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ABSTRACT

Physics-informed neural networks (PINNs) have shown promise in solving par-
tial differential equations (PDEs), with growing interest in their energy-efficient,
real-time training on edge devices. Photonic computing offers a potential solution
due to its high operation speed. However, the lack of photonic memory and the
large footprint of current photonic devices prevent training realistic-size PINNs
on photonic chips. This paper proposes a completely back-propagation-free (BP-
free) and highly salable framework to enable training real-size PINNs on silicon
photonics platforms. Our approach involves three key innovations: (1) a sparse-
grid Stein derivative estimator to avoid the BP in the loss evaluation of a PINN,
(2) a dimension-reduced zeroth-order optimization via tensor-train decomposi-
tion to achieve better scalability and convergence in BP-free training, and (3) a
scalable on-chip photonic PINN training accelerator design using photonic tensor
cores. We validate the performance of our numerical methods in both low- and
high-dimensional PDE benchmarks. Through circuit simulation based on real de-
vice parameters, we further demonstrate the significant performance benefit (e.g.,
real-time training, huge chip area reduction) of our photonic accelerator. Our
framework addresses the fundamental challenges of photonic AI and will enable
real-time training of real-size PINNs on photonic chips.

1 INTRODUCTION

Partial differential equations (PDEs) are used to describe numerous engineering problems, such as
electromagnetic and thermal analysis of IC chips (Kamon et al., 1993; Li et al., 2004), medical imag-
ing (Villena et al., 2015), and safety verification of autonomous systems (Bansal & Tomlin, 2021).
Traditional numerical solvers (e.g., finite-difference, finite-element methods) have been well stud-
ied and commercialized, but they become prohibitively expensive for high-dimensional PDEs due to
the exponential increase of the unknown variables with respect to spatial/temporal/parameter dimen-
sions. This bottleneck becomes more significant in PDE-constrained inverse and control problems,
since the forward problem needs to be solved many times in an outer iteration loop.

Physics-informed neural networks (PINNs) (Lagaris et al., 1998; Dissanayake & Phan-Thien, 1994;
Raissi et al., 2019) have emerged as a promising approach to solve both forward and inverse prob-
lems. Due to the discretization-free nature, PINN is more suitable for solving high-dimensional or
parametric PDEs, but current PINN training is still very expensive. For instance, training a PINN
for robotic safety analysis (Bansal & Tomlin, 2021) can easily take > 10 hours on a powerful GPU.
Despite the development of operator learning (Lu et al., 2021), a PINN often needs to be trained from
scratch again to obtain high-quality solution once the PDE initial conditions, boundary conditions,
or measurement data changes. There has been increasing interest in training PINN on edge devices
and in a real-time manner, including but not limited to PDE-based safety verification (Bansal &
Tomlin, 2021), control (Onken et al., 2021) of autonomous systems, fast and private EPT (Yu et al.,
2023). The design of real-time edge training accelerator for PINNs remains a sparse research field.

Photonic computing provides a promising low-energy and high-speed solution for various AI tasks
due to the ultra-high operation speed of light. Many optical neural network (ONN) inference acceler-
ators have been proposed (Shen et al., 2017; Tait et al., 2016; Zhu et al., 2022). However, designing
a photonic training accelerator for real-size PINNs (e.g., a network with hundreds of neurons per
layer) remains an open quesiton due to two fundamental challenges:
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• Large device footprints and low integration density. Photonic multiply-accumulate (MAC)
units such as Mach-Zehnder interferometers (MZIs) are much larger (∼10s of microns) than
CMOS transistors. A real-size PINN with > 105 parameters can easily exceed the available chip
size with the square scaling rule where an N × N weight matrix requires O(N2) MZIs (Reck
et al., 1994; Clements et al., 2016). Actually even the state-of-the-art photonic AI inference accel-
erator (Ramey, 2020) can only handle 64× 64 weight matrices. Training a PINN on an photonic
chip will face more significant scalability issue.

• Difficulty of on-chip back propagation (BP). It is hard to realize BP on photonic chips due to the
lack of memory to store the computational graphs and intermediate results. Several BP-free and
in-situ BP methods (Gu et al., 2020; 2021a; Filipovich et al., 2022; Buckley & McCaughan, 2022;
Oguz et al., 2023; Hughes et al., 2018; Pai et al., 2023) are proposed, but their scalability remains a
major bottleneck. This becomes more severe in PINN, since its loss function also includes (high-
order) derivative terms. Subspace learning (Gu et al., 2021b) may scale up BP-based training,
but still needs to save intermediate states. Due to lack of photonic memory, additional optical-
electronic-optical conversion is needed, leading to dramatic energy and latency overhead.

BP-free training methods, especially stochastic zeroth-order (ZO) optimization (Nesterov &
Spokoiny, 2017; Liu et al., 2020) or forward-forward method (Hinton, 2022), are easier to implement
on edge hardware, since they do not need to detect or save any intermediate states (Gu et al., 2020;
2021a; Momeni et al., 2023; Oguz et al., 2023). However, the scalability issue remains in end-to-
end training, as these methods typically have a dimension-dependent gradient estimation error, thus
suffer from slow or even no convergence on realistic-size PINNs with hundreds of neurons per layer.
ZO training shows great success in fine-tuning large language models (LLMs) (Malladi et al., 2023;
Yang et al., 2024a; Zhang et al., 2024; Gautam et al., 2024), since the gradient of a well pre-trained
LLM has a low intrinsic dimension on fine-tuning tasks. Unfortunately, such a low-dimensional
structure does not exist in end-to-end training, preventing the convergence of ZO optimization in
training realistic PINNs. Gu et al. (2020; 2021a) utilized ZO training on a photonic chip, but it only
fine-tuned a small portion of model parameters based on an offline pre-trained model.

