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Abstract

Recently, a vast amount of literature has focused on the “Neural Collapse” (NC) phe-
nomenon, which emerges when training neural network (NN) classifiers beyond the zero
training error point. The core component of NC is the decrease in the within-class vari-
ability of the network’s deepest features, dubbed as NC1. The theoretical works that study
NC are typically based on simplified unconstrained features models (UFMs) that mask any
effect of the data on the extent of collapse. In this paper, we take a step toward addressing
this limitation by analyzing NC1 using kernels associated with shallow NNs. By consider-
ing the NN Gaussian Process kernel (NNGP), and the complement Neural Tangent Kernel
(NTK), we show that the NTK surprisingly does not represent more collapsed features
than the NNGP for gaussian data of arbitrary dimensions. We then consider an alternative
to NTK: the recently proposed adaptive kernel, which generalizes NNGP to model the
feature mapping learned from the training data. Through this “kernel vs. kernel” analysis,
we present insights into the settings (data dimension, sample size, width) under which the
kernel based NC1 aligns with that of shallow NNs.

Keywords: Neural Collapse, Feature Learning, Kernel Methods

1. Introduction

Deep Neural Network classifiers are often trained beyond the zero training error point
(Hoffer et al., 2017; Ma et al., 2018). In this regime, a phenomenon dubbed “Neural
Collapse” (NC) emerges (Papyan et al., 2020). Recently, a vast amount of literature has
been dedicated to exploring NC (as surveyed in Kothapalli (2023)), studying the effect
of imbalanced data (Fang et al., 2021; Thrampoulidis et al., 2022), depthwise evolution
(Tirer and Bruna, 2022; Rangamani et al., 2023; Sukenik et al., 2023; He and Su, 2023),
fine-grained structures (Tirer et al., 2023; Yang et al., 2023; Kothapalli et al., 2023), and
implications (Zhu et al., 2021; Galanti et al., 2022; Yang et al., 2022). The most important
aspect of NC is the collapse of within-class variability of features (NC1), as one may not gain
valuable insights into the structure of the feature class means without NC1 (Tirer et al.,
2023; Yang et al., 2023; Kothapalli et al., 2023; Galanti et al., 2022; He and Su, 2023; Xu
and Liu, 2023). Notably, most of the works that theoretically analyze the NC behavior are
based on variants of the unconstrained features model (UFM) (Mixon et al., 2020), which
treats the deepest features of the training samples as free optimization variables. A key
limitation of such analyses is that they cannot predict the effect of the data on NC1.

In this paper, we provide a kernel-based analysis of NC1 for Gaussian data, which does
not suffer from the limitations of UFM-based analysis. Since kernels provide fixed feature
mapping, we propose a “kernel vs. kernel” analysis — that is, gaining insights by comparing
the properties across NN-related kernels. Our main contributions are as follows:
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• We establish expressions for the NC1 metric that depends on the features only through
the given arbitrary kernel function.

• We specialize our kernel-based NC1 to kernels associated with shallow NNs. We
analyze it for NNGP (Neal, 1995; Lee et al., 2018; Matthews et al., 2018) and NTK
(Jacot et al., 2018) and show that, perhaps surprisingly, the NTK does not represent
more collapsed features than the NNGP for gaussian data. We also analyze the
recently proposed adaptive kernel (Seroussi et al., 2023), which generalizes NNGP to
model the feature mapping learned from the training data.

• Finally, we present insights into the settings (data dimension, sample size) under
which kernel based NC1 aligns with NC1 of shallow NNs.

2. Problem Setup

Data. Consider dataset X ∈ Rd0×N , comprising N data points of dimension d0 belonging

to C classes. Each class has size nc, c ∈ [C], where [C] := {1, 2, · · · , C} and
∑

c
nc = N .

The dataset is represented in an “organized” matrix form as X =
[
x1,1 · · · xC,nC

]
∈

Rd0×N , where xc,i ∈ Rd0 represents the ith sample of the cth class.

Neural Network. We consider a 2-layer fully connected neural network (2L-FCN) ψ :
Rd0 → R with hidden layer width d1, and point-wise activation function ϕ(·) : R → R. Let
W(1) ∈ Rd1×d0 and w(2) ∈ Rd1 denote the weight parameters of the first and second layers,

respectively. At initialization, W
(1)
ij ∼ N (0, σ2w/d0) and w

(2)
i ∼ N (0, σ2w/d1) are drawn i.i.d.

For an input x ∈ Rd0 , the network outputs:

ψ(x) =

d1∑
j=1

w
(2)
j ϕ (zj(x)) ; zj(x) =

d0∑
k=1

W
(1)
jk xk. (1)

Task. We consider a binary classification task, where the network ψ(·) maps the samples
xc,i, c ∈ {1, 2}, i ∈ [nc] to their respective target labels yc,i ∈ {−1, 1}.

Pre- and Post-activation Kernels. For any two inputs xc,i,xc′,j ∈ Rd0 , we denote their
corresponding pre- and post-activation features as zc,i, zc

′,j ∈ Rd1 and ϕ(zc,i), ϕ(zc
′,j) ∈ Rd1 ,

respectively. Here zc,i = W(1)xc,i. The pre and post-activation kernels are given by:

K(1)(xc,i,xc′,j) = zc,i⊤zc
′,j ; Q(1)(xc,i,xc′,j) = ϕ(zc,i)⊤ϕ(zc

′,j). (2)

3. Main Results

3.1. Within-Class Variability Metric (NC1) for Kernels

Let H be a matrix of arbitrary features associated with samples of the C classes. Consider
the within-class covarianceΣW (H) and between-class covarianceΣB(H) matrices as follows:

ΣW (H) =
1

N

C∑
c=1

nc∑
i=1

(
hc,i − h

c
)(

hc,i − h
c
)⊤

; ΣB(H) =
1

C

C∑
c=1

(
h
c − h

G
)(

h
c − h

G
)⊤

2
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where h

c
=

1

nc

∑nc

i=1
hc,i,∀c ∈ [C] and h

G
=

1

N

∑C

c=1

∑nc

i=1
hc,i represent the class mean

vectors and the global mean vector, respectively. Based on these formulations, we define the
variability metric NC1(H), introduced in (Tirer et al., 2023) and used also in (Kothapalli

et al., 2023; Wang et al., 2023; Yaras et al., 2023), as NC1(H) :=
tr(ΣW (H))

tr(ΣB(H))
. In the

following theorem, we formulate the traces tr(ΣW (H)) and tr(ΣB(H)) using an arbitrary
kernel function Q : Rd0 ×Rd0 → R that expresses inner product of samples in feature space.

Theorem 1 For any two data points xc,i,xc′,j, let the inner-product of their associated
features hc,i,hc′,j be given by a kernel Q : Rd0 ×Rd0 → R as Q(xc,i,xc′,j) = hc,i⊤hc′,j. Con-

sider S(c) =

nc∑
i=1

Q(xc,i,xc,i), and S(c, c′) =

nc∑
i=1

nc′∑
j=1

Q(xc,i,xc′,j). The traces of covariance

matrices tr(ΣW (H)) and tr(ΣB(H)) can now be formulated as:

tr(ΣW (H)) =
C∑
c=1

S(c)

N
−

C∑
c=1

S(c, c)

Cn2c
; tr(ΣB(H)) =

C∑
c=1

S(c, c)

Cn2c
−

C∑
c=1

C∑
c′=1

S(c, c′)

N2
. (3)

3.2. Activation Variability in the Lazy Learning Regime

Consider the samples of a 1-dimensional Gaussian dataset (i.e., d0 = 1) with C = 2 classes
as {x1,i} ∼ N (µ1, σ

2
1),∀i ∈ [n1] and {x2,j} ∼ N (µ2, σ

2
2), ∀j ∈ [n2].

• Assumption 1: For µ1 < 0, µ2 > 0, let σ1, σ2 > 0 be small enough such that
|µ1| ≫ σ1, |µ2| ≫ σ2 and ∀i ∈ [n1], j ∈ [n2], x

1,ix2,j < 0 almost surely.
• Assumption 2: The dataset X ∈ RN×1 consists of large enough samples n1, n2 ≫ 1.

Theorem 2 Under Assumptions 1-2, let ϕ(·) be the ReLU activation. Denote by HGP ,

HNTK the features associated with NNGP Q
(1)
GP and NTK Θ

(2)
NTK , respectively. Then:

E [NC1(HGP )] = E [NC1(HNTK)] =

∑2
c=1

ncµ2
c+ncσ2

c
N − µ2

c
2(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

)
− 2

N2

∏2
c=1 ncµc

+∆h.o.t, (4)

where ∆h.o.t is a term that vanishes as {nc} increase.

Theorem 2 shows that: the NTK does not represent more collapsed features than NNGP,
despite being associated with NN gradient-based optimization. Experiments with high di-
mensional data that empirically justify this result are presented in Appendix.

