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Abstract

Consider a data-generation process that transforms low-dimensional latent causally-
related variables to high-dimensional observed variables. Causal representation
learning (CRL) is the process of using the observed data to recover the latent
causal variables and the causal structure among them. Despite the multitude
of identifiability results under various interventional CRL settings, the existing
guarantees apply exclusively to the infinite-sample regime (i.e., infinite observed
samples). This paper establishes the first sample-complexity analysis for the
finite-sample regime, in which the interactions between the number of observed
samples and probabilistic guarantees on recovering the latent variables and structure
are established. This paper focuses on general latent causal models, stochastic
soft interventions, and a linear transformation from the latent to the observation
space. The identifiability results ensure graph recovery up to ancestors and latent
variables recovery up to mixing with parent variables. Specifically, O((log 1

δ )
4)

samples suffice for latent graph recovery up to ancestors with probability 1− δ, and
O(( 1ϵ log

1
δ )

4) samples suffice for latent causal variables recovery that is ϵ close to
the identifiability class with probability 1− δ.

1 Introduction

The observed data generated in a wide range of technological, social, and biological domains has
high-dimensional, complex, and often unexplainable structures. Nevertheless, sometimes, such
complex structures can be explained by latent generating factors that often form lower-dimensional
structures. The field of causal representation learning (CRL) is motivated by this premise and focuses
on disentangling the causally-related latent generating factors that underlie a given high-dimensional
observable dataset. In particular, given a high-dimensional dataset, the objective of CRL is to learn
(i) the underlying latent causal variables and (ii) the causal relationships among the latent variables.
The learned representations then provide an explainable structure for the observed data and facilitate
informed reasoning for the downstream tasks [1].

Formally, CRL consists of a data generation and data transformation pipeline as follows. There
exists a set of high-level latent variables Z ∈ Rn that are causally related. The causal interactions
are captured by a directed acyclic graph (DAG) G. The latent variables Z go through an unknown
transformation g and generate the observed variables X ∈ Rd, i.e., X = g(Z). The objective of
CRL is to use the observed variables X and learn the latent graph G and latent variables Z. The
primary question facing CRL is identifiability, which refers to establishing the conditions under which
recovering Z and G are possible.

∗Work was done while BV was a Ph.D. student at Rensselaer Polytechnic Institute.
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Identifiability is known to be impossible without proper inductive biases or additional supervision
[2, 3]. One approach to address this issue is performing interventions – leading to interventional CRL
– which has gained significant recent attention [4, 5, 6, 7, 8, 9, 10]. Specifically, interventions on
latent causal variables create additional statistical diversity in the observed data. Accessing to enough
interventional environments enables identifiability [1]. Despite the recent advances in establishing
identifiability guarantees for interventional CRL, all the existing guarantees focus on the asymptotic
infinite-sample regime, where one assumes access to an infinite number of observable samples X .

In this paper, we establish conditions for finite-sample non-asymptotic identifiability and perfor-
mance guarantees for interventional CRL. We focus on CRL under the general (non-parametric)
latent causal models, soft interventions, and linear transformations from the latent to the observation
space. This setting is well-studied in the infinite-sample regime [4, 5, 7, 11], where the existing
identifiability results show that the causal graph can be recovered up to ancestral nodes, and latent
variables can be learned up to mixing with their ancestors. In this paper, we provide the probabilistic
finite-sample counterparts of these identifiability guarantees and establish the first sample complexity
analysis for interventional CRL in the finite-sample regime.

Our CRL approach falls in the category of score-based CRL [5], based on which our sample
complexity analysis consists of two steps. In the first step, we delineate a general sample complexity
for any desired consistent score estimator. Subsequently, we specialize these general results by
adopting the reproducing kernel Hilbert space (RKHS)-based score estimator [12]. We establish the
following identifiability guarantees for any desired pair of constants ϵ, δ ∈ R+.

• Latent graph recovery: Using RHKS-based score estimator, O((log 1
δ )

4) samples suffice to
recover the transitive closure of the latent graph with probability at least 1− δ.

• Latent variables recovery: Using the same score estimator, O(( 1ϵ log
1
δ )

4) samples suffice to
ensure that the mean squared error in the estimated latent causal variables is at most ϵ2 with
probability at least 1− δ.

• Dependence on model dimension: We further establish the explicit and implicit dependence of
sample complexity on the dimensions of the latent and observable spaces, n and d, respectively.
The precise characterizations of these expressions involve additional model-dependent constants
specified in Section 5.

• Improved guarantees: Finally, we note that our latent variables recovery result, where we show
recovery up to mixing with parents, which improves upon the results in existing literature that
guarantee recovering up to mixing with ancestors.

Methodology. We offer novel finite-sample CRL algorithms and characterize the sample complexity
guarantees achievable by these algorithms. We design our algorithms using the properties of score
functions (i.e., the gradient of the log density). This approach is inspired by the score-based CRL
framework [5, 8]. However, the algorithms are significantly different, led by the need to integrate
finite-sample score estimation routines and their imperfections. In our analysis, first, we provide
sample complexity upper bounds for a score-based framework that uses any desired consistent score
difference estimator. Then, we adopt a specific score estimator [12] and provide explicit sample
complexity guarantees.

Related work. All the existing studies on interventional CRL focus on the infinite-sample regime.
We briefly review the studies that adopt a similar CRL model, i.e., linear transformations and single-
node soft interventions. In this setting, complete identifiability results for linear latent models are
established in [7]. Similar results are shown for nonlinear latent causal models in [4, 11] and for
linear non-Gaussian models in [13]. In the most closely related setting to ours, identifiability up to
ancestors is shown to be possible using soft interventions on general latent causal models [8]. Other
studies on interventional CRL include using do interventions for polynomial transformations [6, 14]
and hard interventions for general transformations [10, 8]. On a partially related problem, error rates
for using score functions on observed causal discovery are provided in [15].

Notations. For n ∈ N, we define [n] ≜ {1, . . . , n}. Vectors are represented by lower case bold
letters, and element i of vector v is denoted by vi. Matrices are represented by upper case bold letters,
and we denote row i and column j of matrix A by Ai,: and A:,j , respectively. The row permutation
matrix for permutation π of [n] is denoted by Pπ. Random variables and their realizations are
presented by upper and lower case letters, respectively. We denote the Moore-Penrose pseudoinverse
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of a matrix A by A†. Given a symmetric matrix A ∈ Rd×d, we denote the vector of eigenvalues of
A ordered in ascending order by λ(A) ∈ Rd and the matrix of eigenvectors by Q(A) ∈ Rd×d such
that A = Q(A) · diag(λ(A)) ·Q(A)⊤. For any matrix A, we denote the rank, column, and null
spaces of A by rank(A), col(A), and null(A), respectively.

2 Finite-sample data-generation process

The existing studies on analyzing the identifiability guarantees of CRL inevitably necessitate the
availability of an infinite number of samples as otherwise, perfect identifiability is rendered impossible.
In this paper, our objective is identifiability analysis assuming only a finite number of samples are
available – a significant departure from the infinite-sample regime. In this section, we specify a general
data-generating process consisting of a latent causal space and an unknown linear transformation that
maps the latent variables to observed variables.

Latent causal model. We have a latent space of n causally related random variables. We denote the
latent causal variables by Z ≜ [Z1, . . . , Zn]

⊤. The causal relationships among the variables of Z are
represented by a directed acyclic graph G with n nodes where the i-th node represents Zi. We denote
the parents, children, and ancestors of a node i ∈ [n] in G by pa(i), ch(i), and an(i), respectively.
We denote the probability density function (pdf) of Z by pZ , which is assumed to be well-defined
without any zeros over lower-dimensional manifolds and to have full support on Rn. Given the DAG
G, pZ factorizes according to

pZ(z) =
∏
i∈[n]

pi(zi | zpa(i)) . (1)

We assume that the conditional pdfs {pi : i ∈ [n]} are continuously differentiable with respect to z.
We call a permutation π = (π1, . . . , πn) of [n] a valid causal order if for all i, j ∈ [n], i ∈ pa(j)
implies πi < πj . Without loss of generality, we assume that (1, . . . , n) is a valid causal order.

Transformation model. The latent variables Z are mapped to the observed variables X ≜
[X1, . . . , Xd]

⊤ through an unknown linear transformation G ∈ Rd×n, where d ≥ n. Specifically,

X = G · Z , (2)

where G has full column rank. We denote the pdf of X by pX . Note that owing to the generation
process of X , the pdf pX is supported on an n-dimensional subspace embedded in Rd. We denote
the L2 norm of any function f with finite variance under pX by ∥f∥2pX

≜ EpX
∥f(x)∥22.

Intervention model. We consider CRL under interventions, and in particular focus on soft inter-
ventions, as the most general form of interventions. Hence, in addition to the observational model
specified by (2), we consider n single-node interventional environments {Em : m ∈ [n]}. We assume
that the node intervened in the environment Em is unknown and denote it by Im. Leaving one node
unintervened renders identifiability impossible [7]. Hence, we inevitably have {Im : m ∈ [n]} = [n].

Applying a soft intervention on node i changes its causal mechanism specified by the observa-
tional conditional pdf pi(zi | zpa(i)) to a distinct interventional conditional pdf qi(zi | zpa(i)).
The conditional pdfs {qi : i ∈ [n]} are assumed to be continuously differentiable with respect
to z. Subsequently, the pdf of Z in the interventional environment Em, denoted by pm, factorizes
according to

pmZ (z) = qℓ(zℓ | zpa(ℓ)) ·
∏
i ̸=ℓ

pi(zi | zpa(i)) , where ℓ = Im . (3)

To distinguish the observational and interventional data, we denote the latent and observed random
variables in environment Em by Zm and Xm, respectively. Interventions do not alter the transforma-
tion matrix G, indicating that similarly to (2), we have Xm = G · Zm. Throughout the paper, we
adopt the convention that E0 refers to the observational environment.

Score functions. The score function associated with a pdf is defined as the gradient of its logarithm.
We denote the score functions associated with the observational distributions of Z and X by sZ and
sX , respectively, i.e.,

sZ(z) ≜ ∇z log pZ(z) , and sX(x) ≜ ∇x log pX(x) . (4)
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Similarly, we denote the score functions associated with the distributions of Z and X in environment
Em for m ∈ [n] by smZ and smX , respectively, i.e.,

smZ (z) ≜ ∇z log p
m
Z (z) , and smX(x) ≜ ∇x log p

m
X(x) . (5)

In our algorithm and analysis, we will analyze the score variations across different interventions. For
this purpose, we define the score difference functions of Z and X between environments Em and E0
as

dm
Z (z) ≜ smZ (z)− sZ(z) , and dm

X(x) ≜ smX(x)− sX(x) , ∀m ∈ [n] . (6)
To ensure that interventions affect the target node and its parents distinctly, we adopt the following
assumption. This assumption holds for a large class of models, e.g., additive noise models under
stochastic hard interventions [5, Lemma 2].
Assumption 1 ([5, Assumption 1]). For any m ∈ [n], and for all k ∈ pa(Im), the term(
[dm

Z ]k/[d
m
Z ]Im

)
is not a constant function of z.

Finite sample data. We assume that we have only N data samples under each of the environments.
We denote the N samples of Zm and Xm by

{zmj : j ∈ [N ]} , and {xm
j : j ∈ [N ]} , ∀m ∈ {0} ∪ [n] . (7)

Accordingly, for each sample j, we concatenate all latent and observational samples under different
environments to create sample matrices

Zj ≜ [z0j , . . . , z
n
j ] , and Xj ≜ [x0

j , . . . , x
n
j ] , ∀j ∈ [N ] . (8)

Finally, we define the set of samples XN ≜ {Xj : j ∈ [N ]} and ZN ≜ {Zj : j ∈ [N ]}.