Different from the recent work of fine-tuning (Gu et al., 2020; 2021a; Malladi et al., 2023; Yang
et al., 2024a; Zhang et al., 2024; Gautam et al., 2024), we investigate end-to-end BP-free training
of real-size PINNs on photonic chips from scratch. This is a more challenging task because of (1)
the differential operators in the PINN loss evaluation, and (2) the large number of optimization vari-
ables that cause divergence in end-to-end ZO training, (3) the scalability issue and lack of photonic
memory on current photonic chips. This paper presents, for the first time, a real-size and real-time
photonic PINN training accelerator, which can train a PINN with hundreds of neurons per layer on
an integrated photonic platform. Our novel contributions are summarized as follows:

• Two-Level BP-free PINN Training. We present novel BP-free approaches in two implementation
levels of PINN training. Firstly, we propose a sparse-grid Stein estimator to calculate the (high-
order) derivative terms in PINN loss evaluations. Secondly, we propose a tensor-compressed
variance reduction approach to improve the convergence of ZO-SGD for PINN model parameter
updates. These innovations can completely by-pass the need of photonic memory, and greatly
improve the convergence of on-chip BP-free training.

• A Scalable Photonic Design. We present a highly scalable and easy-to-implement photonic ac-
celerator design. Our design reuses a tensorized ONN inference accelerator, and just add a digital
control system to implement on-chip BP-free training. We present two designs: one implements
the whole model on a single chip, and another uses a single photonic tensor core with time multi-
plexing. Our design can scale up to train real-size PINNs with hundreds of neurons per layer.

• Numerical Experiments and Hardware Emulation. We validate our method in solving a low-
dimensional Black-Scholes equation and a high-dimensional Hamilton-Jacobi-Bellman (HJB)
equation. Our two-level BP-free PINN training achieves a competitive error compared to standard
PINN training with BP, and achieves the lowest error compared with previous photonic on-chip
training methods. We further evaluate the performance of our photonic training accelerator on
solving Black-Scholes. The simulation results show that our design can reduce the number of
MZIs by 42.7×, with only 1.64 seconds to solve this equation.

To our best knowledge, this is the first real-size optical PINN training framework that can be applied
to solve realistic PDEs. Our approach shows the great promise of photonic computing in solving

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

AI-based scientific computing problems. Our results can also be easily extended to solve image and
speech problems on photonic and other types of edge platforms.

2 BACKGROUND

This section introduces the necessary background of Physics-Informed Neural Networks (PINN) as
well as Optical Neural Networks (ONN).

Physics-Informed Neural Networks (PINNs). Consider a generic PDE:

N [u(x, t)] = l(x, t), x ∈ Ω, t ∈ [0, T ],

I[u(x, 0)] = g(x), x ∈ Ω,

B[u(x, t)] = h(x, t), x ∈ ∂Ω, t ∈ [0, T ],

(1)

where x and t are the spatial and temporal coordinates; Ω ⊂ RD, ∂Ω and T denote the spatial
domain, domain boundary and time horizon, respectively; N is a general nonlinear differential
operator; I and B represent the initial (or terminal) and boundary condition; u ∈ Rn is the solution
for the PDE described above. In the contexts of PINNs (Raissi et al., 2019), a solution network
uθ(x, t), parameterized by θ, is substituted into PDE equation 1, resulting in a residual defined as:

rθ(x, t) := N [uθ(x, t)]− l(x, t). (2)

The parameters θ can be trained by minimizing the loss:

L(θ) = Lr(θ) + λ0L0(θ) + λbLb(θ). (3)

Here

Lr(θ) =
1

Nr

Nr∑
i=1

∥∥rθ(xi
r, t

i
r)
∥∥2
2
, L0(θ) =

1

N0

N0∑
i=1

∥∥I[uθ(x
i
0, 0)]− g(xi

0)
∥∥2
2
,

Lb(θ) =
1

Nb

Nb∑
i=1

∥∥B[uθ(x
i
b, t

i
b)]− h(xi

b, t
i
b)
∥∥2
2

(4)

are the residuals of the PDE, the initial (or terminal) condition and boundary condition, respectively.

Zeroth-Order (ZO) Optimization. We consider the minimization of a loss function L(θ) by up-
dating the model parameters θ ∈ Rd iteratively using a (stochastic) gradient descent method:

θt ← θt−1 − αg (5)

where g denotes the (stochastic) gradient of the loss L w.r.t. model parameters θ. ZO optimization
uses a few forward function queries to approximate the gradient g:

g ≈ ∇̂θL(θ) =
N∑
i=1

1

Nµ
[L (θ + µξi)− L(θ − µξi)] ξi. (6)

Here {ξi}Ni=1 are some perturbation vectors and µ is the sampling radius, which is typically small.
We consider the random gradient estimator (RGE), in which {ξi}Ni=1 are N i.i.d. samples drawn
from a distribution ρ(ξ) with zero mean and unit variance (e.g., a multivariate Gaussian distribution
or Rademacher distribution). The expectation of ∇̂θL is unbiased w.r.t. the gradient of the smoothed
function fµ(x) := Eξ∼ρ(ξ)[f(x + µξ)], however biased w.r.t. the true gradient ∇θL (Berahas
et al., 2022). The variance of RGE involves a dimension-dependent factor O(d/N) given µ =