3.3. Activation Variability in the Feature Learning Regime

A transition from the infinite to finite width regime can introduce various corrections to the
pre-and post-activations of a L-layer FCN (Seroussi et al., 2023): (1) The mean and covari-
ance of the pre-activations deviate from that of a random FCN and, (2) the collective effect
of activations from the (l+1)th and (l−1)th layers determine the covariance of activations in
the lth layer. Based on these observations, Seroussi et al. (2023) propose a Variational Gaus-
sian Approximation (VGA) approach to propose a system of equations, dubbed Equation of
State (EoS), for the pre and post-activation kernels K(l)(·, ·), Q(l)(·, ·), l ∈ [L] respectively.

3
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Definition 3 The “Equations of State” (EoS) for pre and post-activation kernels of a 2L-
FCN with Erf activation are given by:

f = Q(1)[σ2I+Q(1)]−1y; [Q(1)]ij = σ2a
2

π
arcsin

(
2K

(1)
ij ·

(√
1 + 2K

(1)
ii

√
1 + 2K

(1)
jj

)−1
)

[C−1]ij =
d0
σ2w

δij +
1

d1
tr
{
A(1)∂CijQ

(1)
}
; A(1) = −(y − f)(y − f)⊤σ−4 + [Q(1) + σ2I]−1

Here, C ∈ Rd0×d0 models the statistical covariance of a row of W(1), initialized with
(σ2w/d0)I, K

(1) = X⊤CX ∈ RN×N , σ > 0 is the regularization parameter, and f ∈ RN corre-
sponds to the prediction of the 2-layer FCN (governed by the EoS). Additionally, K(1),Q(1) ∈
RN×N are the kernel matrices associated with kernel functions K(1)(·, ·), Q(1)(·, ·).

3.4. Approximating NC1 of 2L-FCN with Kernels

(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 1: NC1(H) of NNGP Q
(1)
GP−Erf , NTK Θ

(2)
NTK−Erf , EoS and 2L-FCN on D1(N, d0).

Setup. We train a 2L-FCN with d1 = 500, σw = 1, Erf activation, vanilla GD with
learning rate 10−3, weight-decay 10−6 for 1000 epochs on dataset D1(N, d0),∀i, j ∈ [N/2].:{
(x1,i ∼ N (−2 ∗ 1d0 , 0.25 ∗ Id0), y1,i = −1))

}
∪
{
(x2,j ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), y1,i = 1))

}
.

Results. The trends in NC1(H) for NNGP (Figure 1(a)) and NTK (Figure 1(b)) fail to
capture the finite width effects of training 2L-FCNs for larger d0 but provide zero-order rea-
soning for NN behavior when d0 is small (i.e intuitively for less complex data distributions).
The trends of NC1(H) for EoS (Figure 1(c)) (which is solved using an annealing approach),
vary depending on the scale of N, d0. For d0 = {1, 2}, the NC1(H) of EoS resembles the
2L-FCN case (Figure 1(d)) across a range of sample sizes N . Furthermore, for larger d0,
we observe a proportional scaling behaviour where an increase in N is required to match
the 2L-FCN behaviour (while showcasing reduced NC1 compared to NNGP).

4. Conclusion

In this paper, we presented a “kernel vs. kernel” approach to analyze the data properties
for which the NC1 behavior of an actual FCN can be understood. We believe that future
work on analyzing the EoS mathematically and extending it to multiple layers can provide
further insights into the reduction of NC1 in deep neural networks.
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Appendix A. Proof of Theorem 1

To obtain the NC1 formulation corresponding to an arbitrary feature matrix H, we first de-
fine the total covariance Σ̃T (H) and non-centered between-class covariance Σ̃B(H) matrices
as follows:

Σ̃T (H) =
1

N

C∑
c=1

nc∑
i=1

hc,ihc,i⊤ (5)

Σ̃B(H) =
1

C

C∑
c=1

h
c
h
c⊤
. (6)

A simple relationship between Σ̃T (H), Σ̃B(H),ΣW (H) is as follows:

Σ̃T (H) = ΣW (H) + Σ̃B(H)

=⇒ tr (ΣW (H)) = tr
(
Σ̃T (H)

)
− tr

(
Σ̃B(H)

)
.

(7)

Similarly, by considering ΣG(H) = h
G
h
G⊤

, we get:

ΣB(H) = Σ̃B(H)−ΣG(H)

=⇒ tr (ΣB(H)) = tr
(
Σ̃B(H)

)
− tr (ΣG(H)) .

(8)

• Formulating tr
(
Σ̃T (H)

)
: Expanding Σ̃T (H) into individual outer-products of vec-

tors and leveraging the trace properties leads to the following:

tr
(
Σ̃T (H)

)
= tr

(
1

N

C∑
c=1

nc∑
i=1

hc,ihc,i⊤

)
=

1

N

C∑
c=1

nc∑
i=1

tr
(
hc,ihc,i⊤

)
=

1

N

C∑
c=1

nc∑
i=1

tr
(
hc,i⊤hc,i

)
=

1

N

C∑
c=1

nc∑
i=1

Q(xc,i,xc,i)
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• Formulating tr

(
Σ̃B(H)

)
: Similar to the above analysis, we can reformulate the

trace of non-centered between-class covariance matrix Σ̃B(H) as:

tr(Σ̃B) = tr

(
1

C

C∑
c=1

h
c
h
c⊤
)

=
1

C

C∑
c=1

tr
(
h
c
h
c⊤
)
=

1

C

C∑
c=1

tr
(
h
c⊤
h
c
)

=
1

C

C∑
c=1

tr

[ 1

nc

nc∑
i=1

hc,i

]⊤ [
1

nc

nc∑
i=1

hc,i

]
=

1

C

C∑
c=1

1

n2c
tr

 nc∑
i=1

nc∑
j=1

hc,i⊤hc,j

 =
1

C

C∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

tr
(
hc,i⊤hc,j

)

=
1

C

C∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

Q(xc,i,xc,j)

• Formulating tr (ΣG(H)): Reformulation of tr (ΣG(H)) can be approached along the
same lines:

tr (ΣG(H)) = tr
(
h
G
h
G⊤
)
= tr

(
h
G⊤

h
G
)

= tr

[ 1

N

C∑
c=1

nc∑
i=1

hc,i

]⊤  1

N

C∑
c=1

nc∑
j=1

hc,j


=

1

N2
tr

 C∑
c=1

nc∑
i=1

C∑
c′=1

nc′∑
j=1

hc,i⊤hc′,j

 =
1

N2

C∑
c=1

nc∑
i=1

C∑
c′=1

nc′∑
j=1

tr
(
hc,i⊤hc′,j

)

=
1

N2

C∑
c=1

C∑
c′=1

nc∑
i=1

nc′∑
j=1

Q(xc,i,xc′,j)

By using these intermediate results, we can formulate tr (ΣW (H)) , tr (ΣB(H)) as:

tr(ΣW (H)) = tr(Σ̃T (H))− tr(Σ̃B(H))

=
1

N

C∑
c=1

nc∑
i=1

Q(xc,i,xc,i)− 1

C

C∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

Q(xc,i,xc,j)

tr(ΣB(H)) = tr(Σ̃B(H))− tr(ΣG(H)))

=
1

C

C∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

Q(xc,i,xc,j)− 1

N2

C∑
c=1

C∑
c′=1

nc∑
i=1

nc′∑
j=1

Q(xc,i,xc′,j).

Hence, proving the theorem.
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Appendix B. Limiting NNGP and NTK for ReLU and Erf

Consider the GP limit characterization of the pre-activation kernelK(1)(xc,i,xc′,j) as follows:

K
(1)
GP (x

c,i,xc′,j) =
σ2w
d0

xc,i⊤xc′,j . (9)

ReLU Activation. Observe that K
(1)
GP (x

c,i,xc′,j) is independent of the activation func-

tion. Now, the closed form representation of the post-activation NNGP kernel Q
(1)
GP (·, ·) for

the ReLU activation is given by:

Q
(1)
GP−ReLU (x

c,i,xc′,j) =
τ(xc,i, xc

′,j)

2π

√
K

(1)
GP (x

c,i,xc,i)K
(1)
GP (x

c′,j ,xc′,j),

τ(xc,i, xc
′,j) = sin θc

′,j
c,i +

(
π − θc

′,j
c,i

)
cos θc

′,j
c,i

θc
′,j
c,i = arccos

 K
(1)
GP (x

c,i,xc′,j)√
K

(1)
GP (x

c,i,xc,i)K
(1)
GP (x

c′,j ,xc′,j)

 .

