
Workshop track - ICLR 2016

PERSISTENT RNNS: STASHING WEIGHTS ON-CHIP

Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam Coates,
Erich Elsen, Jesse Engel, Awni Hannun, Sanjeev Satheesh

ABSTRACT

This paper introduces a framework for mapping Recurrent Neural Network (RNN)
architectures efficiently onto parallel processors such as GPUs. Key to our ap-
proach is the use of persistent computational kernels that exploit the processor’s
memory hierarchy to reuse network weights over multiple timesteps. Using our
framework, we show how it is possible to achieve substantially higher computa-
tional throughput at lower mini-batch sizes than direct implementations of RNNs
based on matrix multiplications. Our initial implementation achieves 2.8 TFLOP/s
at a mini-batch size of 4 on an NVIDIA TitanX GPU, which is about 45% of the-
oretical peak throughput, and is 30X faster than a standard RNN implementation
based on optimized GEMM kernels at this batch size. Reducing the batch size
from 64 to 4 per processor provides a 16x reduction in activation memory foot-
print, enables strong scaling to 16x more GPUs using data-parallelism, and allows
us to efficiently explore end-to-end speech recognition models with up to 108
residual RNN layers.

1 INTRODUCTION

In this paper, we explore techniques for mapping RNNs to throughput optimized processors such
as GPUs. We focus on mapping strategies that carefully manage data movement through the pro-
cessor’s memory hierarchy to balance these costs. These changes enable RNN implementations on
GPUs that are very efficient at small mini-batch sizes, even on mini-batch sizes of just 4 examples.
We exploit this reduction in batch size to decrease the memory footprint of our networks by 16x,
allowing us to explore deeper networks without exceeding GPU memory.

To make our results relevant for deployment, we only consider models with a hard constraint of
800ms of future context. We find that accuracy improves with deeper models using batch normal-
ization and skip connections He et al. (2015); Srivastava et al. (2015), reinforcing the trend towards
deeper models in vision applications. We present evidence that accuracy continues to improve with
increased depth.

2 RNN TO HARDWARE MAPPING STRATEGY

The standard equations for a recurrent network can be written:

hlt = σ(W lhl−1
t + U lhlt−1 + bl) (1)

where W l is the input-hidden weight matrix, U l is the recurrent weight matrix, htl are the recurrent
layer activations and bl is a bias term.

Implementations of recurrent neural networks typically separate the computation into two stages.
The second stage (U lhlt−1) is computationally more challenging than the first stage (W lhl−1

t ) be-
cause there is a sequential dependence between timesteps requiring an explicit synchronization be-
tween them. Thus, we focus our attention on optimizing this stage by stashing recurrent weights
on-chip.

3 IMPLEMENTATION ON A TITANX GPU

The peak floating point throughput of a TitanX running at 1 GHz is 6.144 TFLOP/s. A straightfor-
ward implementation of a RNN using GEMM operations achieves 0.099 TFLOP/s at a layer size of

1



Workshop track - ICLR 2016

1152 using Nervana Systems GEMM kernels at a mini-batch size of 4. Our initial Persistent RNN
implementation with the same layer and mini-batch size achieves over 2.8 TFLOP/s resulting in a
30x speedup.

Our implementation first loads the weight matrix into registers. Then each SM loads all of the
input activations from the previous timestep from global memory to shared memory, computes the
dot product for each row, performs the nonlinearity, writes the result for the current timestep, and
performs a global barrier with all other SMs. The latency required to perform the load operations is
approximately four times higher than the time required to perform the math operations for a single
timestep. So we break the computation into four independent stages and use software pipelining to
overlap the load operation with math, reduce and barrier operations. We use a mini-batch size of
four or greater to keep the pipeline full. This computation is implemented with assembly instructions
using the MAXAS assembler Gray (2014) to ensure that instructions for each of the four pipeline
stages are overlapped.

Synchronization between GPU processors cores is typically achieved implicitly between dependent
kernel calls in both CUDA and OpenCL development frameworks. However, this mechanism for
synchronization between timesteps requires launching a new kernel that forces the weights to be
reloaded from off-chip memory. This causes the synchronization latency of dependent kernels to be
approximately 6-10x larger than the time spent performing the math operations for a single timestep,
and this cannot be overlapped with computation. We address this problem with an optimized im-
plementation of a global barrier that can be completely overlapped with the math operations for a
single timestep.

When training our speech recognition model, we encounter very long utterances that are up to thirty
seconds long, corresponding to 3,000 timesteps. For a RNN layer with 1760 hidden units, and a
mini-batch size of 64, this corresponds to 1.3 GB of storage per layer. This is much more than the
12.3 MB required to store the layer weights. In practice, with GPUs with 12GB of DRAM, we find
that this limits us to networks with about 9 layers. A common solution to this problem is to use
truncated back-propagation through time Sutskever (2013) (BPTT). However, we have observed a
20% relative performance degradation of the converged model using this approach, making other
techniques that reduce memory footprint, such as reducing the mini-batch size, more attractive.

4 EXPERIMENTS

We evaluate the performance of Persistent RNNs on a large-scale speech recognition task, similar
to the Deep Speech 1 Hannun et al. (2014) (DS1) and Deep Speech 2 Amodei et al. (2015) (DS2)
systems.

