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ABSTRACT

Contrastive learning has achieved remarkable success in self-supervised represen-
tation learning, often guided by information-theoretic objectives such as mutual
information maximization. Motivated by the limitations of static augmentations and
rigid invariance constraints, we propose IE-CL (Incremental-Entropy Contrastive
Learning), a framework that explicitly optimizes the entropy gain between aug-
mented views while preserving semantic consistency. Our theoretical framework
reframes the challenge by identifying the encoder as an information bottleneck and
proposes a joint optimization of two components: a learnable transformation for
entropy generation and an encoder regularizer for its preservation. Experiments
on CIFAR-10/100, STL-10, and ImageNet demonstrate that IE-CL consistently
improves performance under small-batch settings. Moreover, our core modules can
be seamlessly integrated into existing frameworks. This work bridges theoretical
principles and practice, offering a new perspective in contrastive learning.

1 INTRODUCTION

Self-supervised contrastive learning has emerged as a cornerstone paradigm for representation learn-
ing, enabling models to extract rich semantic features without explicit labels. At its core, contrastive
learning constructs a latent space where semantically similar samples converge while dissimilar
ones diverge Wang & Isola (2020); Le-Khac et al. (2020). Despite rapid advances in this field, a
fundamental tension persists between theoretical understanding and practical implementation. While
recent works have decomposed contrastive objectives into alignment and uniformity principles Wang
& Isola (2020); Zhang et al. (2023), they offer limited insight into the dynamic information landscape
that unfolds during the learning process.

Current contrastive frameworks such as SimCLR Chen et al. (2020a), MoCo He et al. (2020), and their
variants rely heavily on static, human-engineered augmentations and large batch sampling to enforce
invariance and representational diversity. These approaches impose rigid constraints on the learning
dynamics: augmentations must balance semantic preservation with transformational complexity,
while batch scaling faces inevitable hardware limitations. Despite substantial engineering efforts
to refine augmentation strategies Chen & He (2020); Chen et al. (2021); Tian et al. (2020a), these
methods fundamentally lack a principled mechanism for adaptively expanding the representational
capacity of each instance while maintaining semantic coherence.

We address this limitation by reconceptualizing contrastive learning through the lens of incremental
information entropy, a novel framework that quantifies the expansion of representation space during
learning. Inspired by information-theoretic objectives Hjelm et al. (2018); Bardes et al. (2022a), we
focus on how additional controllable uncertainty is gained between augmented views to strengthen
learning. Our key insight is that optimal contrastive learning could maximize the conditional entropy
gain between positive views while preserving their mutual information. And the effectiveness of
maximizing this incremental entropy is contingent on its preservation through the deep encoder,
which often acts as an information bottleneck. We therefore propose a framework that jointly
optimizes two synergistic components: a learnable transformation for entropy generation and an
explicit regularization of the encoder for entropy preservation. This principled approach highlights
the overlooked trade-off between semantic invariance and representational expressivity.

Based on this theoretical insight, we introduce IE-CL (Incremental-Entropy Contrastive Learning), a
framework that explicitly optimizes for controlled entropy gain. To achieve this, we design a learnable
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Figure 1: Overview of the proposed IE-CL. We define incremental entropy as the absolute change
in entropy induced by classical contrastive augmentations (see Definition 3.2). To optimize the
contrastive learning process, we propose the Sample Augmentation Incremental Block (SAIB), a
learnable module that ensures the local Jacobian determinant > 1. By incorporating sample-level
incremental entropy into contrastive optimization, we establish a principled framework that improves
the effectiveness of self-supervised representation learning.

nonlinear transformation module (SAIB) that adaptively expands each sample’s local representation
manifold by guaranteeing a strictly positive Jacobian determinant. Crucially, to ensure this generated
entropy is not lost during encoding, this module is paired with an explicit encoder regularization
mechanism that encourages information preservation. These components work in concert with a
Kullback-Leibler divergence constraint to balance entropic expansion against semantic consistency.
IE-CL operates efficiently under small batch sizes (e.g., 256), enabling broader applicability without
the hardware burden of large-batch training.

The contributions of this work can be summarised as: (1) We propose a new theoretical framework
for contrastive learning that identifies the deep encoder as an information bottleneck. We posit that
effective representation learning requires jointly optimizing for both entropy generation at the input
and entropy preservation during encoding. (2) Based on this framework, we design a novel model,
IE-CL, featuring two key components: a learnable transformation (SAIB) to generate rich input-level
entropy, and an encoder regularizer (e.g., Spectral Normalisation) to ensure its faithful propagation.
(3) We provide a detailed empirical analysis demonstrating IE-CL’s effectiveness, particularly in
small-batch settings. We also show that our core module can enhance other self-supervised models in
a plug-and-play manner.

Our work bridges the gap between information-theoretic principles and practical contrastive learning,
offering a more complete theoretical understanding and algorithmic innovations that significantly
advance the field of self-supervised representation learning.

2 RELATED WORK

Self-supervised Paradigm Self-supervised learning has emerged as a prominent paradigm for
feature extraction without reliance on labeled dataLiu et al. (2022); Wang et al. (2023); Yang et al.
(2024). A central research focus has been the development of effective encoding frameworks that
facilitate rich representation learning in the absence of supervision. Notable approaches include
contrastive learningChen et al. (2020b;c); Chen & He (2020); Chen et al. (2021); Caron et al. (2021);
Oquab et al. (2023); Wu et al. (2023), masked autoencodersZhou et al. (2022b); Xie et al. (2022); Wei
et al. (2022); Chen et al. (2022), and advances in loss function designErmolov et al. (2021); Zbontar
et al. (2021); Tian et al. (2020b); Ozsoy et al. (2022); Bardes et al. (2022b). Among these, contrastive
learning has become a dominant paradigm due to its ability to extract rich features through well-
designed pretext tasks within a dual-encoder frameworkGarrido et al. (2022).It has frequently served
as a benchmark for evaluating self-supervised learning methods. Recently, the emergence of masked
pretext tasks has opened new avenues for learning representations in a label-free setting. Works such
as He et al. (2021) and Bao et al. (2022) creatively adapted masking strategies from NLP to vision,
enabling image reconstruction from masked tokens using spatial priors and positional embeddings.
Following this, Jinghao Zhou et.alZhou et al. (2022a) further abstracted feature representations
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in image self-supervised learning using a knowledge distillation-based masking learning strategy,
also demonstrating the effectiveness of masking strategies in dual-track self-supervised frameworks
like contrastive learning. Concurrently, the realm of non-masking pretext tasksMo et al. (2023);
Huang et al. (2022); Oinar et al. (2023) in self-supervised learning has witnessed numerous novel
contributions. Notably, Tong et.alTong et al. (2023) employed an extremely high number of patches
as a self-supervised signal, proposing a self-supervised learning framework requiring only one epoch.
The remarkable success of these works is largely attributable to researchers’ deepening understanding
of data processing methods in self-supervised learning.