3 Finite-sample identifiability objectives

The CRL framework specified in Section 2 has two objectives: use the N observational samples
XN = {Xj : j ∈ [N ]} to recover the causal graph G and the latent causal variables ZN = {Zj :
j ∈ [N ]}. In this section, we formalize the inference rules and their associated fidelity metrics for
recovering G and ZN .

Latent graph recovery. Define G as the set of all DAGs on n nodes. We define Ĝ as a generic
estimator of the latent graph G, i.e.,

Ĝ :
(
Rd×(n+1)

)N → G . (9)

To quantify the accuracy of the estimate Ĝ(XN ), we provide the following probably approximately
correct (PAC) guarantee, which is the probabilistic counterpart of the standard identifiability up to
ancestor definition in the interventional CRL literature [5, 7, 11].

Definition 1 (δ-PAC graph recovery). Graph estimate Ĝ(XN ) achieves δ–PAC latent graph recovery
if, with probability at least 1− δ, the transitive closures of Ĝ(XN ) and G are isomorphic.

Latent variables recovery. We investigate a two-step estimator for the latent variables ZN . First, we
define a generic estimator for the pseudoinverse of G as

H :
(
Rd×(n+1)

)N → Rn×d . (10)

Then, given an estimate H(XN ) for G†, we estimate {Zj : j ∈ [N ]} according to

Ẑj = H(XN ) ·Xj , ∀j ∈ [N ] . (11)

We provide the following definition to quantify the fidelity of these estimates with respect to the
ground truth variables.
Definition 2 ((ϵ, δ)–PAC variables recovery). The estimate H(XN ) achieves (ϵ, δ)–PAC latent
variables recovery if the estimated causal variables {Ẑj : j ∈ [N ]} satisfy

Ẑj = PI · (Cpa +Cerr) ·Zj , (12)

where for all i ̸∈ pa(j), Cpa satisfies (Cpa)i,j = 0, and, with probability at least 1 − δ, we have
∥Cerr∥2 ≤ ϵ.
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We note that Definition 2 is the probabilistic counterpart of the standard identifiability up to ancestor
definition in interventional CRL literature.

Noisy score model. The score-based CRL framework uses properties of score function differences
to build the estimators for the latent graph and variables. Therefore, when we only have access to
finite data, we need to estimate the score functions. We denote a generic score function estimator for
environment Em by

ŝmX(x;XN ) : Rd ×
(
Rd×(n+1)

)N → Rd . (13)
When the dependence is clear from the context, we will drop the explicit dependence of ŝmX on XN .
Similarly to (6), we define the estimated score difference functions

d̂
m

X(x;XN ) ≜ ŝmX(x;XN )− ŝX(x;XN ) , ∀m ∈ [n] . (14)

In this paper, we focus on consistent score difference estimators {d̂
m

X : m ∈ [n]}, i.e., they satisfy
convergence in probability. Specifically, for any ϵ, δ > 0, there exists N(ϵ, δ) ∈ N such that

P
(

max
m∈[n]

∥∥d̂m

X(·;XN )− dm
X

∥∥
pX
≤ ϵ

)
≥ 1− δ , ∀N ≥ N(ϵ, δ) . (15)

Notably, we note that many score estimators are known to be consistent [12, 16, 17, 18].

4 Finite-sample CRL algorithms

In this section, we design finite-sample interventional CRL algorithms through which we establish
finite-sample identifiability guarantees as well as bounds on the associated sample complexities.
Our algorithms fall within the score-based category of CRL algorithms [5]. The main intuition of
this framework is that score functions in the observed space contain all the information needed for
recovering the latent graph G and the inverse transform G†. Specifically, two metrics are pivotal for
retrieving the latent space:

1. Score differences: As shown in Lemma 1, the nonzero entries of the latent score differences dm
Z

encode the graph structure and the observed score differences dm
X are generated using the inverse

transform G†.
2. Score difference correlations: As shown in Lemma 2, the column space of the correlation matrix

of the score differences contains crucial information about the latent graph and the inverse transform,
which we will leverage to form estimates for the latent graph G and the inverse transform G†.

To proceed, for m ∈ [n] we denote the correlation matrices of dm
X and d̂

m

X by

Rm
X ≜ EpX

[
dm
X(x) · (dm

X(x))⊤
]
, and R̂m

X ≜ EpX

[
d̂
m

X(x) · (d̂
m

X(x))⊤
]
. (16)

Next, we formalize two critical properties of score differences and their correlation matrix. Specifi-
cally, the following lemma states that the sparsity pattern of the latent score differences dm

Z exposes
the structure of the latent graph, and the observed score differences dm

X preserve this information
through the pseudoinverse of G.
Lemma 1 ([5]). Score function differences in the latent space satisfy, for all m ∈ [n],

∀z ∈ Rn : [dm
Z (z)]i = 0 ⇐⇒ i ̸∈ pa(Im) . (17)

Furthermore, the score differences in the observed domain are given by

dm
X(x) = (G†)⊤ · dm

Z (z) , x = G · z . (18)

The next lemma specifies that the structure of the column space of correlation matrix Rm
X is heavily

constrained by the graph structure and the inverse transformation G†.
Lemma 2. For any m ∈ [n], we have col(Rm

X) ⊆ span
{
(G†)⊤:,i : i ∈ pa(Im)

}
.

While these two properties enable recovering the latent graph and variables, the ground truth score
functions dm

Z (z) and correlation matrix Rm
X are unknown. We only have access to their noisy

counterparts, as estimated from the observed data. In our algorithms, we use methods with soft
decision rules that can counter the effects of the errors introduced by the score estimation procedure.
These are facilitated by the following three key definitions.

5



Algorithm 1 Causal order estimation

1: Input: R̂m for all m ∈ [n], η ≥ 0
2: Vn ← {1, . . . , n} ▷ remaining unordered set
3: for t ∈ (n, . . . , 2) do
4: for k ∈ Vt do
5: if dim col(

∑
m∈Vt\{k} R̂

m; η) = t− 1 then
6: πt ← k ▷ Ik has no ancestors in IVt

7: Vt−1 ← Vt \ {k} ▷ remove the identified node from unordered set
8: break k loop
9: π1 ← m for m ∈ V1

10: Return π

Algorithm 2 Graph estimation

1: Input: R̂m for all m ∈ [n], π, η ≥ 0, γ ≥ 0

2: Initialize Ĝ with empty graph over nodes {π1, . . . , πn}
3: Construct the Vt sets of Algorithm 1 for all t ∈ [n] using π
4: for t ∈ (n− 1, . . . , 1) do
5: for j ∈ (t+ 1, n) do
6: Mt,j ← Vj \ ({πt} ∪ ĉh(πt)) ▷ set for determining whether πt → πj

7: if col(
∑

m∈Vt
R̂m; η) ⊥γ null(

∑
m∈Mt,j

R̂m; η) then
8: Add πt → πj and πt → l to Ĝ for all l ∈ ĉh(πj) in Ĝ
9: Return Ĝ

Definition 3 (Approximate column space). We define the η-approximate column space of a positive
semidefinite matrix A ∈ Rd×d, denoted by col(A; η), as the span of the eigenvectors of A associated
with the eigenvalues that are strictly greater than η.

Definition 4 (Approximate null space). We define the η-approximate null space of A, denoted by
null(A; η), as the orthogonal complement of col(A; η).

Definition 5 (Approximate subspace orthogonality). We say two subspacesA and B with orthonormal
bases A and B are γ-approximately orthogonal, denoted by A ⊥γ B, if ∥B⊤A∥2 ≤ γ.

In these definitions, setting η = γ = 0 yields the standard definitions of column and null spaces
and orthogonality. Next, we describe our algorithms for latent graph recovery (Algorithms 1 and 2)
and latent variables recovery (Algorithm 3). We note that the algorithms for latent graph and latent
variable recovery algorithms are fully decoupled, enabling the independent recovery of the graph and
the latent variables.

Algorithm 1 – Causal order estimation. In this algorithm, we estimate a permutation π of [n] such
that I ◦ π is a valid causal order. This serves as an intermediate step for estimating the latent graph.
For this purpose, we use the noisy correlation matrices {R̂m

X : m ∈ [n]} to identify the leaf nodes
with no children. In particular, the key property is that when Ik is a leaf node, by carefully selecting
the threshold η, the approximate column space of the term (

∑
m∈[n] R̂

m
X − R̂k

X) has dimension n−1.
Precisely, with high probability, we have

dim col
( ∑

m∈[n]\{k}

R̂m
X ; η

)
= n− 1 ⇐⇒ Ik is a leaf node . (19)

After finding a leaf node, we iteratively identify the youngest node among the remaining set of nodes.
Leveraging this, we construct the permutation π, which consists of nodes ordered from the eldest to
the youngest. In Lemma 3, we show that I ◦ π is a valid causal order with high probability.

Algorithm 2 – Latent graph estimation. In Algorithm 2, we use the causal order found in Algo-
rithm 1 and correlation matrices {R̂m

X : m ∈ [n]} to form a graph estimate Ĝ. We build this graph
iteratively by considering a candidate edge πt → πj for all possible (t, j) pairs starting from a leaf
node t. The key property that we leverage is that we can form two subsets Vt andMt,j of [n] using π,

6



Algorithm 3 Inverse transform estimation

1: Input: R̂m for all m ∈ [n], η ≥ 0
2: H← 0n×d

3: for t ∈ (1, . . . , n) do
4: C ← col(R̂πt ; η)
5: Hπt,: ← v for v ∈ C and ∥v∥2 = 1

6: Return H

t, and j such that, for sufficiently small γ, with high probability the following approximation holds.

col
( ∑

m∈Vt

R̂m
X ; η

)
⊥γ null

( ∑
m∈Mt,j

R̂m
X ; η

)
⇐⇒ Iπt → Iπj in G . (20)

We check each edge πt → πj and add the detected edges to the estimated graph Ĝ. In Theorem 1, we
show that this procedure guarantees a PAC latent graph recovery.
Algorithm 3 – Inverse transform estimation. In Algorithm 3, we build our inverse transform es-
timate H one row at a time. The key property we use is that for any m ∈ [n] and unit vector
v ∈ col(R̂m

X), the following error term is small with high probability∥∥∥v⊤ ·X −
∑

i∈pa(Im)

(
v⊤ ·G

)
i
· Zi

∥∥∥
2
. (21)

In other words v⊤ ·X is approximately equal to ZIm up to mixing with {Zi : i ∈ pa(Im)}, which
conforms to our latent variables recovery objective. Note that in the noise-free setting, an exact
equality holds due to Lemma 2 and property G† ·G = In. Based on this observation, in our algorithm,
we construct our inverse transform estimate by setting row m of H to a unit vector v ∈ col(R̂m

X) for
all m ∈ [n]. In Theorem 2, we show that Algorithm 3 achieves a PAC latent variables recovery.

5 Sample complexity analysis

In this section, we analyze the sample complexity of our CRL algorithm to establish an achievable
sample complexity for CRL.

Threshold selection. A critical step in our algorithm designs is choosing thresholds η and γ
specified in Definitions 3–5. These thresholds determine the approximate ranks of noisy matrices
and approximate orthogonality between subspaces, respectively. Specifically, we select η such that
the approximate rank of R̂m

X tracks that of Rm
X with high probability. To proceed, we denote the

minimum nonzero eigenvalue among arbitrary Rm
X sums by

η∗ ≜ min
M⊆[n]

min
{
λi

( ∑
m∈M

Rm
X

)
: i ∈ [d] , λi

( ∑
m∈M

Rm
X

)
̸= 0

}
, (22)

where λ(A) ∈ Rd denotes the vector of eigenvalues of A. In our algorithms, we let η ∈ (0, η∗) and
show that this choice ensures that eigenvalues of the null and column spaces can be separated via η.
For the approximate orthogonality test in Definition 5, we show that γ∗ defined below serves as a
bound on how close the non-orthogonal column spaces of Rm

X sums become orthogonal.

