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Abstract

Recent breakthroughs in natural language processing inspire optimism that similar
methods could decode animal communication systems. But machine learning ap-
proaches import assumptions from human language, which could undermine these
efforts. In this proposal, we argue that non-human animal communication systems
do not have self-contained distributional semantics, are largely non-referential,
and function primarily to manipulate the behavior of others rather than exchange
information. Not only do these assumptions constrain our ability to investigate
signal semantics, but also risk confounding discoveries of signal syntax. To hedge
against this possibility, we propose that machine learning efforts should adopt
a functionalist framework. This foregrounds ecological and social contexts and
the interactional contingencies that give signals their meaning. Our framework
provides recommendations about how to account for these variables when building
datasets.

1 Introduction

Large language models (T. Brown et al.| 2020) can generate coherent sentences without relying on
explicit linguistic domain knowledge or large amounts of manually supervised labels (Devlin et al.,
2019). The success of LLMs has led some researchers to ask: what if we trained similar models
on animal communication data? Could we begin to decode what whales, parrots, or bonobos are
“saying” and even start a conversation?

Recently, research teams, initiatives, and prizes have begun pursuing these questions (Robinson et al.|
2024; Rutz et al.l 2023 Yovel & Rechavi, |2023; Sharma et al., [2024; |Almeida et al., [2025). However,
applying approaches from human language to animal communication imports several assumptions
which could undermine these efforts. Although some animal communication systems display surface
analogies with human language, they are not homologous, i.e., they do not stem from shared evolution-
ary origins (Scott-Phillips & Heintz, |2023)). Here, we argue that non-human animal communication
systems do not have self-contained distributional semantics, are largely non-referential, and function
primarily to manipulate the behavior of others rather than exchange information with them. Without
confronting these assumptions, researchers may be limited to answering questions about signal
structure rather than questions about signal meaning. To overcome this, we propose that researchers
adopt a functionalist framework by grounding signals in relevant behavioral responses beyond the
communicative repertoire, social interactions, ecology, and development. With this in hand, we
believe that machine learning efforts and domain experts will be better equipped to complement each
other in the creation of new, large-scale, well-structured datasets.
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2 Three Questionable Assumptions from Human Communication

The possibility of learning useful representations of language from language itself is theoretically
justified by the distributional hypothesis, which states linguistic items derive their meaning from the
context of their use (Wittgenstein, |1953; Harris, |1954; [Firthl [1957)). Many NLP systems use purely
linguistic context to embed items in a vector space encoding syntactic and semantic relationships
(Mikolov et al.,|[2013). Humans also use distributional information to learn language (Romberg &
Saffran,|2010). For example, congenitally blind individuals acquire color concepts that are structurally
similar to those of sighted individuals via language (Lewis et al., 2019). However, humans learn
from orders of magnitude less language input than language models (Warstadt & Bowman| [2022]),
because they also rely on rich extra-linguistic information, including social and embodied context.
Nonetheless, the profound success of large language models is an important empirical finding that
reflects how much distributional information in human language is present in text. However, when
extending such approaches to animal communication, it is important to recognize the risk of implicitly
importing assumptions drawn from human language, and especially those tied to textual training
data of LLMs, that may not hold in these systems. Specifically, such efforts often presuppose (1)
that meaning can be learned from signal sequences alone (self-contained distributional semantics),
(2) that animal signals are referential (functioning like word-like labels for things), and (3) that the
primary function of communication is information transfer rather than influencing others’ behavior.
We will briefly discuss these assumptions in relation to and outside human language.

Distributional information manifests through semiotic design features of language which allow for a
rich matrix of relations between its elements. First and foremost, the syntax of language allows speak-
ers to produce sentences in which they can embed similar words in similar grammatical constructions.
But beyond the confines of a sentence, language is related across turns by discourse relevance. And,
in its core niche, in conversation (Levinson| 2006)), speakers’ turns enact complementary social
actions and language in subsequent turns can refer back to, reuse, and transform prior talk.

In contrast, animal communication systems lack these design features of language, which constrains
the amount of self-contained distributional information available. Combinatorial syntax is rare and
still debated (Bolhuis et al.,|2018). To our knowledge, there is nothing like human discourse, and
turn-taking in most animals is far simpler than in humans (Rossano| [2018)), where innumerable
conversational moves can be exchanged over durations of many hours. Moreover, unlike human
language research, where abundant amounts of written texts and narratives provide training material,
animal communication has no equivalent archives. LLMs are primarily trained on written text rather
than on data of naturalistic human interactions, whereas animal signaling is fundamentally tied to
moment-to-moment social interaction. This asymmetry poses challenges and the data distributions
that enabled LLMSs’ success may not be available for animal communication systems.

