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Abstract

Recent breakthroughs in natural language processing inspire optimism that similar1

methods could decode animal communication systems. But machine learning ap-2

proaches import assumptions from human language, which could undermine these3

efforts. In this proposal, we argue that non-human animal communication systems4

do not have self-contained distributional semantics, are largely non-referential,5

and function primarily to manipulate the behavior of others rather than exchange6

information. Not only do these assumptions constrain our ability to investigate7

signal semantics, but also risk confounding discoveries of signal syntax. To hedge8

against this possibility, we propose that machine learning efforts should adopt9

a functionalist framework. This foregrounds ecological and social contexts and10

the interactional contingencies that give signals their meaning. Our framework11

provides recommendations about how to account for these variables when building12

datasets.13

1 Introduction14

Large language models (T. Brown et al., 2020) can generate coherent sentences without relying on15

explicit linguistic domain knowledge or large amounts of manually supervised labels (Devlin et al.,16

2019). The success of LLMs has led some researchers to ask: what if we trained similar models17

on animal communication data? Could we begin to decode what whales, parrots, or bonobos are18

“saying” and even start a conversation?19

Recently, research teams, initiatives, and prizes have begun pursuing these questions (Robinson et al.,20

2024; Rutz et al., 2023; Yovel & Rechavi, 2023; Sharma et al., 2024; Almeida et al., 2025). However,21

applying approaches from human language to animal communication imports several assumptions22

which could undermine these efforts. Although some animal communication systems display surface23

analogies with human language, they are not homologous, i.e., they do not stem from shared evolution-24

ary origins (Scott-Phillips & Heintz, 2023). Here, we argue that non-human animal communication25

systems do not have self-contained distributional semantics, are largely non-referential, and function26

primarily to manipulate the behavior of others rather than exchange information with them. Without27

confronting these assumptions, researchers may be limited to answering questions about signal28

structure rather than questions about signal meaning. To overcome this, we propose that researchers29

adopt a functionalist framework by grounding signals in relevant behavioral responses beyond the30

communicative repertoire, social interactions, ecology, and development. With this in hand, we31

believe that machine learning efforts and domain experts will be better equipped to complement each32

other in the creation of new, large-scale, well-structured datasets.33
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2 Three Questionable Assumptions from Human Communication34

The possibility of learning useful representations of language from language itself is theoretically35

justified by the distributional hypothesis, which states linguistic items derive their meaning from the36

context of their use (Wittgenstein, 1953; Harris, 1954; Firth, 1957). Many NLP systems use purely37

linguistic context to embed items in a vector space encoding syntactic and semantic relationships38

(Mikolov et al., 2013). Humans also use distributional information to learn language (Romberg &39

Saffran, 2010). For example, congenitally blind individuals acquire color concepts that are structurally40

similar to those of sighted individuals via language (Lewis et al., 2019). However, humans learn41

from orders of magnitude less language input than language models (Warstadt & Bowman, 2022),42

because they also rely on rich extra-linguistic information, including social and embodied context.43

Nonetheless, the profound success of large language models is an important empirical finding that44

reflects how much distributional information in human language is present in text. However, when45

extending such approaches to animal communication, it is important to recognize the risk of implicitly46

importing assumptions drawn from human language, and especially those tied to textual training47

data of LLMs, that may not hold in these systems. Specifically, such efforts often presuppose (1)48

that meaning can be learned from signal sequences alone (self-contained distributional semantics),49

(2) that animal signals are referential (functioning like word-like labels for things), and (3) that the50

primary function of communication is information transfer rather than influencing others’ behavior.51

We will briefly discuss these assumptions in relation to and outside human language.52

Distributional information manifests through semiotic design features of language which allow for a53

rich matrix of relations between its elements. First and foremost, the syntax of language allows speak-54

ers to produce sentences in which they can embed similar words in similar grammatical constructions.55

But beyond the confines of a sentence, language is related across turns by discourse relevance. And,56

in its core niche, in conversation (Levinson, 2006), speakers’ turns enact complementary social57

actions and language in subsequent turns can refer back to, reuse, and transform prior talk.58

In contrast, animal communication systems lack these design features of language, which constrains59

the amount of self-contained distributional information available. Combinatorial syntax is rare and60

still debated (Bolhuis et al., 2018). To our knowledge, there is nothing like human discourse, and61

turn-taking in most animals is far simpler than in humans (Rossano, 2018), where innumerable62

conversational moves can be exchanged over durations of many hours. Moreover, unlike human63

language research, where abundant amounts of written texts and narratives provide training material,64

animal communication has no equivalent archives. LLMs are primarily trained on written text rather65

than on data of naturalistic human interactions, whereas animal signaling is fundamentally tied to66

moment-to-moment social interaction. This asymmetry poses challenges and the data distributions67

that enabled LLMs’ success may not be available for animal communication systems.68