Contrastive Learning Theory The empirical success of contrastive learning has spurred extensive
theoretical investigations. Early work focused on analyzing the mathematical foundations of con-
trastive loss. Saunshi et al. Saunshi et al. (2019) were among the first to show that contrastive learning
can produce linearly separable representations under certain conditions. Wang and Isola Wang &
Isola (2020) decomposed the InfoNCE loss into two interpretable terms—alignment and unifor-
mity—where alignment promotes similarity between positive pairs and uniformity mitigates feature
collapse. This formulation offered a unified lens for understanding contrastive learning and inspired
connections to broader information-theoretic frameworks, such as mutual information maximiza-
tion Tian (2022) and noise contrastive estimation Hu et al. (2022). From a spectral graph theory
viewpoint, Chen et al. HaoChen et al. (2021) revealed that contrastive learning implicitly learns
the Laplacian of the data graph, showing equivalence to spectral clustering objectives. This was
later extended to dynamic graphs Shen et al. (2022) and connected to kernel methods Wang et al.
(2022). Tan et al. Tan et al. (2023) introduced α-order mutual information to unify contrastive and
non-contrastive losses, bridging matrix-based contrastive methods (e.g., Barlow Twins Zbontar et al.
(2021), VICReg Bardes et al. (2021)) with classical dimensionality reduction techniques such as
ISOMAP. Beyond spectral perspectives, Zimmermann et al. Zimmermann et al. (2021) proposed a
probabilistic interpretation, viewing contrastive learning as reverse engineering the data generation
process under the assumption of a uniform latent prior. This aligns with the framework of noise
contrastive estimation Gutmann & Hyvärinen (2010) and sheds light on its generalization behavior.
Lee et al. Lee et al. (2021) further established a link between contrastive loss and the variational
lower bound of the data likelihood using latent variable models. As non-contrastive approaches such
as BYOL Grill et al. (2020) and Barlow Twins Zbontar et al. (2021) gained popularity, recent efforts
have focused on theoretically characterizing the distinction between contrastive and non-contrastive
paradigms Zhang et al. (2023).

3 METHOD

3.1 INFORMATION ENTROPY IN CONTRASTIVE LEARNING

Contrastive Learning Objectives The primary goal of contrastive learning is to optimize the
similarity between positive pairs (anchor and query) while repelling negative samples, thereby
enabling effective self-supervised representation learning under the assumption of independently
and identically distributed (i.i.d.) samples within a mini-batch. For a given batch of original images
B = {xi | i = 1, 2, . . . , N}, the representation zi ∈ Z1 denotes the embedding of image xi,
computed via the encoder fθ1 . This embedding typically originates from the anchor branch in a
dual-stream contrastive architecture. The representation z+i denotes the positive sample, whereas
zj ∈ Z2(with j ̸= i) corresponds to negative samples derived from different instances in the batch.
These negative and positive representations are encoded by the second branch, fθ2 , and are collectively
referred to as the query set. The standard form of the objective can be expressed as:

L(Z1,Z2) = − 1

N

N∑
i=1

log
exp(sim(zi, z

+
i )/τ)∑N

j=1 exp(sim(zi, zj)/τ)
(1)

where sim(zi, zj) is the similarity function, and τ is the temperature parameter that controls the
sharpness of the probability distribution. Cosine similarity is often employed, defined as:

sim(zi, zj) =
z⊤i zj

∥zi∥∥zj∥
(2)

The optimization objective seeks to minimize the distance between each anchor and its positive
counterpart (zi, z+i ), while maximizing the separation from all negative samples zj ̸= z+i , thereby
facilitating effective self-supervised learning.
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Mutual Information Theory Mutual information provides a principled framework for analyzing
self-supervised learning objectives, as discrete probability distributions can be interpreted as samples
drawn from an underlying continuous distribution.
Lemma 3.1 (Equivalence between InfoNCE minimization and mutual information maximization).
Let Z = fθ(X) be the embedding of input X and Z+ the corresponding positive sample. Then,
based on the Donsker–Varadhan representation, the mutual information satisfies

minLInfoNCE ⇐⇒ max I(Z;Z+), I(Z;Z+) ≥ logN − LInfoNCE.

Proof. The InfoNCE loss for a positive pair (z, z+) can be written as

L = −Ep(z,z+)

[
log

exp(sim(z, z+)/τ)

exp(sim(z, z+)/τ) +
∑N−1

j=1 exp(sim(z, z−j )/τ)

]
. (3)

Using the Donsker–Varadhan representation,

I(Z;Z+) = sup
T

Ep(z,z+)[T (z, z
+)]− logEp(z)p(z+)[e

T (z,z+)]. (4)

Choosing T (z, z+) = sim(z, z+)/τ yields the lower bound

I(Z;Z+) ≥ logN − LInfoNCE. (5)

Thus, minimizing LInfoNCE is equivalent to maximizing I(Z;Z+).