(10)

Next, we define the ReLU based derivative kernel Q̇
(1)
GP−ReLU (·, ·) as follows:

Q̇
(1)
GP−ReLU (x

c,i,xc′,j) =
1

2π
(π − θ) (11)

Erf Activation. The kernel Q
(1)
GP−Erf (x

c,i,xc′,j) for the Erf activation is given by:

Q
(1)
GP−Erf (x

c,i,xc′,j) =
2

π
arcsin

 2K
(1)
GP (x

c,i,xc′,j)√
1 + 2K

(1)
GP (x

c,i,xc,i)

√
1 + 2K

(1)
GP (x

c′,j ,xc′,j)

 . (12)

The Erf based derivative kernel Q̇
(1)
GP−Erf (·, ·) is formulated as follows:

Q̇
(1)
GP−Erf (x

c,i,xc′,j) =
4

π
det

([
1 + 2K

(1)
GP (x

c,i,xc,i) 2K
(1)
GP (x

c,i,xc′,j)

2K
(1)
GP (x

c′,j ,xc,i) 1 + 2K
(1)
GP (x

c′,j ,xc′,j)

])−1/2

. (13)

Finally, the NTK can be formulated (independent of the activation function) as follows:

Θ
(2)
NTK(xc,i,xc′,j) = K

(2)
GP (x

c,i,xc′,j) +K
(1)
GP (x

c,i,xc′,j)Q̇
(1)
GP (x

c,i,xc′,j). (14)

Here, K
(2)
GP (x

c,i,xc′,j) can be defined using the recursive formulation:

K
(2)
GP (x

c,i,xc′,j) = σ2wQ
(1)
GP (x

c,i,xc′,j). (15)

Depending on the choice of the activation, one can plug in the variant specific NNGP
kernels to obtain the specialized NTK formulations.
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Appendix C. General Results for NC1 with Kernels

In this section, we present some general results to calculate the expected value of E [NC1(H)]
for any given kernel function Q(·, ·) that is associated with the features H. To begin with,

we consider a generic formulation of the three cases for E
[
Q(xc,i, xc

′,j)
]
:

E
[
Q(xc,i, xc

′,j)
]
=


V (1)(c) if c = c′, i = j

V (2)(c) if c = c′, i ̸= j

V (3)(c, c′) if c ̸= c′
. (16)

Lemma 4 Given the cases for the expected values of a kernel function Q(·, ·) as per (16),
the E [tr(ΣW (H))] is given by:

E [tr(ΣW (H))] =
2∑

c=1

nc
N
V (1)(c)− 1

2n2c

(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)

(17)

Proof By leveraging Theorem 4.1, we can compute the expected value of tr(ΣW (H)) as
follows:

E [tr(ΣW (H))] = E

[
1

N

C∑
c=1

nc∑
i=1

Q(xc,i, xc,i)

]
− E

 1

C

C∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

Q(xc,i, xc,j)


=

1

N

2∑
c=1

nc∑
i=1

E
[
Q(xc,i, xc,i)

]
− 1

2

2∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

E
[
Q(xc,i, xc,j)

]
=

1

N

2∑
c=1

nc∑
i=1

V (1)(c)− 1

2

2∑
c=1

1

n2c

(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)

=
2∑

c=1

nc
N
V (1)(c)− 1

2n2c

(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)
.

(18)

Hence proving the lemma.

Lemma 5 Given the cases for the expected values of a kernel function Q(·, ·) as per (16),
the E [tr(ΣB(H))] is given by:

E [tr(ΣB(H))] =

[
2∑

c=1

(
1

2n2c
− 1

N2

)(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)]

− 2n1n2
N2

V (3)(1, 2)

(19)

10
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Proof The expected value of tr(ΣB(H)) can be computed using Theorem 4.1 as:

E [tr(ΣB(H))] = E

 1

C

C∑
c=1

1

n2c

nc∑
i=1

nc∑
j=1

Q(xc,i, xc,j)

− E

 1

N2

C∑
c=1

C∑
c′=1

nc∑
i=1

nc′∑
j=1

Q(xc,i, xc
′,j)


=

[
1

2

2∑
c=1

1

n2c

(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)]

− 1

N2

[
2∑

c=1

(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)]

− 1

N2

2 n1∑
i=1

n2∑
j=1

V (3)(c = 1, c′ = 2)


=

[
2∑

c=1

(
1

2n2c
− 1

N2

)(
nc(nc − 1)V (2)(c) + ncV

(1)(c)
)]

− 2n1n2
N2

V (3)(1, 2)

(20)

Hence proving the lemma.

Lemma 6 Given the cases for the expected values of a kernel function Q(·, ·) as per (16),
the E [NC1(H)] is given by:

E [NC1(H)] =

2∑
c=1

ncV (1)(c)
N − (nc(nc−1)V (2)(c)+ncV (1)(c))

2n2
c[

2∑
c=1

(
1

2n2
c
− 1

N2

) (
nc(nc − 1)V (2)(c) + ncV (1)(c)

)]
− 2n1n2V (3)(1,2)

N2

+∆h.o.t

(21)

Proof Note that the expectation of the ratios can be given as:

E [NC1(H)] =
E [tr(ΣW (H))]

E [tr(ΣB(H))]
+ ∆h.o.t (22)

=

2∑
c=1

ncV (1)(c)
N − (nc(nc−1)V (2)(c)+ncV (1)(c))

2n2
c[

2∑
c=1

(
1

2n2
c
− 1

N2

) (
nc(nc − 1)V (2)(c) + ncV (1)(c)

)]
− 2n1n2V (3)(1,2)

N2

+∆h.o.t (23)

Here, ∆h.o.t corresponds to higher order terms given by Seltman (2012):

∆h.o.t =
V ar(tr(ΣB(H)))E [tr(ΣW (H))]

E [tr(ΣB(H))]3
− Cov(tr(ΣW (H)), tr(ΣB(H)))

E [tr(ΣB(H))]2
, (24)

where, based on the well-studied concentration of sample covariance matrices around the
statistical covariance Vershynin (2012), ∆h.o.t tend to 0 for large nc values.

11



Extended Abstract Track
Lemma 7 For a random variable xc,i ∼ N (µc, σ

2
c ) which represents the ith sample of class

c, the expected value E
[

1

(xc,i)2

]
is given by:

T (c) = E
[

1

(xc,i)2

]
=

1

(µ2c + σ2c )
+

2σ4c + 4σ2cµ
2
c

(µ2c + σ2c )
3

(25)

Proof Based on the standard result on the expectation of ratios Seltman (2012), we get:

E
[

1

(xc,i)2

]
=

1

E [(xc,i)2]
+
V ar((xc,i)2)

E [(xc,i)2]3
(26)

=
1

(µ2c + σ2c )
+

E[(xc,i)4]− (µ2c + σ2c )
2

(µ2c + σ2c )
3

(27)

Based on the results from the moment-generating function, we know that:

E[(xc,i)4] = 3σ4c + 6σ2cµ
2
c + µ4c , (28)

which gives us:

E
[

1

(xc,i)2

]
=

1

(µ2c + σ2c )
+

3σ4c + 6σ2cµ
2
c + µ4c − (µ2c + σ2c )

2

(µ2c + σ2c )
3

(29)

=
1

(µ2c + σ2c )
+

2σ4c + 4σ2cµ
2
c

(µ2c + σ2c )
3
. (30)

Hence proving the lemma.

Appendix D. Proof of Theorem 2

D.1. NC1 of limiting NNGP with ReLU activation

In the limit d1 → ∞, we leverage the kernels in the GP limit. Observe that for any two

data points xc,i, xc
′,j ∈ R, the value of θc

′,j
c,i can be given as:

θc
′,j
c,i = arccos

 K
(1)
GP (x

c,i, xc
′,j)√

K
(1)
GP (x

c,i, xc,i)K
(1)
GP (x

c′,j , xc′,j)



= arccos

 σ2
w
d0
xc,ixc

′,j√(
σ2
w
d0
xc,ixc,i

)(
σ2
w
d0
xc′,jxc′,j

)
 .

The value of θc
′,j
c,i can be simplified to:

θc
′,j
c,i =

{
0 if c = c′

π if c ̸= c′
, (31)

12
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which follows from

xc,ixc
′,j

√
xc,ixc,i

√
xc′,jxc′,j

= sign(xc,i) sign(xc
′,j) and x1,i < 0, x2,j > 0 almost

surely. Thus:

Q
(1)
GP−ReLU (x

c,i, xc
′,j) =

1

2π

√
σ4w(x

c,i)2(xc′,j)2
(
sin θc

′,j
c,i +

(
π − θc

′,j
c,i

)
cos θc

′,j
c,i

)
(32)

=⇒ Q
(1)
GP−ReLU (x

c,i, xc,j) =

{
σ2
w
2

∣∣xc,i∣∣ ∣∣∣xc′,j∣∣∣ if c = c′

0 if c ̸= c′
(33)

For the c = c′ case, the value of the kernel boils down to the product of norms of independent
random variables drawn from the same distribution. Since we assume xc,ixc

′,j > 0 if c = c′,
the equation 33 can be rewritten as:

Q
(1)
GP−ReLU (x

c,i, xc,j) =

{
σ2
w
2 x

c,ixc
′,j if c = c′

0 if c ̸= c′
(34)

Additionally, since xc,i are random variables, the expected value of the kernel can be for-
mulated as:

E
[
Q

(1)
GP−ReLU (x

c,i, xc
′,j)
]
=


σ2
w
2

(
σ2c + µ2c

)
if c = c′, i = j

σ2
w
2 µ

2
c if c = c′, i ̸= j

0 if c ̸= c′
(35)

Thus, based on our generic formulation of cases in (16) in Appendix C, we get:

V (1)(c) =
σ2w
2

(
σ2c + µ2c

)
; V (2)(c) =

σ2w
2
µ2c ; V (3)(c, c′) = 0. (36)

As N ≫ 1 and nc ≫ 1,∀c ∈ {1, 2}, Lemma 6 gives us:

E[NC1(HGP )] =

∑2
c=1

ncV (1)(c)
N − V (2)(c)

2[∑2
c=1

(
1

2n2
c
− 1

N2

) (
n2cV

(2)(c)
)]

− 2n1n2
N2 V (3)(1, 2)

+ ∆h.o.t

=⇒ E[NC1(HGP )] =

∑2
c=1

ncµ2
c+ncσ2

c
N − µ2

c
2(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

) +∆h.o.t.

