Fredrikson et al., 2014; Shokri et al.,
2017; Wang et al., 2021). In response, various differentially-
private (DP) machine learning methods, which typically
add noise during the training process, have been proposed
in the literature (Abadi et al., 2016; Bassily et al., 2014a;
Papernot et al., 2016; 2018; Jayaraman et al., 2018; Yu
et al., 2021). We refer to these methods as Training-Based
Differentially-Private Machine Learning (Training-DPML).
In contrast, in this work, we consider using differentially-
private, synthetic training data instead of real training data
to train the machine learning model. By doing so, one au-
tomatically achieves the guarantee that any models trained
on the synthetic data are themselves differentially-private–
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i.e. the weights associated with the trained models do not
leak information about any single individual in the dataset–
without adding any additional noise during training. We
therefore refer to the methods we study in this work as
Preprocessing-Based Differentially-Private Machine Learn-
ing (Pre-DPML).

Pre-DPML techniques are an attractive option as opposed
to Training-DPML techniques for several reasons. First,
Training-DPML algorithms require significant trust since
the original sensitive data must be stored and handled
throughout the training process and can only be discarded
once all training has completed. Second, in Training-DPML
techniques the privacy budget must grow with the total num-
ber of models trained and when the budget is depleted no
further computations may be performed on the data.

In contrast, when Pre-DPML via DP synthetic data gen-
eration is employed, the synthetic data is generated once
and for all and the original sensitive data can be immedi-
ately discarded. Subsequently, one can perform any down-
stream task any number of times without requiring an in-
creased privacy budget. Further, one can safely use any
optimization algorithm out-of-the-box for training on the
synthetic data (e.g. second order methods or built-in Python
optimization algorithms). Given the benefits of the Pre-
DPML approach, our goal is to understand whether it is
information-theoretically possible to generate synthetic data
that achieves differential privacy and yields low excess risk
in ML tasks. To answer this question, we first highlight a
desirable property of DP synthetic data from the literature,
known as marginal-preserving synthetic data. The main
results of this work, which we summarize in Section 1.1,
provide novel upper and lower bounds on the excess empiri-
cal risk when training linear models on real versus marginal-
preserving, synthetic data. To obtain a complete end-to-end
analysis, we prove that DP and marginal-preserving syn-
thetic data is attainable, whereas the marginal-preserving
properties of prior DP mechanisms were heuristic.

Marginal-preserving synthetic data generation. A d-
th order marginal of a distribution is the joint probability
distribution of a subset of d attributes. Similarly, a d-th
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order marginal of a dataset captures all possible statistics of
the dataset for a subset of d attributes. Specifically, given a
dataset, a marginal for a set of d attributes is a vector that
counts the number of occurrences of each combination of
possible values of the attributes in the set.

The goal of synthetic data generation algorithms is to pro-
duce a synthetic dataset that closely matches the statistics of
the original dataset. In marginal-preserving synthetic data
generation, the synthetic data preserves the statistics of a
target set of marginals, as closely as possible.

Marginal-preserving approach for DP synthetic data.
Various marginal-preserving and differentially private syn-
thetic data generation algorithms have been proposed in
the literature, such as PrivBayes(Zhang et al., 2017a),
PrivSyn(Zhang et al., 2021), PrivMRF(Cai et al., 2021),
PEP and GEM (Liu et al., 2021), Private-PGM (McKenna
et al., 2019), and AIM(McKenna et al., 2022). Typically,
the quality of the synthetic data has been measured in terms
of the ability to accurately respond to statistical queries,
even if the queries involve sets of attributes that were not
contained in the target set of marginals. For example, in
prior work, the synthetic data was evaluated by comparing
its marginals with the marginals of the true data for random
triples of attributes, or by examining how well the synthetic
data preserved random high-order conjunctions (McKenna
et al., 2021).

However, to our knowledge, research on the utility error of
downstream tasks trained on synthetic data remains limited.
While (Li et al., 2023)’s work made some initial strides in
analyzing the utility of downstream tasks, it relied on certain
strong assumptions. For instance, they assumed that the
data distribution can be represented as a Bayesian network
with a degree no greater than k, in which case the variation
distance stemming from high-order terms can be omitted.
Alternatively, they were able to remove this assumption, but
in this case the error grows exponentially to the dimension.
In contrast, our bound applies to any data distribution by
using a polynomial approximation of the loss function in
the analysis. This essentially allows us to bound the excess
risk stemming from high-order marginals, without imposing
assumptions on the data distribution. Additionally, they
focused on training ML models with norm-bounded loss
functions and utilized a specific marginal-based mechanism
(PrivBayes). In contrast, our goal is to assess the quality of
ML models trained on any continuous and Lipschitz loss
function, and employs any marginal-based mechanisms.

1.1. Our Contributions

Our paper focuses on investigating the excess empirical risk
(measured w.r.t. the real dataset) of training linear models
on marginal-preserving synthetic data that approximately

preserves the d-th order marginals of the real dataset. We
present both theoretical and experimental results.

In Section 3.1, we upper bound the excess empirical risk,
as long as the low-order marginals of the synthetic data are
sufficiently close to the real marginals. We consider the
setting where the dataset is scaled so that all m-dimensional
datapoints lie in the m-dimensional unit ball and where
we optimize the weights w over the unit ball. In Theorem
3.1 we demonstrate that if the ℓ1 distance of all marginals
up to order d of the real and synthetic data is at most ν,
then for any continuous and O(1)-Lipschitz loss function,
the difference in cost is upper-bounded by O(1/

√
d− 1 +

(3m)d−1ν/n), where n is the number of samples in both
datasets. Additionally, in Theorem 3.2, we show that for
logistic regression specifically, we achieve a tighter upper
bound of O(1/(d− 1) + (3m)d−1ν/n).

In Section 3.2, we give an outline of an information-
theoretic mechanism that generates (ϵ, δ)-differentially
private synthetic data with a bounded ℓ1 difference

of 4md/2ld
√

2 ln(1.25/δ)(ln(2)(1+λ)+d ln(ml))

ϵ except for 2−λ

probability, where l is the maximum domain size of any
attribute. Substituting this bound into ν in the aforemen-
tioned Theorems, implies that as the size of the database n
goes to infinity, the excess empirical risk is dominated by
O( 1√

d−1 ) for general continuous and O(1)-Lipschitz loss
functions, and dominated by O( 1

d−1 ) for logistic regression.
In practice, various efficient DP algorithms can heuristically
preserve the marginals. However, there is a lack of conclu-
sive proof regarding the attainability of a specific ℓ1 bound
for all input datasets. We conduct experiments and report
the average ℓ1 distance, over selected queries, achieved in
practice for multiple datasets in Section 5.5.

In Section 4, we lower bound the excess empirical risk and
demonstrate that for a specific range of parameter choices,
we obtain a nearly tight match to the upper bound: Ω( 1

ln3(n)
)

versus O(
√

ln(ln(n))
ln(n) ). Our lower bound asserts the exis-

tence of a particular data distribution for which no marginal-
preserving synthetic data algorithm, even if inefficient, can
significantly outperform the upper bound. This, however,
does not eliminate the possibility of better performance for
real-life data distributions. Indeed, in Section 5, our experi-
mental results surpass the outcomes predicted by our lower
bound. Exploring reasonable assumptions on data distribu-
tions that allow bypassing the lower bound and obtaining
improved upper bounds is an interesting future direction.

We performed extensive experimentation, and the results
can be found in Section 5. To summarize our findings, we
observed that, when with (2, 1

n2 )-DP, the accuracy of the
model trained on the marginal-preserving, DP synthetic data
drops by less than 1% compared to the real data, and the
excess empirical risk is less than 0.02. The exception is the
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Heart dataset, which exhibits a 2.2% drop in accuracy and
0.032 excess empirical risk, likely due to its considerably
smaller dataset size.

1.2. Related Work

Private stochastic gradient descent (SGD) was first intro-
duced by Song et al. (Song et al., 2013), and was subse-
quently enhanced in (Bassily et al., 2014b) and (Abadi et al.,
2016). DP-SGD modifies stochastic gradient descent by
clipping per-sample gradients for sensitivity control and
by injecting noise to aggregated batch gradients at each
intermediate update. Researchers have explored the appli-
cation of DP-SGD and its variants (Jayaraman et al., 2018)
to various tasks (McMahan et al., 2017; Dupuy et al., 2022;
De et al., 2022; Malekzadeh et al., 2021), and frameworks
such as Distributed/Federated Learning (McMahan et al.,
2017; Adnan et al., 2022; Lyu et al., 2020). In contrast
to DP-GD/DP-SGD, recent studies (Avella-Medina et al.,
2023; Ganesh et al., 2024) suggest introducing noise to the
Hessian of the loss function rather than the gradient. This
technique allows the realization of differentially private op-
timization via second-order methods, which demonstrate
a faster convergence rate than first-order methods such as
gradient descent. Another noteworthy DP-ML method is
Private Aggregation of Teacher Ensembles(or PATE) (Paper-
not et al., 2016; 2018). PATE proposes training an ensemble
of non-private models (teachers), obtaining their predictions
on a small set of unlabeled public data, and central aggregat-
ing predictions with noise. The labeled public data points
are then used to train a student model. It is apparent that
deploying PATE would consume computational overhead
for training multiple teacher models in order to train a sin-
gle student model. Moreover, it crucially presupposes the
availability of public, unlabeled data.