3.2 INCREMENTAL ENTROPY IN CONTRASTIVE LEARNING

It is evident that optimizing the distributions of Z1 and Z2 fundamentally depends on obtaining
effective and discriminative feature representations. From an information-theoretic standpoint—
abstracting away encoder-specific inductive biases the learning objective can be intuitively framed as
minimizing the conditional entropy H(Z+|Z) while maximizing the marginal entropy H(Z+). The
incremental entropy is thus defined first from the input side.
Definition 3.2 (Based on the concept of Shannon Entropy, the change in information entropy of a
given sample X after a transformation g is applied, resulting in X ′, is referred to as the Incremental
Information Entropy).

∆H(X) = H(X ′)−H(X), H(X) = −
∑
i

p(xi) log p(xi)

The relationship between a transformation and the change in entropy can be precisely quantified. For
a linear transformation g represented by a matrix A, the incremental information entropy is given by:

∆H(X) = H(g(X))−H(X) = log |detA|

Proof. When the transformation g is a linear function, the probability density function of x can be
written as:

p′X(x′) = pX
(
A−1(x′ − b)

)
· 1

|detA|
(6)

Replacing p′X(x′) with H(X ′):

H(X ′) = −
∫

p′X(x′) log p′X(x′) dx′

= −
∫

pX(A−1(x′ − b)) · 1

| detA| log
(
pX(A−1(x′ − b)) · 1

| detA|

)
dx′

(7)

Logarithmic term expansion:

H(X ′) = −
∫

pX(A−1(x′ − b))

· 1

|detA|
[
log pX(A−1(x′ − b))− log | detA|

]
dx′

(8)

Split into two parts:
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H(X ′) = −
∫

pX(A−1(x′ − b))

· 1

| detA| log pX(A−1(x′ − b)) dx′ + log |detA|
(9)

Perform a permutation on the variable u = A−1(x′ − b) with dx′ = |detA|du:

H(X ′) = −
∫

pX(u) log pX(u) du+ log |detA| (10)

To wit:
H(X ′) = H(X) + log |detA| (11)

Incremental information entropy is:

∆H(X) = H(X ′)−H(X) = log |detA| (12)

This relationship makes it clear why standard augmentations have limitations. When the transforma-
tion g is a linear isometry (such as rotation, cropping, mirroring, etc.), its matrix representation A has
a determinant |detA| = 1, which leads to ∆H = 0. In such cases, these augmentations can enrich
sample diversity at the batch-level without altering the instance-level entropy.

However, a critical challenge arises from the nature of deep encoders themselves. In information
theory, the Data-Processing Inequality states that post-processing cannot increase information. For
differential entropy, this implies that the entropy of a variable’s representation Z = f(X) is bounded
by the entropy of the original variable X . Specifically, for a deterministic function f , the change in
entropy is governed by:

H(f(X)) ≤ H(X) + Ep(x)[log |det Jf (x)|] (13)

where Jf (x) is the Jacobian of the transformation f at x. This inequality highlights a crucial
issue in representation learning: a deep encoder, acting as the function f , can potentially become
an information bottleneck, diminishing the entropy of its input. Any diversity generated at the
input level is not guaranteed to be preserved in the final representation space. To address this, we
introduce the IE-CL framework, a holistic approach that pairs an entropy generation module with an
entropy-preserving encoder. We formalize this approach in the following proposition.
Proposition 3.3 (Principle of Constrained Incremental Entropy Maximization). Let X− be a negative
sample, gϕ be a non-linear transformation, and Z ′− = fθ(gϕ(X

−)) be the final representation
encoded by an encoder fθ. To robustly increase the representation entropy H(Z ′−), maximizing the
input-level incremental entropy ∆H(X−) alone is insufficient. A joint condition is required: (1)
Input Entropy Generation: The transformation gϕ must be optimized to maximize the incremental
entropy ∆H(X−). (2) Encoder Entropy Preservation: The encoder fθ must be simultaneously
constrained to preserve the entropy of its input. Satisfying both conditions provides a principled path
toward maximizing the diversity of negative representations for effective contrastive learning.

Theoretical Argument. Our argument is based on the Data-Processing Inequality for differential
entropy. Let X ′ = gϕ(X

−) be the transformed input to the encoder. The entropy of the final
representation, Z ′− = fθ(X

′), is bounded as follows:

H(Z ′−) = H(fθ(X
′)) ≤ H(X ′) + Ep(x′)[log |det Jfθ (x′)|] (14)

This inequality reveals the core challenge. The first condition, maximizing ∆H(X−), is equivalent
to maximizing H(X ′) since H(X−) is a constant with respect to the parameters ϕ of gϕ. However,
even if H(X ′) is large, the second term, which depends on the Jacobian of the encoder fθ, can be a
large negative value, effectively nullifying the gains from the first term. This occurs if the encoder
acts as a strong information bottleneck, aggressively compressing its input space.

Therefore, to guarantee that a large H(X ′) induces a correspondingly large H(Z ′−), we introduce
the second requirement: constraining the encoder. Specifically, by regularizing fθ to be entropy-
preserving (e.g., via Lipschitz continuity constraints), we effectively bound the term E[log |det Jfθ |],
thus preventing it from becoming excessively negative. This condition ensures that the entropy
injected by gϕ is faithfully propagated to the final representation space.

Consequently, the joint optimization of an entropy-generating transformation and an entropy-
preserving encoder is a necessary and sufficient strategy to robustly increase the final representation
entropy H(Z ′−).
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3.3 MAXIMIZING INCREMENTAL INFORMATION ENTROPY

Based on the framework established in Proposition 3.3, our goal is to co-optimize both the generation
of incremental entropy and its preservation through the encoder. While encoder regularization is
implemented via standard techniques such as spectral normalization, the core of our contribution
lies in the design of a learnable, entropy-generating transformation gϕ. Isometric transformations, as
discussed, cannot linearly provide incremental information entropy. To address this, we propose a
nonlinear transformation implemented via batch-level pixel-wise operations, explicitly designed to
induce positive entropy increments in the query branch.