(37)

D.2. NC1 of limiting NTK with ReLU activation

The recursive relationship between the NTK and NNGP Lee et al. (2019); Tirer et al. (2022)
can be given as follows:

Θ
(2)
NTK−ReLU (x

c,i,xc′,j) = K
(2)
GP−ReLU (x

c,i,xc′,j) +K
(1)
GP (x

c,i,xc′,j)Q̇
(1)
GP−ReLU (x

c,i,xc′,j)
(38)

Here, K
(2)
GP−ReLU (x

c,i,xc′,j) can be defined using the following recursive formulation:

K
(2)
GP−ReLU (x

c,i,xc′,j) = σ2wQ
(1)
GP−ReLU (x

c,i,xc′,j). (39)

13
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Based on (11), the derivative Q̇

(1)
GP−ReLU can be given as follows:

Q̇
(1)
GP−ReLU (x

c,i,xc′,j) =
1

2π

(
π − θc

′,j
c,i

)
θc

′,j
c,i = arccos

 K
(1)
GP (x

c,i,xc′,j)√
K

(1)
GP (x

c,i,xc,i)K
(1)
GP (x

c′,j ,xc′,j)

 .
(40)

We build on the results from the NNGP analysis (with Q
(1)
GP−ReLU (x

c,i,xc′,j)) for com-
puting the variability collapse with the limiting NTK. First, note that:

θc
′,j
c,i =

{
0 if c = c′

π if c ̸= c′
. (41)

Thus, we get:

Θ
(2)
NTK−ReLU (x

c,i,xc′,j) = σ2wQ
(1)
GP−ReLU (x

c,i,xc′,j) +K
(1)
GP (x

c,i,xc′,j)Q̇
(1)
GP−ReLU (x

c,i,xc′,j).

(42)

From (34), we know that:

Q
(1)
GP−ReLU (x

c,i, xc,j) =

{
σ2
w
2 x

c,ixc
′,j if c = c′

0 if c ̸= c′
(43)

=⇒ Θ
(2)
NTK−ReLU (x

c,i, xc
′,j) =

{
σ4
w
2 x

c,ixc,j + σ2
w
2 x

c,ixc,j if c = c′

0 if c ̸= c′
, (44)

=

{(
σ4
w
2 + σ2

w
2

)
xc,ixc,j if c = c′

0 if c ̸= c′
. (45)

Notice that Θ
(2)
NTK−ReLU (x

c,i, xc
′,j) is a scaled version of Q

(1)
GP−ReLU (x

c,i, xc
′,j) (as per (34)).

Thus, we end up with the same result as (37) :

E [NC1(HNTK)] =

∑2
c=1

ncµ2
c+ncσ2

c
N − µ2

c
2(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

) +∆h.o.t. (46)
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Appendix E. Results for NC1 with Erf activation

E.1. NC1 of Limiting NNGP with Erf activation

Under the Assumptions described in Section 3.2 with d0 = 1, d1 → ∞, observe that:

Q
(1)
GP−Erf (x

c,i, xc
′,j) =

2

π
arcsin

 2K
(1)
GP (x

c,i, xc
′,j)√

1 + 2K
(1)
GP (x

c,i, xc,i)

√
1 + 2K

(1)
GP (x

c′,j , xc′,j)

 (47)

=
2

π
arcsin

(
2σ2wx

c,ixc
′,j√

1 + 2σ2w(x
c,i)2

√
1 + 2σ2w(x

c′,j)2

)
, (48)

=
2

π
arcsin

 sign(xc,i) sign(xc
′,j)√

1 + 1
2σ2

w(xc,i)2

√
1 + 1

2σ2
w(xc′,j)2

 , (49)

where the last equality comes from:

xc,ixc
′,j

|xc,i|
√
1 + 1

2σ2
w(xc,i)2

· |xc′,j |
√
1 + 1

2σ2
w(xc′,j)2

=
sign(xc,i) sign(xc

′,j)√
1 + 1

2σ2
w(xc,i)2

√
1 + 1

2σ2
w(xc′,j)2

. (50)

For notational simplicity, consider:

ρ(xc,i, xc
′,j) =

√
1 +

1

2σ2w(x
c,i)2

√
1 +

1

2σ2w(x
c′,j)2

, (51)

and represent Q
(1)
GP−Erf (x

c,i, xc
′,j) as:

Q
(1)
GP−Erf (x

c,i, xc
′,j) =

2

π
arcsin

(
sign(xc,i) sign(xc

′,j)

ρ(xc,i, xc′,j)

)
. (52)

Based on Assumption 1, we know that x1,i < 0, x2,j > 0 almost surely. This leads to:

Q
(1)
GP−Erf (x

c,i, xc
′,j) =


2
π arcsin

(
1

ρ(xc,i,xc,j)

)
if c = c′

− 2
π arcsin

(
1

ρ(xc,i,xc′,j)

)
if c ̸= c′

. (53)

E.1.1. Calculating E
[
Q

(1)
GP−Erf (x

c,i, xc
′,j)
]

For |u| ≤ 1, we consider the expansion of arcsin(u) = u+
u3

6
+ · · · to obtain:

E
[
arcsin

(
1

ρ(xc,i, xc′,j)

)]
= E

[
1

ρ(xc,i, xc′,j)

]
+ E

[
1

6ρ(xc,i, xc′,j)3

]
+ · · · . (54)

To this end, based on Assumption 1 of large enough |µ1|, |µ2|, we approximate the
expectation with only the first term and denote ξh.o.t to capture the effects of the higher
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order terms. Notice that since ρ(xc,i, xc

′,j) > 1 for finite (xc,i, xc
′,j), the effects of ξh.o.t are

finite but decay rapidly compared to the first term. To this end, we get:

E
[
arcsin

(
1

ρ(xc,i, xc′,j)

)]
= E

[
1

ρ(xc,i, xc′,j)

]
+ ξh.o.t (55)

Calculating the expectation E
[

1

ρ(xc,i, xc′,j)

]
can now be split based on c, c′.

• Case c = c′, i = j:

ρ(xc,i, xc,i) = 1 +
1

2σ2w(x
c,i)2

(56)

=⇒ E
[
ρ(xc,i, xc,i)

]
= 1 +

1

2σ2w
E
[

1

(xc,i)2

]
(57)

= 1 +
T (c)

2σ2w
. (58)

The last equality is based on Lemma 7 which gives the expanded version of T (c).

Finally, the value of E
[

1

ρ(xc,i, xc,i)

]
can be given as:

E
[

1

ρ(xc,i, xc,i)

]
=

1

E [ρ(xc,i, xc,i)]
+
V ar(ρ(xc,i, xc,i))

E [ρ(xc,i, xc,i)]3
(59)

=
1

1 + T (c)
2σ2

w

+ δh.o.t(ρ(x
c,i, xc,i)) (60)

Notice that even in this simple case, the expressions are non-trivial to fully expand. Nonethe-
less, along with Assumption 1, we consider large enough |µ1|, |µ2| such that:

T (c)

2σ2w
=

1

2σ2w

[
1

(µ2c + σ2c )
+

2σ4c + 4σ2cµ
2
c

(µ2c + σ2c )
3

]
< 1. (61)

Thus, based on the expansion of (1 + u)−1 = 1− u+ u2 − u3 + · · · , we obtain the following
cleaner approximation of:

E
[

1

ρ(xc,i, xc,i)

]
= 1− T (c)

2σ2w
+∆

(1)
h.o.t(c). (62)

Here ∆
(1)
h.o.t(c) captures all the higher order terms corresponding to

(
T (c)

2σ2w

)2

−
(
T (c)

2σ2w

)3

+

· · · and δh.o.t(ρ(x
c,i, xc,i)) as denoted above.