2. Notation and Background
We use [n] to denote {1, 2, . . . , n} and boldface variable to
represent a vector, e.g., v and h. Moreover, we use v[i] to
denote the ith entry of the vector, and v[q] = (v[j])j∈q to
denote the subvectors containing entries in set q.

2.1. Data and Marginals

Data. A dataset D is a multiset of n samples, each can be
represented as v = (x, y) ∈ V , where x = (x1, . . . , xm) is
a vector of m features and y is the corresponding label/class
for the sample. For convenience, we may also refer to y as
the (m + 1)th feature. For j ∈ [m + 1], let Ωj denote the
domain of possible values for jth feature and l = maxj |Ωj |.
Also, we set y ∈ {−1, 1}. Finally, let q ⊆ [m + 1] be a
subset of attributes, and Ωq = Πj∈qΩj .

Definition 2.1 (Marginal of Dataset). The marginal of

dataset D on a subset of attributes q is a vector hq ∈ R|Ωq|,
indexed by domain element t ∈ Ωq, such that each en-
try is a count, i.e., hq[t] =

∑
v∈D I[v[q] = t]. We let

Mq : V n → R|Ωq| denote the function that computes the
marginal on q, i.e., hq = Mq(D).

Given that a marginal is specified by an attribute set q, we
also refer to q as a marginal query. Moreover, for d ≤
m+ 1, let Qm

≤d consist of all q ⊆ [m+ 1] with size at most
d. Furthermore, we say a set of marginals {hq}q∈Qm

≤d
is

consistent, if there exists a dataset D, such that Mq(D) =
hq for all q ∈ Qm

≤d.

2.2. Learning Linear Models with a Convex Loss

We consider learning linear models for binary classi-
fication. Specifically, let L(w, D) be the empirical
risk of dataset D on model w defined as L(w, D) ≜
1
n

∑
(x,y)∈D φ(⟨w,x⟩y)), where φ(⟨w,x⟩y)) : R → R

is the loss of linear model w for sample (x, y). Throughout
the paper, we consider φ that is convex and Lipschitz.

Logistic Regression Logistic regression is a prominent
representative model in learning linear models. We de-
note its empirical risk of dataset D on model w as
L̂(w, D) ≜ 1

n

∑
(x,y)∈D φ̂(⟨w,x⟩y), where φ̂(⟨w,x⟩y) =

− ln
(

1
1+e−⟨w,x⟩y

)
.

2.3. Polynomial Approximation

Our proof of the upper bound relies on the technique of
approximating the loss function with a bounded degree poly-
nomial. Specifically, we consider the Bernstein polynomial
(Bernstein, 1912; Roulier, 1970; Guan, 2009), which pro-
vides a theoretic analysis of its approximation error and the
absolute values of its coefficients.

Definition 2.2 (Bernstein Polynomial Approximation). Let
f be a function on [a, b], the Bernstein polynomial approxi-
mation of degree d is defined as

Pdf(x) =

d∑
i=0

f

(
i

d
· (b− a) + a

)
·Bdi(x), a ≤ x ≤ b,

where Bdi(x) =
(
d
i

)
·
(

x−a
b−a

)i
·
(
1− x−a

b−a

)d−i
.

Let ∥f∥ = maxa≤x≤b |f(x)| denote the maximum abso-
lute value when the function takes value from [a, b]. We
utilize the following two error upper-bound of Bernstein
polynomial approximations.

Theorem 2.3 ((Roulier, 1970), Th. 1 and (Popoviciu, 1935),
Th. 1.6.1). Suppose a ≤ 0 < 1 ≤ b, and f is a continuous

3



Bounding the Excess Risk for Linear Models Trained on Marginal-Preserving, Differentially-Private, Synthetic Data

function on [a, b], for d = 1, 2, ...,

∥Pdf − f∥ ≤ 5

4
ω

(
f,

b− a√
d

)
, (1)

where ω is the modulus of continuity of f on [a, b]. Addi-
tionally, let Pdf(x) =

∑d
k=0 adkx

k, then for d = 1, 2, ...,

d∑
k=0

|adk| ≤ ∥f∥
(
1 +

2

b− a

)d

. (2)

Theorem 2.4 ((Telyakovskii, 2009)). Suppose f is a func-
tion on [0, 1] with a continuous first-order derivative. For
d = 1, 2, . . . ,

∥Pdf − f∥ ≤ 3

4
√
d
ω

(
f ′,

1√
d

)
,

where ω is the modulus of continuity of f ′, which is the first
derivative of f .

2.4. Differential Privacy

Differential privacy(Dwork et al., 2006) has emerged as
the prevailing standard for managing the privacy risk to
an individual associated with publicly sharing information
about a dataset. We present the formal definition next.
Definition 2.5 ((ϵ, δ)-Differential Privacy). A randomized
mechanismM : D → R satisfies (ϵ, δ)-differential privacy
if for any two adjacent inputs x, x′ ∈ D and for any sub-
set of outputs S ⊆ R it holds that Pr[M(x) ∈ S] ≤
eϵPr[M(x′) ∈ S] + δ.

The Gaussian Mechanism (Dwork & Roth, 2014) adds
random noise drawn from a Gaussian distribution to a query
output, where the standard deviation of the noise is propor-
tional to the sensitivity of the query.
Theorem 2.6 (Gaussian Mechanism). Let ϵ ∈ (0, 1) and f :
D → Rd, be an arbitrary d-dimensional function. Define
its l2 sensitivity to be ∆2(f) = maxx,x′ ∥f(x)− f(x′)∥2,
where x, x′ are any adjacent inputs in D. Let σ2 =
2∆2(f)

2 log (1.25/δ)
ϵ2 . The Gaussian mechanism that adds

noises sampled from N (0, σ2) to each of the d components
of f ’s output is (ϵ, δ)-differential privacy.

Differential privacy is immune to post-processing (Dwork
& Roth, 2014): further computation on differentially private
output will not further degrade the privacy guarantee.
Theorem 2.7 (Post-Processing). LetM : D → R be a ran-
domized algorithm that is (ϵ, δ)-differentially private. Let
f : R → R′ be arbitrary randomized mapping. Then f ◦M
is (ϵ, δ)-differentially private.

3. Upper Bound on the Excess Empirical Risk
We present our upper bound on the excess empirical risk for
learning linear models with continuous and Lipschitz losses

using synthetic data. In Section 3.1, we utilize the polyno-
mial approximation techniques to show that the risk differ-
ence between the models trained from real and synthetic
datasets can be bounded using the ℓ1 norm of marginal dif-
ference between real and synthetic datasets. In Section 3.2,
we present an information-theoretic mechanism for generat-
ing synthetic data that is provably both marginal-preserving
and DP, and we extend our theorems from Section 3.1 to
demonstrate a trade-off between privacy and loss.

Throughout this section, we let Dr be the real dataset and
Ds be the synthetic dataset. We assume the datasets are
normalized, i.e., for all (x, y) ∈ Dr, Ds and for all j ∈ [m],
x[j] ∈ [−1, 1]. On the other hand, the label y takes value
from {−1, 1}, and we may also refer to y as the (m+ 1)th

attribute. Given a set q ∈ [m+ 1], let h(r)
q and h

(s)
q denote

the marginals of the real and synthetic datasets on q, i.e.,
h
(r)
q = Mq(Dr) and h

(s)
q = Mq(Ds). Let Qm

≤d be the set
of all subsets of attributes (including label) with size no
more than d.

3.1. Bounding the Risk via Bounded Marginals’
ℓ1-Distance

We begin by presenting a generic result, assuming only the
loss function is continuous and Lipschitz.

Theorem 3.1. Let L(w, D) =
∑

(x,y)∈D
1
nφ(⟨w,x⟩y)

such that φ is continuous and K-Lipschitz. Let
wr = argminw,∥w∥≤τL(w, Dr) and ws =
argminw,∥w∥≤τL(w, Ds). If for all q ∈ Qm

≤d,

∥h(r)
q − h

(s)
q ∥1 ≤ ν, then

|L(ws, Dr)− L(wr, Dr)| ∈ O

(
K · τ

√
m/(d− 1)

+
1

n
· (Kτ

√
m+ φ(0)) · (3m ·max{1, τ})d−1ν

)

Note that each sample in the dataset, x, lies in the m-
dimensional ball of radius

√
m. If we set τ = 1√

m
, we can

view the optimization problem as consisting of datapoints
contained in the m-dimensional unit ball and optimizing
over linear models, w, contained in the m-dimensional unit
ball. Thus, setting τ = 1√

m
and K = O(1), the above

implies that as the size of the database n goes to infinity,
the excess empirical risk of the optimization problem is
dominated by O( 1√

d−1 ).

Our proof relies on the two generic upper bounds for any
w such that∥w∥2 ≤ τ . First, we construct an approxi-
mated empirical risk function L′ through replacing the loss
function φ with its degree d− 1 Bernstein polynomial ap-
proximation Pd−1φ. Then, we argue L′(w, D) ≈ L(w, D)
by invoking results on the maximum error in Bernstein poly-
nomial approximation given in Theorem 2.3.
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Second, we bound the difference in empirical risk
|L′(w, Ds) − L′(w, Dr)| between the real and synthetic
datasets on any linear model w, by using the approxi-
mately marginal-preserving property of the synthetic dataset.
Specifically, Pd−1φ(⟨w,x⟩y) can be expanded to a multi-
variate polynomial, where each monomial contains at most
d variables in (x, y). Next, we can upper bound the risk
L′, which is the average of this multivariate polynomial
evaluated on each data sample, by a sum of the averages of
individual monomials evaluated on each data sample. Then,
this allows us to associate each average monomial with the
marginal correponding to the set of attributes appearing in
this monomial. Further, this average monomial value is fully
determined given the corresponding marginal. Finally, we
can apply the ℓ1 norm bound between the marginals of the
real and synthetic datasets to bound the difference of each
average monomial.