O(1/
√
N) (Liu et al., 2020). ZO optimization has been used extensively in signal processing and

adversarial machine learning (Ghadimi & Lan, 2013; Duchi et al., 2015; Lian et al., 2016; Chen et al.,
2019; Shamir, 2017; Cai et al., 2021). A detailed survey was provided in Liu et al. (2020). Recently
ZO optimizaiton has achieved great success in fine-tuning LLMs (Malladi et al., 2023; Yang et al.,
2024a; Zhang et al., 2024; Gautam et al., 2024), due to low intrinsic dimensionality (e.g., around
300) of the gradient information. Without the low-dimensional structures, ZO optimization scales
poorly in end-to-end training of real-size neural networks due to the large dimension-dependent
gradient variance. Recently, Chen et al. (2023) improved the scalability of ZO end-to-end training
by exploiting model sparsity, but its coordinate-wise gradient estimation is prohibitively expensive
for edge devices or real-time applications.
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Optical Neural Networks (ONN) and On-chip ONN Training. Photonic AI accelerators are ex-
pected to outperform their electronic counterparts due to the low latency, ultra-high throughput,
high energy efficiency, and high parallelism (McMahon, 2023). Many optical inference accelerators
have been reported, such as the MZI meshes (Shen et al., 2017; Clements et al., 2016), microring
resonator (MRR) weight banks (Tait et al., 2016), MRR crossbar (Ohno et al., 2022), directional
coupler crossbar (Feldmann et al., 2021), balanced homodyne detection (Hamerly et al., 2019), and
integrated chip diffractive neural network (Zhu et al., 2022). Due to the limited scalability, the state-
of-the-art photonic AI accelerator can only handle weight matrices of size 64×64 (Ramey, 2020).
As a result, large-scale optical matrices are computed by tiles or blocks with time multiplexing,
demanding intensive memory access to store the intermediate data. That means E/O and O/E con-
versions and DAC/ADCs are involved during memory access. Demirkiran et al. (2023) shows that
only ∼10% of the overall power is consumed in the optical devices. On-chip training is essential
to mitigate the significant performance degradation of applying a pre-trained model on non-ideal
phototonic chips. Existing on-chip training algorithms include brute-force phase tuning (Shen et al.,
2017), neuroevolution (Zhang et al., 2019), and an adjoint variable method which requires optical
power monitoring inside each device. The primary issue with the above methods is that there is no
access to intermediate states or full gradients on the photonic chip. Several BP-free methods are
proposed to circumvent the “hardware-unfriendly” nature of error feedback in BP (Gu et al., 2020;
2021a; Filipovich et al., 2022; Buckley & McCaughan, 2022; Oguz et al., 2023). However, these
methods are limited by the small number of training parameters they can handle.

3 TWO-LEVEL BP-FREE TRAINING FOR PINNS

Current PINN training methodologies heavily rely on BP for both loss evaluations (Eq. (3)) and
gradient-descent model parameter updates (Eq. (5)). These BP computations are hard to implement
on photonic chips. This section proposes a two-level BP-free PINN training framework to avoid
such a challenge. We first propose a sparse-grid Stein estimator for BP-free loss evaluation. Then we
propose a tensor-compressed ZO optimization for gradient-descent PINN model parameter update.
This approach improves the convergence of the training framework as well as the scalability on
photonic chips, enabling end-to-end training of real-size PINN with hundreds of neurons per layer.

3.1 LEVEL 1: BP-FREE PINN LOSS EVALUATION

3.1.1 STEIN DERIVATIVE ESTIMATION

Without loss of generality, for an input x ∈ RD and an approximated PDE solution uθ(x) ∈ Rn

parameterized by θ, we consider the first-order derivative∇xuθ and Laplacian ∆uθ involved in the
loss function of a PINN training. Our implementation leverages the Stein estimator (Stein, 1981).
Specifically, we represent the PDE solution uθ(x) via a Gaussian smoothed model:

uθ(x) = Eδ∼N (0,σ2I)fθ(x+ δ), (7)

where fθ is a neural network with parameters θ; δ ∈ RD is the random noise sampled from a mul-
tivariate Gaussian distribution N (0, σ2I). With this special formulation, the first-order derivative
and Laplacian of uθ(x) can be reformulated as the expectation terms:

∇xuθ = Eδ∼N (0,σ2I)

[
δ

2σ2
(fθ(x+ δ)− fθ(x− δ))

]
,

∆uθ = Eδ∼N [0,σ2I) [fθ(x+ δ) + fθ(x− δ)− 2fθ(x)]×
∥δ∥2 − σ2D

2σ4
.

(8)

In He et al. (2023), the above expectation is computed by evaluating fθ(x+ δ) and fθ(x− δ) at a
set of i.i.d. Monte Carlo samples of δ. However, the Monte-Carlo Stein derivative estimator needs
a huge number of (e.g., > 103) function queries. Therefore, it is highly desirable to develop a more
efficient BP-free method for evaluating the derivative terms in the loss function.