But even large language models can fail to learn semantic information from distributional information
if it involves embodied affordances (Jones et al.,[2022)), e.g., he used his shirt to dry his feet [afforded]
vs. he used his glasses to dry his feet [non-afforded] (Glenberg & Robertson, 2000). A longstanding
debate in cognitive science is whether linguistic items must be grounded in more than just other
linguistic items, if they must be grounded in the world (Searle} [1980). One way this can be achieved is
through multimodal models, which process information other than text (Lu et al., 2019). For example,
visual language models jointly embed language and visual features (Radford et al., [2021])), allowing
models to perform tasks like captioning images, thus using language to refer to aspects of visual
scenes. It is tempting to think that we could derive a referential mapping between animal signals and
events in the world by using multimodal datasets.

However, whether animals understand reference is a debated topic in cognitive science. While
domesticated animals can readily learn to comprehend labels that map onto objects and events
(Kaminski et al., 2004} Bastos et al.||2024)), such mappings are rare in endogenous communication
systems. A famous example of such a system is in vervet monkeys (Seyfarth et al., [1980), which
produce different alarm calls for different predators. Distributionally, these types of predators
and the calls co-occur — they have high mutual information. But so do the associated differential
behavioral responses. It is unknown whether vervet calls are analogous to a referential eagle label,
i.e., functionally referential (Seyfarth et al.,|1980), a performative look up!, or merely a predictive
cue (Wheeler & Fischer, 2012). We can be confident, however, that vervets are not using these alarm
calls to talk about eagles in the richer, discourse-based sense.
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The informational perspective, often framed by the Shannon-Weaver code model (Shannonl [1948;
Weaver, 1963), has been and remains highly influential in the study of animal communication. This
perspective views communication as a process of sending information, where signals are treated
as containers carrying predefined messages from sender to recipient. However, such a code model
minimizes or ignores the specific context and social relationship in which the signal occurs.

In contrast to the informational perspective, Dawkins & Krebs| (1978, |1979) proposed that animal
signals evolved to manipulate or influence the behavior of recipients to the sender’s benefit. In
functionalist views like the manipulation perspective, communication is best understood as a tool
for influencing others and coordinating social interactions rather than exchanging information.
Accordingly, signals are actions for achieving specific goals and consequences contingent on their
social context. The meaning of a signal lies in its function or effect rather than in a consistent piece
of information that could be decoded.

Below, we argue that a functionalist framework, treating signals as tools for influencing others
within specific social and ecological contexts, can improve machine-learning approaches to animal
communication. Importantly, it avoids dependence on the assumptions outlined above, making
progress possible even when those are not met.

3 A Functionalist Framing

To hedge against issues the above assumptions may inject into training datasets, we propose machine
learning research on animal communication adopt a functionalist framework. Grounded in ethology
and comparative cognitive science, this framework can help guide how datasets are collected, ensuring
they provide enough context to answer research questions about animal communication systems.

In contrast to the informational perspective, common in NLP, the functionalist perspective proposes
that signals are best thought of as rools for achieving specific goals that primarily benefit senders by
manipulating recipients (Figure [STB]). The form and function of these signals may derive from many
sources which affect the context needed to interpret them. But fundamentally, communicative signals
are embedded in social interactions, which often involve instrumental, non-signaling behaviors.

To leverage the distributional hypothesis for animal communication in the functionalist framework,
one must widen the scope of what counts as context. This can be clearly seen in the case of intentional
communication. Intention underlies much of the theory in human communication. [Townsend et al.
(2017) operationalize intentional communication as signaling that is goal-oriented, contingent on
the recipient’s attention, and non-randomly eliciting a behavioral response conducive to achieving
that goal. In such cases, a signal s derives its meaning from contexts in which signaler S has a goal
g, arecipient is in attentional state a and makes a behavioral response r, which possibly affects g
(Figure[STA). Therefore, for models to learn communicative signals, datasets may need to provide
enough context from which the identities of signalers and recipients, their attentional states, and their
goals/intentions can be inferred.

3.1 Signal Origin and Scope of Signaling Community

In humans, all of this is often made public through language, but in animals it can require observing a
broad range of social and environmental context. The scope of this social context depends on the
origin of the communicative behavior.

In evolution, signals often originate from instrumental acts (Dawkins & Krebs| [1978 [1979). Re-
cipients remain sensitive to signals when there is mutual benefit, i.e., when, on average, perceiving
them is advantageous. For example, an instrumental behavior such as biting, which originally had an
immediate effect (injury) on a recipient, can ritualize into baring the teeth as a threat display. Because
teeth baring reliably precedes biting, signalers can defend resources without physical contact, and
recipients avoid injury. The process of phylogenetic ritualization can occur both within and across
species.