But even large language models can fail to learn semantic information from distributional information69

if it involves embodied affordances (Jones et al., 2022), e.g., he used his shirt to dry his feet [afforded]70

vs. he used his glasses to dry his feet [non-afforded] (Glenberg & Robertson, 2000). A longstanding71

debate in cognitive science is whether linguistic items must be grounded in more than just other72

linguistic items, if they must be grounded in the world (Searle, 1980). One way this can be achieved is73

through multimodal models, which process information other than text (Lu et al., 2019). For example,74

visual language models jointly embed language and visual features (Radford et al., 2021), allowing75

models to perform tasks like captioning images, thus using language to refer to aspects of visual76

scenes. It is tempting to think that we could derive a referential mapping between animal signals and77

events in the world by using multimodal datasets.78

However, whether animals understand reference is a debated topic in cognitive science. While79

domesticated animals can readily learn to comprehend labels that map onto objects and events80

(Kaminski et al., 2004; Bastos et al., 2024), such mappings are rare in endogenous communication81

systems. A famous example of such a system is in vervet monkeys (Seyfarth et al., 1980), which82

produce different alarm calls for different predators. Distributionally, these types of predators83

and the calls co-occur – they have high mutual information. But so do the associated differential84

behavioral responses. It is unknown whether vervet calls are analogous to a referential eagle label,85

i.e., functionally referential (Seyfarth et al., 1980), a performative look up!, or merely a predictive86

cue (Wheeler & Fischer, 2012). We can be confident, however, that vervets are not using these alarm87

calls to talk about eagles in the richer, discourse-based sense.88
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The informational perspective, often framed by the Shannon-Weaver code model (Shannon, 1948;89

Weaver, 1963), has been and remains highly influential in the study of animal communication. This90

perspective views communication as a process of sending information, where signals are treated91

as containers carrying predefined messages from sender to recipient. However, such a code model92

minimizes or ignores the specific context and social relationship in which the signal occurs.93

In contrast to the informational perspective, Dawkins & Krebs (1978, 1979) proposed that animal94

signals evolved to manipulate or influence the behavior of recipients to the sender’s benefit. In95

functionalist views like the manipulation perspective, communication is best understood as a tool96

for influencing others and coordinating social interactions rather than exchanging information.97

Accordingly, signals are actions for achieving specific goals and consequences contingent on their98

social context. The meaning of a signal lies in its function or effect rather than in a consistent piece99

of information that could be decoded.100

Below, we argue that a functionalist framework, treating signals as tools for influencing others101

within specific social and ecological contexts, can improve machine-learning approaches to animal102

communication. Importantly, it avoids dependence on the assumptions outlined above, making103

progress possible even when those are not met.104

3 A Functionalist Framing105

To hedge against issues the above assumptions may inject into training datasets, we propose machine106

learning research on animal communication adopt a functionalist framework. Grounded in ethology107

and comparative cognitive science, this framework can help guide how datasets are collected, ensuring108

they provide enough context to answer research questions about animal communication systems.109

In contrast to the informational perspective, common in NLP, the functionalist perspective proposes110

that signals are best thought of as tools for achieving specific goals that primarily benefit senders by111

manipulating recipients (Figure S1B). The form and function of these signals may derive from many112

sources which affect the context needed to interpret them. But fundamentally, communicative signals113

are embedded in social interactions, which often involve instrumental, non-signaling behaviors.114

To leverage the distributional hypothesis for animal communication in the functionalist framework,115

one must widen the scope of what counts as context. This can be clearly seen in the case of intentional116

communication. Intention underlies much of the theory in human communication. Townsend et al.117

(2017) operationalize intentional communication as signaling that is goal-oriented, contingent on118

the recipient’s attention, and non-randomly eliciting a behavioral response conducive to achieving119

that goal. In such cases, a signal s derives its meaning from contexts in which signaler S has a goal120

g, a recipient is in attentional state a and makes a behavioral response r, which possibly affects g121

(Figure S1A). Therefore, for models to learn communicative signals, datasets may need to provide122

enough context from which the identities of signalers and recipients, their attentional states, and their123

goals/intentions can be inferred.124

3.1 Signal Origin and Scope of Signaling Community125

In humans, all of this is often made public through language, but in animals it can require observing a126

broad range of social and environmental context. The scope of this social context depends on the127

origin of the communicative behavior.128

In evolution, signals often originate from instrumental acts (Dawkins & Krebs, 1978, 1979). Re-129

cipients remain sensitive to signals when there is mutual benefit, i.e., when, on average, perceiving130

them is advantageous. For example, an instrumental behavior such as biting, which originally had an131

immediate effect (injury) on a recipient, can ritualize into baring the teeth as a threat display. Because132

teeth baring reliably precedes biting, signalers can defend resources without physical contact, and133

recipients avoid injury. The process of phylogenetic ritualization can occur both within and across134

species.135

In development, new communicative behaviors can emerge through ontogenetic ritualization136