Sample Augmentation Incremental Block (SAIB) Our objective is to maximize mutual in-
formation by minimizing the conditional entropy H(Z+ | Z) on the query side. To inject a
semantics-preserving but entropy-expansive transform into the query branch1 we introduce the SAIB
module, which couples ViT-style positional encoding Dosovitskiy et al. (2020) with a non-linear
residual stack. The input X ∈ R3×H×W is first patchified into a matrix P ∈ R(C H/pW/p)×(p2)

(as in ViT, C = 3), where the mini-batch occupies the channel dimension. A sequence of
1 × 1−Conv → 3 × 3−Conv → 1 × 1−Conv layers—with channel expansion ratio 2—is
wrapped by two skip connections (see Appendix Figure 6). Owing to the channel-expanding residual
design, the local Jacobian A of SAIB satisfies |detA| > 1 almost everywhere (Appendix C.1),
guaranteeing positive incremental entropy ∆H(P )>0. After the non-linear block we reshape P ′

back to the spatial layout and add a troisième skip connection X ′=X + reshape(P ′).

KL regularisation to avoid degenerate gϕ. Because gϕ acts only on the query branch, aggressive
entropy expansion may lead to distributional drift. We therefore penalise the Kullback–Leibler
divergence

DKL

(
pϕ ∥ q

)
=

∫
pϕ(z) log

pϕ(z)

q(z)
dz, (15)

where pϕ(z)=p
(
Z−′=z

)
is the SAIB-transformed query distribution and q(z)=p

(
Z=z

)
is the

anchor distribution. Assuming q is Gaussian with mean µ and variance σ2
0I ,

DKL

(
pϕ ∥ q

)
= H

(
Z−′)+ ∥µϕ − µ∥2

2σ2
0

+
d

2
log

(
2πσ2

0

)
, (16)

where µϕ=E[Z−′] and d is the feature dimension.

Overall objective. Our final objective function holistically integrates all components of the frame-
work established in Proposition 3.3. We minimise the combined loss:

Lfinal = LInfoNCE + β DKL

(
pϕ ∥ q

)
− λH

(
Z−′)+ ηLreg_encoder + γ R(gϕ) (17)

with λ, β, η, γ > 0. Here, the InfoNCE loss drives the primary representation learning task, while the
KL-divergence term ensures that the transformations induced by SAIB maintain semantic consistency.
The negative entropy term, −λH(Z−′), directly optimizes for greater diversity in the representation
space, serving as the practical objective for maximizing incremental entropy. Crucially, the novel
encoder regularizer, ηLreg_encoder, operationalizes the entropy preservation principle central to our
framework, ensuring that the diversity generated by SAIB is not lost during encoding. The final
term, γ R(gϕ), is an optional weight-decay penalty on the SAIB module’s parameters. This unified
objective enables an end-to-end optimization of both entropy generation and preservation, yielding
more robust representations.

4 EXPERIMENT & RESULT

4.1 EXPERIMENTAL SETUP

Implementation Details We conducted upstream self-supervised learning experiments on CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), STL-10 Coates et al. (2011), and
ImageNet Deng et al. (2009), followed by downstream evaluation on the PASCAL VOC. To ensure

1The query branch corresponds to the lower path in Fig. 1, whose encoder parameters are fθ2 .
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fair comparison, we used ResNet-based encoders across all experiments and fixed the random seed
to 42 for reproducibility. For large-scale pretraining, we employed ResNet-50 as the backbone and
followed the standard MoCo configuration on ImageNet for a consistent evaluation protocol. For
ablation and scalability analysis, we used ResNet-18 with a batch size of 256 across CIFAR-10,
CIFAR-100, STL-10, and ImageNet, enabling controlled comparisons under limited capacity settings.
This phase primarily showcases the effectiveness of the proposed method under smaller batch settings
across varying dataset distributions.

Table 1: The comparison of the proposed method with ResNet-50 as the backbone under different
numbers of pre-training iterations. Using BOLD and Underline formatting to highlight the best and
second results.

Method 100 ep 200 ep 400 ep 800 ep Batch Size

SimCLR (ICML’20) Chen et al. (2020a) 66.5 68.3 69.8 71.1 4096
SwAV (NeurIPS’20) Caron et al. (2020) 66.5 69.1 70.7 71.0 4096
MoCo-v2 (CVPR’20) Chen et al. (2020c) 67.4 69.9 70.9 71.3 256
SimSiam (ICCV’21) Chen & He (2020) 68.1 70.0 70.8 71.7 256
NNCLR (ICCV’21) Dwibedi et al. (2021) 65.4 66.1 66.8 68.7 1024
All4One (ICCV’23) Estepa et al. (2023) 65.4 66.0 66.6 68.9 1024
Matrix-SSL (ICML’24) Zhang et al. (2023) 69.2 69.9 71.1 71.9 512

Ours 68.3 70.9 71.7 73.2 256

Model Architectures IE-CL was implemented on top of the MoCo framework, incorporating a
momentum encoder and a symmetric contrastive loss as in SimCLR Chen & He (2020). A ResNet
backbone with the classification head removed was used symmetrically on both anchor and query
branches. The output features are 256-dimensional, obtained by global average pooling. Each branch
uses a symmetric three-layer projector with an MLP-BN architecture. The hidden dimension is set to
4096, and the final projection is 512-dimensional. The anchor encoder and SAIB module are updated
via backpropagation, while the query encoder is updated using momentum-based moving averages.
The pseudo-code of IE-CL is shown in Appendix-Algorithm 1.