γ∗ ≜ min
i∈[n]

∥∥G†
i,:

∥∥
2
·
∥∥G:,i

∥∥
2
. (23)

Similarly, we let γ ∈ (0, γ∗) in our algorithms. For any choice of η and γ, we define η∗ ≜
min{η, η∗ − η} and γ∗ ≜ min{γ, γ∗ − γ}. We note that we do not have to know η∗ and γ∗ a priori,
and can include routines to estimate them in practice. These estimates do not have to be highly
accurate since even rough estimates suffice to choose reliable thresholds η and γ. Specifically, based
on estimates for η∗ and γ∗, we can choose “safe” thresholds for η and γ, e.g., one-fourth of the
estimates for η∗ and γ∗, so that (i) with high probability we satisfy the requirement η ∈ (0, η∗)
and γ ∈ (0, γ∗), and (ii) we can avoid collecting excessive samples and compromising the sample
complexity bounds. We provide the details of constructing such estimates of η∗ and γ∗ in Appendix G.

Sample complexity results. We provide two sets of sample complexity analyses for the latent
graph and the latent variables. We estimate the latent graph in two steps: (i) causal order estimation
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(Algorithm 1) and (ii) latent graph estimation (Algorithm 2). Algorithm 1 only employs approximate
rank tests. Therefore, we first show that the approximate rank of the sum of correlation matrices
{R̂m

X : m ∈ [n]} tracks that of {Rm
X : m ∈ [n]} with high probability. To proceed, we define the

following constants that appear repeatedly in our analysis:

β ≜
(
4 max
m∈[n]

∥∥dm
X

∥∥
pX

)−1

and βmin ≜ 2 min
m∈[n]

∥∥dm
X

∥∥
pX

. (24)

Lemma 3. Let η ∈ (0, η∗). For any δ > 0, Nrank(δ) samples suffice to ensure that with probability
at least 1− δ,

∀M ⊆ [n] : dim col
( ∑

m∈M
R̂m

X ; η
)
= rank

( ∑
m∈M

Rm
X

)
, (25)

where
Nrank(δ) ≜ N

(
min

{βη∗
n

, βmin

}
, δ
)
. (26)

Note that the function N(·, ·) is an inherent property of the score difference estimator specified
in (15), and it is monotonically decreasing in its second argument. Using this lemma, we can show
that Algorithm 1 returns a permutation π such that I ◦ π is a valid causal order with high probability.
Lemma 4. Let η ∈ (0, η∗). Under Assumption 1, for any δ > 0, Nrank(δ) samples suffice to ensure
that with probability at least 1− δ, I ◦ π is a valid causal order, where π is the output of Algorithm 1.

Next, we show that Algorithm 2 achieves latent graph recovery with high probability.
Theorem 1 (Sample complexity – Graph). Let η ∈ (0, η∗) and γ ∈ (0, γ∗). Under Assumption 1,
for any δ > 0, NG(δ) samples suffice to ensure that the output Ĝ(XN ) collectively generated by
Algorithms 1 and 2 satisfies δ–PAC graph recovery, where

NG(δ) ≜ N

(
min

{
βη∗
n

,
βη∗γ∗
2n

, βmin

}
, δ

)
. (27)

We note that constants β and βmin are sample-independent. Then, (27) specifies the sample com-
plexity as a function of the hyperparameters η, γ, target reliability δ ∈ (0, 1), as well as the latent
dimension n. Next, we state the complementary result for recovering the latent variables.
Theorem 2 (Sample complexity – Variables). Let η ∈ (0, η∗). For any ϵ > 0 and δ > 0, NZ(ϵ, δ)
samples suffice to ensure that the output H(XN ) of Algorithm 3 satisfies (ϵ, δ)–PAC causal variables
recovery, where

NZ(ϵ, δ) ≜ N

(
min

{ ϵβη∗√
n∥G∥2

, βη∗, βmin

}
, δ

)
. (28)

Theorems 1 and 2 collectively specify an extent of identifiability achievable in the finite-sample
regime. Importantly, we note that since we can establish (ϵ, δ)–PAC identifiability guarantees for any
vanishing ϵ, δ > 0 using finite samples, Algorithms 2 and 3 are consistent estimators of the latent
graph and the inverse transformation up to the corresponding equivalence classes.

Finally, we note that the latent variables are recovered up to mixing with parents, as specified
in Theorem 2. This result is a refinement of the existing latent variable recovery results under
soft interventions in existing literature [5, 7], which recover the latent variables up to mixing with
ancestors.

RKHS-based score estimator. So far, we have characterized the sample complexity for any consistent
score difference estimator. Next, we specialize the results by adopting the RKHS-based score
estimator of [12]. We adopt this particular choice since it has known non-asymptotic sample
complexity properties. To our knowledge, it is the only score estimator equipped with such a
guarantee. To use the sample complexity of this score estimator in our paper, we first show that it is
consistent in the sense of (15). For the formal statement of the following property and its attendant
assumptions, we refer to Appendix E.
Lemma 5 (Informal). Assume that sX and smX satisfy the conditions of the RKHS-based score
estimator in [12]. Then, for any given δ and ϵ, the convergence specified in (15) holds when

N(ϵ, δ) ≜
(
max

{ C

ϵ
, 2
√
2κ2

})4

·
(
log

(
8n

δ

))4

, (29)
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where κ and C are sample independent constants that depends only on pX , pmX for m ∈ [n] and the
structure of the RKHS.

We use Lemma 5 to customize the general sample complexity bounds in Theorems 1 and 2 to the
RKHS-based score estimator. For this purpose, we first provide our sample complexity result for
recovering the latent graph.
Theorem 3 (RKHS-based sample complexity – Graph). Let η ∈ (0, η∗) and γ ∈ (0, γ∗). Under
Assumption 1 and the conditions of Lemma 5, NG(δ) samples suffice to ensure that Ĝ(XN ) collectively
generated by Algorithms 1 and 2 satisfies δ–PAC graph recovery, where

NG(δ) =

(
max

{
C

ϵG
, 2
√
2κ2

})4

·
(
log

8n

δ

)4

, and ϵG ≜ min

{
βη∗
n

,
βη∗γ∗
2n

, βmin

}
.

(30)
Remark 1 (RKHS-based error bound – Graph). Theorem 3 implies that using N samples, the output
Ĝ(XN ) of Algorithms 1 and 2 satisfies δG(N)–PAC graph recovery, where

δG(N) ≜ 8n · exp
(
−N1/4 ·max

{
C

ϵG
, 2
√
2κ2

})
. (31)

Similarly, we leverage Lemma 5 to specialize the general sample complexity in Theorem 2 to the
RKHS-based score estimator.
Theorem 4 (RKHS-based sample complexity – Variables). Let η ∈ (0, η∗). Under the conditions
of Lemma 5, NZ(ϵ, δ) samples suffice to ensure that the output H(XN ) of Algorithm 3 satisfies
(ϵ, δ)–PAC causal variables recovery, where

NZ(ϵ, δ) =

(
max

{
C

ϵ · ϵZ
, 2
√
2κ2

})4

·
(
log

(
8n

δ

))4

, (32)

and
ϵZ ≜ min

{
ϵβη∗√
n∥G∥2

, βη∗, βmin

}
. (33)

We note that the results in Theorems 3 and 4 show a more explicit dependence of the sample
complexity on the latent space dimension n. We observe that the sample complexity of latent graph
recovery explicitly depends on δ and the latent dimension n according to O((n log n

δ )
4). Similarly,

the sample complexity of latent variables recovery explicitly depends on ϵ, δ, and the latent dimension
n according to O((

√
n
ϵ log n

δ )
4). We note that constants β, βmin, η∗, and γ∗ are model parameters,

and their scaling behavior in terms of n and d are investigated numerically in the next section.

6 Experiments

In this section, we perform numerical assessments of our analyses to provide complementary insight
into the sample complexity results of Section 5. Specifically, we evaluate the variations of the model
constants with respect to problem dimensions n and d. Furthermore, we also evaluate performance
variations of the finite-sample algorithm in terms of the variations in the score estimation error.
For this purpose, we focus on the mean squared error (MSE) of the score estimator, specified by
E∥d̂

m

X − dm
X∥2pX

. These evaluations facilitate a better understanding of the properties of the CRL
problem that are not explicit in our theoretical queries.2

Experimental details. We consider problem dimensions n ∈ {3, 5, 10} and d ∈ {n, 15} and generate
G using Erdős-Rényi model with density 0.5 on n nodes. We adopt linear Gaussian models as the
latent causal model. We consider N ∈ {102.5, 103, 103.5, 104, 104.5, 105} samples, and generate 100
latent models for each triplet (N,n, d). We generate N samples of Z from each environment for
each latent model. Transformation G ∈ Rd×n is randomly sampled under full-rank and bounded
condition number constraints, and the observed variables are generated as X = G · Z. Due to the
Gaussian structure of Z, the observed variables X also have multivariate Gaussian distributions with

2The codebase for the experiments can be found at https://github.com/acarturk-e/
finite-sample-linear-crl.

9

https://github.com/acarturk-e/finite-sample-linear-crl
https://github.com/acarturk-e/finite-sample-linear-crl


(a) Constants vs. problem dimension. (b) Graph recovery vs. score MSE, d = 15

Figure 1: Numerical evaluations.

score function sX(x) = −Θ · x, where Θ is the precision matrix of X . Therefore, we estimate sX
using the sample precision matrix estimated from N samples, Θ̂N , as ŝX(x;XN ) = −Θ̂N · x.

Results. The sample complexity results depend on dimension n and d through their explicit presence
as well as their implicit effect on model-dependent constants β, βmin, η∗, and γ∗, as established
in Theorems 1 and 2. First, we observe that all these parameters are independent of d. This is
also expected theoretically since we can project down the d dimensional observed space to the n
dimensional col(G). In Figure 1a, we illustrate the dependence of these constants on data dimensions
n and d. We observe that γ∗ remains constant, while β and βmin are decreasing as n increases,
but the decay is not steep. On the other hand, we observe that η∗ decays exponentially with n. γ∗

is implicitly controlled by the condition number, which is kept bounded. We recall that βmin is
the minimum among {∥dm

X∥pX
: m ∈ [n]}, and similarly, β is the inverse of the maximum of

{∥dm
X∥pX

: m ∈ [n]}, so they are expected to become smaller as n increases. Finally, for η∗, we
note that the definition in (22) is an order statistic among exponentially many, 2n, subsets.

Next, we note that all the imperfections in the graph and variable recovery are due to the imperfections
in score estimates. In fact, this is the bottleneck in our decisions: the key impact of finite samples
versus infinite samples is the degradation in the quality of score estimates. To have a direct insight into
how the score estimation noise power translates into decision imperfection, we assess the quality of
graph recovery success rate versus varying degrees of mean score error of score difference estimates
E[∥d̂

m

X − dm
X∥2pX

] for different triplets (N,n, d). In Figure 1b, each data point corresponds to a
different sample size N , and the legend entries {3, 5, 10} denote the latent dimension n. This figure
illustrates the scatter plot of the error probability δ versus MSE for different parameter combinations
and the corresponding local regression curves. It is observed that in the low MSE regime, 1 − δ

decays linearly with respect to logE[∥d̂
m

X −dm
X∥2pX

] and it plateaus as the MSE increases. This trend
is due to our algorithms’ high sensitivity to errors in estimating approximate matrix ranks.