• Case c = c′, i ̸= j:

In the case of c = c′, i ̸= j, the expectations on the square roots do not have a particular
closed form. To this, end we leverage Assumption 1 to obtain the following approximation:
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ρ(xc,i, xc,j) =

√
1 +

1

2σ2w(x
c,i)2

√
1 +

1

2σ2w(x
c,j)2

(63)

=

(
1 +

1

4σ2w(x
c,i)2

+ h.o.t

)(
1 +

1

4σ2w(x
c,j)2

+ h.o.t

)
(64)

=⇒ E
[
ρ(xc,i, xc,j)

]
= E

[
1 +

1

4σ2w(x
c,i)2

+ h.o.t

]
E
[
1 +

1

4σ2w(x
c,j)2

+ h.o.t

]
(65)

Observe that the inner terms in the expectations are scaled versions of the above case. To

this end, we approximate E
[

1

ρ(xc,i, xc,j)

]
as:

E
[

1

ρ(xc,i, xc,j)

]
≈ 1(

1 + T (c)
4σ2

w

)2 + δh.o.t(ρ(x
c,i, xc,j)) (66)

=
1

1 + T (c)
2σ2

w
+ T (c)2

16σ4
w

+ δh.o.t(ρ(x
c,i, xc,j)) (67)

Similar to the assumption that led to (62), we get:

E
[

1

ρ(xc,i, xc,j)

]
≈ 1− T (c)

2σ2w
− T (c)2

16σ4w
+∆

(2)
h.o.t(c). (68)

• Case c ̸= c′

A similar analysis as above applies in this case:

ρ(xc,i, xc
′,j) =

√
1 +

1

2σ2w(x
c,i)2

√
1 +

1

2σ2w(x
c′,j)2

(69)

=

(
1 +

1

4σ2w(x
c,i)2

+ h.o.t

)(
1 +

1

4σ2w(x
c′,j)2

+ h.o.t

)
(70)

=⇒ E
[
ρ(xc,i, xc

′,j)
]
= E

[
1 +

1

4σ2w(x
c,i)2

+ h.o.t

]
E
[
1 +

1

4σ2w(x
c′,j)2

+ h.o.t

]
(71)

Observe that the inner terms in the expectations are similar to the above case. To this end,

we approximate E
[

1

ρ(xc,i, xc′,j)

]
as:

E
[

1

ρ(xc,i, xc′,j)

]
≈ 1(

1 + T (c)
4σ2

w

)(
1 + T (c′)

4σ2
w

) + δh.o.t(ρ(x
c,i, xc

′,j)) (72)

=
1

1 + T (c)+T (c′)
4σ2

w
+ T (c)T (c′)

16σ4
w

+ δh.o.t(ρ(x
c,i, xc

′,j)) (73)
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Similar to the assumption that led to (62), we get:

E
[

1

ρ(xc,i, xc′,j)

]
≈ 1− T (c) + T (c′)

4σ2w
− T (c)T (c′)

16σ4w
+∆

(3)
h.o.t(c, c

′). (74)

Finally, based on (62), (68), (74) we obtain the following result for E[Q(1)
GP−Erf (x

c,i, xc
′,j)]

as :

E
[
Q

(1)
GP−Erf (x

c,i, xc
′,j)
]

≈


1− T (c)

2σ2
w
+∆

(1)
h.o.t(c) if c = c′, i = j

1− T (c)
2σ2

w
− T (c)2

16σ4
w
+∆

(2)
h.o.t(c) if c = c′, i ̸= j

1− T (c)+T (c′)
4σ2

w
− T (c)T (c′)

16σ4
w

+∆
(3)
h.o.t(c, c

′) if c ̸= c′

.
(75)

Here ∆
(1)
h.o.t(c),∆

(2)
h.o.t(c),∆

(3)
h.o.t(c, c

′) are the collective higher order terms that tend to 0
as |µc| increases relative to smaller values of σc. These cases can now be plugged into our
generic formulation of expected values of a kernel function (i.e V (1)(c), V (2)(c), V (3)(c, c′))
as per (16) in Appendix C. Thus, based on Lemma 6 for sufficiently large {nc} we get :

E[NC1(H)] =

∑2
c=1

ncV (1)(c)
N − V (2)(c)

2[∑2
c=1

(
1

2n2
c
− 1

N2

) (
n2cV

(2)(c)
)]

− 2n1n2
N2 V (3)(1, 2)

+ ∆h.o.t (76)

• Numerator in the balanced class setting.
To better understand the result, let’s consider the balanced class scenario with n1 =

n2 = N/2, for which the numerator simplifies to:

2∑
c=1

ncV
(1)(c)

N
− V (2)(c)

2
=

2∑
c=1

V (1)(c)− V (2)(c)

2
(77)

=
2∑

c=1

T (c)2

16σ4
w
+∆

(1)
h.o.t(c)−∆

(2)
h.o.t(c)

2
. (78)

If we were to ignore the effects of the higher order terms, then observe that the numerator
primarily depends on T (c)2, which can be given based on Lemma 7 as:

T (c)2 =

[
1

(µ2c + σ2c )
+

2σ4c + 4σ2cµ
2
c

(µ2c + σ2c )
3

]2
(79)

Thus, showcasing the dependence on µc, σc in determining the extent of collapse. For
sufficiently large |µc| ≫ σc, we can approximate this value to:

T (c)2 ≈
[
1

µ2c
+

4σ2c
µ4c

]2
=

1

µ4c

[
1 +

4σ2c
µ2c

]2
=

1

µ4c

[
1 +

8σ2c
µ2c

+
16σ4c
µ4c

]
(80)

• Denominator in the balanced class setting.
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Similar to the numerator analysis, observe that when n1 = n2 = N/2, the denominator

can be given as:[
2∑

c=1

(
1

2n2c
− 1

N2

)(
n2cV

(2)(c)
)]

− 2n1n2
N2

V (3)(1, 2) (81)

=
V (2)(1) + V (2)(2)− 2V (3)(1, 2)

4
(82)

=
−T (1)

2σ2
w
− T (1)2

16σ4
w
+∆

(2)
h.o.t(1)−

T (2)
2σ2

w
− T (2)2

16σ4
w
+∆

(2)
h.o.t(2)

4
(83)

+
2T (1)+T (2)

4σ2
w

+ 2T (1)T (2)
16σ4

w
− 2∆

(3)
h.o.t(1, 2)

4
(84)

=
−T (1)2

16σ4
w
− T (2)2

16σ4
w
+ 2T (1)T (2)

16σ4
w

+∆
(2)
h.o.t(1) + ∆

(2)
h.o.t(2)− 2∆

(3)
h.o.t(1, 2)

4
(85)

=
−
(
T (1)−T (2)

4σ2
w

)2
+∆

(2)
h.o.t(1) + ∆

(2)
h.o.t(2)− 2∆

(3)
h.o.t(1, 2)

4
. (86)

Observe that the term T (1)− T (2) represents:

T (1)− T (2) =

[
1

(µ21 + σ21)
+

2σ41 + 4σ21µ
2
1

(µ21 + σ21)
3

]
−
[

1

(µ22 + σ22)
+

2σ42 + 4σ22µ
2
2

(µ22 + σ22)
3

]
(87)

and for sufficiently large |µc| ≫ σc, essentially represents:

T (1)− T (2) ≈ 1

µ21
+

4σ21
µ41

− 1

µ22
− 4σ22

µ42
. (88)

E.2. NC1 of Limiting NTK with Erf activation

Recall that the recursive relationship between the NTK and NNGP can be given as follows:

Θ
(2)
NTK−Erf (x

c,i, xc
′,j) = K

(2)
GP−Erf (x

c,i, xc
′,j) +K

(1)
GP (x

c,i, xc
′,j)Q̇

(1)
GP−Erf (x

c,i, xc
′,j), (89)

where:

K
(2)
GP−Erf (x

c,i, xc
′,j) = σ2wQ

(1)
GP−Erf (x

c,i, xc
′,j) (90)

Q
(1)
GP−Erf (x

c,i, xc
′,j) =

2

π
arcsin

 2K
(1)
GP (x

c,i, xc
′,j)√

1 + 2K
(1)
GP (x

c,i, xc,i)

√
1 + 2K

(1)
GP (x

c′,j , xc′,j)

 (91)

Q̇
(1)
GP−Erf (x

c,i, xc
′,j) =

4

π

[(
1 + 2K

(1)
GP (x

c,i, xc,i)
)(

1 + 2K
(1)
GP (x

c′,j , xc
′,j)
)
−
(
2K

(1)
GP (x

c,i, xc
′,j)
)2]−1/2

(92)

Considering d0 = 1 (as per the setting and assumptions), we get:

K
(1)
GP (x

c,i,xc′,j) = σ2wx
c,ixc

′,j (93)
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Q
(1)
GP−Erf (x

c,i, xc
′,j) =

2

π
arcsin

(
2σ2wx

c,ixc
′,j√

1 + 2σ2w(x
c,i)2

√
1 + 2σ2w(x

c′,j)2

)
. (94)

Q̇
(1)
GP−Erf (x

c,i, xc
′,j) =

4

π

((
1 + 2σ2wx

c,ixc,i
) (

1 + 2σ2wx
c′,jxc

′,j
)
−
(
2σ2wx

c,ixc
′,j
)2)−1/2

=
4

π
√

1 + 2σ2w · (xc,i)2 + 2σ2w · (xc′,j)2
.