Optimization and Hyperparameters We trained IE-CL using AdamW with a batch size of 256,
a base learning rate of 0.3, weight decay of 1e-5, and momentum of 0.9. Learning rates were
scheduled via cosine annealing. The momentum coefficient m for the momentum encoder was set
to 0.9. The regularization weights for our final objective (Eq. 17) were configured as λ = 0.2 for
entropy maximization, β = 0.09 for the KL-divergence, and γ is 1e-4 for the SAIB weight decay.
Crucially, the entropy-preserving encoder regularizer, Lreg_encoder, was implemented by applying
Spectral Normalization to every convolutional layer of the encoder fθ, and its corresponding weight
was set to η = 1.0 as it is an architectural constraint rather than a loss term. For linear evaluation, we
used SGD with batch sizes of 512, learning rate of 0.03, momentum of 0.9, and weight decay of 1e-5.
Cosine annealing was also used for scheduling. The linear classifier was trained for 200 epochs, and
we report the final epoch accuracy. All experiments were conducted on 8 × NVIDIA Tesla V100
GPUs (32GB), using PyTorch 1.13 and Python 3.8.

Table 2: Comparison of self-supervised learning methods on various datasets (left) and segmenta-
tion/detection performance on PASCAL VOC2012 (right).

(a) Comparison based on ResNet-18 with batch size is 256.

Method CIFAR-10 CIFAR-100 STL-10 ImageNet

DeepCluster (ECCV’18)Caron et al. (2018) 84.3 50.1 79.1 41.1
SimCLR (ICML’20)Chen et al. (2020a) 91.1 65.3 90.1 52.4
MoCo-v2 (CVPR’20)He et al. (2020) 91.3 68.3 88.9 52.5
BYOL (NeurIPS’20)Grill et al. (2020) 91.9 69.2 91.3 53.1
SimSiam (ICCV’21)Chen & He (2020) 91.2 64.4 90.5 33.2
W-MSE (ICML’21)Ermolov et al. (2021) 90.6 64.5 87.7 47.2
MoCo-v3 (ICCV’21)Chen et al. (2021) 91.8 68.8 91.4 56.1
S3OC (TNNLS’22)Li et al. (2022) 91.0 65.2 91.4 -
MinEnt (PR’23)Li et al. (2023) 90.8 66.1 91.5 -
Light-MoCo (ICME’23)Lin et al. (2023) - - - 57.9

Ours 92.1 69.5 91.9 59.4

(b) Results on PASCAL VOC2012
with ResNet-50 SSL pretrained.

Pretrained mIoU mAP

Supervised 76.91 73.76
Random 38.35 40.90
SimCLR 76.74 73.17
MoCo-v2 77.32 73.92
SimSiam 77.09 73.45

Ours 78.12 (↑ 1.21) 74.41 (↑ 0.65)
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4.2 MAIN RESULTS

Linear Evaluation We adopt the standard linear evaluation protocol Chen et al. (2020a); Grill
et al. (2020); He et al. (2021), in which the pretrained anchor encoder is frozen, and a linear classifier
is trained on top. The anchor encoder, with the backbone network parameters frozen, is used for
the linear evaluation process. A linear layer is appended and trained using supervised signals while
keeping the backbone fixed. Training data is augmented via random horizontal flipping, random
cropping to 224 × 224, and layer normalization. For evaluation, input images are resized from
256 × 256 to 224 × 224. Table 1 reports Top-1 accuracy after IE-CL pretraining on ImageNet
using ResNet-50 over 100, 200, 400, and 800 epochs. Table 2 shows linear probe results on other
datasets using ResNet-18 (trained for 300 epochs on ImageNet and 1,000 on smaller datasets). IE-CL
consistently outperforms previous baselines across all settings.

(e) Rotate

(b) Resize Crop

 (f) Gaussian Noise (g) Gaussian Blur

(a) Original (c) Color distort (d) SAIB(100 ep)

(h) SAIB(400 ep)

Figure 2: Illustration of the data augmentation opera-
tors studied. The non-isometric transformation operator
SAIB has learnable parameters, enabling non-prior aug-
mentation for contrastive learning. Visualizing changes
from 100 epochs (d) to 400 epochs (h) shows that KL
divergence effectively constrains incremental entropy,
preventing collapse.

Figure 3: Ablation tests the relationship between
SAIB and the previous pretext task. The image was
resized to 224×224, and augmentation strength
settings from Chen et al. (2020a) were applied,
followed by two-by-two tests with SAIB placed on
both sides of the contrastive learning.

Transfer Learning To assess the transferability of the learned representations, we evaluate IE-CL
on two downstream tasks from PASCAL VOC 2012 Everingham et al. (2010): object detection and
semantic segmentation. We use Faster R-CNN Ren et al. (2016) for object detection and DeepLab-
v3 Chen et al. (2018) for segmentation, both with ResNet-50 backbones pretrained via IE-CL. For
segmentation, training samples are augmented with random cropping and contrast-based enhancement.
Adam is used with a learning rate of 3 × 10−4. For detection, the model is trained using SGD with a
learning rate of 1 × 10−4.

Augmentation Dependency As SAIB is implemented at the data loading stage (see Appendix
Algorithm 1), it can be interpreted as a learnable augmentation layer, contrasting with traditional
pretext-based augmentation schemes used in prior contrastive methods. Figure 3 presents comparative
results for various augmentation strategies on ImageNet-100, under 100 epochs of pretraining and
linear evaluation. Our method exhibits robust performance gains under limited augmentation.

Ablation Study To assess the contribution of each component in IE-CL, we performed an ablation
study based on a MoCo-v2 baseline with a ResNet-18 backbone on ImageNet-1k. As shown in
Table 3, progressively adding the core modules in Proposition 3.3 yields consistent gains. Introducing
the SAIB module for entropy generation produces the largest improvement, confirming the benefit of
maximizing input-level incremental entropy, while the KL-divergence term for semantic consistency
further enhances performance by mitigating distributional drift. Crucially, the final row demonstrates
that incorporating our proposed entropy preservation mechanism via an encoder regularizer (‘Encoder
Reg.‘) provides an additional performance boost on top of the already strong SAIB+KL configuration.
This result provides strong empirical evidence for the central tenet of our framework: that optimal
performance is achieved by jointly optimizing for both entropy generation at the input and entropy
preservation through the encoder. We also found that cascading multiple SAIB modules offered
diminishing returns, shown in Table 4, thus we use a single module in our main configuration.