7 Conclusion

In this paper, we have established the first sample complexity results for interventional causal
representation learning. Specifically, we have characterized upper bounds on the sample complexity
of latent graph and variables recovery in terms of the finite sample performance of any consistent
score difference estimator. We have, furthermore, adopted a particular score estimator [12] to derive
explicit sample complexity statements.

Our sample complexity results are given for partial identifiability (up to ancestors) in the soft
intervention and linear transformation setting. Establishing sample complexity results for perfect
identifiability via hard interventions or considering general transformations are important future
directions.
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A Proof structure

We structure the proofs of our main results as follows.

• Appendix B – Infinite sample guarantees: First, we prove identifiability results in the noise-free
setting, that is, using the ground truth Rm

X matrices instead of using the estimated R̂m
X . These

intermediate results lay the groundwork for the proofs for the finite sample setting.
• Appendix C – Bounded noise guarantees: Next, we show that if estimation error for the score

difference functions, ∥d̂
m

X − dm
X∥pX

, is bounded, then the noise-free identifiability guarantees
transfer to the noisy setting.

• Appendix D – Sample complexity guarantees: We use the noisy identifiability guarantees to
prove that for any consistent score difference estimator, we can guarantee (ϵ, δ)–PAC guarantees
for CRL identifiability objectives.

• Appendix E – RKHS-based score estimator: Finally, we use the finite sample guarantees
provided by the RKHS-based score estimator of [12] to adapt the sample complexity statements
for a generic estimator to explicit guarantees in terms of model-dependent constants.

To be used throughout the proof, we define the correlation matrices of dm
Z as

Rm
Z ≜ EpZ

[
dm
Z (z) · (dm

Z (z))⊤
]
. (34)

We recall the correlation matrices Rm
X and R̂m

X specified in (16). For a subsetM⊆ [n], we use the
following shorthand notations for sums of the matrices in {Rm

X : m ∈M} and {R̂m
X : m ∈M}.

RM
X ≜

∑
m∈M

Rm
X , and R̂M

X ≜
∑

m∈M
R̂m

X , ∀M ⊆ [n] . (35)
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B Identifiability guarantees in infinite sample regime

In this section, we provide the identifiability guarantees of Algorithms 1–3 with no error and
probability 1 when using {Rm

X : m ∈ [n]} as input.

Denote the image of a function f : Rn → Rk for any k ∈ Z+ by im(f), that is,

im(f) ≜
{
f(z) : z ∈ Rn

}
. (36)

First, we note a property of the column space of correlation matrices.

Lemma 6. For a continuous function f : Rn → Rk, span of the image of f equals to

span im(f) = col
(
EpZ

[f(z) · f(z)⊤]
)
. (37)

Proof: Note that two subspaces are equal if and only if their orthogonal complements are equal. We
denote the orthogonal complement of span im(f) by

S1 ≜
(
span im(f)

)⊥
=

{
y ∈ Rk : y⊤ · f(z) = 0 ∀z ∈ Rn

}
. (38)

The orthogonal complement of the column space of a symmetric matrix is the null space, which we
denote by

S2 ≜ null
(
EpZ

[f(z) · f(z)⊤]
)
=

{
y ∈ Rk : EpZ

[f(z) · f(z)⊤] · y = 0
}
. (39)

Since any correlation matrix is positive semidefinite, using Proposition 2, (39) can be written as

S2 =
{
y ∈ Rk : y⊤ · EpZ

[f(z) · f(z)⊤] · y = 0
}

(40)

=
{
y ∈ Rk : EpZ

[
(y⊤ · f(z))2

]
= 0

}
. (41)

Since f is a continuous function, so is y⊤ · f for any y ∈ Rk. We can then use [5, Proposition 2],
which is stated below for the sake of conciseness.

Proposition 1 ([5, Proposition 2]). Consider two continuous functions f, g : Rn → R. Then, for any
α > 0,

∃z ∈ Rn f(z) ̸= g(z) ⇐⇒ EpZ

[∣∣f(Z)− g(Z)
∣∣α] ̸= 0 . (42)

Under this proposition, (41) can be written as

S2 =
{
y ∈ Rk : y⊤ · f(z) = 0 ∀z ∈ Rn

}
, (43)

which is the same as the definition of S1 in (38). This concludes the proof.

Corollary 1. For a continuous function f : Rd → Rk, the span of the image of f ◦G equals to the
column space of

EpZ
[f(G · z) · (f(G · z))⊤] = EpX

[f(x) · (f(x))⊤] . (44)

We can specialize this lemma for dm
Z and dm

X for any m ∈ [n], which yields

col(Rm
Z ) = span

{
dm
Z (z) : z ∈ Rn

}
, (45)

and
col(Rm

X) = span
{
dm
X(x) : x ∈ col(G)

}
. (46)

B.1 Proof of Lemma 2

We can state (17) from Lemma 1 equivalently as

∃z ∈ Rn
(
dm
Z (z)

)
i
̸= 0 ⇐⇒ i ∈ pa(Im) . (47)

Recall from (18) in Lemma 1 that dm
X is related to dm

Z by

dm
X(x) = (G†)⊤ · dm

Z (z) =
∑
i∈[n]

(
G†)

i,:
·
(
dm
Z (z)

)
i
, x = G · z . (48)
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Then, due to (47), for any given z ∈ Rn and corresponding x = G · z, we have

dm
X(x) =

∑
i∈pa(Im)

(
G†)

i,:
·
(
dm
Z (z)

)
i
∈ span

{
(G†)i,: : i ∈ pa(Im)

}
. (49)

Since dm
X(x) lies in the subspace span{(G†)i,: : i ∈ pa(Im)} for any x ∈ col(G), we have

span
{
dm
X(x) : x ∈ col(G)

}
⊆ span

{
(G†)i,: : i ∈ pa(Im)

}
. (50)

Due to (46), we have
span

{
dm
X(x) : x ∈ col(G)

}
= col(Rm

X) , (51)
which concludes the proof.

B.2 Encoder recovery

We can use Lemma 2 to show that in the infinite sample regime, Algorithm 3 works correctly.
Specifically, let us show the following.
Lemma 7 (Infinite samples – Encoder). For any v ∈ col(Rm

X), we have(
v⊤ ·G

)
i
̸= 0 =⇒ i ∈ pa(Im) . (52)

Proof: Due to Lemma 2, for any v ∈ col(Rm
X), we have

v ∈ span
{
(G†)i,: : i ∈ pa(Im)

}
. (53)

In other words, any v ∈ col(Rm
X) can be expressed as

v =
∑

i∈pa(Im)

ci ·
(
(G†)⊤

)
:,i

, (54)

for some constants {ci : i ∈ pa(Im)}. Then, we have

v⊤ ·G =

( ∑
i∈pa(Im)

ci · (G†)i,:

)
·G =

∑
i∈pa(Im)

ci · (G†)i,: ·G . (55)

Since G has full column rank, the pseudoinverse G† satisfies G† ·G = In, that is,

(G†)i,: ·G = e⊤i , (56)

where ei denotes the i-th standard basis vector. Substituting this, (55) becomes

v⊤ ·G =
∑

i∈pa(Im)

ci · e⊤i . (57)

Note that i-th entry of a row vector w ∈ Rn is given by w · ei. Therefore, we have

(v⊤ ·G)i =

{
ci i ∈ pa(Im) ,

0 otherwise .
(58)

This concludes the proof.

B.3 Equivalence of function rank to correlation rank

In this section, we adapt the workhorse lemmas of [5] to our setting.

Lemma 8 ([5, Lemmas 5 and 6]). Consider set A ⊆ [n] such that IA ≜ {Im : m ∈ A} is
ancestrally closed, i.e., pa(IA) = IA. Then,

rank
(
RA

X

)
= |A| . (59)

Also, under Assumption 1, for any k ∈ A, we have

rank
(
R

A\{k}
X

)
=

{
|A| if ∃j ∈ A \ {k} such that Ik ∈ pa(Ij) ,

|A| − 1 otherwise .
(60)
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We first note that due to (18) and the definitions of Rm
X and Rm

Z in (16) and (34), we have

Rm
X = (G†)⊤ ·Rm

Z ·G† , (61)

where G† is a full row rank matrix. Therefore, for any B ⊆ [n],

rank
(
RB

X

)
= rank

(
RB

Z

)
. (62)

Next, we note that for a function f : Rn → Rk, the notationR(f) in [5] is used to denote the “rank”
of a function, and it corresponds to dim span im(f) in the notation of this paper. Using Proposition 3
and Lemma 6, we can see that the notationR(F) for a set of functions F can be given as

R(F) = k − dim(
⋂
f∈F

(span im(f))⊥) (63)

= k − dim(
⋂
f∈F

null(EpZ
[f(z) · f(z)⊤])) (64)

= k − dim null(
∑
f∈F

EpZ
[f(z) · f(z)⊤]) (65)

= dim col(
∑
f∈F

EpZ
[f(z) · f(z)⊤]) . (66)

Using (66) and (62), we can adopt [5, Lemmas 5 and 6] using {Rm
X : m ∈ [n]} matrices.

We note that (59) and (60) together with Lemma 2 imply that, for any ancestrally closed A ⊆ [n] and
k ∈ A for which there exists j ∈ A \ {k} such that Ik ∈ pa(Ij), we have

col
(
RA

X

)
= col

(
R

A\{k}
X

)
= span

{
(G†)⊤:,i : i ∈ pa(IA)

}
. (67)

We note that due to the property G† ·G = In, we have, for anyM⊆ [n],

null
{
(G†)⊤:,i : i ∈M

}
= span

{
G:,i : i ̸∈ M

}
, (68)

and
null

{
G:,i : i ∈M

}
= span

{
(G†)⊤:,i : i ̸∈ M

}
. (69)

B.4 Causal order recovery

We will show that Algorithm 1 gives a valid causal order in the infinite sample regime using Lemma 8.
Lemma 9 (Infinite samples – Causal order). Setting η = 0, I ◦ π is a valid causal order, where π is
the output of Algorithm 1 using {Rm

X : m ∈ [n]}.

Proof: The proof of this lemma follows closely to the proof of [5, Lemma 7]. Note that setting
η = 0 means that approximate rank and column/null spaces are actually equal to the standard rank
and column/null space definitions. We note that I ◦ π is a valid causal order if and only if, for any
t ∈ [n], we have

de(Iπt) ⊆
{
Iπi : i > t

}
. (70)

We prove (70) by induction as follows.

In the base case, for t = n, we have Vt = [n]. Therefore, using Lemma 8, we see that

rank(R
Vt\{k}
X ) =

{
n de(Ik) ∩ IVt ̸= ∅ ,
n− 1 de(Ik) ∩ IVt = ∅ . (71)

Therefore, for t = n, rank(RVt\{k}
X ) = t− 1 in Algorithm 1 if and only if k ∈ Vt satisfies

∅ = de(Ik) ∩ IVt = de(Ik) ∩ [n] = de(Ik) . (72)

Since { Iπi : i > t } = ∅ for t = n, the base case is proved by choosing any such k as πt.

For the induction step at time t ∈ {n− 1, . . . , 1}, we assume that, for any u ∈ {t+ 1, . . . , n}, we
have de(Iπu) ⊆ { Iπi : i > u }. By construction, Vt = [n] \ {πu : u > t }. Therefore, IVt is
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ancestrally closed: For any k ∈ IVt , k cannot be a descendant of I [n]\Vt = { Iπu : u > t } due to
the induction hypothesis. In other words, pa(IVt) = IVt . Therefore, we can use Lemma 8 as

rank(R
Vt\{k}
X ) =

{
t de(Ik) ∩ IVt ̸= ∅ ,
t− 1 de(Ik) ∩ IVt = ∅ . (73)

Therefore, for any t ∈ {n− 1, . . . , 1 }, rank(RVt\{k}
X ) = t− 1 in Algorithm 1 if and only if k ∈ Vt

satisfies
∅ = de(Ik) ∩ IVt . (74)

This is equivalent to

de(Ik) ⊆ [n] \ IVt = I [n]\Vt = { Iπu : u > t } . (75)

Therefore, choosing any such k as πt satisfies the induction hypothesis for t as well, and the proof by
induction is concluded.