In development, new communicative behaviors can emerge through ontogenetic ritualization
(Tomasellol 2008). This process occurs when individuals repeatedly interact, anticipate one an-
other’s instrumental actions for achieving a goal, and gradually abbreviate them into communicative
signals. For example, bonobo infants initially raise their arms and tug on their mother’s fur to get
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carried. But over time the gesture can be reduced to simply raising the arms as a carry request. In
some cases, highly idiosyncratic signals can emerge, such as a bonobo initiating carries by spinning in
place, a signal that was distinct to one mother-infant pair (Halina et al., 2013). For machine learning,
this means that some signals have meaning only within a specific dyad’s history. A general “translator”
trained on population-level datasets may therefore miss or misinterpret signals whose function is
rooted in individual interactional histories. Therefore, recognizing this limitation and knowing the
origins of animal signals is crucial when curating datasets and evaluating model performance.

3.2 How Intentionality and Interaction Confound Compositionality

Intentional communication has some observable behavioral correlates, such as when an animal tries
to elicit a response from another animal, it will repeat or reformulate signals until that intended
response is elicited (or some other stopping condition has been met). For example, non-human
primates will continue making groom me gestures until they are socially groomed (Byrne et al., 2017),
dogs will continue to request food until they are fed (Worsley & O’Haral 2018)), and, in humans, if
a conversational turn is not responded to, it will be pursued (Pomerantz, |1983} |Stivers & Rossano,
2010). The response that stops signaling is referred to as an apparently satisfactory outcome (ASO)
(Hobaiter & Byrnel 2014). ASOs are often used to infer the meaning of signals.

In humans, such response mobilization strategies are thought to influence the structure of language
and its development (R. Brown, |1968; Goodwin, 2018} |Du Bois, [2014; [Terwilliger & Rossanol, 2025]).
For animal communication research this means that, unless datasets specify who is signaling, whether
the recipient responded (possibly in another modality), and the temporal structure of the exchange,
analyses of signal structure risk being confounded by the dynamics of turn-taking (Figure [STIC).
For instance, if we observe the sequence aab, it could reflect a compositional syntax or it could be
three separate communicative bouts, where a signaler repeats a twice and then tries b in pursuit of a
response. The distinction hinges on timing: interactional silences, pauses, and bout boundaries all
matter for interpreting structure. Without this information, models may conflate persistence strategies
with grammatical composition. Prior work on the structure and timing of human versus non-human
interaction highlights how central temporal dynamics are to communication (Rossanol 2019).

4 Recommendations for Dataset Design and Evaluation

We argued for the benefits of understanding animal communication through a functionalist framework,
which treats signals not as isolated units but as social tools embedded within evolutionary dynamics,
developmental trajectories, social relationships, and ecological contexts. This shift in perspective has
concrete implications for how datasets are curated and how ML models are evaluated. Below, we
highlight three priorities:

First, datasets should be longitudinal and multimodal (Rutz et al.| 2023). Functional meaning often
emerges only through repeated interaction and over developmental time, such as the example of
ontogenetic ritualization in great ape gestures discussed above. Further, signals can change as
individuals mature, as dominance relations shift, or as traditions shift (e.g., whale song dialects).
Capturing such processes requires long-term recordings of identified individuals or groups, enriched
with multimodal inputs (audio, video, movement, and potentially physiological states).

Second, datasets should include rich contextual annotations, which can be based on the longitudinal
and multimodal raw data. Datasets should include the identity of signalers and recipients, correlates
of their attentional states, behavioral outcomes following a signal (including apparently satisfactory
outcomes), and relevant environmental context. This provides models with a record of interactions
from which functional patterns can be learned.

Third, the success of models should be defined in terms of their predictive power for behavioral
and social outcomes. For instance, can a model anticipate how a recipient will respond to a given
signal in a given context? Does its interpretation shift appropriately with changes in social dynamics?
Explicitly linking datasets and models to [Tinbergen/s (1963) four levels of analysis (mechanism,
development, phylogeny, adaptation) helps clarify what kind of functional questions models are
equipped to answer.

In sum, we believe significant progress can be made by grounding models in function and context,
rather than projecting the structure of human language onto other species.
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Recipient mediated goal directed signaling Communication as Manipulation

0. Signaler S has goal g
1. S monitors Recipient R’s attention a
2. S sends signal s to R

3. s elicits response r of R conducive to obtaining g Signaler Signal Recipient World
4. S monitors whether g is obtained or goes to step 1. \ \

2. 3.

1. ﬁ

a
g
C Two Causes of Structured Communication
Mobilization of Combinatorial Ruleset

Absent Responses VS For Signal Structure
Through Interaction
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Figure S1: (A) Recipient-mediated, goal-directed signaling. A signaler S has a goal g, monitors
a recipient R’s attentional state a, sends a signal s to R, and monitors the recipient’s response r;
signaling is repeated or reformulated until an apparently satisfactory outcome (ASO) is reached or a
stopping condition occurs.  (B) Communication as manipulation. Signals are actions selected
by S to influence R so as to bring about desired changes in the world W, i.e., to achieve g.  (C)
Two sources of structured sequences. The same surface pattern (e.g., a a b) can arise from
interactional dynamics (left), repetition after absent responses followed by an alternative, or from a
genuine combinatorial ruleset for signal structure (right); disambiguation hinges on timing and bout
boundaries.
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