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ABSTRACT

Despite the loss of semantic information, bag-of-ngram based methods still
achieve state-of-the-art results for tasks such as sentiment classification of long
movie reviews. Many document embeddings methods have been proposed to cap-
ture semantics, but they still can’t outperform bag-of-ngram based methods on this
task. In this paper, we modify the architecture of the recently proposed Paragraph
Vector, allowing it to learn document vectors by predicting not only words, but
n-gram features as well. Our model is able to capture both semantics and word
order in documents while keeping the expressive power of learned vectors. Exper-
imental results on IMDB movie review dataset shows that our model outperforms
previous deep learning models and bag-of-ngram based models due to the above
advantages. More robust results are also obtained when our model is combined
with other models. The source code of our model will be also published together
with this paper.

1 INTRODUCTION

Sentiment analysis is one of the most useful and well-studied task in natural language processing.
For example, the aim of movie review sentiment analysis is to determine the sentiment polarity of
a review that an audience posted, which can be used in applications such as automatically movie
rating. This type of sentiment analysis can often be considered as a classification task. Normally,
training and test documents are first represented as vectors. A classifier is trained using training doc-
ument vectors and their sentiment labels. Test document labels can be predicted using test document
vectors and this classifier.

The quality of document vectors will directly affect the performance of sentiment analysis tasks.
Bag-of-words or bag-of-ngram based methods have been widely used to represent documents. How-
ever, in these methods, each word or n-gram is taken as a unique symbol, which is different to other
words or n-grams absolutely, and semantic information is lost.

For modeling semantics of words, word embeddings (Williams & Hinton, 1986; Bengio et al., 2003)
is proposed, which has been successfully applied to many tasks such as chunking, tagging (Col-
lobert & Weston, 2008; Collobert et al., 2011), parsing (Socher et al., 2011) and speech recognition
(Schwenk, 2007). Following the success of word embeddings, sentence and document embeddings
have been proposed for sentiment analysis. For sentence level sentiment analysis, models like recur-
rent neural network (Socher et al., 2013), convolutional neural network (Kalchbrenner et al., 2014;
Kim, 2014), and skip thought vectors (Kiros et al., 2015) all achieved state-of-the-art results. But for
document level sentiment analysis, different document embeddings models like convolutional neu-
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ral network, weighted concatenation of word vectors(Maas et al., 2011), recurrent neural network
(Mikolov, 2012), deep Boltzmann machine (Srivastava et al., 2013), and deep averaging network
(Iyyer et al., 2015) still can’t outperform bag-of-ngram based models such as NBSVM (Wang &
Manning, 2012). Thus, more powerful document embeddings learning methods are needed for sen-
timent analysis.

Recently, Le & Mikolov (2014) proposed a model of learning distributed representation for both
sentences and documents, named as Paragraph Vector (PV). PV represents pieces of texts as compact
low dimension continuous-value vectors. The process of learning PV is shown in Figure 1-b, which
is similar with the typical word embeddings learning methods such as CBOW (Mikolov et al., 2013)
shown in Figure 1-a. PV basically treat each document as a special word and learn both document
vectors and word vectors simultaneously by predicting the target word.

Figure 1: (a) CBOW. (b) PV. (c) simplified version of PV. (d) DV-ngram.

Vectors learned by PV are not sufficient for modeling documents. For example, when the learned
information of word vectors of “one”, “of”, “my” is already sufficient for predicting the next word
“favorite” (when the model in Figure 1-a is able to perform the prediction well enough), the docu-
ment vector can’t be sufficiently learned by the model of Figure 1-b. That is, the document vector
predicts the word with the help of context, so it do not have to contains all the information. The
expressive power of document vectors may be lost in this condition.

Due to this reason, we discover that a simplified version of PV shown in Figure 1-c is more effective
for learning document vectors than PV in Figure 1-b 1. This simplified version of PV learns docu-
ment vectors alone by predicting its belonging words, thus all the information can only be learned
by document vectors to keep the expressive power. But this simplified version of PV does not take
contextual words into consideration and thus word order information is lost. 2

In order to preserve the word order information, our model learns document vectors by predicting
not only its belonging words, but n-gram features as well, as shown in Figure 1-d. Note that PV in
figure 1-b may not be able to use n-gram features since there are no n-grams that can be specified
given certain context. Similar to Paragraph Vector, we name our model as Document Vector by
predicting ngrams (DV-ngram). More powerful document vectors can be learned using this model.