Plug and Play Table 5 demonstrates the plug-and-play ability of SAIB when integrated into other
self-supervised learning frameworks on ImageNet-100, including non-contrastive methods such as
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BYOL and SimSiam. At this point, SAIB is placed on the Target side, similar to its placement on the
Anchor side in contrastive learning. We further visualize entropy gains during training in Figure 4
and 5, showing accelerated convergence and performance improvement attributed to SAIB.

Table 3: Ablation study of the IE-CL components on ImageNet-1k using MoCo-v2 with a ResNet-18
backbone. We incrementally add our proposed components: the SAIB module for entropy generation,
KL regularization for semantic consistency, and an Encoder Regularizer (implemented via Spectral
Normalization) for entropy preservation.

Configuration SAIB KL Reg. Encoder Reg. Top-1

MoCo-v2 (Baseline) ✗ ✗ ✗ 52.50
+ Entropy Generation ✓ ✗ ✗ 58.80
+ Semantic Consistency ✓ ✓ ✗ 59.15
IE-CL (Full Framework) ✓ ✓ ✓ 59.41

Table 4: Ablation on the number of cascaded SAIB
modules within the full IE-CL framework. Perfor-
mance slightly degrades with more than one module,
indicating diminishing returns.

Configuration SAIB Cascade Top-1

IE-CL (Full Framework) 1x 59.41

IE-CL with more modules 2x 58.62
3x 58.71

Table 5: Based on the theory of maximizing incre-
mental information entropy with non-isometric trans-
formations, SAIB can be seamlessly integrated to en-
hance other self-supervised paradigms.

Method Top1 Batch Size Epoch

MoCo-v2 66.29 256 200
BYOL 67.95 256 200
SimCLR 63.34 256 200
SimSiam 66.25 256 200

MoCo-v2 + SAIB 67.54 (↑ 1.25) 256 200
BYOL + SAIB 68.76 (↑ 0.81) 256 200
SimCLR + SAIB 64.02 (↑ 0.68) 256 200
SimSiam + SAIB 66.97 (↑ 0.72) 256 200
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Epochs
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Linear Eval Top-1 Acc:
With SAIB: 59.41%
Without SAIB: 52.50%

LR ÷ 10 LR ÷ 10 LR ÷ 10

Self-Supervised Training Loss on ImageNet-1K

With SAIB (Maximize H)
Without SAIB

Figure 4: Comparison of SSL training loss drop
curves based on the proposed maximized incremental
information entropy (SAIB) on ImageNet-1K, using
MoCo-v2 as the baseline.
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Figure 5: The variation of the incremental entropy
∆H(X) on the Query side and InfoNCE throughout
the iterations is shown.

5 DISCUSSION, LIMITATION, CONCLUSION AND FUTURE WORK

This work introduces Sample Incremental Information Entropy and presents a new framework, IE-CL,
to advance mutual information maximization in contrastive learning. It solves the critical challenge
of the encoder information bottleneck by jointly optimizing for entropy generation, via a novel
learable transformation module (SAIB), and entropy preservation, via an explicit encoder regularizer.
Our approach yields consistent improvements across various datasets, though several aspects merit
further study. SAIB operates at the patch level and induces local pixel-space variations, which
preserve semantic consistency but may limit expressiveness in modeling complex structures or higher-
resolution tasks. Its reliance on convolutional priors also raises challenges for extension to vision
transformers. Nonetheless, the core principle of IE-CL, explicitly modeling and maximizing sample
entropy, provides a principled strategy for augmentation design and entropy-aware optimization,
enriching representation diversity and deepening the information-theoretic understanding of self-
supervised learning
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive medical
data. All experiments are conducted on publicly available benchmark datasets (CIFAR-10/100, STL-
10, ImageNet, and PASCAL VOC), which are widely adopted in the research community. We adhere
strictly to the ICLR Code of Ethics and the licensing terms of the datasets used. Our proposed method,
IE-CL, is intended for advancing self-supervised learning research in computer vision and does not
present foreseeable risks of harmful misuse. We disclose all relevant implementation details, maintain
academic integrity, and ensure that our research complies with ethical standards of reproducibility,
transparency, and fairness.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. A detailed description of
the proposed method, IE-CL, including the theoretical derivations (Section 3), algorithm design (SAIB
module), and the overall objective function, is provided in the main text. The experimental setup,
datasets, and evaluation protocols are described in Section 4, with optimization hyperparameters and
implementation details explicitly listed. Additional pseudo-code and derivations are included in the
Appendix. We will release the source code, training scripts, and configuration files after the paper
is accepted, as supplementary materials to enable full reproducibility. Random seeds and hardware
specifications are also reported to facilitate consistent replication of our experiments.
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SUPPLEMENTARY MATERIALS

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed large language models (LLMs) solely for language
polishing and grammar refinement. The LLMs were not involved in idea generation, theoretical
development, algorithm design, experimental implementation, or result analysis. All technical content,
experiments, and conclusions presented in this work are entirely the contribution of the authors.

B THEORETICAL JUSTIFICATION FOR THE IE-CL FRAMEWORK

This appendix provides a detailed theoretical argument for our proposed Incremental Entropy Con-
trastive Learning (IE-CL) framework. We first establish why maximizing the entropy of negative
sample representations, H(Z ′−), is a desirable objective within the InfoNCE framework. We then
use the Data-Processing Inequality to formally demonstrate why naively maximizing input-level
entropy is insufficient due to the information bottleneck of deep encoders. Finally, we show how our
full IE-CL objective function provides a principled and complete solution to this challenge.