B.5 Graph recovery

Lemma 10 (Infinite samples – Graph). Setting η = γ = 0, the collective output of Algorithms 1
and 2 using {Rm

X : m ∈ [n]} is equal to the graph isomorphism of the transitive closure of G by
permutation I .

Proof: The proof of this lemma follows closely to the proof of [5, Lemma 8]. Note that setting η = 0
means that approximate ranks and column/null spaces are equal to the standard definitions. Similarly,
γ = 0 means that approximate orthogonality is equivalent to the standard orthogonality definition.
We first note that the transitive closure of two DAGs are equal if and only if their transitive reductions
are equal. Therefore, the lemma statement is equivalent to

πt ∈ p̂atr(πj) ⇐⇒ Iπt ∈ patr(I
πj ) , ∀t, j ∈ [n] . (76)

We will prove this result by induction over the transitive reduction edges. In the rest of the proof,
using Lemma 9, we will leverage that I ◦ π is a valid causal order.

In the base case, we have t = n− 1, and thus necessarily j = n. The only possible path between Iπt

to Iπj is therefore a transitive reduction edge. Since we did not add any children to node πt yet, the
setMt,j is equal to Vj \ {πt}. Noting that IVj is ancestrally closed and the only possible child of
Iπt is Iπj when I ◦ π is a valid causal order, we can use Lemma 8 to obtain

rank(R
Mt,j

X ) =

{
n Iπj ∈ ch(Iπt) ,

n− 1 Iπj ̸∈ ch(Iπt) .
(77)

Specifically, using (67), we can specify the exact column spaces we can obtain fromMt,j as

col(R
Mt,j

X ) =

{
span

{
(G†)⊤:,i : i ∈ IVj

}
Iπj ∈ ch(Iπt) ,

span
{
(G†)⊤:,i : i ∈ IVj\{πt}

}
Iπj ̸∈ ch(Iπt) .

(78)

Then, using (68), the null space of RMt,j

X is given by

null(R
Mt,j

X ) =

{
span

{
G:,i : i ̸∈ IVj

}
Iπj ∈ ch(Iπt) ,

span
{
G:,i : i ̸∈ IVj\{πt}

}
Iπj ̸∈ ch(Iπt) .

(79)

The test in Algorithm 2 involves checking whether the column space of RVt

X and the null space of
R

Mt,j

X are orthogonal. Note that IVt is ancestrally closed, therefore, using (67), we get

col(RVt

X ) = span
{
(G†)⊤:,i : i ∈ pa(IVt)

}
= span

{
(G†)⊤:,i : i ∈ IVt

}
. (80)

Next, we note that the orthogonality test which uses orthonormal bases of subspaces (Definition 5) is
equal to the following. Let A ∈ Rd×k1 and B ∈ Rd×k2 be full column rank matrices. Then,

col(A) ⊥ col(B) ⇐⇒
∥∥A ·A† ·B ·B†∥∥

2
= 0 . (81)
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This holds since A · A† is the orthogonal projection operator onto col(A). Therefore, given or-
thonormal bases A0 and B0 for A and B, we have A · A† = A0 · A⊤

0 and B · B† = B0 · B⊤
0 .

Then, ∥∥A ·A† ·B ·B†∥∥
2
=

∥∥A0 ·A⊤
0 ·B0 ·B⊤

0

∥∥
2
=

∥∥A⊤
0 ·B0

∥∥
2
, (82)

which is precisely the metric used in Definition 5. To use this property, let us first consider the matrix
G:,A which is formed by stacking the independent column vectors in set {G:,i : i ∈ A} for some
subsetA ⊆ [n]. Since G has full column rank, we see that the pseudoinverse of G:,A is exactly given
by (

G:,A
)†

=
(
G†)

A,:
, (83)

where the matrix
(
G†)

A,:
is formed by stacking the independent row vectors in set {(G†)i,: : i ∈ A}.

Using this notation, if we have

col(R
Mt,j

X ) = span
{
(G†)⊤:,i : i ∈ pa(IMt,j )

}
, (84)

then the orthogonality metric is equal to∥∥(G†)⊤:,IVt ·G⊤
IVt ,: ·G:,I[n]\pa(Mt,j) ·G†

I[n]\pa(Mt,j),:

∥∥
2

(85)

=
∥∥G:,IVt ·G†

IVt ,: ·G:,I[n]\pa(Mt,j) ·G†
I[n]\pa(Mt,j),:

∥∥
2

(86)

=
∥∥G:,IVt · IIVt ,I[n]\pa(Mt,j) ·G†

I[n]\pa(Mt,j),:

∥∥
2

(87)

=
∥∥ ∑

i∈IVt\pa(IMt,j )

G:,i ·G†
i,:

∥∥
2
. (88)

Due to the construction of sets Vt andMt,j , we have IVt \ IMt,j = Iπt . Therefore, the only entry
in IVt that may be missing from pa(IMt,j ) is Iπt . Therefore, previous equation is equal to∥∥(G†)⊤:,IVt ·G⊤

IVt ,: ·G:,I[n]\pa(Mt,j) ·G†
I[n]\pa(Mt,j),:

∥∥
2

(89)

=

{ ∥∥G:,Iπt

∥∥
2
·
∥∥G†

Iπt ,:

∥∥
2

Iπt ̸∈ pa(IMt,j ) ,

0 Iπt ∈ pa(IMt,j ) .
(90)

In summary, if (84) holds, the orthogonality inspected in Algorithm 2 happens if and only if

Iπt ∈ pa(IMt,j ) . (91)

In the base case, since t = n− 1, this holds if and only if Iπt ∈ patr(I
πj ), and the base case is done.

For the induction hypothesis, we assume that for any u ∈ {n − 1, . . . , t + 1 }, all the transitive
reductive edges has been correctly identified, that is, for any i ∈ [n], πu ∈ p̂atr(πi) if and only if
Iπu ∈ patr(I

πi). We show that the induction hypothesis is also satisfied for t and j ∈ [n] using
induction on j.

In the base case, we have j = t+1. This case works exactly the same way as the t = n−1 and j = n
case. For the induction hypothesis, assume that for any u ∈ {n+ 1, . . . , j − 1 }, all the transitive
reductive edges between Iπt and Iπu have been correctly identified, that is, πt ∈ p̂atr(πu) if and
only if Iπt ∈ patr(I

πu). We prove that the hypothesis also holds for j as follows. First, we claim
that IMt,j∪{πt} is an ancestrally closed set. Note that IVj is an ancestrally closed set by construction.
Since the induction hypothesis ensures that all transitive reduction relations between Iπu and Iπi

for any u ∈ { t + 1, . . . , n − 1 } and i ∈ [n] are recovered, this also means that transitive closure
relations, that is, descendants, are also recovered. Namely, the induction hypothesis implies

Iπi ∈ de(Iπu) ⇐⇒ πi ∈ d̂e(πu) , ∀u ∈ { t+ 1, . . . , n− 1 } , ∀i ∈ [n] . (92)

Next, the induction hypothesis for j implies that for any k ∈ {t + 1, . . . , j − 1 }, we have also
identified all the transitive reductive edges Iπt → Iπk . Therefore, for setMt,j ∪{πt} = Vj \ ĉh(πt),
all the elements in ĉh(πt) has the property that their descendants have been fully identified, and
therefore are excluded from the set (Ĝ keeps the transitive closure), which means the set IMt,j∪{πt}

is ancestrally closed. Since this set is ancestrally closed, we have

pa(IMt,j ) =

{
IMt,j Iπt ̸∈ pa(Iπj ) ,

IMt,j ∪ {πt} Iπt ∈ pa(Iπj ) ,
(93)
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or, using Lemma 8,

col(R
Mt,j

X ) = span
{
(G†)⊤:,i : i ∈ pa(IMt,j )

}
. (94)

In the base case t = n, we had shown that this was a sufficient condition for ensuring that Algorithm 2
detects the transitive reductive edges correctly. Therefore, we can detect any existing transitive
reduction edges between Iπt and Iπj for any j and t, which concludes the proof.

C Identifiability guarantees under bounded score estimation noise

In this section, we show that as long as the error in the estimate of the score differences,
maxm∈[n] ∥d̂

m

X − dm
X∥pX

, is upper bounded by a model-dependent constant, the results in the
infinite data regime still hold.

The first key observation is that the error ∥R̂m
X −Rm

X∥2 is bounded in terms of ∥d̂
m

X − dm
X∥pX

.
Lemma 11. In high signal-to-noise ratio regime for score differences, that is, when∥∥d̂m

X − dm
X

∥∥
pX
≤ 2 ·

∥∥dm
X

∥∥
pX

, (95)

the error in correlation matrix Rm
X is bounded by the error in dm

X as∥∥R̂m
X −Rm

X

∥∥
2
≤ 4 ·

∥∥dm
X

∥∥
pX
·
∥∥d̂m

X − dm
X

∥∥
pX

. (96)

Proof: First, note that

R̂m
X −Rm

X = EpX

[
d̂
m

X(x) · d̂
m

X(x)⊤ − dm
X(x) · dm

X(x)⊤
]

(97)

= EpX

[
(d̂

m

X(x)− dm
X(x)) · (d̂

m

X(x)− dm
X(x))⊤

+ dm
X(x) · (d̂

m

X(x)− dm
X(x))⊤

+ (d̂
m

X(x)− dm
X(x)) · dm

X(x)⊤
]
.

(98)

Next, we apply the spectral norm.∥∥R̂m
X −Rm

X

∥∥
2
=

∥∥EpX

[
(d̂

m

X(x)− dm
X(x)) · (d̂

m

X(x)− dm
X(x))⊤

+ dm
X(x) · (d̂

m

X(x)− dm
X(x))⊤

+ (d̂
m

X(x)− dm
X(x)) · dm

X(x)⊤
]∥∥

2

(99)

≤
∥∥EpX

[
(d̂

m

X(x)− dm
X(x)) · (d̂

m

X(x)− dm
X(x))⊤

]∥∥
2

+ 2 ·
∥∥EpX

[
dm
X(x) · (d̂

m

X(x)− dm
X(x))⊤

]∥∥
2
.

(100)

Note that the first term is the spectral norm of a covariance matrix, and is upper bounded by∥∥EpX

[
(d̂

m

X(x)− dm
X(x)) · (d̂

m

X(x)− dm
X(x))⊤

]∥∥
2
≤ EpX

∥∥d̂m

X(x)− dm
X(x)

∥∥2
2

(101)

=
∥∥d̂m

X − dm
X

∥∥2
pX

. (102)

For the second term, we can upper bound the spectral norm by Frobenius norm as∥∥EpX

[
dm
X(x) · (d̂

m

X(x)− dm
X(x))⊤

]∥∥2
2
≤

∥∥EpX

[
dm
X(x) · (d̂

m

X(x)− dm
X(x))⊤

]∥∥2
F

(103)

=

d∑
i,j=1

(
EpX

[
(dm

X(x))i · (d̂
m

X(x)− dm
X(x))j

])2
. (104)

Using Cauchy–Schwarz inequality,∥∥EpX

[
dm
X(x) · (d̂

m

X(x)− dm
X(x))⊤

]∥∥2
2
≤

d∑
i,j=1

EpX

[
(dm

X(x))2i
]
· EpX

[
(d̂

m

X(x)− dm
X(x))2j

]
(105)

= EpX

∥∥dm
X(x)

∥∥2
2
· EpX

∥∥d̂m

X(x)− dm
X(x)

∥∥2
2

(106)

=
∥∥dm

X

∥∥2
pX
·
∥∥d̂m

X − dm
X

∥∥2
pX

. (107)
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Therefore, we can upper bound ∥R̂m
X −Rm

X∥2 by∥∥R̂m
X −Rm

X

∥∥
2
≤

∥∥d̂m

X − dm
X

∥∥2
pX

+ 2 ·
∥∥dm

X

∥∥
pX
·
∥∥d̂m

X − dm
X

∥∥
pX

. (108)

Finally, we note that if (95) holds, then this bound simplifies to (96).