By applying the above bounds on different linear models in a
sequence of inequalities, we arrive at the theorem statement.
We provide the formal proof in Appendix A.1.

Next, we give a tighter bound for logistic regression. Our
theorem can also extend to any loss function whose first
derivative is continuous.
Theorem 3.2. Let L̂(w, D) = 1

n

∑
(x,y)∈D φ̂(⟨w,x⟩y).

Let wr = argminw,∥w∥≤τ L̂(w, Dr) and ws =

argminw,∥w∥≤τ L̂(w, Ds). If for all q ∈ Qm
≤d, ∥h(r)

q −
h
(s)
q ∥1 ≤ ν, then

|L̂(ws, Dr)− L̂(wr, Dr)|

∈O
(
τ
√
m/(d− 1) +

1

n
· τ
√
m · (2m ·max{1, τ})d−1ν}

)
.

Setting τ = 1√
m

, the above implies that as the size of
the database n goes to infinity, the excess empirical risk is
dominated by O( 1

d−1 ) for logistic regression.

We provide the formal proof in Appendix A.2, wherein the
primary difference is we apply a tighter Bernstein polyno-
mial approximation bound from Theorem 2.4.

Polynomial Approximation Error The term τ
√
m/(d−1)

in the bound in Theorem 3.2 comes from the error of the
degree-(d − 1) Bernstein polynomial approximating the
log(sigmoid(·)) function on the interval [−τ ·

√
m, τ ·

√
m].

For a fixed degree d, the Bernstein polynomial approxi-
mation may not yield the best error. Replacing it with an
approximation with better error immediately leads to an im-
provement in the upper bound. We therefore investigate two
alternative methods for polynomial approximation, namely
the minimax approximation (Davis, 1975) and an “iterated”
Bernstein approximation (Bernstein, 1912; Roulier, 1970;
Guan, 2009). Refer to Figure 1 below for examples illustrat-
ing the quality of the approximations of the log(sigmoid(x))

(a) Minimax Approximation (b) Bernstein Approximation

Figure 1. (a) shows Minimax approximation for log(sigmoid(x))
function within interval [−5, 5] in 4-degree polynomial:
log(sigmoid(x))minimax ≈ 0.71−0.5x+0.1096x2−0.0015x4,
with an error of 0.061. (b) shows the iterated Bernstein
Approximations for log(sigmoid(x)) function within interval
[−5, 5] in 4-degree polynomial by iterate Bernstein approxima-
tion for 1 time, 4 times, and 9 times: log(sigmoid(x))Bern1 ≈
1.2377 − 0.5x + 0.0544x2 − 0.0001x4, with an error of 0.545;
log(sigmoid(x))Bern4 ≈ 0.7934−0.5x+0.0812x2−0.0005x4,
with an error of 0.100; log(sigmoid(x))Bern9 ≈ 0.7504− 0.5x+
0.0931x2 − 0.0009x4, with an error of 0.057.

function by 4-degree polynomial functions obtained by us-
ing the minimax and iterated Bernstein approximations.

Through observations, three significant findings emerge.
Firstly, the approximation error reduces while the polyno-
mial degree increases for both approximation methods. Sec-
ondly, the error reduces with each successive iteration of the
Bernstein approximation. Thirdly, the 9th-iterated Bernstein
polynomial approximation slightly outperforms the mini-
max polynomial approximation in our experimental results.
Nevertheless, we opt for Bernstein Approximation in our
subsequent analysis, which provides a theoretic analysis of
its approximation error and the absolute values of its coeffi-
cients. However, any polynomial approximation method can
be used interchangeably in practical applications or in our
analysis without losing generality by simply switching its
approximation error bound according to the approximation
method would be employed.

3.2. DP and marginal-preserving synthetic data

We present a DP synthetic data generating mechanism that
preserves ℓ1 norm of all marginals with order no more than
d (with overwhelming probability), and analyze the end-to-
end privacy and utility trade-off.

The differential privacy guarantee of Mechanism 1 follows
directly from Theorem 2.6 and Theorem 2.7.

Lemma 3.3. Gend,σ is (ϵ, δ)-DP, if ϵ ∈ (0, 1) and σ =
2md/2

√
ln(1.25/δ)

ϵ .

We provide the formal proof in Appendix A.3.
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Mechanism 1 Generating Synthetic Data Gend,σ

Input: Real dataset Dr, number of samples n
Output: Synthetic Dataset Ds

Measure Noise Marginals Mea(Dr):
for q ∈ Qm

≤d do
Measuring marginal: h(r)

q = Mq(Dr);
Add noise: ĥq ← h

(r)
q +N (0, σ);

end for
Generate synthetic data Syn(n, {ĥq}q∈Qm

≤d
):

(Brute Force) Find Ds that minimizes the maximum ℓ1
difference with respect to marginals in {ĥq}q∈Qm

≤d
, i.e,

Ds = argminD maxq∈Qm
≤d
∥ĥq −Mq(D)∥1.

Next, we bound the ℓ1 difference between noisy and real
marginals using Chernoff bound.

Lemma 3.4. Let Ds ← Gend,σ . Then ∥h(r)
q −Mq(Ds)∥1 ≤

2ld
√
2(ln(2)(1 + λ) + d ln(ml))σ for all q ∈ Qm

≤d with
1− 2−λ probability.

We provide the formal proof in Appendix A.4.

Using Lemmas 3.3 and 3.4 allows us to represent the
marginal difference ν in previous Theorems 3.1 and 3.2
with the expression containing the privacy parameters. In
particular, it yields the following corollaries.
Corollary 3.5. Let L(w; (x, y)) = φ(⟨w,x⟩y) such
that φ is continuous and K-Lipschitz. Let Ds ←
Gend,σ(Dr), where σ =

2md/2
√

ln(1.25/δ)

ϵ and ϵ ∈
(0, 1). Then Ds satisfies (ϵ, δ)-DP. Additionally,
let wr = argminw,∥w∥≤τL(w, Dr) and ws =
argminw,∥w∥≤τL(w, Ds). Then

|L(ws, Dr)− L(wr, Dr)| ∈ O
(
K · τ

√
m/(d− 1)

+
1

n
· (Kτ

√
m+ φ(0)) · (3m ·max{1, τ})d−1

·2ld
√

2(ln(2)(1 + λ) + d ln(ml)) · σ
)
,

except with 2−λ probability.
Corollary 3.6. Let Ds ← Gend,σ(Dr), where σ =
2md/2

√
ln(1.25/δ)

ϵ and ϵ ∈ (0, 1). Then Ds satisfies (ϵ, δ)-
DP. Additionally, let wr = argminw,∥w∥≤τ L̂(w, Dr) and
ws = argminw,∥w∥≤τ L̂(w, Ds). Then

|L̂(ws, Dr)− L̂(wr, Dr)| ∈ O

(
τ
√
m/(d− 1)

+
1

n
· τ
√
m · (3m ·max{1, τ})d−1

·2ld
√
2(ln(2)(1 + λ) + d ln(ml)) · σ

)
,

except with 2−λ probability.

As in the previous section, setting τ = 1√
m

and K = O(1),
the above corollaries imply that as the size of the database
n goes to infinity, the excess empirical risk is dominated
by O( 1√

d−1 ) for general continuous and K-Lipschitz loss
functions, and dominated by O( 1

d−1 ) for logistic regression.

4. Lower Bound on the Excess Empirical Risk
We next present a theorem that shows that our upper bound
in the previous section is nearly tight for certain ranges
of parameter settings. Specifically, we show that there ex-
ists a distribution over datasets Dr, a convex, 2-Lipschitz
cost function L, and a range of parameter settings for
n,m, d, τ such that Theorem 3.1 implies the existence of
a synthetic data generation algorithm with excess risk at

most O
(√

ln(ln(n))
ln(n)

)
+O

(
ln(n)
n1/4

)
. On the other hand, we

show that for any synthetic data generation algorithm Syn

(of a particular form), the excess risk is at least Ω
(

1
ln3(n)

)
.

Thus, both the upper and lower bounds on the difference in
loss are fixed polynomials in 1

ln(n) , where n is the size of
the dataset. Although existing differentially private convex
optimization methods such as gradient perturbation(Bassily
et al., 2014a; Yu et al., 2021), output perturbation(Zhang
et al., 2017b), and objective perturbation (Chaudhuri et al.,
2011) demonstrate an error of O(1/n) or less, it is crucial
to highlight the primary advantages of synthetic data: the
ability to execute numerous downstream tasks without com-
promising the privacy guarantee, along with the flexibility to
employ any non-private learning algorithm out-of-the-box.

Our lower bound captures synthetic data generation algo-
rithms that obtain noisy marginals as input and then use an
arbitrary (potentially computationally unbounded), random-
ized algorithm to construct a synthetic dataset from these
noisy marginals. The synthetic data generation algorithms
that we consider may not make any assumption about the dis-
tribution of the inputted noisy marginals, other than the fact
that each noisy marginal is close (within some tolerance) to
the true expectation of the data distribution. Our matching
upper bound holds for synthetic data generation of this form,
since Theorem 3.1 does not make any distributional assump-
tion on h

(s)
q but only requires that ∥h(s)

q − h
(r)
q ∥1 ≤ ν.