B.1 THE GOAL: MAXIMIZING NEGATIVE ENTROPY FOR BETTER CONTRASTIVE LEARNING

The standard InfoNCE loss for a positive pair (z, z+) and a set of N − 1 negative samples {z−k }N−1
k=1

drawn from a distribution q(z−) is:

LInfoNCE = −E
[
log

exp(s(z, z+)/τ)

exp(s(z, z+)/τ) + (N − 1)Ez−∼q[exp(s(z, z−)/τ)]

]
(18)

Our core premise is that increasing the entropy of the negative distribution, H(Z ′−), where q is the
distribution of Z ′−, makes the contrastive task more challenging and thus compels the model to learn
better representations. Let’s formalize this.

The denominator of the InfoNCE loss can be seen as a partition function. A higher entropy H(Z ′−)
implies that the negative samples z− are more diverse and spread out in the representation space.
This increased diversity makes it statistically more likely for some negative samples to be close to the
anchor z, thus increasing the expected value of the negative scores, Ez−∼q[exp(s(z, z

−)/τ)].

This directly increases the value of the denominator, which in turn increases the InfoNCE loss. To
compensate for this more difficult learning signal (i.e., to minimize the loss), the optimizer is forced
to adapt the encoder parameters (θ1, θ2) to create a sharper separation. This is primarily achieved by
increasing the similarity of the positive pair, s(z, z+) ↑.

An increased positive pair similarity implies that given an anchor z, its positive counterpart z+
becomes more predictable. In information-theoretic terms, this corresponds to a reduction in the
conditional entropy, H(Z+|Z) ↓. According to the definition of mutual information, I(Z;Z+) =
H(Z+)−H(Z+|Z), a decrease in conditional entropy (while the marginal entropy H(Z+) is kept
non-trivial to prevent collapse) leads to an increase in the mutual information, I(Z;Z+) ↑. This is
the ultimate goal of InfoNCE-based contrastive learning.

Thus, we have established the following desirable causal relationship:

maxH(Z ′−) =⇒ minH(Z+|Z) =⇒ max I(Z;Z+) ⇐⇒ minLInfoNCE (19)

This confirms that maximizing the entropy of negative representations is a valid and principled
objective for improving contrastive representation learning.

B.2 THE CHALLENGE: THE INFORMATION BOTTLENECK IN DEEP ENCODERS

Having established our goal, the naive strategy would be to simply maximize the entropy at the input
of the encoder, H(X ′−), using our SAIB module, gϕ. However, this approach is fundamentally
flawed because it ignores the transformative effect of the deep encoder, fθ.
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The Data-Processing Inequality for differential entropy provides a formal tool to analyze this. Let
X ′− = gϕ(X

−) be the transformed input. The entropy of the final representation, Z ′− = fθ(X
′−),

is bounded by the entropy of its input H(X ′−):

H(Z ′−) = H(fθ(X
′−)) ≤ H(X ′−) + Ep(x′)[log |det Jfθ (x′)|] (20)

where Jfθ (x
′) is the Jacobian of the encoder function fθ evaluated at x′.

This inequality reveals the core challenge. While our SAIB module is designed to maximize H(X ′−),
the second term, E[log |det Jfθ |], which depends entirely on the encoder, can be a large negative
value. This occurs if the encoder acts as a severe information bottleneck, aggressively compressing
or collapsing its input space. In such a scenario, the entropy gained at the input level via SAIB would
be nullified by the entropy lost during the encoding process.

Therefore, we conclude that maximizing the input-level incremental entropy ∆H(X−) (and thus
H(X ′−)) is a necessary but not sufficient condition. To robustly increase the final representation
entropy H(Z ′−), a mechanism to control the encoder’s information-compressing behavior is essential.

B.3 THE IE-CL SOLUTION: A SYNERGISTIC OPTIMIZATION FRAMEWORK

Our IE-CL framework provides a complete solution by reformulating the objective to jointly optimize
both entropy generation and preservation. We re-state our final loss function from the main text:

Lfinal = LInfoNCE + βDKL(pϕ||q)− λH(Z ′−) + ηLreg_encoder (21)

Let’s analyze how this objective creates an optimization landscape that solves the challenge described
in Sec. B.2. The goal of the optimizer is to minimize Lfinal, which is dominated by the term
−λH(Z ′−), effectively becoming an objective to maximize H(Z ′−). To achieve this, the optimizer
can adjust the parameters of SAIB (ϕ) and the encoder (θ).

1. Optimizing SAIB (ϕ): To maximize the final entropy H(Z ′−), the optimizer is incentivized
to maximize the input entropy H(X ′−), as established by the bound in Eq. 20. The SAIB
module, gϕ, is specifically designed for this task. As shown in the appendix, its design as a
volume-expanding map (|det Jgϕ | > 1) directly translates to maximizing the incremental
entropy ∆H(X−). This is the entropy generation part of our framework.

2. Optimizing the Encoder (θ): The term ηLreg_encoder directly constrains the encoder. By
implementing this regularizer via Spectral Normalization, we constrain the Lipschitz
constant of the encoder’s layers. A smaller Lipschitz constant leads to a "smoother"
transformation, which in turn prevents the Jacobian determinant term E[log |det Jfθ |] from
becoming excessively negative. This term directly counteracts the information bottleneck,
serving as the entropy preservation part of our framework.

3. Semantic Constraint (DKL): The KL-divergence term acts as a crucial regularizer on SAIB,
ensuring that the entropy maximization process does not push the transformed samples X ′−

into a semantically meaningless or out-of-distribution space.

In conclusion, the IE-CL objective function does not assume a naive carry-over of entropy. Instead,
it creates a synergistic system where the only effective way for the optimizer to maximize the final
representation entropy H(Z ′−) is to simultaneously use SAIB to generate rich input entropy and
constrain the encoder to faithfully preserve it. This provides a principled and robust solution to
learning diverse representations for contrastive learning.