Our finite sample CRL algorithms use approximate column and null spaces of (sums of) noisy score
difference correlation matrices R̂M

X , where M ⊆ [n]. Therefore, we need to ensure that these
approximate subspaces (i) have the same rank as, and (ii) are close to their noise-free counterparts.

First, we show that under bounded score difference estimation noise, the approximate rank of R̂M
X is

equal to the rank of RM
X . To show this, we will leverage Weyl’s inequality.

Lemma 12 (Weyl’s inequality). For any two symmetric k × k real matrices A,B, we have∥∥λ(A)− λ(B)
∥∥
∞ ≤

∥∥A−B
∥∥
2
, (109)

where λ(A) for symmetric matrix A denotes the vector of eigenvalues of A ordered in ascending
order, and ∥v∥∞ is the maximum absolute value among the entries of v.

We can now show that the approximate rank of R̂m
X matrices and sums are equal to the rank of Rm

X
under proper threshold selection and low error.
Lemma 13. Define η∗ as the minimum nonzero eigenvalue among {RM

X : M⊆ [n]}, that is,

η∗ ≜ min
M⊆[n]

min
{
λi

(
RM

X

)
: i ∈ [d] , λi

(
RM

X

)
̸= 0

}
. (110)

(i) For η ∈ (0, η∗), if
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< min{η, η∗ − η} = η∗ , (111)

then, for any m ∈ [n], we have

dim col (Rm
X) = dim col

(
R̂m

X ; η
)

. (112)

(ii) For η ∈ (0, η∗), if
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
<

η∗
n

, (113)

then, for anyM⊆ [n], we have

dim col
(
RM

X

)
= dim col

(
R̂M

X ; η
)

. (114)

Proof: Let us investigate the approximate rank of R̂M
X under threshold η for any M ⊆ [n]. If

the eigenvalues of R̂M
X that correspond to the eigenvalues of the null space of RM

X are below the
threshold η, and the eigenvalues of R̂M

X that correspond to the eigenvalues of the column space of
RM

X are above η, then the approximate rank of R̂M
X is equal to the rank of RM

X . Let us denote the
maximum amount any eigenvalue of R̂M

X differs from the corresponding eigenvalue of RM
X by

χ ≜
∥∥λ(R̂M

X )− λ(RM
X )

∥∥
∞ . (115)

Thus, the eigenvalues of the noisy correlation matrix R̂M
X that correspond to the null space eigenvalues

of RM
X is at most χ. Similarly, eigenvalues of the noisy correlation matrix R̂M

X that correspond to
the column space eigenvalues of RM

X is at least

min
{
λi

(
RM

X

)
: i ∈ [d] , λi

(
RM

X

)
̸= 0

}
− χ . (116)

Therefore, if
χ < η < min

{
λi

(
RM

X

)
: i ∈ [d] , λi

(
RM

X

)
̸= 0

}
− χ , (117)

then using threshold η ensures that the approximate rank of R̂M
X is equal to the rank of RM

X . We can
generalize this statement as follows. First, note that, by definition,

η∗ ≤ min
{
λi

(
RM

X

)
: i ∈ [d] , λi

(
RM

X

)
̸= 0

}
. (118)
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Then, the rank statement about R̂M
X is correct if χ satisfies

χ < η < η∗ − χ . (119)

This statement can be equivalently written as

χ < min{η, η∗ − η} ≜ η∗ . (120)

Next, we find an upper bound on χ in terms of ∥Rm
X −Rm

X∥2 using Weyl’s inequality (Lemma 12).

χ =
∥∥λ(R̂M

X )− λ(RM
X )

∥∥
∞ ≤

∥∥R̂M
X −RM

X

∥∥
2

(121)

≤
∑

m∈M

∥∥R̂m
X −Rm

X

∥∥
2

(122)

≤ |M| · max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2

(123)

≤ n · max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
. (124)

Therefore, for any η ∈ (0, η∗), leveraging the condition (120), we have

(i) If |M| = 1 andM = {m}, we can use (123) to show that the condition

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< η∗ , (125)

ensures that
dim col (Rm

X) = dim col
(
R̂m

X ; η
)

. (126)

(ii) For any genericM, we can use (124) to show that the condition

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
<

η∗
n

, (127)

ensures that
dim col

(
RM

X

)
= dim col

(
R̂M

X ; η
)

. (128)

This concludes the proof.

Since we have a sufficient condition to ensure that approximate ranks of {R̂M
X : M ⊆ [n]} are

equal to the ranks of {RM
X : M⊆ [n]}, now we can state a sufficient condition for finding a valid

causal order.
Lemma 14 (Bounded noise – Causal order). Let η ∈ (0, η∗). If

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
<

η∗
n

, (129)

then I ◦ π is a valid causal order, where π is the output of Algorithm 1.

Proof: We note that Algorithm 1 only uses approximate rank statements for {R̂M
X : M ⊆ [n]}.

Therefore, if the approximate rank statements are equal to the ranks of {RM
X : M⊆ [n]}, then, the

infinite sample guarantees of Algorithm 1 provided in Lemma 9 immediately transfer to the noisy
Rm

X regime.

Next, we note that Algorithms 2 and 3 use the direction information of the approximate column
and null spaces of {R̂M

X : M ⊆ [n]} as well. Therefore, we need to bound the “distance” of the
estimated subspaces from their noise-free counterparts. The main results we will use for this purpose
are the Davis–Kahan sin θ theorems [19], specialized for approximate column and null spaces.

Lemma 15 ([19, sin θ theorem]). Consider two k× k real symmetric matrices A and Â. Denote the
orthonormal bases of the column and null spaces of A by A1 and A0, respectively, such that

A = A1C1A
⊤
1 , (130)

where C1 is a symmetric matrix with the same eigenvalues as A. Similarly, denote the orthonormal
bases for the approximate column and null space of Â by Â1 and Â0, such that

Â = Â0Ĉ0Â
⊤
0 + Â1Ĉ1Â

⊤
1 , (131)
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where eigenvalues of Ĉ0 are that of the approximate null space of Â, and the eigenvalues of Ĉ1 are
that of the approximate column space of Â. Define

χ ≜ min
{
λmin(Ĉ1) , λmin(C1)− λmax(Ĉ0)

}
, (132)

where λmax and λmin denote the maximum and minimum eigenvalue of a symmetric matrix. Then,
given that the approximate rank of Â is equal to the rank of A and χ > 0, we have∥∥Â⊤

0 ·A1

∥∥
2
≤ 1

χ

∥∥Â−A
∥∥
2
, (133)

and ∥∥Â⊤
1 ·A0

∥∥
2
≤ 1

χ

∥∥Â−A
∥∥
2
. (134)

Lemma 16 ([19, Symmetric sin θ theorem]). Under the setting described in the sin θ theorem above,
we have ∥∥Â0 · Â⊤

0 −A0 ·A⊤
0

∥∥
2
≤ 1

χ

∥∥Â−A
∥∥
2
, (135)

and ∥∥Â1 · Â⊤
1 −A1 ·A⊤

1

∥∥
2
≤ 1

χ

∥∥Â−A
∥∥
2
. (136)

We note that χ in these sin θ theorems can be bounded using Weyl’s inequality (Lemma 12) and the
minimum nonzero eigenvalue of matrix A as follows.

λmax(Ĉ0) ≤
∥∥Â−A

∥∥
2
, λmin(Ĉ1) ≥ λmin(C1)−

∥∥Â−A
∥∥
2
. (137)

Therefore,
χ ≥ λmin(C1)−

∥∥Â−A
∥∥
2
. (138)

Using RM
X for A and R̂M

X for Â, and using the definition of η∗ in (110), we obtain

χ ≥ η∗ −
∥∥R̂M

X −RM
X

∥∥
2
. (139)

In order to ensure that the approximate rank of R̂M
X is equal to the rank of RM

X , it suffices that
∥R̂M

X −RM
X ∥2 satisfies

η∗ >
∥∥R̂M

X −RM
X

∥∥
2
, (140)

due to (121). If this holds, we get

χ > η∗ − η∗ = η∗ −min{η, η∗ − η} = max{η, η∗ − η} ≥ min{η, η∗ − η} = η∗ . (141)

Therefore, the left-hand sides of (133)–(136) are upper bounded by

1

η∗

∥∥R̂M
X −RM

X

∥∥
2
. (142)

We can use Davis–Kahan symmetric sin θ theorem (Lemma 16) to prove that encoder estimation
error is upper bounded by the error in R̂m

X .
Lemma 17 (Bounded noise – Encoder). Let η ∈ (0, η∗). If (125) holds, then the output H of
Algorithm 3 satisfies

H ·G = PI · (Cpa +Cerr) , (143)
where for all i ̸∈ pa(j), Cpa satisfies (Cpa)i,j = 0, and∥∥Cerr

∥∥
2
≤
√
n

η∗
·
∥∥G∥∥

2
· max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
. (144)

Proof: We prove this result by considering each row m of H separately. In Algorithm 3, we select
Hm,: from col(R̂m

X ; η) for each m ∈ [n]. We start by noting that in Lemma 7, we have shown that
using the noise-free score difference correlation matrices, we get(

v⊤ ·G
)
i
̸= 0 =⇒ i ∈ pa(Im) ∀v ∈ col(Rm

X) , ∥v∥2 = 1 . (145)

22



We can decompose any v ∈ col(R̂m
X ; η) as

v = A0 ·A⊤
0 · v +A1 ·A⊤

1 · v , (146)

where A0 and A1 are the orthonormal bases of the null and column spaces of Rm
X in line with the

notation of the Davis–Kahan sin θ theorem. Note that A1 ·A⊤
1 is the orthogonal projection operator

onto the column space of Rm
X , therefore, using (145), we have(

(A1 ·A⊤
1 · v)⊤ ·G

)
i
̸= 0 =⇒ i ∈ pa(Im) ∀v ∈ col(R̂m

X ; η) , ∥v∥2 = 1 . (147)

Therefore, the “erroneous” entries in v⊤ ·G can be written as(
v⊤ ·G

)
i
=

(
(A0 ·A⊤

0 · v)⊤ ·G
)
i

∀i ̸∈ pa(Im) , ∀v ∈ col(R̂m
X ; η) , ∥v∥2 = 1 . (148)

Note that if we choose v ∈ col(R̂m
X ; η) as row m of H, we have∥∥(PI ·Cerr

)
m,:

∥∥2
2
=

∑
i ̸∈pa(Im)

(
v⊤ ·G

)2
i
≤

∥∥(A0 ·A⊤
0 · v)⊤ ·G

∥∥2
2
. (149)

Since v ∈ col(R̂m
X ; η), we have Â1 · Â⊤

1 · v = v, where Â1 is the orthonormal basis of the
approximate column space of R̂m

X . Using this and ∥v∥2 = 1, we can write (149) as∥∥(PI ·Cerr

)
m,:

∥∥
2
≤

∥∥A0 ·A⊤
0 · v

∥∥
2
·
∥∥G∥∥

2
(150)

=
∥∥A0 ·A⊤

0 · Â1 · Â⊤
1 · v

∥∥
2
·
∥∥G∥∥

2
(151)

≤
∥∥A0 ·A⊤

0 · Â1 · Â⊤
1

∥∥
2
·
∥∥G∥∥

2
(152)

=
∥∥A⊤

0 · Â1

∥∥
2
·
∥∥G∥∥

2
, (153)

Using Davis–Kahan sin θ theorem (Lemma 15), when (125) holds, we can further upper bound the
m-th row of the error term by∥∥(PI ·Cerr

)
m,:

∥∥
2
≤ 1

η∗

∥∥R̂m
X −Rm

X

∥∥
2
·
∥∥G∥∥

2
. (154)

Note that the spectral norm is upper bounded by the Frobenius norm. Therefore,∥∥Cerr

∥∥
2
≤

∥∥Cerr

∥∥
F
≤
√
n · 1

η∗
·
∥∥G∥∥

2
· max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
. (155)

Next, we investigate the approximate orthogonality test used for Algorithm 2 under noisy score
difference correlation matrices.