Before presenting our Theorem and proof, we begin with
some notation. For a vector v = (v[j])j∈q, let n · v =
(n · v[j])j∈q. Let Dm be a distribution over (x, y), where
input x ∈ {−1, 1}m and label y ∈ {−1, 1}. In our writeup,
we treat (x, y) as a single vector where the last entry is y.
We say that a set of vectors {uq}q∈Qm

≤d
has tolerance tol

relative to distributionDm if ∀q ∈ Qm
≤d, ∀t ∈ Ωq , ∥uq(t)−

E(x,y)∼Dm
[I[(x, y)[q] = t]]∥∞ ≤ tol, where I[(x, y)[q] =

t] is the indicator variable set to 1 if (x, y)[q] = t and
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set to 0 otherwise. Let Syn be a synthetic data generation
algorithm that receives as input n ∈ N and a set of vectors
{n · uq}q∈Qm

≤d
and uses it in an arbitrary way to output a

synthetic database Ds of size n with marginals {hs
q}q∈Qm

≤d
.

Theorem 4.1. For sufficiently large n, m = m(n) =

O(ln6(n)) and d = d(n) = O( ln(n)
ln ln(n) ), there exists a cost

function L(w, D) := 1
n

∑
(x,y)∈D φ(⟨w,x⟩ · y) with φ be-

ing 1
ln3(n)

-strongly convex and 2-Lipschitz, for which the
following hold:

• There exists a deterministic algorithm Syn such that for
all distributionsDm and all sets of vectors {uq}q∈Qm

≤d

with tolerance tol = 1
n relative to Dm, with all but

negligible probability over Dr ∼ Dn
m,

|L(wr, Dr)− L(ws, Dr)|

∈ O

(√
ln(ln(n))

ln(n)

)
+O

(
ln(n)

n1/4

)
,

• For every randomized algorithm Syn, there exists a
distribution Dm and a set of vectors {uq}q∈Qm

≤d
with

tolerance tol = 1
n relative to Dm, such that with all

but negligible probability over Dr ∼ Dn
m,∣∣∣L(wr, Dr)− EDs←Syn(n,{n·uq}q∈Qm

≤d
)[L(ws, Dr)]

∣∣∣
∈ Ω

(
1

ln3(n)

)
,

where ws = argminwL(w, Ds), and wr =
argminwL(w, Dr).

Our main insight to achieve the above result is that for any
{uq}q∈Qm

≤d
with tolerance tol = 1

n , and any algorithm Syn,
e.g., the subroutine used in Mechanism 1, the Algorithm 2
can be viewed as a non-adaptive statistical query learning
algorithm that makes

∑
q∈Qm

≤d
|Ωq| ≤ md · 2d number of

statistical queries.

Algorithm 2 A non-adaptive statistical query algorithm.
Let {uq}q∈Qm

≤d
represent the responses of a statistical

query oracle on the non-adaptive queries t ∈ Ωq, for
every q ∈ Qm

≤d;
Set Ds ← Syn(n, {n · uq}q∈Qm

≤d
);

Output ws = argminwL(w, Ds);

We can then invoke known lower bounds on the number of
queries needed by non-adaptive statistical query algorithms
to learn linear separators with statistical queries of a certain
tolerance (Dagan & Feldman, 2020). Their Theorem 5 holds
even for large-margin linear separators, where the target

Table 1. Summary of datasets used in experiments

Dataset Size #Dim Dataset Size #Dim

Adult 48,842 14 Compas 7,214 9
Churn 3,859 16 Heart 303 14
Law 20,798 12 Dutch 60,420 12

concept class consists of linear separators w such that for
every (x, y) in the support of D, ⟨x,w⟩y|x|·|w| ≥ γ. As we will
see later, this large-margin will allow us to convert the lower
bound given in Theorem B.3 which shows a gap in accuracy,
to a result which shows a gap in cost (for cost function LDr

)
between the optimal linear separator and the linear separator
outputted by the non-adaptive statistical query algorithm.
We provide the formal proof of Theorem 4.1 in Appendix B.

5. Experimental Evaluation
We conducted experiments 1 to evaluate the performance
of DP and marginal-preserving synthetic data generation
on six public datasets. We select AIM (McKenna et al.,
2022), the typical and notable mechanism from among the
marginal-preserving methods, to generate the DP synthetic
data. The assessment utilizes the “Train on Synthetic, Test
on Real" (TSTR) approach (Esteban et al., 2017), where we
train the real-data-model and synthetic-data-model (using
the scikit-learn’s(Pedregosa et al., 2011) library of logistic
regression with the LBFGS solver), and evaluate both mod-
els on the real test data. Furthermore, we employ two other
widely recognized DPML methods, DP-SGD (Abadi et al.,
2016) and PATE learning (Papernot et al., 2016), for com-
parison with our proposed marginal-preserving synthetic
data training.

5.1. Dataset

For our experimental evaluation, we utilized six datasets
along with data preprocessing: Adult(Becker & Ko-
havi, 1996), Compas(Angwin et al., 2016), Churn(chu,
2020), Dutch(Centraal Bureau voor de Statistiek , CBS),
Law(Wightman, 1998) and Heart(Janosi et al., 1988), refer
to the Table 1 for an overview of the datasets.

5.2. Synthetic Data Generation

Marginal-based approaches are the state-of-art method for
preserving key statistical properties of the ground truth data
to generate synthetic data with DP guarantees. In our experi-
ments, we examined its performance in DP-ML setting. The

1Our experiments code and datasets are available at https:
//github.com/DPML-syn/MarginalPreserving_
DP_SyntheticData
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marginal-based approaches all align with select-measure-
generate framework, which, at a high level, can be divided
into three steps: (1) Select sets of attributes, referred to
as marginal queries, each containing at most d attributes;
(2) Using the real dataset, compute the marginal for each
selected query, with injected noise; (3) Generate synthetic
data that matches the noisy marginals as closely as possible.
We opt for one of the leading marginal-based mechanisms,
AIM (McKenna et al., 2022), to validate the effectiveness
of marginal preserving synthetic data. AIM is built using
the core component Private-PGM (McKenna et al., 2019),
wherein, Private-PGM operates for steps 2 and 3 in the
framework. Additionally, AIM incorporates a greedily and
iteratively algorithm to fulfill step 1. We defer a more de-
tailed discussion of Private-PGM, AIM to Appendix C.

5.3. Data Preprocessing

The raw data we use to generate synthetic data may present
various challenges, including missing values or containing
continuous values that require conversion to discrete num-
bers. Therefore, we executed a series of data preprocessing
before inputting it to the synthetic data generation mecha-
nism: (1). Cleaning noisy data, by e.g. deleting data samples
that contained missing values. (2). Converting categorical
variables like gender and nationality into numerical values,
to make them suitable for machine learning algorithms. (3).
Converting continuous variables, such as income, into dis-
crete values, while preserving the original ascending order
of values. The quantization method employed here is a sim-
ple bucketing approach. More sophisticated quantization
methods, such as those discussed in Gersho et al. (Gersho &
Gray, 1992), could lead to improved handling of continuous
data. (4). Feature scaling, to scale numeric features to a
standard range starting from 0.

We highlight that these pre-processing steps applied to the
real data do not compromise the privacy guarantee of the out-
putted synthetic data, since the data-preprocessing steps do
not impact the sensitivity of the marginals, which determines
the amount of noise added. Leveraging the post-processing
theorem 2.7, we can safely perform any supplementary data-
preprocessing steps, e.g. data normalization, before engag-
ing on subsequent ML training. This augments the model’s
training effectiveness without degrading its privacy.

5.4. Evaluation Metrics

We evaluate the performance of our approach using metrics
of accuracy and ROC-AUC score, as they are commonly
used and provide a comprehensive evaluation of classifica-
tion performance. Accuracy measures the proportion of cor-
rectly classified samples, while ROC-AUC score indicates
how well the classifier discriminates between the positive
and negative classes. Additionally, we also compare the

empirical risk from both models on real testing data.

To gain better insight of marginal-preserving synthetic data,
we conducted comparative experiments: We generate syn-
thetic data for six(6) dataset with each eight(8) DP parame-
ters, ϵ. We compared the performance of trained ML model
in these synthetic data across with different ϵ. Furthermore,
as a supplementary investigation, we conducted two addi-
tional experiments: (1). We compare marginal-preserving
synthetic data approach with current predominant Training-
DPML approaches: PATE learning and DP-SGD (refer to
Appendix D.2 for details). (2) We demonstrated the model-
agnostic advantage of AIM’s synthetic data by evaluating
its synthetic data on training in two classifiers with distinct
target labels. AIM proves to be effective without requiring
prior knowledge of which features specifically correspond
to the downstream classification task, and consistently main-
tains its performance across diverse classifiers (see in Ap-
pendix D.3). This is desirable in the synthetic data setting,
since the goal is to generate synthetic data once, and subse-
quently train many models on the same synthetic data.