2 MODEL

2.1 BASIC MODEL FOR MODELING SEMANTICS

Traditional bag-of-words methods use one-hot representation for documents. Each word is taken
as a unique symbol and is different to other words absolutely. This representation often ignores the

1 In contrast to our experimental results, Le & Mikolov (2014) reported that the simplified PV (referred to as
PV-DBOW in their paper) is consistently worse than PV (referred to as PV-DM). But as pointed out by Mesnil
et al. (2014), results reported by Le & Mikolov (2014) can only be reproduced when the data is not shuffled,
which are considered invalid.

2As shown in our experiment section, simplified version of PV (DV-uni) outperforms PV 0.87 percent in
terms of accuracy on IMDB dataset.
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Table 1: Illustration of documents for comparing document distance

D1 I saw Captain American yesterday with my friends, its awesome.
D2 I saw Captain American yesterday with my friends, its inspiring.
D3 I saw Captain American yesterday with my friends, its meaningless.
D4 I saw Captain American yesterday with my friends, its awesome and inspiring.

impact of similar words to documents. For example, the distances among the first three documents in
Table 1 are same in one-hot vector space, since there is only one different word. But from semantic
point of view, D1 is more similar to D2 than to D3. In order to solve this problem, the semantics of
documents should be modeled. Distributed representation is a quite effective method for addressing
this problem.

Specifically, documents are represented by compact low dimension continuous-value vectors with
randomly initialized values. Document vectors are learned by predicting which words belonging to
them and which are not. Semantics such as synonyms can be modeled by document embeddings.
For example, D1 tends to be closer to D4 in the new vector space, since they both need to predict
the same word awesome. D2 tends to be closer to D4 due to the same reason. This will make D1 to
be much closer to D2 than to D3 since both D1 and D2 have the same neighbor D4.

More formally, the objective of the document embeddings model is to maximize the following log
probability ∑

i

∑
j

log p (wi,j |di) (1)

where di denotes the ith document from document set D and wi,j represents the jth word of di.

Figure 2: (a) basic DV-ngram model. (b) illustration of n-gram features. (c) DV-ngram model.

In order to compute this probability, a simple neural network is built with a softmax output layer(as
depicted in Figure 2.1-a). The input layer of this network has n nodes which represent the document
vector, denoted by x. The output layer has |V | (vocabulary size) nodes and the kth node represents
the probability that the kth word belongs to this document. This probability can be written as

log p (wi,j |di) =
eywi,j

Z
(2)

where ywi,j
is the unnormalized log-probability for each target word wi,j , which can be calculated

using y = b + Wx. W and b are the networks weights and biases. Z in equation 2 denotes the
normalized factor which basically sums up all possible eywi,j
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In our model, Stochastic Gradient Descent (SGD) (Williams & Hinton, 1986) is used in all of our
experiments for learning.

2.2 IMPROVED MODEL FOR MODELING WORD ORDER

Word order is often essential for understanding documents. For example, the following two texts
have exact the same words but express totally different meanings due to their different word order:
“Despite dull acting, this film is excellent”, “Despite excellent acting, this film is dull”. In order
to model word order, distributed representation of documents is learned by predicting not only its
belonging words but also word sequences. For simplicity, n-gram is directly used as word sequence
features, which is illustrated by “film-is-dull”, “excellent-acting” and “not-well” as shown in Fig-
ure 2.1-b. More sophisticated word sequences selecting methods may be investigated in the future.

In practice, each word sequence is treated as a special token and is directly appended to each docu-
ment. The output layer of the above neural network is also expanded as shown in Figure 2.1-c. Thus,
documents that contain semantically similar word sequences also tend to be closer to each other in
vector space.

As shown later in our experiments, much better performance can be obtained by this improved
model.