(Tomasello, 2008). This process occurs when individuals repeatedly interact, anticipate one an-137

other’s instrumental actions for achieving a goal, and gradually abbreviate them into communicative138

signals. For example, bonobo infants initially raise their arms and tug on their mother’s fur to get139
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carried. But over time the gesture can be reduced to simply raising the arms as a carry request. In140

some cases, highly idiosyncratic signals can emerge, such as a bonobo initiating carries by spinning in141

place, a signal that was distinct to one mother-infant pair (Halina et al., 2013). For machine learning,142

this means that some signals have meaning only within a specific dyad’s history. A general “translator”143

trained on population-level datasets may therefore miss or misinterpret signals whose function is144

rooted in individual interactional histories. Therefore, recognizing this limitation and knowing the145

origins of animal signals is crucial when curating datasets and evaluating model performance.146

3.2 How Intentionality and Interaction Confound Compositionality147

Intentional communication has some observable behavioral correlates, such as when an animal tries148

to elicit a response from another animal, it will repeat or reformulate signals until that intended149

response is elicited (or some other stopping condition has been met). For example, non-human150

primates will continue making groom me gestures until they are socially groomed (Byrne et al., 2017),151

dogs will continue to request food until they are fed (Worsley & O’Hara, 2018), and, in humans, if152

a conversational turn is not responded to, it will be pursued (Pomerantz, 1983; Stivers & Rossano,153

2010). The response that stops signaling is referred to as an apparently satisfactory outcome (ASO)154

(Hobaiter & Byrne, 2014). ASOs are often used to infer the meaning of signals.155

In humans, such response mobilization strategies are thought to influence the structure of language156

and its development (R. Brown, 1968; Goodwin, 2018; Du Bois, 2014; Terwilliger & Rossano, 2025).157

For animal communication research this means that, unless datasets specify who is signaling, whether158

the recipient responded (possibly in another modality), and the temporal structure of the exchange,159

analyses of signal structure risk being confounded by the dynamics of turn-taking (Figure S1C).160

For instance, if we observe the sequence aab, it could reflect a compositional syntax or it could be161

three separate communicative bouts, where a signaler repeats a twice and then tries b in pursuit of a162

response. The distinction hinges on timing: interactional silences, pauses, and bout boundaries all163

matter for interpreting structure. Without this information, models may conflate persistence strategies164

with grammatical composition. Prior work on the structure and timing of human versus non-human165

interaction highlights how central temporal dynamics are to communication (Rossano, 2019).166

4 Recommendations for Dataset Design and Evaluation167

We argued for the benefits of understanding animal communication through a functionalist framework,168

which treats signals not as isolated units but as social tools embedded within evolutionary dynamics,169

developmental trajectories, social relationships, and ecological contexts. This shift in perspective has170

concrete implications for how datasets are curated and how ML models are evaluated. Below, we171

highlight three priorities:172

First, datasets should be longitudinal and multimodal (Rutz et al., 2023). Functional meaning often173

emerges only through repeated interaction and over developmental time, such as the example of174

ontogenetic ritualization in great ape gestures discussed above. Further, signals can change as175

individuals mature, as dominance relations shift, or as traditions shift (e.g., whale song dialects).176

Capturing such processes requires long-term recordings of identified individuals or groups, enriched177

with multimodal inputs (audio, video, movement, and potentially physiological states).178

Second, datasets should include rich contextual annotations, which can be based on the longitudinal179

and multimodal raw data. Datasets should include the identity of signalers and recipients, correlates180

of their attentional states, behavioral outcomes following a signal (including apparently satisfactory181

outcomes), and relevant environmental context. This provides models with a record of interactions182

from which functional patterns can be learned.183

Third, the success of models should be defined in terms of their predictive power for behavioral184

and social outcomes. For instance, can a model anticipate how a recipient will respond to a given185

signal in a given context? Does its interpretation shift appropriately with changes in social dynamics?186

Explicitly linking datasets and models to Tinbergen’s (1963) four levels of analysis (mechanism,187

development, phylogeny, adaptation) helps clarify what kind of functional questions models are188

equipped to answer.189

In sum, we believe significant progress can be made by grounding models in function and context,190

rather than projecting the structure of human language onto other species.191
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Supplementary Material289
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Figure S1: (A) Recipient-mediated, goal-directed signaling. A signaler S has a goal g, monitors
a recipient R’s attentional state a, sends a signal s to R, and monitors the recipient’s response r;
signaling is repeated or reformulated until an apparently satisfactory outcome (ASO) is reached or a
stopping condition occurs. (B) Communication as manipulation. Signals are actions selected
by S to influence R so as to bring about desired changes in the world W, i.e., to achieve g. (C)
Two sources of structured sequences. The same surface pattern (e.g., a a b) can arise from
interactional dynamics (left), repetition after absent responses followed by an alternative, or from a
genuine combinatorial ruleset for signal structure (right); disambiguation hinges on timing and bout
boundaries.
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