3.1.2 SPARSE-GRID STEIN DERIVATIVE ESTIMATOR

Now we leverage the sparse grid techniques (Garcke et al., 2006; Gerstner & Griebel, 1998) to sig-
nificantly reduce the number of function queries in the Stein derivative estimator, while maintaining
high accuracy in numerical integration.
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To begin, we define a sequence of univariate quadrature rules V = {Vl : l ∈ N}. Here l denotes an
accuracy level so that any polynomial function of order ≤ l can be exactly integrated with Vl. Each
rule Vl specifies nl nodes Nl = {δ1, . . . , δnl

} and the corresponding weight function wl : Nl → R.
A univariate quadrature rule Vk for a function f of a random variable δ, can be written as:∫

R
f(δ)p(δ) dδ ≈ Vk[f ] =

∑
δj∈Nk

wk(δj)f(δj). (9)

Here p(δ) is the probability density function (PDF) of δ.

Next, we consider the multivariate integration of a function f over a random vector δ =

(δ1, . . . , δD). We denote the joint PDF of δ as p(δ) =
∏D

m=1 p(δ
m) and define the D-

variate quadrature rule with potentially different accuracy levels in each dimension indicated by
the multi-index l = (l1, l2, ..., lD) ∈ ND. We use Smolyak algorithm (Gerstner & Griebel,
1998) to construct sparse grids. This combines full tensor-product grids of different accuracy
levels, removing redundant points. Specifically, for any non-negative integer q, define ND

q ={
l ∈ ND :

∑D
m=1 lm = D + q

}
and ND

q = ∅ for q < 0. The level-k Smolyak rule AD,k for
D-dim integration can be written as (Wasilkowski & Wozniakowski, 1995):

AD,k[f ] =

k−1∑
q=k−D

(−1)k−1−q

(
D − 1

k − 1− q

)
×

∑
l∈ND

q

(Vl1 ⊗ · · · ⊗ VlD ) [f ]. (10)

It follows that:

AD,k[f ] =

k−1∑
q=k−D

∑
l∈ND

q

∑
δ1∈Nl1

· · ·
∑

δD∈NlD

(−1)k−1−q

(
D − 1

k − 1− q

) D∏
m=1

wlm(δm)f(δ1, . . . , δD),

which is a weighted sum of function evaluations f(δ) for δ ∈
⋃k−1

q=k−D

⋃
l∈ND

q
(Nl1 × · · · ×NlD ).

The corresponding weight is (−1)k−1−q

(
D − 1

k − 1− q

)∏D
m=1 wlm(δm). For the same δ that ap-

pears multiple times for different combinations of values of l, we only need to evaluate f once and
sum up the respective weights beforehand. The resulting level-k sparse quadrature rule defines a
set of nL nodes SL = {δ1, . . . , δnL

} and the corresponding weights {w1, . . . , wnL
}. The D-dim

integration can then be efficiently computed with the sparse grids as:∫
RD

f(δ)p(δ)dδ ≈ AD,k[f ] =

nL∑
j=1

wjf(δj). (11)

In practice, since the sparse grids and the weights do not depend on f , they can be pre-computed for
the specific quadrature rule, dimension D, and accuracy level k.

Finally, we implement the Stein derivative estimator in Eq. (8) via the sparse-grid integration. Not-
ing that δ ∼ N

(
0, σ2I

)
, we can use univariate Gaussian quadrature rules as basis to construct a

level-k sparse Gaussian quadrature rule A∗
D,k for D-variate integration. Then the first-order deriva-

tive and Laplacian in Eq. (8) is approximated as:

∇xuθ ≈
n∗
L∑

j=1

w∗
j

[
δ∗
j

2σ2
(fθ(x+ δ∗

j )− fθ(x− δ∗
j ))

]
,

∆uθ ≈
n∗
L∑

j=1

w∗
j

(
∥δ∗

j ∥2 − σ2D

2σ4

)
×

(
fθ(x+ δ∗

j ) + fθ(x− δ∗
j )− 2fθ(x)

)
,

(12)

where the node δ∗j and weight w∗
j are defined by the sparse grid A∗

D,k.

Remark: With the sparse-grid Stein estimator in Eq. (12), we can compute the derivatives in
Eq. (2) and the overall PINN loss in Eq. (3) without using any BP computation. Note that n∗

L is
usually significantly smaller than the number of Monte Carlo samples required to evaluate Eq. (8).
For instance, a level-3 sparse-grid Gaussian quadrature for a 3-dim PDE requires only 25 function
evaluations, compared to thousands in Monte Carlo estimation, offering substantial computational
savings while maintaining accuracy.
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Figure 1: Illustration of tensor-train decomposition. A large weight matrix W is first folded to a
multi-way tensor W , then decomposed into L smaller tensor-train cores {Gk}Lk=1.

3.2 LEVEL 2: TENSOR-COMPRESSED ZO TRAINING

To avoid BP in the PINN model parametr update, now we leverage the ZO gradient estimator
in Eq (6) to perform gradient-descent iteration. Considering the inquiry complexity, we con-
sider randomized gradient estimation only to implement (6). In this case, the gradient mean
squared approximation error scales with the perturbation dimension d (Berahas et al., 2022):
E
[
∥∇̂θL(θ)−∇θL(θ)∥22

]
= O

(
d
N

)
∥∇θL(θ)∥22+O

(
µ2d3

N

)
+O

(
µ2d

)
. Consequently, the con-

vergence rate also scales with d as O(
√
d/
√
T ) in non-convex unconstrained optimization (Berahas

et al., 2022). Real-size PINNs typically have hundreds of neurons per hidden layer, and the total
number of model parameters can easily exceed 105 or 106. As a result, ZO optimization converges
slowly or even fail to converge in end-to-end PINN training.