C JACOBIAN DETERMINANT OF THE SAIB

C.1 DETAILS OF THE SAIB

Block definition. Let x ∈ RD be the flattened patchified tensor. Within a fixed ReLU activation
pattern the block acts linearly:

f(x) = x+Ax, A := W4M3W3M2W2M1W1, (22)

where
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ReLU

1´1,Conv,Channel = Batchsize
1´1,Conv,Channel = 2´ Batchsize 1´1,Conv,Channel = 1´ Batchsize 

3´3,Conv,Channel = 2´Batchsize

1´1,Conv,Channel = Batchsize

, ,
H W

C p p
p p

B ´ ´ ´

Figure 6: Structure of Sample Augmentation Incremental Block (SAIB). Note that due to the patching
of the 3-channel image, the batch occupies the position of the original channel. Therefore, it is
possible to drive the inter-batch information to communicate by changing the original convolutional
channels. All the convolutions in this block are cascaded with BN layers and SwishRamachandran
et al. (2017) to achieve nonlinear augmentation capability. And then convolved and non-linearly
processed, and finally reconstructed back to the original position through positional coding.

• W1∈RD×D, W3∈R2D×2D, W4∈RD×2D are 1×1-convs;

• W2∈R2D×D is a 3×3-conv that doubles the channel dimension;

• Mi are diagonal 0/1 masks coming from ReLU derivatives.

Step 1: A lower bound on ∥A∥2. Because W2 maps RD→R2D with i.i.d. Gaussian initialisation
of variance 2/fanin, random matrix theory gives

Pr
[
σmax(W2) ≥

√
2
]
= 1. (23)

All other Wi are square and full rank by construction, so ∥A∥2 ≥
√
2 ∥W4M3W3M1W1∥2 > 1

almost surely.

Step 2: Singular values of the Jacobian. The Jacobian of f is

J = I +A. (24)

Let u be the right singular vector of A associated with σmax(A) =: s > 1. Then

∥Ju∥2 = ∥u+Au∥2 ≥
∥∥Au

∥∥
2
− ∥u∥2 = s− 1 > 0, (25)

and by triangle inequality also ∥Ju∥2 ≥ 1 + s. Hence the largest singular value of J satisfies
σmax(J) ≥ 1 + s > 2.

Step 3: Determinant strictly greater than 1. Since J is the sum of identity and a matrix of full
column rank, every singular value of J is ≥ 1 (see Weyl’s monotonicity theorem). With at least one
singular value > 2 we get

|det J | =
D∏

k=1

σk(J) > 2× 1D−1 > 1. (26)

Therefore the block is locally volume-expanding almost everywhere, and its differential entropy
change ∆H = E[log |det J |] > 0.

Remark. Even if some ReLU masks set entire channels to zero, the 2× expansion ensures that at
least one singular value of A remains > 1 with high probability, keeping the argument intact.
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D TRAINING COST

We show a comparison of the training time consumed for the proposed strategies in Figure 7 and
Figure 8, respectively. Figure 7 shows the different methods at 256 batch setting a with resnet50
as backbone on ImageNet-1k The time required to train one epoch. All parameters were kept at
the optimal settings declared at the time of their release, and time spent was evaluated using mixed
precision on 8×V100 (32G).

Figure 8 illustrates the additional computational time consumption associated with the SAIB plug-
and-play existing approach. Due to the differences in the self-supervised paradigms, we observe that
for the encoder half-update paradigm (MoCo-v2, SimSiam, BYOL), adding SAIB to maximise the
incremental information entropy results in only a slight additional computation time (within 10%),
whereas for the full-parameter update approach that relies heavily on the batch scaling to function
(SimCLR), adding SAIB increases the training time by 12.3%. Overall, SAIB is able to balance the
performance improvement of the model with the increased training time.

SwAV All4One NNCLR Matrix-SSL SimCLR SimSiam Ours MoCo-v2
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Training Time Comparison for Self-Supervised Learning Methods
(8x V100 32GB GPUs)

Ours is 5.3% slower than MoCo-v2

Figure 7: Comparison of the time taken by different methods to train an epoch on ImageNet-1k with
batch of 256. The proposed IE-CL, although it includes an additional non-isometric transform module
SAIB, still spends less training cost compared to the previous methods because it uses momentum to
update the Query encoder.
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Figure 8: As a plug-and-play module, SAIB enhances the performance of existing contrastive
learning methods with limited additional computational overhead. Overall, it achieves effective
performance gains within an acceptable increase in training time—on average, approximately 8.8%
more—compared to the original models (see Table 5 in the main text).
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E PSEUDO CODE

Algorithm 1: PyTorch pseudo-code of IE-CL (Corrected)
# Q: anchor encoder (updated by backprop)
# K: query encoder (updated by momentum)
# m: momentum hyperparameter for K
# ctr: contrastive loss function (e.g., InfoNCE)
# SAIB: sample augmentation incremental block
# optimizer: updates Q and SAIB parameters
# H: entropy estimator

# Initialize K’s parameters from Q’s
K.load_state_dict(Q.state_dict())

for x in loader:
# Create two augmented views
x_anchor, x_query = aug(x), aug(x)

# Apply SAIB to the query view to increase entropy
x_query_transformed = SAIB(x_query)

# -- Forward Pass --
# Q computes features for anchor and transformed query
q_anchor = Q(x_anchor)
q_query_transformed = Q(x_query_transformed)

# K computes features for transformed query (no gradients)
with torch.no_grad():

k_query = K(x_query_transformed)

# -- Loss Calculation (matches Equation 25) --
# 1. InfoNCE Loss
LInfoNCE = ctr(q_anchor, k_query)

# 2. KL divergence for regularization
LKL = KL_Loss(q_query_transformed.detach(), q_anchor)

# 3. Incremental Entropy Maximization
Lentropy_max = -H(q_query_transformed)

# Total loss
loss = LInfoNCE + β ∗ LKL + λ ∗ Lentropy_max

# -- Backward Pass & Optimizer Step --
loss.backward()
optimizer.step()
optimizer.zero_grad()

# -- Momentum Update K --
with torch.no_grad():

for param_q, param_k in zip(Q.parameters(), K.parameters()):
param_k.data = param_k.data * m + param_q.data * (1.0 - m)
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