5.5. Results

We assessed the generated synthetic datasets on (1) how
well they preserved the marginals and (2) the performance
of ML model training on the synthetic data. We utilize
the normalized-ℓ1 errors to evaluate the effectiveness of
marginals preservation for different synthetic datasets gen-
erated. Here, the normalized-ℓ1 error for a marginal query

q ∈ Qm
≤d, is defined as

||h(r)
q −h

(s)
q ||1

n , where h
(r)
q and h

(s)
q

denote the marginals of the real and synthetic datasets on q,
and n is the size of the real dataset. AIM mechanism reports
an average normalized-ℓ1 error over all selected marginal
queries, with the assertion that these errors serve as upper
bounds for the maximum error across all marginals with at
most d attributes, (including both selected and non-selected
ones.) This assertion is substantiated by Theorem C.3. In
our experiment, we set d = 4. The computed normalized-
ℓ1 errors are shown in Figure 2. It is easy to see that the
higher the privacy budget, the less noise added into marginal
measurements and so the smaller the normalized-ℓ1 error in
synthetic data.

In Figure 3 (see full results in Appendix D.1 Table 2,) we
present our empirical results on the performance of ML
models that are trained using marginal preserving synthetic
datasets. The results show that the models acquired from
training on the synthetic datasets with higher privacy budget
exhibit higher accuracy, and lower excess empirical risk. In
conjunction, we note that higher privacy budget enables us
to achieve smaller ℓ1 error synthetic data, leading to better
synthetic data performance on ML training. Moreover, we
observe that among all synthetic datasets, the Heart dataset
has the lowest accuracy, which can likely be attributed to its
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Figure 2. We compare the L1 error of synthetic data using AIM
mechanism for all six(6) datasets with different privacy budget.

relatively small sample size. Other than the Heart dataset,
the accuracy of the models trained on the synthetic datasets,
for ϵ = 2, drops by less than 1% compared to the real data,
and the excess empirical risk is less than 0.02.

6. Conclusions and Future Work
In our study, we give both upper and lower bounds for the
excess empirical risk (measured w.r.t. the real dataset) of
training linear models on marginal-preserving synthetic data.
Also, we show that for specific ranges of parameter choices,
there exists a data distribution such that our upper and lower
bounds are nearly tight (both are 1/polylog(n)). Moreover,
we give an end-to-end privacy and excess empirical risk
analysis for a synthetic data generation mechanism that pre-
serves all d-th order marginals. Finally, we supplement our
theoretic results with extensive experiments using the AIM
mechanism (McKenna et al., 2022) to heuristically gener-
ate marginal-preserving synthetic datasets for multiple real
datasets. Our experiments show that the resulting models,
with ϵ = 2, reduce the accuracy by at most 2.2%, compared
to that of the (non-private) real models.

Moving forward, we believe the following directions are
interesting to consider: (1). Given that our experiments
on real-world datasets perform significantly better than the
lower bound for the worst-case data distribution, it is inter-
esting to explore assumptions on the data distribution that
are consistent with the real-world datasets, and which may
allow bypassing the lower bound. (2) It will be interesting to
extend our techniques to non-linear models, such as decision
trees, SVM, KNN, and neural networks, etc. (3) Finally,
it will be interesting to broaden our approach to handle
data with continuous attributes, or with discrete attributes
but very large cardinality. In both cases, the marginals are
harder/costlier (in terms of privacy) to preserve, and it may
be necessary to develop novel proof techniques.
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This paper presents work whose goal is to advance the pro-
tection of an individual’s privacy in Machine Learning (ML)
applications. Ensuring privacy is a societal concern, and is
especially crucial in the ML setting where large amounts of
potentially sensitive data are required for training. Further-
more, we believe that the particular methodology put forth
in this work–in which differentially private (DP) synthetic
data is generated for training—allows for equitable access
to training data, in comparison to standard Training-DPML
techniques. Specifically, the DP synthetic data can be re-
leased publicly once generated. Further, any out-of-the box
optimization algorithm can be run on the data, in contrast to
Training-DP algorithms, which require specialized knowl-
edge to properly set the parameters and to run the modified
algorithms. Finally, our experiments were performed solely
on publicly available data, and we anticipate no potential
misuse of the outcomes derived from our research.
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A. Proofs in Section 3
A.1. Proof of Theorem 3.1

Proof. Our proof relies on the following empirical risk function L′ that approximates L:

L′(w, D) =
1

n

∑
(x,y)∈D

Pd−1φ(⟨w,x⟩y),

where Pd−1φ is the degree-(d− 1) Bernstein polynomial to approximate φ within the interval [−τ
√
m, τ
√
m] (or [−1,−1]

if τ
√
m < 1).

Lemma A.1. For any normalized dataset D and any w such that ∥w∥2 ≤ τ ,

|L′(w, D)− L(w, D)| ∈ O(K · τ
√
m/(d− 1)).

Proof. It suffices to show that for any (x, y) ∈ D, |Pd−1φ(⟨w,x⟩y)− φ(⟨w,x⟩y)| ∈ O(K · τ
√

m/(d− 1)).

First, we have |⟨w,x⟩y| ≤ ∥w∥2∥x∥2 ≤ τ
√
m, where the first inequality follows from Cauchy–Schwarz inequality and

y ∈ {−1, 1}, and the second inequality follows from ∥w∥2 ≤ τ .

Next, using the approximation error of Bernstein polynomial (Theorem 2.3, Eq. 1 ), we have the maximum er-
ror |Pd−1φ(⟨w,x⟩y) − φ(⟨w,x⟩y)| ∈ O(ω(φ, τ

√
m√

d−1 )) for any ⟨w,x⟩y ∈ [−τ
√
m, τ
√
m]. As φ is K-Lipschitz,

ω(φ, τ
√
m√

d−1 ) ≤ K · τ
√
m√

d−1 .

Next, we bound the empirical risk difference using L′ between the real and synthetic datasets on any w.

Lemma A.2. For any w such that ∥w∥2 ≤ τ , and any datasets Dr and Ds such that for all q ∈ Qm
≤d, ∥h(r)

q − h
(s)
q ∥1 ≤ ν,

we have

|L′(w, Dr)− L′(w, Ds)|

∈O
(
1

n
· (Kτ

√
m+ φ(0)) · (3m ·max{1, τ})d−1ν

)
.

Proof. We start by expressing the L′ of dataset D on w using D’s marginals with order no more than d:

L′(w, D) =
1

n

∑
(x,y)∈D

Pd−1φ(⟨w,x⟩y)

=
1

n

∑
(x,y)∈D

d−1∑
k=0

ak(⟨w,x⟩y)k

=
1

n

∑
(x,y)∈D

d−1∑
k=0

ak
∑

u∈[m]k

∏
u∈u

(w[u] · x[u] · y)

=
1

n

d−1∑
k=0

ak
∑

u∈[m]k

∑
t∈Ωq,q=S(u)∪{m+1}

hq(t)
∏
u∈u

(w[u] · t[u] · t[m+ 1]),

where S(u) returns a set containing unique elements in u and the entries of t is indexed by the set q.

The above expression allows us to bound the empirical risk difference between real and synthetic datasets using the bounded
difference of their marginals. Specifically,
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|L′(w, Dr)− L′(w, Ds)|

=

∣∣∣∣∣∣ 1n
d−1∑
k=0

ak
∑

u∈[m]k

∑
t∈Ωq,q=S(u)∪{m+1}

(hr
q(t)− hs

q(t))
∏
u∈u

(w[u] · t[u] · t[m+ 1])

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
d−1∑
k=0

ak ·
∑

u∈[m]k

∥h(r)
q (t)− h(s)

q (t)∥1τk
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1n
d−1∑
k=0

ak ·
∑

u∈[m]k

ντk

∣∣∣∣∣∣
≤

∣∣∣∣∣ 1n
d−1∑
k=0

ak ·md−1νmax{1, τ}d−1
∣∣∣∣∣

≤ 1

n

d−1∑
k=0

|ak| ·md−1νmax{1, τ}d−1

∈O
(
1

n
· (K · τ

√
m+ φ(0)) · 3d−1 · (m ·max{1, τ})d−1ν

)
,

where the first inequality follows from ∥w∥2 ≤ τ and t[m + 1] ∈ {−1, 1}, and the last expression follows by applying
Theorem 2.3, Eq. 2 to bound the sum of the absolute values of the polynomial coefficients.

We are ready to prove the Theorem statement by combining the results in Lemmas A.1 and A.2. Specifically, We write

A
P
≈ B to denote the LHS and RHS is bounded by the error due in Lemma A.1 and write A

M
≈ B to denote the LHS and

RHS is bounded by the error due in Lemma A.2.

Let w′r = argminwL′(w, Dr) and w′s = argminwL′(w, Ds). (In the case that there is more than one minimums, it suffices
to use arbitrary tie-breaking.) Then we have:

L(ws, Dr)
P
≈ L′(ws, Dr)

M
≈ L′(ws, Ds)

P
≈ L(ws, Ds) ≤ L(w′s, Ds)

P
≈ L′(w′s, Ds) ≤ L′(w′r, Ds)

M
≈ L′(w′r, Dr) ≤ L′(wr, Dr)

P
≈ L(wr, Dr),

where the inequalities follows the optimality of w′s,ws,w
′
r,wr. This suggests L(ws, Dr) − L(wr, Dr) ∈

O
(
1
n · (Kτ

√
m+ φ(0)) · (3m ·max{1, τ})d−1ν

)
. Similarly, we have:

L(ws, Dr)
P
≈ L′(ws, Dr)

M
≈ L′(ws, Ds) ≥ L′(w′s, Ds)

M
≈ L′(w′s, Dr) ≥ L′(w′r, Dr)

P
≈ L(w′r, Dr) ≥ L(wr, Dr),

which suggests L(wr, Dr)− L(ws, Dr) ∈ O
(
1
n · (Kτ

√
m+ φ(0)) · (3m ·max{1, τ})d−1ν

)
. This concludes our proof

of the Theorem.