We use the architecture of the DS2 Amodei et al. (2015) as the baseline for these experiments: a
recurrent neural network (RNN) trained to ingest speech spectrograms and generate text transcrip-
tions. We evaluate various architectures by varying the number of recurrent layers and the number
and span of skip connections between them. We report Word Error Rate (WER) on an English
speaker held out development set which is an internal dataset containing 2048 utterances of pri-
marily read speech. We integrate a language model in a beam search decoding step as described
in Amodei et al. (2015).

All models are trained for 20 epochs on a 500-hour English dataset. We use synchronous stochastic
gradient descent with Nesterov momentum Sutskever et al. (2013) along with a minibatch from the
range of [64, 2048] utterances.

Table 1 shows the impact of residual skip connections on very deep RNN architectures with over
fifty layers. We find that skip connections are essential for training these models, even when batch
normalization is enabled. Models without skip connections fail to converge. For these networks,
we find that skipping three or four RNN layers is substantially better than skipping a single layer,
and moderately better than any other configuration (except for the outlier of 8, which we cannot
explain). This suggests that residual skip connections enable effective optimization of very deep
stacks of RNN layers. Preliminary experiments (still running at the time of submission) suggest that
the optimal length of skip connections depends on the total depth of the network.

2



Workshop track - ICLR 2016

Architecture Dev (WER)

48 RNN, 61 total, no skip 100.0
48 RNN, 61 total, skip 1 38.77
48 RNN, 61 total, skip 2 33.28
48 RNN, 61 total, skip 3 30.32
8 RNN, 21 total, skip 4 35.69
24 RNN, 37 total, skip 4 31.32
48 RNN, 61 total, skip 4 29.40
48 RNN, 61 total, skip 5 29.82
48 RNN, 61 total, skip 6 30.04
48 RNN, 61 total, skip 7 29.87
48 RNN, 61 total, skip 8 27.44

Table 1: WER on the internal development set for
various strategies of applying skip connections to
RNN layers. Skip connections are added between
every N RNN layers.

Figure 1: Scaling with mini-batch size.

In this section we compare the computational efficiency of Persistent RNN, against an optimized
RNN implementation based on matrix multiplication routines from the NVIDIA and Nervana Sys-
tems BLAS libraries. We find that our implementation is substantially more efficient at small mini-
batch sizes than either of those implementations. These gains of 30x in the recurrent layers translate
into an approximately 10x speedup in the complete system.

Figure 1 compares floating point throughput for Persistent RNN against two other RNN imple-
mentations for small mini-batch sizes. Note that after a mini-batch size of four, Persistent RNN
consistently deliver approximately 2.8 TFLOP/s, but matrix-multiply based implementations start
out much slower, and need relatively large mini batch sizes to become competitive. Even then, we
find that layer sizes around 1152 are somewhat too small for matrix multiplication libraries to be ef-
ficient, only achieving about 1.5 TFLOP/s at a mini-batch size of 64. Performance is generally much
better at layer sizes of 2048 or 2560, suggesting the advantages of persistent RNN implementations
will grow as models become relatively deeper and thinner.

Our final experiment evaluates the scalability of Persistent RNNs compared to implementations
based on GEMMs on a cluster of GPUs. Using persistent RNNs, we achieve 223 TFLOP/s on 128
GPUs for 24 to 108 RNN layer networks with 1152 hidden units at a mini-batch size of 1024, a
112x speedup over a single GPU. At 128 GPUs, our system sustains about 30% of theoretical peak
floating point throughput over an entire training run.

We find both batch normalization and residual skip connections to be effective techniques that allow
training deeper RNN models for speech recognition, reinforcing the importance of these techniques
that has been previously demonstrated for CNNs applied to vision applications. Our results suggest
that training very deep RNNs in excess of 1 PFLOP/s is achievable by future work that focuses on
additional kernel level optimizations and scaling to even more GPUs.

5 CONCLUSION

We demonstrate a technique for achieving high performance for RNN evaluation at very low batch
sizes on an NVIDIA TitanX GPU, achieving 2.8 TFLOP/s at a mini-batch size of 4. This provides
a 16x reduction in activation memory footprint, and allows us to train models with 108 layers on
the same hardware which is 12x deeper than without this technique. We focus our evaluation on
unidirectional RNNs with at most 800ms of future context, and demonstrate that accuracy continues
to scale with increased depth. This work has shown that some model architectures are constrained
not only by hardware performance, but also by the strategy used to map them to hardware. Mapping
RNNs to GPUs using matrix multiplication is efficient for shallow networks with large layers, but
persistent RNN kernels are much more efficient for deep networks with relatively narrow layers. We
expect these gains to directly enable the training of deeper RNN networks on much larger datasets
than would be possible without this technique.

3



Workshop track - ICLR 2016

REFERENCES

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-end speech recognition in
english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

Scott Gray. Assembler for nvidia maxwell architecture, 2014. URL https://github.com/NervanaSystems/
maxas.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev
Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up end-to-end speech
recognition. 1412.5567, 2014. http://arxiv.org/abs/1412.5567.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. ArXiv e-prints, December
2015.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR, abs/1505.00387,
2015. URL http://arxiv.org/abs/1505.00387.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of momentum and initialization in deep
learning. In 30th International Conference on Machine Learning, 2013.

Ilya Sutskever. Training recurrent neural networks, 2013.

4

https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
http://arxiv.org/abs/1505.00387

	Introduction
	RNN to Hardware Mapping Strategy
	Implementation on a TitanX GPU
	Experiments
	Conclusion