3.2.1 TENSOR-COMPRESSED ZO OPTIMIZATION.

To improve the scalability of ZO training, we propose to significantly reduce the dimensionality
and thus gradient variance via a low-rank tensor-compressed training as shown in Fig. 1. Let W ∈
RM×N be a generic weight matrix in a PINN. We factorize its dimension sizes as M =

∏L
i=1 mi

and N =
∏L

j=1 nj , fold W into a 2L-way tensor W ∈ Rm1×m2×···×mL×n1×n2×···×nL , and pa-
rameterize W with the tensor-train (TT) decomposition (Oseledets, 2011):

W(i1, i2, . . . , iL, j1, j2, . . . , jL) ≈
L∏

k=1

Gk(ik, jk) (13)

Here Gk(ik, jk) ∈ Rrk−1×rk is the (ik, jk)-th slice of the TT-core Gk ∈ Rrk−1×mk×nk×rk by
fixing its 2nd index as ik and 3rd index as jk. The vector (r0, r1, . . . , rL) is called TT-ranks with
the constraint r0 = rL = 1. This TT representation reduces the number of unknown variables from∏L

k=1 mknk to
∑L

k=1 rk−1mknkrk. The compression ratio can be controlled by the TT-ranks,
which can be learnt automatically (Hawkins & Zhang, 2021; Hawkins et al., 2022).

In the ZO training process, we change the trainable variables of each layer from W to the TT
factors {Gk}Lk=1. Take a weight matrix with size 512 × 512 for example, the original dimension
d = 2.62×105, while the reduced number of variables in TT factors is d′ = 256 (fold 512×512 into
8×4×4×4×4×4×4×8, and set TT-rank as (1,2,2,2,1)). This reduces the problem dimensionality
d by 1023×, leading to dramatic reduction of the variance in the RGE ZO gradient estimation in Eq.
(6). In Table 2, we show that such dimension reduction does little harm to the model learning
capacity, but greatly improves the ZO training convergence. In addition, the original matrix-vector
product is replaced with low-cost tensor-network contraction in the forward evaluations (Yang et al.,
2024b). This offers both memory and computing cost reduction in the ZO training process.

Comparison and Compatability with other ZO Training. Some other techniques have also
been reported to improve the convergence of ZO training. For instance, model sparsity has ex-
ploited (Chen et al., 2023; Liu et al., 2024) to reduce the problem dimensionalty and thus improve
the convergence of ZO optimization. Stochastic variance-reduced gradient descent (SVRG) (John-
son & Zhang, 2013) has been extended to ZO optimization (Liu et al., 2018). While these techniques
can improve the convergence of ZO training, they cannot reduce the hardware complexity (i.e., the
number of photonic devices needed to implement a training accelerator). The ZO SVRG method
needs storing previous gradient information for variate control, thus can cause huge memory over-
head and is not suitable for photonic implementation. Our method, as will be shown in Section 4,
can improve both the convergence and scalability of photonic training accelerators. Our method
may also be combined with existing approaches to achieve further better performance. For instance,
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model sparsity may be exploired at the TT factor level to get further convergence improvement in
ZO training. We leave this to our future work.

4 DESIGN AND IMPLEMENTATION WITH INTEGRATED PHOTONICS
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Figure 2: The overall architecture of the BP-free optical training accelerator.

This section presents a design scheme to implement our proposed photonic PINN training acceler-
ator. Due to the BP-free nature, we can reuse a photonic inference accelerator to easily finish the
training hardware design. The tensor-compressed ZO training can greatly reduce the number of
required photonic devices, providing much better scalability than existing work.

Overall Architecture. Figure 2 illustrates the architecture of our optical PINN training acceler-
ator. The training accelerator consists of an optical neural network (ONN) inference accelerator,
and an additional digital control system to implement BP-free PINN training. As explained in Ap-
pendix A.1, standard ONN (Shen et al., 2017) architecture uses singular value decomposition (SVD)
to implement matrix-vector multiplication (MVM), and the resulting unitary matrices are imple-
mented with MZI meshes (Clements et al., 2016). For a N ×N weight matrix, this requires O(N2)
MZIs, which is infeasible for practical PINNs. In contrast, our method utilizes tensor-compressed
ZO training, therefore we utilize the tensorized ONN (TONN) accelerator (Xiao et al., 2021) as our
inference engine. A TONN inference accelerator only implements the photonic TT-cores {Gk}Lk=1
instead of the matrix W on an integrated photonics chip, significantly reducing the number of MZIs
required for large-scale layer implementation. The target of on-chip ONN training is to find the op-
timimal MZI phases Φ under various variations. We then implement the tensor-compressed BP-free
training by updating the MZI phases Φk in each photonic TT-core Gk(Φk), which has a greatly
reduced training dimension compared with updating the matrix W(Φ) in a conventional ONN. In
the following, we give the details of our TONN design and BP-free training implementation.

Two Tensorized ONN (TONN) Inference Accelerator Designs. Here we present two designs
for the TONN inference engine: the first design TONN-1 integrates the whole tensor-compressed
model on a single chip. The architecture is illustrated in Fig. 3. Each photonic TT-core is im-
plemented by several identical photonic tensor cores. The tensor multiplications between the
input data and all TT-cores are realized in a single clock cycle by cascading the photonic TT-
cores in the space domain and adding parallelism in the wavelength domain (Xiao et al., 2021).
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Figure 4: TONN-2 architecture.