A.2. Proof of Theorem 3.2

Proof. The majority of the proof is the same as that of Theorem 3.1. By using the additional property the first derivative of
φ̂ is continuous and its first derivative is 1/4-Lipschitz, we can apply Theorem 2.4 to give a tighter bound of polynomial
approximation error. Note that while Theorem 2.4 only considers functions defined over [0, 1], we can shrink any function
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defined over [a, b] into this range. In the case of φ̂, this results in the Lipschitz constant of its first derivative multiplied by
(b− a) = τ

√
m. Therefore, we have

|L̂′(w, D)− L̂(w, D)| ∈ O(Kτ
√
m/(d− 1)).

Finally, by plugging in K = 1 and ∥φ̂∥ ≤ ln(2) + τ
√
m for logistic loss yields the result.

A.3. Proof of Lemma 3.3

Proof. Recall each marginal is a vector of counts, where altering a single data point can, at most, result in a difference of 1
in two counts. Therefore, the ℓ2 sensitivity of the concatenated marginals is

√
2|Qm
≤d| ≤

√
2md. By Theorem 2.6, the noisy

marginals satisfies (ϵ, δ)-DP. As the synthetic data is exclusively generated using these noisy marginals, it also satisfies
(ϵ, δ)-DP through post-processing (Theorem 2.7).

A.4. Proof of Lemma 3.4

Proof. Note that for any q ∈ Qm
≤d and any t ∈ Ωq , ĥq(t)−h

(r)
q (t) ∼ N (0, σ). Using Chernoff bound, |ĥq(t)−h

(r)
q (t)| ≤

kσ with 1−2e−k
2/2 probability. Using Union bound, ∥ĥq−h

(r)
q ∥1 =

∑
t∈Ωq

|ĥq(t)−h
(r)
q (t)| ≤ ldkσ with 1−2lde−k

2/2

probability.

By definition of Ds, we have maxq∈Qm
≤d
∥ĥq −Mq(Ds)∥1 ≤ maxq∈Qm

≤d
∥ĥq −Mq(Dr)∥1. Therefore, using triangle

inequality, we have maxq∈Qm
≤d
∥h(r)

q −Mq(Ds)∥1 ≤ 2ldkσ with 1− 2lde−k
2/2 probability. Finally, using union bound,

we have the above inequality holds for all q ∈ Qm
≤d with 1− 2(ml)de−k

2/2.

By setting k =
√
2(ln(2)(1 + λ) + d ln(ml)) concludes our proof.

B. Proof of Theorem 4.1
Proof. We begin by setting parameters r, n,m, d, γ, τ as follows:

Definition B.1 (Parameter Settings). We set parameters as follows:

• Set r = 5/6.

• Set m > 2e.

• Set γ = (m/2)
−5

10−2r .

• Set d = c′·γ−2r/5

− ln(γ) , for c′ = min{ 15 ,
c
8}, where c is a constant depending only on r (See Theorem B.3).

• Set n = exp(γ−2r/5).

• Set τ = 1√
m

.

We next define the loss function which will be used for both the upper bound and the lower bound.

Consider the following convex loss function φγ : [−1, 1]→ R defined in (Dagan & Feldman, 2020):

φγ(t) =
(1− t)2

8
+


1− 2t/γ −1 ≤ t ≤ 0

(t− γ)2/γ2 0 ≤ t ≤ γ

0 γ ≤ t ≤ 1.
(3)

The loss function φ from Theorem 4.1 is set to be φ(t) := γ · φγ(t).
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Claim B.2. Let Pdφ(x) be the Bernstein polynomial of order d of φ on [−1, 1]. Then

||Pdφ− φ|| ≤ 5√
d
.

The claim follows from Theorem 2.3, Eq. 1 and the fact that φ is 2-Lipschitz. Note that γ < 1.

We now turn to the upper bound (the first item in Theorem 4.1). For the upper bound, the algorithm Syn(n, {n · uq}q∈Qm
≤d

)

will return the database Ds of size n in the support of Dn
m that minimizes maxq∈Qm

≤d
∥h(s)

q − n · uq∥1, where {h(s)
q }Qm

≤d

are the marginals computed with respect to Ds. In the following we show that if {uq}q∈Qm
≤d

has tolerance tol = 1
n ,

then with all but negligible probability over choice of Dr ∼ Dn
m, maxq∈Qm

≤d
∥h(r)

q − n · uq∥∞ ∈ O(ln2(n) ·
√
n).

This implies that the optimal {h(s)
q }q∈Qm

≤d
must also satisfy maxq∈Qm

≤d
∥h(s)

q − n · uq∥∞ ∈ O(ln2(n) ·
√
n), which in

turn implies that maxq∈Qm
≤d
∥h(s)

q − h
(r)
q ∥∞ ∈ O(ln2(n) ·

√
n). Finally, the ℓ1 norm of any marginals can be bounded

maxq∈Qm
≤d
∥h(s)

q − h
(r)
q ∥1 ∈ O(2d · ln2(n) ·

√
n).

We next show that with all but negligible probability over choice of Dr ∼ Dn
m, maxq∈Qm

≤d
∥h(r)

q −n·uq∥∞ ∈ O(ln2(n)·
√
n).

By Chernoff bounds and the tolerance guarantee, for a particular q ∈ Qm
≤d and t ∈ Ωq, Pr[|n · uq[t] − h

(r)
q [t]| > β] ≤

2 · exp(−2(β− 1)2/n). We set β = ln2(n) ·
√
n for this probability to be negligible in n. Since we have also set parameters

such that
∑

q∈Qm
≤d
|Ωq| ≤ n , after taking a union bound over all q ∈ Qm

≤d and t ∈ Ωq , we have that with all but negligible

probability over choice of Dr ∼ Dn
m, maxq∈Qm

≤d
∥h(r)

q − n · uq∥∞ ∈ O(2d · ln2(n) ·
√
n).

Using the parameter settings in Definition B.1 we invoke Theorem 3.1 to obtain the upper bound:

|L(ws, Dr)− L(wr, Dr)| ∈ O(
1√
d
) +O

(
(Kτ
√
m+ φ(0)) · (3m ·max{1, τ})d−1ν

n

)
∈ O(

1√
d
) +O

(
γ(3m)d−1 · 2

d · ln2(n) ·
√
n

n

)
∈ O(

1√
d
) +O

(
ln−1(n)(6 ln5 n)d−1 · 2

d · ln2(n) ·
√
n

n

)
∈ O

(√
− ln(γ)

γ−2r/5

)
+O

(
(ln5 n)d · 12

d · ln(n) ·
√
n

n

)

∈ O

(√
ln(ln(n))

ln(n)

)
+O

(
n1/4 · ln(n) ·

√
n

n

)

∈ O

(√
ln(ln(n))

ln(n)

)
+O

(
ln(n)

n1/4

)

We now turn to the lower bound (the second item in Theorem 4.1). For the lower bound, we utilize the following lower
bound on the accuracy of non-adaptive statistical query algorithms, where the accuracy is measured by the classification
error: errf∗,Dm

(f̂) ≜ Pr(x,y)∼Dm
[f∗(x) ̸= f̂(x)]. (Looking forward, we consider Dm being linearly separable, and f∗ is

one of the linear separators. Therefore, f∗(x) = y for any (x, y) in the support of Dm.

Theorem B.3 (Theorem 5 in (Dagan & Feldman, 2020)). Let r ∈ (0, 1), γ ∈ (0, 2−1/(1−r)), m ≥ 2 · γ−2−2r/5 and define
η = γ1−r. Let A be a non-adaptive statistical query algorithm such that for any linear separator f∗ and distribution Dm

over X = {−1, 1}m with margin γ(f∗,Dm) ≥ γ, returns a hypothesis f̂ with EA[errf∗,Dm(f̂)] ≤ 1/2 − η. If A has
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access to statistical queries with tolerance tol ≥ exp(−cγ−2r/5), then A requires at least exp(cγ−2r/5) queries, where
c > 0 is a constant depending only on r.

Corollary B.4. For the parameter settings given in Definition B.1, for any (even computationally inefficient) algorithm Syn,
the algorithm defined in Algorithm 2 has error at least E[errf∗,D(f̂)] > 1/4.

The corollary follows by noting that for the parameter settings of r, n,m, γ, d in Definition B.1, all of the following hold:
r ∈ (0, 1), γ ∈ (0, 2−1/(1−r)), m ≥ 2 · γ−2−2r/5, η = γ1−r ≤ 1

4 , tol = 1
n ≥ exp(−cγ−2r/5), and

∑
q∈Qm

≤d
|Ωq| ≤

2d · md < e8c
′γ−2r/5 ≤ exp(cγ−2r/5). Since the algorithm defined in Algorithm 2 is a non-adaptive statistical query

algorithm with tolerance tol = 1
n and making less than exp(cγ−2r/5) number of statistical queries, Theorem B.3 implies

that its error must be at least 1/4.

The above corollary gives a bound on the error of linear separator ws outputted by Algorithm 2, whereas we need a bound
on the difference in loss between ws and the optimal linear separator. The following Claim allows us to relate the error and
the loss.

Claim B.5. Let the loss function L′′(w,Dm) := E(x,y)∼Dm
[γ ·φγ(y⟨w,x⟩)], where the expectation is taken with respect to

distribution Dm. Let ŵ be any vector of norm at most τ . Let w∗ be the optimal linear separator with respect to L′′(w,Dm).