(95)

This gives us:

K
(1)
GP (x

c,i,xc′,j)Q̇
(1)
GP−Erf (x

c,i, xc
′,j) =

4σ2wx
c,ixc

′,j

π
√
1 + 2σ2w · (xc,i)2 + 2σ2w · (xc′,j)2

(96)

=
4σ2wx

c,ixc
′,j

πσw|xc,i||xc′,j |
√

1
σ2
w(xc,i)2(xc′,j)2

+ 2
(xc′,j)2

+ 2
(xc,i)2

(97)

=
4σw sign(xc,i) sign(xc

′,j)

π
√

1
σ2
w(xc,i)2(xc′,j)2

+ 2
(xc′,j)2

+ 2
(xc,i)2

(98)

For notational simplicity, consider:

κ(xc,i, xc
′,j) =

√
1

σ2w(x
c,i)2(xc′,j)2

+
2

(xc′,j)2
+

2

(xc,i)2
(99)

which simplifies the kernel formulation to:

Θ
(2)
NTK−Erf (x

c,i, xc
′,j) = σ2wQ

(1)
GP−Erf (x

c,i, xc
′,j) +

4σw sign(xc,i) sign(xc
′,j)

πκ(xc,i, xc′,j)
(100)

E.2.1. Calculating E
[
Θ

(2)
NTK−Erf (x

c,i, xc
′,j)
]

Similar to the NNGP analysis, we break down the calculation of E
[
κ(xc,i, xc

′,j)
]
into three

cases.
• Case c = c′, i = j

κ(xc,i, xc,i) =

√
1

σ2w(x
c,i)4

+
4

(xc,i)2
=

√
1−

(
1− 1

σ2w(x
c,i)4

− 4

(xc,i)2

)
(101)

= 1− 1

2

(
1− 1

σ2w(x
c,i)4

− 4

(xc,i)2

)
+ ξh.o.t (102)

=
1

2
+

1

2σ2w(x
c,i)4

+
2

(xc,i)2
+ ξh.o.t (103)
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This gives us:

E
[
κ(xc,i, xc,i)

]
=

1

2
+ E

[
1

2σ2w(x
c,i)4

]
+ E

[
2

(xc,i)2

]
+ E[ξh.o.t]

=
1

2
+

1

2σ2w

[
1

E [(xc,i)4]
+
V ar((xc,i)4)

E [(xc,i)4]3

]
+ 2

[
1

E [(xc,i)2]
+
V ar((xc,i)2)

E [(xc,i)2]3

]
+ E[ξh.o.t]

(104)

Based on the results from the moment-generating function, we know that:

E[(xc,i)4] = 3σ4c + 6σ2cµ
2
c + µ4c , (105)

which can be used along with Lemma 7 to obtain:

E
[
κ(xc,i, xc,i)

]
=

1

2
+ 2T (c) + E[ξh.o.t] (106)

For notational simplicity, we define a helper function as follows:

S(µc, σc) = −1

2
+ 2T (c) + E[ξh.o.t], (107)

which gives us:

E
[
κ(xc,i, xc,i)

]
= 1 + S(µc, σc) (108)

Finally, the value of E
[

1

κ(xc,i, xc,i)

]
can be given as:

E
[

1

κ(xc,i, xc,i)

]
=

1

E [κ(xc,i, xc,i)]
+
V ar(κ(xc,i, xc,i))

E [κ(xc,i, xc,i)]3
(109)

=
1

1 + S(µc, σc)
+ δh.o.t(κ(x

c,i, xc,i)) (110)

Notice that even in this simple case, the expressions are non-trivial to fully expand. Nonethe-
less, along with Assumption 1, we consider large enough |µ1|, |µ2| such that:

S(µc, σc) < 1. (111)

Thus, based on the expansion of (1 + u)−1 = 1− u+ u2 − u3 + · · · , we obtain the following
cleaner approximation of:

E
[

1

κ(xc,i, xc,i)

]
= 1− S(µc, σc) + δ̃h.o.t(κ(x

c,i, xc,i)) (112)

• Case c = c′, i ̸= j:
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κ(xc,i, xc,j) =

√
1

σ2w(x
c,i)2(xc,j)2

+
2

(xc,j)2
+

2

(xc,i)2
(113)

=

√
1−

(
1− 1

σ2w(x
c,i)2(xc,j)2

− 2

(xc,j)2
− 2

(xc,i)2

)
(114)

= 1− 1

2

(
1− 1

σ2w(x
c,i)2(xc,j)2

− 2

(xc,j)2
− 2

(xc,i)2

)
+ ξ′h.o.t (115)

=
1

2
+

1

2σ2w(x
c,i)2(xc,j)2

+
1

(xc,j)2
+

1

(xc,i)2
+ ξ′h.o.t (116)

Thus, based on Lemma 7, we get:

E
[
κ(xc,i, xc,j)

]
=

1

2
+ E

[
1

2σ2w(x
c,i)2(xc,j)2

]
+ E

[
1

(xc,j)2

]
+ E

[
1

(xc,i)2

]
+ E[ξ′h.o.t] (117)

=
1

2
+

1

2σ2w
E
[

1

(xc,i)2

]
E
[

1

(xc,j)2

]
+ E

[
1

(xc,j)2

]
+ E

[
1

(xc,i)2

]
+ E[ξ′h.o.t]

(118)

=
1

2
+
T (c)2

2σ2w
+ 2T (c) + E[ξ′h.o.t] (119)

This leads to:

E
[

1

κ(xc,i, xc,j)

]
= E

 1

1 +
(
−1

2 + T (c)2

2σ2
w

+ 2T (c) + E[ξ′h.o.t]
)
 (120)

= 1−
(
−1

2
+
T (c)2

2σ2w
+ 2T (c) + E[ξ′h.o.t]

)
+ δ′h.o.t(κ(x

c,i, xc,j)) (121)

=
3

2
− T (c)2

2σ2w
− 2T (c) + δ̃h.o.t(κ(x

c,i, xc,j)) (122)

• Case c ̸= c′:

κ(xc,i, xc
′,j) =

√
1

σ2w(x
c,i)2(xc′,j)2

+
2

(xc′,j)2
+

2

(xc,i)2
(123)

=
1

2
+

1

2σ2w(x
c,i)2(xc′,j)2

+
1

(xc′,j)2
+

1

(xc,i)2
+ ξ′′h.o.t (124)

Thus, based on Lemma 7, we get:

E
[
κ(xc,i, xc

′,j)
]
=

1

2
+ E

[
1

2σ2w(x
c,i)2(xc′,j)2

]
+ E

[
1

(xc′,j)2

]
+ E

[
1

(xc,i)2

]
+ E[ξ′′h.o.t] (125)

=
1

2
+

1

2σ2w
E
[

1

(xc,i)2

]
E
[

1

(xc′,j)2

]
+ E

[
1

(xc′,j)2

]
+ E

[
1

(xc,i)2

]
+ E[ξ′′h.o.t]

(126)

=
1

2
+
T (c)T (c′)

2σ2w
+ T (c′) + T (c) + E[ξ′′h.o.t]. (127)
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This gives us:

E
[

1

κ(xc,i, xc′,j)

]
= E

 1

1 +
(
−1

2 + T (c)T (c′)
2σ2

w
+ T (c′) + T (c) + E[ξ′′h.o.t]

)
 (128)

= 1−
(
−1

2
+
T (c)T (c′)

2σ2w
+ T (c′) + T (c) + E[ξ′′h.o.t]

)
+ δ′h.o.t(κ(x

c,i, xc,j))

(129)

=
3

2
− T (c)T (c′)

2σ2w
− T (c)− T (c′) + δ̃h.o.t(κ(x

c,i, xc
′,j)) (130)

Finally, the cases for the expected value of the kernel can be given as:

E
[
Θ

(2)
NTK−Erf (x

c,i, xc
′,j)
]
=

E
[
σ2wQ

(1)
GP−Erf (x

c,i, xc,j)
]
+ E

[
4σw

πκ(xc,i,xc,j)

]
c = c′

E
[
σ2wQ

(1)
GP−Erf (x

c,i, xc
′,j)
]
− E

[
4σw

πκ(xc,i,xc′,j)

]
c ̸= c′

,

(131)

From (75), we know that:

E
[
Q

(1)
GP−Erf (x

c,i, xc
′,j)
]

≈


1− T (c)

2σ2
w
+∆

(1)
h.o.t(c) if c = c′, i = j

1− T (c)
2σ2

w
− T (c)2

16σ4
w
+∆

(2)
h.o.t(c) if c = c′, i ̸= j

1− T (c)+T (c′)
4σ2

w
− T (c)T (c′)

16σ4
w

+∆
(3)
h.o.t(c, c

′) if c ̸= c′

.
(132)

To simplify the presentation, we can ignore the higher-order terms and obtain:

E
[
Θ

(2)
NTK−Erf (x

c,i, xc
′,j)
]

(133)

≈


σ2w

(
1− T (c)

2σ2
w

)
+ 4σw

π

(
3
2 − 2T (c)

)
c = c′; i = j

σ2w

(
1− T (c)

2σ2
w
− T (c)2

16σ4
w

)
+ 4σw

π

(
3
2 − T (c)2

2σ2
w

− 2T (c)
)
, c = c′, i ̸= j

σ2w

(
1− T (c)+T (c′)

4σ2
w

− T (c)T (c′)
16σ4

w

)
− 4σw

π

(
3
2 − T (c)T (c′)

2σ2
w

− T (c)− T (c′)
)
, c ̸= c′

(134)

Observe that the order of the T (c) terms involved here resemble that of the NNGP
scenario in (75). Thus, we can make similar conclusions regarding the role of the order of
µc, σc in determining the value of E [NC1(H)].