2.3 LEARNING ACCELERATION

In practice, since the size of vocabulary V and feature set F can be very large, our model needs
to compute the output values of |V | + |F | nodes in output layer, which results in computation
inefficiency. Negative sampling technique (Mikolov et al., 2013) is used to accelerate the training
process. Negative sampling is especially efficient and simple, it only calculates the values of K
nodes (K is a small constant) compared to standard softmax which calculates |V | + |F | nodes in
each training step. More precisely, negative sampling basically calculates equation 1 as

∑
i

∑
j

[
f
(
x>
wi,j

xdi

)
+

K∑
k=1

f
(
−x>

wrandom
xdi

)]
(3)

where xwi,j
represents the vector of jth word/feature from ith document. xdi

represents the vector
of ith document. wrandom represents the vector of word randomly sampled from the vocabulary based
on words frequency. K is the negative sampling size and f is sigmoid function.

In summary, in order to get desired document vector, DV-ngram first randomly initialize each doc-
ument vectors. Then stochastic gradient descent is used to maximize equation 3 to get desired
document vectors. The document vectors are eventually sent to a logistic regression classifier for
sentiment classification. Note that DV-ngram use no labeled information thus is unsupervised. As
shown in our experiments, additional unlabeled data can be use to improve model’s performance.

3 EXPERIMENTS

3.1 DATASET AND EXPERIMENTAL SETUP

Our model is benchmarked on well-studied IMDB sentiment classification dataset (Maas et al.,
2011). This dataset contains 100,000 movie reviews, of which 25,000 are positives, 25,000 are
negatives and the rest 50,000 are unlabeled. Average document length of this dataset is 231 words.
Accuracy is used to measure the performance of sentiment classification.

For comparison with other published results, we use the default train/test split for IMDB dataset.
Since development data are not provided by two datasets, we refer the previous method of Mesnil
et al. (2014), i.e. 20% of training data are selected as development data to validate hyper-parameters
and experiment settings, optimal results are shown in Table 2.
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Table 2: Optimal hyper-parameters and experiment settings

Vector size Learning rate Mini-batch Iteration Negative sampling size
500 0.25 100 10 5

Document vectors and parameters of neural network are randomly initialized with values uniformly
distributed in the range of [-0.001, +0.001]. We use logistic regression classifier in LIBLINEAR
package (Fan et al., 2008) 3 as the sentiment classifier.

In order to reduce the effect of random factors, training and testing were done for five times and the
average of all the runs was obtained.

The experiments can be reproduced using our DV-ngram package, which can be found at https:
//github.com/libofang/DV-ngram.

3.2 COMPARISON WITH BAG-OF-NGRAM BASELINES

Our model is first evaluated by comparing with traditional bag-of-ngram baselines since they both
use n-gram as feature. The biggest difference of these two kinds of methods is the way of represent-
ing documents. Bag-of-ngram methods use one-hot representation which loses semantics in some
extent. DV-ngram is superior for modeling semantics since it represents documents by compact low
dimension continuous-value vectors.

Table 3: Comparison of DV-ngram with bag-of-ngram baseline.

Model Unigram Bigram Trigram
bag-of-ngram 86.95 89.16 89.00
DV-ngram (our model) 89.12 90.63 91.75
DV-ngram+Unlabd (our model) 89.60 91.27 92.14

As shown in Table 3, DV-ngram with different n-grams consistently outperforms corresponding
bag-of-ngram methods. This results also suggests that the performance of DV-ngram can be further
improved by adding more unlabeled sentiment related documents. Note that some other models are
inherently unable to make use of this additional data such as the bag-of-ngram methods in this table.
The best performance is achieved by DV-tri, for simplicity, we will report only the result of DV-tri
in following experiments.

3.3 COMPARISON WITH OTHER MODELS

DV-ngram is compared with both traditional bag-of-ngram based models and deep learning models.
Any type of model or feature combination is not considered here for comparison fairness, combina-
tion will be discussed later. Additional unlabeled documents are used by Maas, PV and DV-ngram
when learning document vectors but not used by other methods since they are task specified.

As shown in Table 4, DV-ngram greatly outperforms most of other deep learning models. Especially,
DV-tri outperforms PV 3.41 percent in terms of accuracy. This result shows that the prediction of
word sequences is important for document embeddings. Note that even the simplest DV-uni (use
words alone with no n-gram feature) outperforms PV 0.87 percent in terms of accuracy. This result
supports our claim in Section 1 that the way PV handles context information may not suitable for
sentiment analysis of movie reviews.