TONN-1 is “memory-free”: no intermediate states
need to be stored. The second design TONN-2 (c.f.
Fig. 4) uses a single wavelength-parallel photonic ten-
sor core (Xiao et al., 2023) with time multiplexing.
Compared with TONN-1, TONN-2 exhibits a smaller
footprint at the expense of higher latency and additional
memory requirements. In each clock cycle, the pho-
tonic tensor core with parallel processing in the wave-
length domain is updated to multiply with the input ten-
sor. Then, the intermediate output data is stored in the
buffer for the next cycle.

Tensor-compressed BP-free On-chip Training. BP-free training repeatedly calls the TONN infer-
ence engine to evaluate the loss and estimate the gradients, then update the MZI phases. To get the
ZO gradient estimation ∇̂ΦL(Φ) given by Eq. (6), the digital control system generates Rademacher
random perturbations (entries are integers +1 or -1 with equal probability) and re-program the MZIs
with the perturbed phase values Φ + µξ. Here we set µ as the minimum control resolution of MZI
phse tuning. Loss evaluation L(Φ+ µξ) requires a few inferences with perturbed input data to esti-
mate first- and second-order derivatives by sparse-grid Stein estimator. The digital controller gathers
the gradient estimation of N i.i.d. perturbations, and update the MZI phases with ∇̂ΦL(Φ).
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Figure 3: TONN-1 architecture. PTC: photonic tensor core, DAC: digital-analog converter, ADC:
analog-digital converter.

5 EXPERIMENTAL RESULTS

To validate our proposed framework, we consider two PDEs: a 1-dim Black-Scholes equation mod-
eling call option price dynamics in financial markets, and a 20-dim Hamilton-Jacobi-Bellman (HJB)
equation arising from optimal control of robotics and autonomous systems. The base neural net-
works are 3-layer MLPs with 128 neurons and tanh activation for Black-Scholes, and 512 neurons
with sine activation for 20-dim HJB. Models are trained for 10,000 iterations using Adam op-
timizer (learning rate 1e-3), implementing both first-order (FO) and ZO training approaches. FO
training uses true gradients computed by BP, while ZO training use RGE gradient estimation. For
ZO training, we set query number N = 1, smoothing factor µ = 0.01, and use a tensor-wise gradient
estimation scheme. (i.e., perturb one tensor and estimate the gradients of that tensor at a time, repeat
it sequentially for all tensors, and finally gather all gradients to perform one parameter update step).
We evaluate model accuracy on a hold-out set using the relative ℓ2 error ∥û− u∥2/∥u∥2 in domain
Ω, where û is the model prediction and u is the reference solution. The reported results are aver-
aged across 3 different runs. Detailed PDE formulations, experimental settings, and hyperparameter
configurations are provided in Appendices A.2 and A.3.

5.1 NUMERICAL RESULTS OF SOLVING VARIOUS PDES

We first evaluate the numerical performance of our BP-free PINNs training algorithm. We conduct
training in the weight domain, where the trainable parameters are the weight matrices W (tensor
cores G in tensor-compressed training) with tractable gradients to enable FO training as baselines.

Table 1: Relative ℓ2 error of FO training using
different loss computation methods.

Problem AD SE SG (ours)

Black-Scholes 5.35E-02 5.41E-02 5.28E-02
20dim-HJB 1.99E-03 1.52E-03 8.16E-04

Table 2: Relative ℓ2 error achieved using differ-
ent training methods. The proposed method (TT-
compressed ZO training) is underlined.

Problem Standard, FO TT, FO Standard, ZO TT, ZO

Black-Scholes 5.28E-02 5.97E-02 3.91E-01 8.30E-02
20dim-HJB 8.16E-04 2.05E-04 6.86E-03 1.54E-03

Effectiveness of BP-free Loss Computation:
We consider three methods for computing
derivatives in the PINN loss: 1) BP-based
method via automatic differentiation (AD) as a
golden reference, 2) BP-free method via Monte
Carlo-based Stein Estimator (SE) (He et al.,
2023) using 2048 random samples, and 3) our
proposed BP-free method via sparse-grid (SG).
Loss evaluation set-ups are provided in Ap-
pendix A.3. We perform FO training on stan-
dard PINNs and report the results in Table 1.
The BP-free loss computation does not hurt the
training performance, and our SG method is
competitive compared to the original PINN loss
evaluation using AD while requiring much less forward evaluations than SE.

Evaluation of BP-free PINN Training. We compare the FO training (BP) and ZO training (BP-
free) in the form of standard (Std.) uncompressed and our tensor-compressed (TT) formats. We
employ the same sparse-grid loss computation for all experiments. Table 2 summarizes the results.
Tensor-compressed training greatly reduces the dimensionality: For Black-Scholes equation, the
dimension of standard training is 17025. The dimension of tensor-compressed training is reduced to
833 (20.44× fewer) by folding the hidden layer as size 4× 4× 8× 8× 4× 4 and decomposing with
a TT-rank (1, 2, 2, 1). For 20-dim HJB equation, the dimension of standard training is 274433. The
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dimension of tensor-compressed training is reduced to 1929 (142.27× fewer) by folding the input
layer and the hidden layer as size 1× 1× 3× 7× 8× 4× 4× 4 and 4× 4× 4× 8× 8× 4× 4× 4,
respectively. Both the input layer and hidden layer are decomposed with a TT-rank (1, 2, 2, 2, 1).
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Figure 5: Relative ℓ2 error curves of weight do-
main training for Black Scholes equation (left)
and 20dim-HJB (right) equation, respectiely.
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Figure 6: Comparison of ZO training methods.