Appendix F. Activation Variability Relative to Data

In this section, we introduce a relative measure of activation variability collapse with respect
to the data. First, we begin by defining the within-class and between-class data covariance
matrices ΣW (X),ΣB(X) ∈ Rd0×d0 for the data samples as:

ΣW (X) =
1

N

C∑
c=1

nc∑
i=1

(
xc,i − xc

) (
xc,i − xc

)⊤
; ΣB(X) =

1

C

C∑
c=1

(
xc − xG

) (
xc − xG

)⊤
,

(135)
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where xc =

1

nc

∑nc

i=1
xc,i, ∀c ∈ [C] and xG =

1

N

∑C

c=1

∑nc

i=1
xc,i represent the data class

mean vectors and the data global mean vector respectively.

Definition 8 Set a small τ > 0. The variability collapse relative to the data is given by:

NC1(H|X) :=
NC1(H)

NC1(X) + τ
, where NC1(X) :=

tr(ΣW (X))

tr(ΣB(X))
(136)

The constant τ prevents numerical instabilities. Through this approach, we capture the
extent of variability collapse of activation features relative to the variability collapse of the
data samples itself.

Corollary 9 Under Assumptions 1-2 (as per Section 5.3 in main text), let ϕ(·) be the

ReLU activation, and the limiting NNGP kernel be Q
(1)
GP−ReLU (x

c,i,xc′,j) = hc,i⊤hc′,j, then:

E [NC1(H)]

E [NC1(X)]
≈ 1−

2
N2

∏2
c=1 ncµc(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

) (137)

Proof To keep the derivation similar to those for the kernel formulation in equation 34,
we consider a simplified kernel on X (identity feature map):

Kdata(x
c,i, xc

′,j) = xc,ixc
′,j . (138)

Additionally, since xc,i are 1-d random variables, the expected value of the kernel is:

E
[
Kdata(x

c,i, xc
′,j)
]
=


σ2c + µ2c if c = c′, i = j

µ2c if c = c′, i ̸= j

µcµc′ if c ̸= c′
(139)

We use Lemma 6 with cases V (1)(c) = σ2c + µ2c , V
(2)(c) = µ2c and V (3)(c, c′) = µcµc′ to

obtain:

E [NC1(X)] =
E [tr(ΣW (X))]

E [tr(ΣB(X))]
=

∑2
c=1

ncµ2
c+ncσ2

c
N − n2

cµ
2
c+ncσ2

c
2n2

c(∑2
c=1

n2
cµ

2
c+ncσ2

c
2n2

c
− n2

cµ
2
c+ncσ2

c
N2

)
− 2

N2

∏2
c=1 ncµc

+∆X
h.o.t

(140)

Finally, the ratio
E [NC1(H)]

E [NC1(X)]
for ReLU (Theorem 2) with large enough nc ≫ 1 is:

E [NC1(H)]

E [NC1(X)]
=

∑2
c=1

ncµ2
c+ncσ2

c
N − µ2

c
2(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

) ·

(∑2
c=1

µ2
c
2 − n2

cµ
2
c

N2

)
− 2

N2

∏2
c=1 ncµc∑2

c=1
ncµ2

c+ncσ2
c

N − µ2
c
2

+∆′
h.o.t. (141)

=

(∑2
c=1

µ2
c
2 − n2

cµ
2
c

N2

)
− 2

N2

∏2
c=1 ncµc(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

) +∆′
h.o.t (142)

= 1−
2
N2

∏2
c=1 ncµc(∑2

c=1
µ2
c
2 − n2

cµ
2
c

N2

) +∆′
h.o.t (143)
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To better understand the result, let us consider the balanced class scenario where n1 =
n2 = n = N/2. This results in a ratio of ≈ 1 − (2µ1µ2)/(µ

2
1 + µ22). Furthermore, if

|µ1| = |µ2| (so µ1 = −µ2), then the ratio ≈ 2. Thus, it emphasizes the interplay between
class imbalance/balance and the expected class means on the relative variability collapse.

Addressing misleading NC1(H) values. Consider the case where σ1, σ2 → 0. Then
Theorem 5.1 for QGP−ReLU indicates that E [NC1(H)] → 0 (considering smaller fluctuations
from ∆h.o.t) in the balanced class setting. Such an observation can be misleading if one were
to ignoreNC1(X). For instance, such an empirical result while training deep neural networks
fails to differentiate between settings where the network learned meaningful features and
learned to classify complex datasets or was simply able to leverage the already collapsed data
vectors. This applies to Erf activation as well. We justify this argument with the following
experiment. For a sample size N chosen from {128, 256, 512, 1024}, and input dimension
d0 chosen from {1, 2, 8, 32, 128}, we sample the vectors x1,i ∼ N (−10 ∗ 1d0 , Id0), i ∈ [N/2]
for class 1 and x2,j ∼ N (10 ∗ 1d0 , Id0), j ∈ [N/2] for class 2 as our dataset. From Figure
2(a), 2(b), observe that NC1(H|X) values for QGP−Erf can be orders of magnitude larger
than NC1(H), and for high-dimensions NC1(H|X) > 1. Essentially, the raw data is ‘more’
collapsed than the activations in these settings. Similar observations can be made for the
NTK ΘNTK−Erf in Figure 2(c), 2(d).

(a) QGP ,NC1(H) (b) QGP , NC1(H|X) (c) ΘNTK , NC1(H) (d) ΘNTK , NC1(H|X)

Figure 2: NC1(H),NC1(H|X) of Q
(1)
GP−Erf and Θ

(2)
NTK−Erf . The dimension d0 on the x-

axis is chosen from {1, 2, 8, 32, 128}. For a particular N , we sample the vectors
x1,i ∼ N (−10 ∗ 1d0 , Id0), y

1,i = −1, i ∈ [N/2] for class 1 and x2,j ∼ N (10 ∗
1d0 , Id0), y

2,j = 1, j ∈ [N/2] for class 2.

Appendix G. Numerical solutions of EoS

We solve the EoS using the Newton-Krylov method with an annealing schedule (as originally
proposed by Seroussi et al. (2023)) using the scipy.optimize.newton krylov python API.
We initialize C with the GP limit value of (σ2w/d0)Id0 and choose a large annealing factor
(ex: 105) as the value for d1. The result of optimizing with newton krylov is a new C,
which in addition to a lower annealing factor is used as an input for the next newton krylov

function call. This loop is repeated until the end of an annealing schedule. For instance,
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(a) EoS NC1(H) (b) EoS NC1(H|X) (c) 2L-FCN NC1(H) (d) 2L-FCN NC1(H|X)

Figure 3: NC1(H),NC1(H|X) of the adaptive kernel (EoS) with final annealing factor d1 =
500 and 2L-FCN with d1 = 500 and Erf activation. The dimension d0 on the
x-axis is chosen from {1, 2, 8, 32, 128}. For a tuple (n1, n2) such that n1 + n2 =
N = 1024, we sample the vectors x1,i ∼ N (−2 ∗1d0 , 0.25 ∗ Id0), y1,i = −1, i ∈ [n1]
for class 1 and x2,j ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), y2,j = 1, j ∈ [n2] for class 2.

to analyze the EoS corresponding to d1 = 500, we choose the following list of step-wise
annealing factors:

factors = [105, 9 ∗ 104, · · · , 2 ∗ 104︸ ︷︷ ︸
step=−104

, 104, 9 ∗ 103, · · · , 2 ∗ 103︸ ︷︷ ︸
step=−103

, 103, · · · , 500︸ ︷︷ ︸
step=−102

]. (144)

Similarly, for a choice of d1 = 2000, we select the slice of the above list up to 2000. Selecting
the schedule is a manual operation and can be treated as a hyper-parameter. In our exper-
iments, we observed that this schedule is sufficient to obtain insights on the NC1 metrics
of Q(1). Thus, we leave the exploration of various annealing strategies as future work.