Let A be any algorithm. If Eŵ←A[L
′′(ŵ,D)] ≤ L′′(w∗,D) + γ

8 , then Eŵ←A[errDm
(ŵ)] ≤ 1/4.

Proof. Assume Eŵ←A[L
′′(ŵ,D)] ≤ L′′(w∗,D) + γ

8 . Then this implies that Eŵ←A[L
′(ŵ,Dm)] ≤ L′(w∗,Dm) + 1

8 ,
where L′Dm

is the cost function L′(w,Dm) := E(x,y)∼Dm
[φγ(y⟨w,x⟩)]. By Claim 3 in (Dagan & Feldman, 2020), this

implies that Eŵ←A[errDm
(ŵ)] ≤ 1/4.

Taking Corollary B.4 and Claim B.5 together, we have that for every algorithm Syn there exists a distribution Dm and a set
of vectors {uq}q∈Qm

≤d
of tolerance tol = 1

n such that

EDs←Syn(n,{n·uq}q∈Qm
≤d

)[L
′′(ws,Dm)] ≥ L′′(w∗,Dm) +

γ

8
. (4)

We must now convert the expected loss given above to excess empirical risk w.r.t. the real training data. To do so, we note
that for every (x, y) in the support of Dm, φ(y⟨w,x⟩) is lower bounded by 0 and upper bounded by 1 and therefore so is
EDs←Syn(n,{n·uq}q∈Qm

≤d
)[φ(y⟨ws,x⟩)]. Recall that

L′′(w∗,Dm) = E(x,y)←Dm
[φ(y⟨w∗,x⟩)]. (5)

By linearity of expectation, we also have that

EDs←Syn(n,{n·uq}q∈Qm
≤d

)[L
′′(ws,Dm)] = E(x,y)←Dm

[EDs←Syn(n,{n·uq}q∈Qm
≤d

)[φ(y⟨ws,x⟩)]]. (6)

Since our setting of parameters implies that n
ln2(n)

≥ 800
γ2 , we have by (5), (6) and by standard Hoeffding bounds that with

all but negligible probability over choice of Dr,

EDs←Syn(n,{n·uq}q∈Qm
≤d

)[L
′′(ws,Dm)]−EDs←Syn(n,{n·uq}q∈Qm

≤d
)[L(ws, Dr)] ≤

γ

20
and L(w∗, Dr)−L′′(w∗,Dm) ≤ γ

20
.

(7)
Therefore, combining (4), (7), and by the optimality of wr,

EDs←Syn(n,{n·uq}q∈Qm
≤d

)[L(ws, Dr)] ≥ L(w∗, Dr) +
γ

16
≥ L(wr, Dr) +

γ

16
. (8)

Substituting γ = 1
ln3(n)

into (8) we obtain

|EDs←Syn(n,{n·uq}q∈Qm
≤d

)[L(ws, Dr)]− L(wr, Dr)| ∈ Ω(
1

ln3(n)
),

which concludes the proof of the theorem.
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C. More on Synthetic Data Generation
C.1. Private-PGM

The core of Private-PGM is to fit a graphical model to the sensitive data in a differentially-private way, and then use the
graphical model to generate the synthetic data. The high-level steps involve computing noisy marginals of the sensitive data
for selected sets of attributes of small size. Secondly, executing an optimization problem to identify a probability distribution
that "best explains" these noisy marginal measurements, representing it as a probabilistic graphical model. Finally, generate
synthetic data that closely matches the estimated distribution. Please refer to Algorithm 3 for the pseudocode for generating
synthetic data using Private-PGM.

Algorithm 3 fPPGM Generating Synthetic Data using Private PGM (McKenna et al., 2021)

Input: Real dataset Dr ∈ Rn×(m+1), marginals queries Q, noise scale σ
Output: Synthetic Dataset Ds

for q ∈ Q do
Measuring marginal: hq = Mq(Dr), where Mq is the algorithm for measuring marginals;
Add noise: ĥq = hq +N (0, σ);

end for
Generate graphical model Pθ with weight vector θ: argminθ

∑
q∈Q

∥∥∥Mq(Pθ)− ĥq

∥∥∥2
2

;
Generate synthetic data Ds using Pθ using Algorithm 4 and Algorithm 5 (See Below);

The algorithm 3 above makes use of the following two subroutines to generate synthetic data from the graphical model:
algorithm 4 and algorithm 5.

Algorithm 4 Synthetic data generation
Input: graphical model (see Algorithm 3)
Output: dataset (synthetic dataset)
Initialize the set of processed attributes to the empty set;
for each attribute i do

Let C be the set of all neighbors of i in the graphical model, intersected with the set of processed attributes;
Group data by C, and
for each group in C do

Calculate µ from the graphical model, the vector of fractional counts for every possible value of attribute i, for the
given group of other attributes;
Generate synthetic column for this group using Algorithm 5;
Add this partial column to the grouped rows in the dataset;

end for
Add i to the set of processed attributes;

end for

Algorithm 5 Synthetic column
Input: µ (vector of fractional counts), n (total number of samples to generate)
Output: column (synthetic column of data)
Generate ⌊µt⌋ items with value t and add to column for each t in domain;
Calculate remainders: pt = µt − ⌊µt⌋ ;
Sample n−

∑
t⌊µt⌋ items (without replacement) from distribution proportional to pt, and add to column;

Shuffle values in column;

In the Private-PGM approach, differential privacy is achieved by applying a noise mechanism to the marginal measurements.
In our experiments, we use the Gaussian mechanism (Dwork & Roth, 2014), as it is reliable and widely used noise
mechanisms for enforcing differential privacy. For any single individual’s data is altered, it can affect up to two queries by 1
in each marginal measurement. This results in an sensitivity of

√
2|Q| for all measurements. Invoking Theorem 2.6, adding
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a Gaussian noise to each query with variance, σ2 =
2
√

2|Q|
2
log(1.25/δ)

ϵ2 , we have that the collection of noisy marginals
outputted in step Add noise of Algorithm 3 achieves (ϵ, δ)-differential privacy. Since the inputs to Generate graphical
model of Algorithm 3 are differentially private, then the synthetic data finally outputted by Algorithm 3 must also be
(ϵ, δ)-differentially private. Any subsequent analyses, including the model training on synthetic data, and further analysis
using the trained model, are considered as post-processing. According to Theorem 2.7, these analyses will continue to
uphold (ϵ, δ)-DP.

C.2. AIM

The optimal choice of marginal queries/attribute sets to be captured by the synthetic data can be difficult to determine,
and can itself leak private information. Therefore, AIM uses an adaptive and iterative algorithm to “automatically” select
marginal query that best reduces the distance between the real and synthetic data.

More specifically, AIM allows the user to pre-specify a privacy budget ρ and a collection Q of marginal queries to be
selected from. For instance, Q can be the collection of all 3-order marginal queries. The algorithm starts with an initial
synthetic data distribution D̂0. In each iteration i = 1, 2, . . . , it randomly selects a marginal query qi from Q with probability
proportional to qi’s quality score that captures the distance between its real marginal and its marginal evaluated from the
current estimated synthetic data distribution D̂i−1. This randomness in the selection process ensures differential privacy and
the method is formally known as the exponential mechanism (McSherry & Talwar, 2007) in DP literature. Then, AIM uses
the Gaussian mechanism to measure the marginal of the selected query, followed by using Private-PGM to estimate data
distribution D̂i from all noisy marginals measured so far. Finally, to terminate, AIM keeps track of the privacy parameter
and the junction tree size corresponding to the selected marginals and makes sure they do not exceed their limits.

To handle composition easily, AIM uses zero-concentrated differential privacy (zCDP) and formally claims the following
theorem.

Theorem C.1. For any T ≥ m, where T is a user-specified limit on the number of iterations, and ρ ≥ 0, AIM satisfies
ρ-zCDP.

This can be converted to the standard DP guarantee using the following proposition:

Proposition C.2 (zCDP to DP (Canonne et al., 2020)). If a mechanism M satisfies ρ-zCDP, it also satisfies (ϵ, δ)-differential
privacy for all ϵ ≥ 0 and δ = minα>1

exp((α−1)(αρ−ϵ)
α−1 (1− 1

α )
α.

While AIM algorithm may only select a small subset of marginal queries to measure before termination, it provides upper
bounds of the ℓ1 difference on both the selected marginals and non-selected marginals in Q. The former can be easily
derived as the selected marginal are measured with Gaussian noise. For the latter, it utilizes the relation between the last
selected marginal query and the remaining non-selected ones. In particular, as the marginal query is selected with probability
proportional to the exponential of their marginal distance to the real ones, this provides a way to derive the upper bound on
all remaining non-selected marginals. More formally, for a marginal query q ∈ Q, let nq = |Ωq|, and wq be a parameter that
specifies the “importance” of q among Q, which is larger if the average intersection size of q with other sets in Q is high).
At i-th iteration, let σi, ϵi be the hyperparameters that AIM automatically selected to determine the amount of noise, and qi
be the marginal query selected at this iteration, and Qi ⊆ Q is the marginal queries that can be selected from, which only
includes marginal queries that can be measured without significantly increase the junction tree size for Private-PGM. AIM
paper proves the following theorem:

Theorem C.3 (Confidence Bound for Non-selected Marginal Query). Let ∆i = maxq∈Qi
wq. For all q ∈ Qi, with

probability at least 1− e−λ
2
1/2 − e−λ2 :

∥h(r)
q −Mq(D̂i−1)∥1 ≤ w−1q (Bq + λ1σi

√
nqi + λ2

2∆i

ϵi
),

where Bq is equal to:

wqi∥Mq(D̂t−1)− h(r)
qi ∥1 +

√
2/πσi(wqnq − wqinqi) +

2∆i

ϵi
log(|Qi|)
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Table 2. Table presenting comprehensive performance results for various evaluation metrics across six datasets, employing varied ϵ, using
AIM synthetic data generation. Refer to Figure 3 for a visual representation.