Lemma 18. Let A,B, Â, B̂ be k × k symmetric matrices, such that

A = A0C0A
⊤
0 +A1C1A

⊤
1 , Â= Â0Ĉ0Â

⊤
0 + Â1Ĉ1Â

⊤
1 , (156)

B = B0D0B
⊤
0 +B1D1B

⊤
1 , B̂= B̂0D̂0B̂

⊤
0 + B̂1D̂1B̂

⊤
1 , (157)

where [A0,A1], [B0,B1], [Â0, Â1], [B̂0, B̂1] are all k × k orthogonal matrices, and shapes of
A0–Â0 and B0–B̂0 match. Given that the spectra of (i) C0 and Ĉ1, (ii) C1 and Ĉ0, (iii) D0 and
D̂1, and (iv) D1 and D̂0 are all separated with gap χ, we have

(i) If ∥A⊤
0 ·B0∥2 = 0, that is, if col(A0) ⊥ col(B0), then,∥∥Â⊤

0 · B̂0

∥∥
2
≤ 1

χ

(∥∥Â−A
∥∥
2
+

∥∥B̂−B
∥∥
2

)
. (158)

(ii) If ∥A⊤
0 ·B0∥2 = µ ̸= 0, that is, col(A0) ̸⊥ col(B0), then,∥∥Â⊤

0 · B̂0

∥∥
2
≥ µ− 1

χ

(∥∥Â−A
∥∥
2
+

∥∥B̂−B
∥∥
2

)
. (159)
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Proof: We first prove a perturbation bound on the product of orthogonal projectors.∥∥Â0 · Â⊤
0 · B̂0 · B̂⊤

0 −A0 ·A⊤
0 ·B0 ·B⊤

0

∥∥
2

(160)

=
∥∥Â0 · Â⊤

0 ·
(
B̂0 · B̂⊤

0 −B0 ·B⊤
0

)
−

(
A0 ·A⊤

0 − Â0 · Â⊤
0

)
·B0 ·B⊤

0

∥∥
2

(161)

≤
∥∥Â0 · Â⊤

0

∥∥
2
·
∥∥B̂0 · B̂⊤

0 −B0 ·B⊤
0

∥∥
2
+
∥∥A0 ·A⊤

0 − Â0 · Â⊤
0

∥∥
2
·
∥∥B0 ·B⊤

0

∥∥
2

(162)

≤
∥∥B̂0 · B̂⊤

0 −B0 ·B⊤
0

∥∥
2
+

∥∥A0 ·A⊤
0 − Â0 · Â⊤

0

∥∥
2
. (163)

Using Davis–Kahan symmetric sin θ theorem (Lemma 16) yields∥∥Â0 · Â⊤
0 · B̂0 · B̂⊤

0 −A0 ·A⊤
0 ·B0 ·B⊤

0

∥∥
2
≤ 1

χ

(∥∥Â−A
∥∥
2
+

∥∥B̂−B
∥∥
2

)
. (164)

We use this result in two separate cases: col(A0) ⊥ col(B0) and col(A0) ̸⊥ col(B0).

(i) Case 1: col(A0) ⊥ col(B0). In this case, (164) immediately yields (158).

(ii) Case 2: col(A0) ̸⊥ col(B0). Let us define ∥A⊤
0 ·B0∥2 = µ ̸= 0. We can use (164) and triangle

inequality to get∥∥Â0 · Â⊤
0 · B̂0 · B̂⊤

0

∥∥
2
+

1

χ

(∥∥Â−A
∥∥
2
+

∥∥B̂−B
∥∥
2

)
(165)

≥
∥∥Â0 · Â⊤

0 · B̂0 · B̂⊤
0

∥∥
2
+
∥∥Â0 · Â⊤

0 · B̂0 · B̂⊤
0 −A0 ·A⊤

0 ·B0 ·B⊤
0

∥∥
2

(166)

≥
∥∥A0 ·A⊤

0 ·B0 ·B⊤
0

∥∥
2

(167)

=
∥∥A⊤

0 ·B0

∥∥
2
= µ . (168)

Rearranging the terms yields (159).

Finally, we show that the graph estimation is correct under bounded noise.
Lemma 19 (Bounded noise – Graph). Let η ∈ (0, η∗) and γ ∈ (0, γ∗), where

γ∗ ≜ min
t∈[n]

∥∥G:,t

∥∥
2
·
∥∥(G†)t,:

∥∥
2
, and γ∗ ≜ min{γ, γ∗ − γ} . (169)

Under Assumption 1, the output Ĝ of Algorithm 2 is the graph isomorphism of the transitive closure
of the true latent graph G if

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< min

{
η∗
n

,
η∗γ∗
2n

}
. (170)

Proof: Algorithm 2 uses approximate column and null spaces of RM
X for different M ⊆ [n].

Therefore, the generic sufficient condition (113), that is,

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
<

η∗
n

, (171)

ensures that the approximate ranks of all R̂M
X matrices investigated in the algorithm will be equal

to the rank of RM
X . To ensure that the estimated graph will be correct, we must guarantee that the

approximate orthogonality tests will also give correct results. Using Lemma 18, we can show that the
test metric is upper bounded in terms of maxm∈[n] ∥R̂m

X −Rm
X∥2. We do so by setting A = RVt

X ,
Â = R̂Vt

X , B = R
Mt,j

X , B̂ = R̂
Mt,j

X ; and A0 as the orthonormal basis of the column space of A,
and B0 as the null space of B. As shown in (141), (113) ensures that the spectral gap χ in Lemma 18
statement is at least χ > η∗. In Lemma 10, we show that in the infinite sample, noise-free regime,
when investigating (t, j), the test metric is given by∥∥A⊤

0 ·B0

∥∥
2
=

{
0 It → Ij ∈ G ,

∥G:,t∥2 · ∥(G†)t,:∥2 It ̸→ Ij ∈ G .
(172)

Since the approximate orthogonality test needs to distinguish even the weakest instance of non-
orthogonality from orthogonality, we define

γ∗ ≜ min
t∈[n]

∥∥G:,t

∥∥
2
·
∥∥(G†)t,:

∥∥
2
. (173)
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Using Lemma 18, we see that for (t, j) for which It → Ij exists in G, if (113) holds, then∥∥Â⊤
0 · B̂0

∥∥
2
<

2n

η∗
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
. (174)

Similarly, for (t, j) for which It → Ij does not exist in G, if (113) holds, then∥∥Â⊤
0 · B̂0

∥∥
2
> γ∗ − 2n

η∗
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
. (175)

Therefore, for a choice of γ ∈ (0, γ∗) to yield correct orthogonality decisions, it suffices that

2n

η∗
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< γ < γ∗ − 2n

η∗
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
, (176)

or, equivalently,
2n

η∗
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< min{γ, γ∗ − γ} ≜ γ∗ . (177)

In other words, when using γ ∈ (0, γ∗) as the approximate orthogonality threshold, we can correctly
identify orthogonal subspaces from non-orthogonal ones when

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
<

η∗γ∗
2n

. (178)

Due to Lemma 10, if all the approximate rank and orthogonality tests are correct, then the output Ĝ
of Algorithm 2 is the graph isomorphism of the transitive closure of the true latent graph G.

D Sample complexity for generic consistent score estimator

In this section, we will transform the bounded noise identifiability guarantees in Appendix C to
sample complexity statements about a generic consistent score difference estimator. Specifically,
recall the consistent score difference estimator model from (15).

P
(

max
m∈[n]

∥∥d̂m

X(·;XN )− dm
X

∥∥
pX
≤ ϵ

)
≥ 1− δ , ∀N ≥ N(ϵ, δ) . (179)

Recall the definitions of the constants in (24),

β ≜

(
4 max
m∈[n]

∥∥dm
X

∥∥
pX

)−1

and βmin ≜ 2 min
m∈[n]

∥∥dm
X

∥∥
pX

. (180)

First, we derive the sufficient samples for (ϵ, δ)-approximating R̂m
X using Lemma 11.

Lemma 20. For any ϵ > 0 and δ > 0, using NR(ϵ, δ) samples suffice to ensure that

P
(

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
≤ ϵ

)
≥ 1− δ , ∀N ≥ NR(ϵ, δ) , (181)

where
NR(ϵ, δ) ≜ N (min{ϵ · β, βmin}, δ) . (182)

Proof: In Lemma 11, in order to bound the error in R̂m
X for a specific m ∈ [n], we require∥∥dm

X − d̂
m

X

∥∥
pX

< 2 ·
∥∥dm

X

∥∥
pX

. (183)

To ensure this for all m ∈ [n], it suffices that

max
m∈[n]

∥∥d̂m

X − dm
X

∥∥
pX

< 2 min
m∈[n]

∥∥dm
X

∥∥
pX

≜ βmin . (184)

Under this condition, Lemma 11 shows that the error in correlation matrices Rm
X is bounded by the

error in dm
X as ∥∥R̂m

X −Rm
X

∥∥
2
≤ 4 ·

∥∥dm
X

∥∥
pX
·
∥∥d̂m

X − dm
X

∥∥
pX

. (185)
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To get an m-agnostic bound, we can take max of both sides to get

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
≤ 4 · max

m∈[n]

∥∥dm
X

∥∥
pX
· max
m∈[n]

∥∥d̂m

X − dm
X

∥∥
pX

. (186)

In other words, to achieve ϵ error in estimating R̂m
X , the error in estimating dm

X suffices to be upper
bounded by

ϵ · β ≜
ϵ

4maxm∈[n]

∥∥dm
X

∥∥
pX

> max
m∈[n]

∥∥d̂m

X − dm
X

∥∥
pX

. (187)

In summary, (184) and (187) together gives that

max
m∈[n]

∥∥d̂m

X − dm
X

∥∥
pX

< min
{
βmin, ϵ · β

}
, (188)

suffices to ensure
max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
≤ ϵ . (189)

Using the sample complexity of d̂
m

X , this means that

N ≥ NR(ϵ, δ) ≜ N
(
min

{
ϵ · β, βmin

}
, δ

)
(190)

samples suffice to ensure this error upper bound on R̂m
X with probability at least 1− δ.

Next, we restate and prove the sample complexity of estimating the causal order in Lemma 4.

Lemma 4 (Sample complexity – Causal order). Let η ∈ (0, η∗). Under Assumption 1, for any δ > 0,
Nrank(δ) samples suffice to ensure that with probability at least 1− δ, I ◦ π is a valid causal order,
where π is the output of Algorithm 1, where

Nrank(δ) ≜ N

(
min

{
βη∗
n

, βmin

}
, δ

)
. (191)

Proof: Lemma 14 states that as long as R̂m
X error is upper bounded by η∗

n , the output of Algorithm 1
is correct. Then, using Lemma 20, we see that

N ≥ NR

(η∗
n
, δ

)
= N

(
min

{
βη∗
n

, βmin

}
, δ

)
(192)

samples suffice to ensure that the estimated causal order is correct with probability at least 1− δ.