Comparing the spectrum of weight covariance matrices. Since C is subject to
change while obtaining the stable state of the EoS, we analyze its initial and final (normal-
ized) spectra for two different datasets of dimension d0 = 32 and N = 1024. Dataset 1:
x1,i ∼ N (−2 ∗ 1d0 , 0.25 ∗ Id0), i ∈ [N/2], x2,j ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), j ∈ [N/2]. Dataset
2: xc,i ∼ N (0d0 , 4 ∗ Id0), i ∈ [N/2], c ∈ [2] The first dataset is our running example, and
the second is pure random noise data. Surprisingly, we observed that the EoS solution
captures correlations in the data for both datasets, which is reflected in its final spectrum.
In particular, the singular values shift from being constant at initialization to exhibiting a
decay in their values (Figure 4). Such a shift does not exactly match the case of 2L-FCN
because of (1) the difference in the dynamics of GD and Newton-Krylov with annealing,
and (2) we start with a GP-based initial value for C in EoS. A rigorous analysis of the EoS
dynamics is an open research direction (as also highlighted by the Seroussi et al. (2023)).
Nonetheless, the EoS offers a richer data-dependent setup to analyze the activations and
weights, than the UFM.

Appendix H. Additional Experiments

Compute Resources. All the experiments in this paper were executed on a machine
with 16 GB of host memory and 8 CPU cores. Experiments with the EoS on datasets of
varying dimensions and sample sizes took the longest time (≈ 1 hour) to finish.
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(a) EoS: Dataset 1 (b) 2L-FCN: Dataset 1 (c) EoS: Dataset 2 (d) 2L-FCN: Dataset 2

Figure 4: Normalized singular values sorted in descending order λi/λmax, ∀i ∈ [32] for C ∈
Rd0×d0 in case of EoS and for W(1)⊤W(1) ∈ Rd0×d0 in case of 2L-FCN. Here init
represents the initialized state of an EoS and 2L-FCN in their respective plots.
The final state of EoS is obtained by solving it using Newton-Krylov with a
final factor 500. The 2L-FCN with d1 = 500 is trained for 10, 000 epochs using
GD with a learning rate 10−3, weight decay 10−6, σw = 1.

Dataset with C = 4. Similar to the formulation of D1(N, d0) for C = 2 in the main text,
we formulate D2(N, d0) for C = 4 and ∀i, j, k, l ∈ [N/4] as follows:

{
(x1,i ∼ N (−6 ∗ 1d0 , 0.25 ∗ Id0), y1,i = −3))

}
∪
{
(x2,j ∼ N (−2 ∗ 1d0 , 0.25 ∗ Id0), y2,j = −1)

}
∪
{
(x3,k ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), y3,k = 1))

}
∪
{
(x4,l ∼ N (6 ∗ 1d0 , 0.25 ∗ Id0), y4,l = 3))

}
.

(145)

(a) QGP−Erf (b) ΘNTK−Erf (c) QGP−ReLU (d) ΘNTK−ReLU

Figure 5: NC1(H) of the post-activation NNGP kernel (Q
(1)
GP ) and NTK (Θ(2)) corre-

sponding to Erf, ReLU activations. The dimension d0 on the x-axis is chosen
from {1, 2, 8, 32, 128}. For (n1, n2) such that n1 + n2 = N = 1024, we sample
the vectors x1,i ∼ N (−2 ∗ 1d0 , 0.25 ∗ Id0), y

1,i = −1, i ∈ [n1] for class 1 and
x2,j ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), y2,j = 1, j ∈ [n2] for class 2 as our dataset.
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(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 6: NC1(H) of the limiting kernels, adaptive kernel (EoS) with final annealing factor
d1 = 500 and 2L-FCN with d1 = 500 and Erf activation. d0 on the x-axis is chosen
from {1, 2, 8, 32, 128}. For a tuple nc = (n1, n2) such that n1 + n2 = N = 2048,
we sample the vectors x1,i ∼ N (−2 ∗ 1d0 , 0.25 ∗ Id0), y1,i = −1, i ∈ [n1] for class 1
and x2,j ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), y2,j = 1, j ∈ [n2] for class 2.

(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 7: NC1(H) of the limiting kernels, adaptive kernel (EoS) with final annealing factor
d1 = 500 and 2L-FCN with d1 = 500 and Erf activation. The dimension d0
on the x-axis is chosen from {1, 2, 8, 32, 128}. For a particular N , we sample
the vectors x1,i ∼ N (−6 ∗ 1d0 , 0.25 ∗ Id0), y

1,i = −1, i ∈ [N/2] for class 1, and
x4,j ∼ N (6 ∗ 1d0 , 0.25 ∗ Id0), y2,j = 1, j ∈ [N/2] for class 2.

(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 8: NC1(H) of the limiting kernels, adaptive kernel (EoS) with final annealing factor
d1 = 500 and 2L-FCN with d1 = 500 and Erf activation. The dimension d0
on the x-axis is chosen from {1, 2, 8, 32, 128}. For a particular N , we sample
the vectors x1,i ∼ N (−2 ∗ 1d0 , Id0), y

1,i = −1, i ∈ [N/2] for class 1 and x2,j ∼
N (2 ∗ 1d0 , Id0), y2,j = 1, j ∈ [N/2] for class 2.
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(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 9: NC1(H) of the limiting kernels, adaptive kernel (EoS) with final annealing factor
d1 = 500 and 2L-FCN with d1 = 500 and Erf activation. The dimension d0 on
the x-axis is chosen from {8, 16, 32, 64, 128}. For a particular N , we sample the
vectors x1,i ∼ N (−2 ∗ 1d0 , 4 ∗ Id0), y

1,i = −1, i ∈ [N/2] for class 1 and x2,j ∼
N (2 ∗ 1d0 , 4 ∗ Id0), y2,j = 1, j ∈ [N/2] for class 2.

(a) L = 3 (b) L = 4 (c) L = 5 (d) L = 6

Figure 10: NC1(H) of deeper FCN networks with Erf activation and hidden later width 500.
The dimension d0 on the x-axis is chosen from {1, 2, 8, 32, 128}. For a particular
N , we sample the vectors x1,i ∼ N (−2 ∗ 1d0 , 0.25 ∗ Id0), y1,i = −1, i ∈ [N/2] for
class 1 and x2,j ∼ N (2 ∗ 1d0 , 0.25 ∗ Id0), y2,j = 1, j ∈ [N/2] for class 2.

(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 11: NC1(H) of the limiting kernels, adaptive kernel (EoS) with final annealing factor
500 and 2L-FCN with d1 = 500 and Erf activation on dataset D2(N, d0) (145).

29



Extended Abstract Track

(a) QGP−Erf (b) ΘNTK−Erf (c) EoS (d) 2L-FCN

Figure 12: NC1(H) of the limiting kernels, adaptive kernel (EoS) with final annealing factor
d1 = 500 and 2L-FCN with d1 = 500 and Erf activation. The dimension d0 on
the x-axis is chosen from {1, 2, 8, 32, 128}. For a tuple nc = (n1, n2, n3, n4) such
that n1+n2+n3+n4 = N = 1024 we sample the dataset as per D2(N, d0) (145)

Appendix I. Limitations and Future Work

In certain cases, we have observed that none of the kernel methods approximate the 2L-
FCN reasonably. One such instance is the following, where we sample x1,i ∼ N (−2∗1d0 , 4∗
Id0), y

1,i = −1, i ∈ [N/2] for class 1 and x2,j ∼ N (2∗1d0 , 4∗Id0), y2,j = 1, j ∈ [N/2] for class
2 of our dataset. Essentially, these are scenarios where there is a significant overlap between
samples of the two classes. First, we note that we had to increase the learning rate of our
2L-FCN from 10−3 to 5 ·10−3 and run GD for 2000 epochs for convergence. For dimensions
d0 = {8, 16, 32}, the EoS reasonably approximates the 2L-FCN but for d0 = {64, 128}, the
NC1(H) values for 2L-FCN turned out to be almost twice as large as the EoS (see Figure
9). To this end, we leave modifications to the EoS for handling such noisy data cases and
different activation functions as future work.

Additionally, we highlight the difficulties in the theoretical/empirical analysis of NC1
with EoS. The primary bottleneck is a lack of rigorous study on the existence and uniqueness
of solutions (As also highlighted by Seroussi et al. (2023)). Since we deviate from the lazy
regime and deal with kernels in the feature learning setup, we cannot expect simpler closed-
form solutions like the limiting NNGP/NTK for the EoS. However, analytical solutions to
the EoS can sometimes be time-consuming and require a manual selection of the annealing
schedule. This is a tradeoff that can be improved with future research. Furthermore, the role
of scaling N, d0, d1 on NC1 is yet to be fully understood and we hope that our analysis lays
the groundwork for such efforts. Finally, we point the reader to Appendix F for a discussion
on a relative NC1 metric that explicitly incorporates the variability collapse of the data
vectors into the NC1 metric. In particular, we aim to differentiate between settings where
the neural network learned meaningful features and learned to classify complex datasets or
was simply able to leverage the already collapsed data vectors. Our results showcase that
in higher dimensions, the data vectors are ‘more’ collapsed than the activations themselves.
Thus showcasing the limitations of the current NC1 metrics and encouraging the reader to
explore richer variants.
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