TT dimension-reduction does little harm to
the accuracy of the PINN model: The first
two columns list the relative ℓ2 error achieved
after FO training. TT compressed training
achieves an error similar to standard training
with FC hidden layers. TT dimension reduc-
tion greatly improves the convergence of ZO
training: The last two columns list the rela-
tive ℓ2 error achieved after ZO training. Fig. 5
shows that standard ZO training fail to con-
verge well due to the high gradient variance
which stems from the high dimensionality. By
employing TT compressed training to reduce
the gradient variance, our ZO training method
achieves much better convergence and final ac-
curacy. This showcase that our proposed TT
compressed ZO optimization is the key to the
success of BP-free training on real-size PINNs.
The observations above clearly demonstrates
that our method can bypass BP in both loss
evaluation and model parameter updates, and
still capable of learning a good solution.

Remark. There is a performance gap between ZO training and FO training, due to the additional
variance term of ZO gradient estimation. While this gap cannot be completely eliminated, it may
be narrowed by using more forward passes per iteration in the late training stage to achieve a low-
variance ZO gradient [e.g., ZO-RGE with a large N, or coordinate-wise gradient estimatior used
in DeepZero (Chen et al., 2023)]. Overall, our method is the most computation-efficient to train
from scratch. As shown in Fig. 6, standard ZO training fails to converge well; DeepZero may
eventually converge to a good solution, however at the cost of over 200× more forward passes.

5.2 HARDWARE PERFORMANCE SIMULATION

We further conduct training in the phase domain where the trainable parameters are MZI phases Φ
that parameterize weight matrix W(Φ) (TT-cores G(Φ) in our proposed method) to simulate the on-
chip ONN training. Simulation codes are implemented with an open-source PyTorch-centric ONN
library TorchONN. We follow Gu et al. (2021b) to consider the following hardware-restricted objec-
tive Φ∗ = argminΦL(W (ΩΓQ(Φ) +Φb)), which jointly considers control resolution limitQ(·),
phase-shifter γ coefficient drift Γ ∼ N (γ, σ2

γ) caused by fabrication variations, thermal cross-talk
between adjacent devices Ω, and phase bias due to manufacturing error Φb ∼ U(0, 2π). Detailed
set-up is provided in Appendix A.1.3.

Training Performance. Table 3 compares our method with existing on-chip BP-free ONN train-
ing methods, including FLOPS (Gu et al., 2020) and subspace training L2ight (Gu et al., 2021b).
Note that previous methods do not support PINN training. We apply the same sparse-grid loss com-
putation in all methods. We use the same number of ONN forward evaluations per step in different
BP-free training methods for fair comparisons. The first two subfigures in Fig. 7 shows the relative
ℓ2 error curves of different training protocols. FLOPS can only handle toy-size neural networks
(20 ∼ 30 neurons per layer, ∼ 1000 parameters) and fail to converge well on real-size PINNs, thus
is not capable of solving realistic PDEs due to the limited scalability. Subspace BP training method
L2ight enables on-chip FO training of ONN, however the trainable parameters are restricted to the
diagonal matrix Σ(Φ) while orthogonal matrices U(Φ) and V (Φ) are frozen at random initializa-
tion due to the intractable gradients. Such restricted learnable space hinders the degree of freedom
for training PINNs from scratch. As a result, L2ight only finds a roughly converged solution with
a large relative ℓ2 error. Our tensor-compressed BP-free training achieves the lowest relative ℓ2
error after on-chip training. We also visualize the learned solution û to examine the quality (the
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Figure 7: The first two subfigures show the relative ℓ2 error of Black-Scholes and 20-dim HJB
equations learned by different ONN training methods. The last two subfigures show the ground
truth u(x), and the learned solution û(x) using our proposed method.

last two subfigures in Fig. 7). Table 3 shows that our method requires much fewer MZIs. The
above results show that our method is the most scalable solution to enable real-size PINNs train-
ing, capable of solving realistic PDEs on photonic computing hardware. The on-chip phase-domain
training results normally show some performance degradation compared with the numerical results
of weight-domain training, due to the limited control resolution, device uncertainties, etc..

Table 3: Comparison between different photonic training methods.
Black Scholes 20dim-HJB

# MZIs # Trainable MZIs rel. ℓ2 error # MZIs # Trainable MZIs rel. ℓ2 error

FLOPS Gu et al. (2020) 18,065 18,065 0.667 279,232 279,232 1.40E-02
L2ight Gu et al. (2021b) 18,065 2,561 0.203 279,232 35,841 4.09E-03

Ours 1,685 1,685 0.103 2,057 2,057 1.57E-03

Table 4: Performance comparison of different
methods to implement a 128 × 128 hidden layer
in solving Black-Scholes equation. The latency
means total on-chip training time.

# of MZIs Footprint (mm2) Latency (s)

ONN 16,384 3,975.68 1.74
TONN-1 384 102.72 1.64
TONN-2 64 18.72 9.80

System Performance. Table 4 compares the
on-chip training system performance to im-
plement a 128 × 128 hidden layer for
solving Black-Scholes equation. We com-
pare our tensor-compressed ONN (TONN) in-
ference/training accelerator design TONN-1,
TONN-2 and the conventional ONN design. It
is not practical for a single photonic chip to in-
tegrate a matrix as large as 128 × 128 due to
the huge device footprint and the insurmount-
able optical loss due to the quadratic scaling rule. In comparison, our method reduces the number of
MZIs by 42.7×, which is the key to enable whole-model integration (TONN-1) with a reasonable
footprint. The simulation results show that our photonic accelerator achieve ultra-high-speed PINN
training (1.64-second training time) to solve the Black-Scholes equation. Detailed breakdown of
system performance analysis is provided in Appendix A.4.