Dataset Synthetic data with varied epsilon Real data

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Adult Accuracy 0.832 0.836 0.838 0.84 0.84 0.841 0.842 0.842 0.843
ROC score 0.879 0.883 0.886 0.887 0.889 0.888 0.889 0.889 0.891

Empirical Risk 0.358 0.353 0.349 0.347 0.345 0.345 0.344 0.344 0.34

Churn Accuracy 0.719 0.742 0.748 0.748 0.748 0.751 0.756 0.757 0.766
ROC score 0.762 0.789 0.801 0.801 0.801 0.804 0.809 0.81 0.826

Empirical Risk 0.546 0.52 0.506 0.505 0.498 0.501 0.493 0.491 0.47

Compas Accuracy 0.587 0.645 0.646 0.658 0.663 0.663 0.664 0.666 0.671
ROC score 0.6 0.68 0.685 0.705 0.709 0.71 0.71 0.71 0.718

Empirical Risk 0.674 0.638 0.636 0.624 0.625 0.624 0.623 0.622 0.617

Dutch Accuracy 0.812 0.815 0.817 0.816 0.817 0.817 0.817 0.817 0.817
ROC score 0.884 0.885 0.887 0.886 0.886 0.886 0.886 0.886 0.886

Empirical Risk 0.43 0.427 0.424 0.426 0.425 0.426 0.426 0.426 0.427

Heart Accuracy 0.572 0.675 0.701 0.719 0.749 0.756 0.767 0.78 0.802
ROC score 0.569 0.728 0.778 0.78 0.82 0.834 0.838 0.853 0.883

Empirical Risk 0.986 0.699 0.617 0.593 0.536 0.508 0.496 0.484 0.452

Law Accuracy 0.892 0.894 0.895 0.895 0.895 0.894 0.895 0.896 0.901
ROC score 0.829 0.854 0.856 0.857 0.859 0.859 0.857 0.858 0.869

Empirical Risk 0.274 0.259 0.257 0.256 0.254 0.258 0.257 0.255 0.245

In McKenna et al’s empirical evaluation, it indicated that the marginal selection approach employed by AIM makes it
consistently outperformed all other marginal-preserving mechanisms for preserving statistical properties. In Section D.3,
we will show our experimental results that extend this advantage to consistently learning multiple models with different
classifiers.

D. Additional Experimental Results
D.1. Performance of synthetic data with various privacy budgets

This section provides Table 2, serving as a supplement to Section 5.5, presenting numerical test results of performance for
various evaluation metrics across six datasets, employing varied ϵ, using AIM synthetic data generation. Refer to Figure 3
for a visual representation.

D.2. Comparison with Other DPML Techniques

To appraise the performance of AIM synthetic data in comparison to prevailing DP-ML approaches, we conducted training
using two DP-ML methods. The first one is Differentially-Private Stochastic Gradient Descent (DP-SGD) (Abadi et al.,
2016), which ensures differential privacy by introducing carefully calibrated noise to the gradients during the training
process. Refer to Algorithm 6 for details. The second method, Private Aggregation of Teacher Ensembles (PATE) learning
method (Papernot et al., 2016), assumes a slightly different threat model, as we discuss next. The PATE method entails
training multiple teacher models on sensitive training data and ensuring differential privacy by introducing noise to the
counts of teacher predictions for each subsequent query made. In addition, a public, unlabeled training dataset is required,
and differentially-private queries to the teachers are used to label the data. Finally, a student model is trained using the
newly labeled data, and this student model can then be released as the final DP-ML model. Note that the model that
is ultimately released does not preserve the privacy of the unlabeled training dataset. Thus, this mechanism crucially
assumes existence of public, unlabeled training data. Therefore, in order to compare against PATE we construct 3 datasets,
a private-labeled-training dataset for teacher models, a public-unlabeled-training dataset for student model, and a testing
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dataset to assess the performance of the student model. We provide additional details below.

Algorithm 6 Differentially-Private Stochastic Gradient Descent (DP-SGD) (Iyengar et al., 2019) Algorithm 2
Input: Training dataset: (X,Y ) ∈ D, where features X ∈ Rn×m, labels Y ∈ Rn, Lipschitz constant: L, privacy
parameters: (ϵ, δ), number of iterations: T, minibatch size: B, learning rate: η, gradient norm bound C.
Output: Logistic Regression Model with weights w
Initialize weights w = {0}m;
σ2 = 16L2T log (1/δ)

n2ϵ2 ;
for t ∈ T do

Sample B samples uniformly with replacement from D: (x1, y1), ..., (xB , yB);
Clip gradient: ∇̂L(xi, yi) = ∇L(xi, yi)/max (1,

∥∇L(xi,yi)∥2
C )

Add noise: ∇Lt(w) = 1
B

∑B
i=1 ∇̂L(xi, yi) +N (0, σ);

Update weights: w = w − η · ∇Lt(w);
end for

In our experiments, we retained the standard procedure of splitting the real data into 80% training set and 20% testing set, a
consistent approach across all three DP-ML methods. For PATE-learning, we additionally sampled 100 data points from the
training data (20 data points for the Heart Data, due to its small dataset size), corresponding to the public, unlabeled data,
and set those aside for later training of the student model. The teachers models were trained on the remaining training set
using the scikit-learn’s logistic regression model with the LBFGS solver, the same algorithm used for training the student
model. In sum, all three methods end up outputting a DP-ML model, and they all preserve the DP of training data, while
PATE has 100 data points less in its training data, and we evaluate performance for all models using the testing data.

Refer to Figure 4 for the detailed parameters setup, which also displays the accuracy comparison among the three methods
across six datasets. We note that the AIM and PATE models were trained using second-order methods such as Newton’s
method, converge faster, as opposed to gradient descent used by DP-SGD. Secondly, we notes that the quality of the model
obtained from DP-SGD for some dataset, i.e. Heart and Dutch datasets, is less competitive. We believe it may be possible to
further improve the quality of the model outputted by DP-SGD but it would require a considerable amount of effort in tuning
its essential hyperparameters, such as learning rate, iterations and decay rate. We further note that such fine-tuning incurs its
own privacy leakage resulting from either running multiple differentially-private training runs to set the hyperparameters, or
from setting hyperparameters based on non-private training runs (Papernot & Steinke, 2021).

In summary, in our experiments, under identical privacy budgets, ϵ, the Pre-DPML approach with AIM-generated synthetic
data yielded a model that performs as well as or better than the models generated via the two Training-DPML methods, with
the added benefit that with the Pre-DPML approach subsequent training can be performed on the synthetic data without
increasing the privacy budget.

D.3. Assess AIM for Different Classifiers

We proposed AIM as the tool to generate synthetic data. Here we would show why select smartly marginal using AIM
mechanism is beneficial for generating synthetic data. Figure 5 shows the experiments we conducted on three(3) datasets.
For each dataset, we generated synthetic data with ϵ = 1, using AIM that using exponential mechanism to select the most
useful marginals. We trained three classification models with two different target labels, {y1, y2, y3}. The result reveals that,
the performance of classifiers trained on real data and AIM data are comparable. This suggests that AIM is effective even
without prior knowledge and maintains its performance across various classifier.
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(a) Adult Dataset (b) Compas Dataset (c) Law Dataset

(d) Heart Dataset (e) Dutch Dataset (f) Churn Dataset

Figure 4. We train the six dataset with DP-SGD approach that was described as Algorithm 6, incorporating a gradient norm clipping
threshold as 1, and differential privacy budget, epsilon=1. Specifically, we select the learning rate from {1, 5}, running step T from {300,
500, 1000}, decay rate from {0.1, 0.5}, and batch size from{20, 100, 200, 500, 1000, 3000}. Additionally, we train another DP method,
PATE-learning, based on (Papernot et al., 2016). For each dataset, we consider three different teacher numbers chosen from {10, 15, 20,
100, 150, 200, 300, 450, 800}. The figure illustrates a comparison of accuracy using various differential privacy methods, which includes
Non-DP, AIM (generated DP synthetic data), DP-SGD, PATE learning (with 3 teacher numbers), respectively.
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(a) Dutch Dataset (b) Adult Dataset (c) Law Dataset

Figure 5. We train the three classifier models on each dataset and their synthetic data generated by AIM with privacy budget, ep-
silon=1. Dataset {Adult, Churn, Law}, three models are trained to classify three different target features: Dutch: {’occupation’,
’prev_residence_place’, ’sex’}, Adult: {’income>50K’, ’sex’, ’relationship}, Law: {’pass_bar’, ’race’, ’fulltime’}. real_1 and aim_1 show
results when classifying the first feature, and trained on real data, synthetic data from AIM, respectively; real_2 and aim_2 show results
when classifying the 2nd feature, and trained on real data, synthetic data from AIM, respectively; real_3 and aim_3 show results when
classifying the 3rd feature, and trained on real data, synthetic data from AIM, respectively.
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