Among all other models, NBSVM is the most robust model for this dataset. NBSVM basically
use labeled information to weight each words. Even though DV-ngram use no labeled information,
it still outperforms NBSVM and achieves the new single model state-of-the-art results on IMDB
dataset.

3Available at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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Table 4: Comparison of DV-ngram with other models. 4

Bag-of-ngram based models Accuracy
LDA (Maas et al., 2011) 67.42
LSA (Maas et al., 2011) 83.96
MNB-bi (Wang & Manning, 2012) 86.59
NBSVM-bi (Wang & Manning, 2012) 91.22
NBSVM-tri (Mesnil et al., 2014) 91.87

Deep learning models Accuracy
RNN-LM (Mikolov, 2012) 86.60
WRRBM (Dahl et al., 2012) 87.42
DCNN (Kalchbrenner et al., 2014) 89.4
DAN (Iyyer et al., 2015) 89.4
seq-CNN (Johnson & Zhang, 2015) 91.61
DV-tri (our model) 91.75
Maas (Maas et al., 2011) 87.99
PV (Le & Mikolov, 2014) 88.73
DV-tri+Unlab’d (our model) 92.14

3.4 FEATURE COMBINATION

In practice, more sophisticated supervised features such as Naive Bayes weigted bag-of-ngram vec-
tors (NB-BO-ngram) (Wang & Manning, 2012) can be used to improve performance of classifica-
tion. Previous state-of-the-art results obtained by feature combination is achieved by an ensemble
model named seq2-CNN (Johnson & Zhang, 2015). The seq2-CNN model integrates three kind of
vectors including NB-BO-ngram in a parallel convolutional neural network. For our model, we di-
rectly concatenate the learned document vectors with NB-BO-ngram for classification. As shown in
table 5, when integrated with NB-BO-ngram, our model achieves new state-of-the-art result among
feature combination models.

Table 5: Different feature combination results.
Model Alone +NB-BO-tri
seq2-CNN (Johnson & Zhang, 2015) 91.96 92.33
DV-tri (our model) 91.75 92.74
DV-tri+Unlab’d (our model) 92.14 92.91

3.5 MODEL ENSEMBLE

Recently, a new ensemble model (Mesnil et al., 2014) is proposed, which achieves the new state-of-
the-art result for ensemble models on IMDB dataset. Optimal weights are obtained by grid search
for each sub-model. In our experiment, we find the weights for different models are almost the same.
For simplicity, we directly combine our model with others without weighting.

As shown in Table 6, the previous best performance is obtained by combining PV, RNN-LM and
NBSVM (NBSVM with trigram). Without much surprise, a new state-of-the-art result is obtained
by replacing PV to our model. Note that combining with or without RNN-LM do not affect results
much. One reason for this may be that RNN-LM becomes burdensome when combined with more
robust model since RNN-LM alone only achieves 86.6 percent in terms of accuracy.

4Result of DCNN is reported by Iyyer et al. (2015). Results of RNN-LM and PV are reported by Mesnil
et al. (2014)
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Table 6: Different model ensemble results. R: RNN-LM. N: NBSVM.
Model Alone +R +N +R+N
PV (Mesnil et al., 2014) 88.73 90.40 92.39 92.57
DV-tri (our model) 91.75 92.10 92.81 92.89
DV-tri+Unlab’d (our model) 92.14 92.31 93.00 93.05

4 CONCLUSION

A new method for learning document embeddings has been proposed for sentiment analysis of
movie reviews, which is based on recently proposed Paragraph Vector. Instead of learning both
document vectors and word vectors simultaneously by predicting the target word, our model learns
document vectors alone by predicting both their belonging words and n-gram features. In this way,
the expressive power of document vectors is kept. Experimental results show that the proposed
model outperforms PV due to this reason.

Furthermore, comparing with traditional bag-of-ngram models, our model can represent the seman-
tics which is important for sentiment analysis. Our model is also compared with other deep learning
and bag-of-ngram based models and achieves the state-of-the-art results on IMDB dataset. We also
show that the performance of our model can be further improved by adding unlabeled data.

Finally, when combined with NBSVM and RNN-LM, our model achieves state-of-the-art result
among all other ensemble models.

The source code of our model will be published together with this paper. We hope this could allow
researchers to reproduce our experiments easily for further improvements and applications to other
tasks.
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