Next, we prove the sample complexity of estimating the latent graph.

Theorem 1 (Sample complexity – Graph). Let η ∈ (0, η∗) and γ ∈ (0, γ∗). Under Assumption 1,
for any δ > 0, NG(δ) samples suffice to ensure that collective output Ĝ(XN ) of Algorithms 1 and 2
satisfies δ–PAC graph recovery, where

NG(δ) ≜ N

(
min

{
βη∗
n

,
βη∗γ∗
2n

, βmin

}
, δ

)
. (193)

Proof: Lemma 19 states that the estimated graph is correct if

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< min

{
η∗
n

,
η∗γ∗
2n

}
. (194)

Therefore, Lemma 20 implies that

N ≥ N

(
min

{
βη∗
n

,
βη∗γ∗
2n

, βmin

}
, δ

)
(195)

samples suffice for correct graph recovery with probability at least 1− δ.

Similarly, we prove the sample complexity of estimating the causal variables.

Theorem 2 (Sample complexity – Variables). Let η ∈ (0, η∗). For any ϵ > 0 and δ > 0, NZ(ϵ, δ)
samples suffice to ensure that the output H(XN ) of Algorithm 3 satisfies (ϵ, δ)–PAC causal variables
recovery, where

NZ(ϵ, δ) ≜ N

(
min

{
ϵβη∗√
n∥G∥2

, βη∗, βmin

}
, δ

)
. (196)
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Proof: Lemma 17 states that if the input error is bounded by

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< η∗ , (197)

then the estimated encoder achieves error rate ϵ∥∥Cerr

∥∥
2
≤
√
n · 1

η∗
·
∥∥G∥∥

2
· max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
≤ ϵ . (198)

Therefore, to ensure (ϵ, δ)–PAC causal variables recovery, it suffices that, with probability at least
1− δ, the input error on R̂m

X is upper bounded by

max
m∈[n]

∥∥R̂m
X −Rm

X

∥∥
2
< min

{
ϵη∗√
n∥G∥2

, η∗

}
. (199)

Using Lemma 20, this implies that

N ≥ N

(
min

{
ϵβη∗√
n∥G∥2

, βη∗, βmin

}
, δ

)
(200)

samples suffice for (ϵ, δ)–PAC causal variables recovery.

E Sample complexity for RKHS-based score estimator

In this section, we adopt the RKHS-based score estimator of [12], state its assumptions, derive its
noise model for score difference estimation, and use this model to make the sample complexity upper
bounds derived in Appendix D explicit.

The score estimator in [12] requires the support of the distribution to be an open subset of its
domain [12, Assumption B.1]. Therefore, we estimate the score function of X through its orthogonal
projection to the n dimensional support manifold col(G). The projection matrix can be constructed
from observed data samples with probability 1 as long as N ≥ n.

Next, we state Lemma 5 formally including all the assumptions required.

Lemma 5 (Formal). Denote a trace-class matrix-valued kernel by K : Rd × Rd → Rd×d, denote its
associated RKHS byHK, and define κ ≜ supx∈col(G) trK(x, x). Define an integral operator onHK
as

LK,pf ≜
∫
K(x, ·)f(x)p(x) dx , ∀f ∈ HK , (201)

where p is a pdf. Assume that there exists f0 ∈ HK and fm ∈ HK for all m ∈ [n] such that sX =
LK,pX

f0 and smX = LK,pm
X
fm. Then, using Tikhonov regularization, under [12, Assumptions B.1–

B.5], for any m ∈ [n], for any δ ∈ (0, 1) and N ≥ (2
√
2κ2 log 8n/δ)4, with probability at least

1− δ, score estimator in [12, Theorem B.1] satisfies

max
m∈[n]

∥∥d̂m

X − dm
X

∥∥
pX
≤ C ·N−1/4 · log 8n/δ , (202)

where C is a sample independent constant that depends only on pX , pmX for m ∈ [n] and the structure
ofHK.

Proof: We use the fact that for a function f ∈ HK, we have∥∥f∥∥
pX

=
∥∥LK,pX

f
∥∥
HK
≤

∥∥LK,pX

∥∥
op
·
∥∥f∥∥HK

. (203)

Therefore, even if we estimate smX using data from pmX but evaluate it on data from pX , we can still
bound the MSE of the estimate using the Hilbert norm. The result states that the Hilbert norm error
bound is, for any m ∈ {0} ∪ [n], and if N ≥ (2

√
2κ2 log 4/δ)4,

P
(∥∥ŝmX − smX

∥∥
HK
≤ C1 ·N−1/4 · log 4

δ

)
≥ 1− δ . (204)

Since ∥ · ∥pX
is a norm, we have

∥d̂
m

X−d
m
X∥pX

≤ ∥ŝmX−smX∥pX
+∥ŝX−sX∥pX

≤
∥∥LK,pX

∥∥
op
·
(
∥ŝmX−smX∥HK+∥ŝX−sX∥HK

)
.

(205)

27



Combining with the Hilbert norm error bound, taking union bound and defining C ≜ 2C1∥LK,pX
∥op,

we get

P
(
∥d̂

m

X − dm
X∥pX

≤ C ·N−1/4 · log 4

δ

)
≥ 1− 2δ . (206)

Note that the noise model in (15) requires a bound on maxm∈[n] ∥d̂
m

X − dm
X∥pX

. By taking a union
bound, we get

P
(
max
m∈[n]

∥d̂
m

X − dm
X∥pX

≤ C ·N−1/4 · log 4

δ

)
≥ 1− 2nδ . (207)

By replacing δ with δ/2n, we get, when N ≥ (2
√
2κ2 log 8n/δ)4,

P
(
max
m∈[n]

∥d̂
m

X − dm
X∥pX

≤ C ·N−1/4 · log 8n

δ

)
≥ 1− δ , (208)

which concludes the proof.
Corollary 2. The error bound given in this result can be immediately transformed into a sample
complexity statement. Specifically,

P
(
max
m∈[n]

∥∥d̂m

X − dm
X

∥∥
pX
≤ ϵ

)
≥ 1− δ , ∀N ≥ N(ϵ, δ) , (209)

where

N(ϵ, δ) =

(
max

{
2
√
2κ2,

C

ϵ

})4

·
(
log

8n

δ

)4

. (210)

Using this N(·, ·) function, we can immediately make the sample complexity results in the previous
section explicit. The theorem statements are also stated here for completeness.

Theorem 3 (RKHS-based sample complexity – Graph). Let η ∈ (0, η∗) and γ ∈ (0, γ∗). Under
Assumption 1 and the conditions of Lemma 5, NG(δ) samples sufficient to ensure that the collective
output Ĝ(XN ) of Algorithms 1 and 2 satisfies δ–PAC graph recovery, where

NG(δ) =

(
max

{
C

ϵG
, 2
√
2κ2

})4

·
(
log

8n

δ

)4

, and ϵG ≜ min

{
βη∗
n

,
βη∗γ∗
2n

, βmin

}
.

(211)

Theorem 4 (RKHS-based sample complexity – Variables). Let η ∈ (0, η∗). Under the conditions
of Lemma 5, NZ(ϵ, δ) samples ensure that the output H(XN ) of Algorithm 3 satisfies (ϵ, δ)–PAC
causal variables recovery, where

NZ(ϵ, δ) =

(
max

{
C

ϵ · ϵZ
, 2
√
2κ2

})4

·
(
log

(
8n

δ

))4

, (212)

and

ϵZ ≜ min

{
ϵβη∗√
n∥G∥2

, βη∗, βmin

}
. (213)

F Properties of positive semidefinite matrices

In this section, we present properties of positive semidefinite (PSD) matrices that are commonly used
in our proofs.
Proposition 2. For a real k × k PSD matrix A, the null space of A can be specified using the
quadratic form as

null(A) =
{
v ∈ Rk : v⊤Av = 0

}
. (214)

Proof: For a vector v ∈ Rk, Av = 0 implies v⊤Av = 0 unconditionally. We prove the reverse
direction by showing that Av ̸= 0 implies v⊤Av ̸= 0. First, since A is PSD, it has a Cholesky
decomposition A = U⊤U for some matrix U ∈ Rk×k. If Av = U⊤Uv ̸= 0, then Uv ̸= 0. This
implies v⊤Av = ∥Uv∥22 ̸= 0. This concludes the proof.
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Proposition 3. If A,B are real k × k PSD matrices, then

null(A+B) = null(A) ∩ null(B) , (215)

and
col(A+B) = col(A) + col(B) , (216)

where + denotes the Minkowski sum between sets, which is defined, for any two subsets A and B of
a vector space, as

A+ B ≜
{
a+ b : a ∈ A , b ∈ B

}
. (217)

Proof: Using Proposition 2, we can write null(A+B) as

null(A+B) =
{
v ∈ Rk : v⊤(A+B)v = 0

}
. (218)

Since A and B are both PSD, for any v ∈ Rk, we have v⊤Av ≥ 0 and v⊤Bv ≥ 0. Therefore,
v⊤(A+B)v = 0 holds if and only if v⊤Av = 0 and v⊤Bv = 0. That is,

null(A+B) =
{
v ∈ Rk : v⊤Av = 0 ∧ v⊤Bv = 0

}
. (219)

We note that, due to Proposition 2, the right hand side of this expression is equal to null(A)∩null(B),
which concludes the proof for (215).

Next, note that the column space of a symmetric matrix is the orthogonal complement of its null
space. Then, using (215), we have

col(A+B) = (null(A+B))⊥ =
(
null(A) ∩ null(B)

)⊥
. (220)

Since null(A) and null(B) are subspaces of a finite dimensional vector space, we have

(null(A) ∩ null(B))⊥ = null(A)⊥ + null(B)⊥ = col(A) + col(B) . (221)

This concludes the proof for (216).

G Hyperparameter estimation

In this section, we provide minor modifications to our algorithms that enable constructing rough
estimates for threshold upper bounds η∗ and γ∗ in practice.

Estimating η∗ : We note that in Algorithm 1, at step t, all matrices investigated must have either
rank t or t − 1. Therefore, the t − 1-th eigenvalues of all of these matrices are non-zero, or
equivalently we have ≥ η∗. This observation lets us to iteratively build and refine an upper bound
on η∗ during Algorithm 1, which we can use as a surrogate of η∗ in the subsequent Algorithm 2
and 3. For Algorithm 1 itself, at time t, we can pick k ∈ Vt with minimal t-th eigenvalue—this is a
threshold-free way of estimating the causal order.

Estimating γ∗ : We first note that definition in (23) depends entirely on the ground truth decoder
matrix G and its pseudoinverse. Secondly, we note that Algorithm 3 can be used independently of
Algorithm 2 to generate an estimate H of G† up to some estimation error and possible mixing among
rows. We can compute the value

min
i∈[n]
∥Hi,:∥2 · ∥H†

:,i∥2 , (222)

which would be equal to γ∗ had H = G†, and use it as our estimate of γ∗.
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material?
Answer: [Yes]
Justification: The codebase for the experiments can be found at https://github.com/
acarturk-e/finite-sample-linear-crl.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Justification: Experiments are run on a single commercial laptop CPU.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that the
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deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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being used as intended and functioning correctly, harms that could arise when the
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11. Safeguards
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The codebase for the experiments can be found at https://github.com/
acarturk-e/finite-sample-linear-crl, and is released under Apache 2.0 license.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Justification: [NA]
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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