6 CONCLUSION

This paper has proposed a two-level BP-free training approach to train real-size physics-informed
neural networks (PINNs) on optical computing hardware. Specifically, our method integrates a
sparse-grid Stein derivative estimator to avoid BP in loss evaluation and a tensor-compressed ZO
optimization to avoid BP in model parameter update. The tensor compressed ZO optimization can
simultaneously reduce the ZO gradient variance and model parameters, thus scale up ZO training to
real-size PINNs with hundreds of neurons per layer. We have further designed the BP-free training
on an integrated photonic platform. Our approach has successfully solved a 1-dim Black-Scholes
PDE and a 20-dim HJB PDE with smallest relative error compared with existing photonic on-chip
training protocols. Future studies of variance reduction can help narrow the performance gap be-
tween ZO training and FO training. Our tensor-compressed BP-free training method is not restricted
to PINNs. It can be easily extended to solve image and speech problems on photonic and other types
of edge platforms where the hardware cost to implement BP is not feasible.
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A APPENDIX

link to the anonymous source code repository

A.1 ONN BASICS

A.1.1 MZI-BASED ONN ARCHITECTURE.

We focus on the ONN (Shen et al., 2017) architecture with singular value decomposition (SVD)
to implement matrix-vector multiplication (MVM), i.e., y = Wx = UΣV ∗x. The unitary
matrices U and V ∗ are implemented by MZIs in Clements mesh (Clements et al., 2016). The
parametrization of U and V ∗ is given by U(ΦU ) = DU

∏2
i=k

∏i−1
j=1 Rij

(
ϕU
ij

)
,V ∗(ΦV ) =

DV
∏2

i=k

∏i−1
j=1 Rij

(
ϕV
ij

)
, where D is a diagonal matrix, and each 2-dimensional rotator Rij(ϕij)

can be implemented by a reconfigurable 2× 2 MZI containing one phase shifter (ϕ) and two 50/50
splitters, which can produce interference of input light signals as follows:(

y1
y2

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x1

x2

)
(14)

The diagonal matrix Σ is implemented by on-chip attenuators, e.g., single-port MZIs, to perform
signal scaling. The parameterization is given by Σ

(
ΦS

)
= max (|Σ|) diag

(
· · · , cosϕS

i , · · ·
)
.

We denoted all programmable phases as Φ and W is parameterized by W (Φ) =
U(ΦU )Σ(ΦS)V ∗(ΦV ).

A.1.2 INTRACTABLE GRADIENTS OF MZI PHASES

The analytical gradient w.r.t each MZI phases is given by:
∂L
∂Rij

= (DRn1Rn2Rn3)
T ∇yLxT (· · ·R32R21ΣV ∗)

T (15)

∂L
∂ϕij

= Tr

((
∂L
∂Rij

⊙ ∂Rij

∂ϕij

)
(ei + ej) (ei + ej)

T

)
(16)

This analytical gradient is computationally-prohibitive, and requires detecting the whole optical field
to read out all intermediate states x, which is not practical or scalable on integrated photonics chip.

A.1.3 ONN NON-IDEALITY

We follow Gu et al. (2021b) to consider the following ONN non-ideality set-ups in the simulation.

Limited Phase-tuning Control Resolution. Given the control resolution limits, we can only
achieve discretized MZI phase tuning. We assume the phases ϕ is uniformly quantized into 8-bit
within [0, 2π] for phases in U(ΦU ), Σ(ΦS), V ∗(ΦV ).

Phase-shifter Variation. We assume the real phase shift ϕ̃ = γ+∆γ
γ ϕ, which is proportional to the

device-related parameter. We assume ∆γ ∼ N (0, 0.0022). We formulate this error as a diagonal
matrix Γ multiplied on the phase shift Φ′ = ΓΦ.

MZI Crosstalk. The crosstalk effect can be modeled as coupling matrix Ω,


ϕc
0

ϕc
1
...

ϕc
N−1

 =


ω0,0 ω0,1 · · · ω0,N−1

ω1,0 ω1,1 · · · ω1,N−1

...
...

. . .
...

ωN−1,0 ωN−1,1 · · · ωN−1,N−1




ϕv
0

ϕv
1
...

ϕv
N−1


s.t. ωi,j = 1, ∀i = j

ωi,j = 0, ∀i ̸= j and ϕj ∈ P
0 ≤ ωi,j < 1, ∀i ̸= j and ϕj ∈ A.

(17)
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The diagonal factor ωi,j , i = j is the self-coupling coefficient, ωi,j , i ̸= j is the mutual coupling
coefficient. We follow Gu et al. (2021b) to assume the self-coupling coefficient to be 1, and the
mutual coupling coefficient is 0.005 for adjacent MZIs.

A.2 PDE DETAILS

Black-Scholes Equation. We examine the Black-Scholes equation for option price dynamics:

∂tu+
1

2
σ2x2∂xxu+ rx∂xu− ru = 0, x ∈ [0, 200], t ∈ [0, T ],

u(x, T ) = max(x−K, 0), x ∈ [0, 200],

u(0, t) = 0, u(200, t) = 200−Ke−r(T−t), t ∈ [0, T ],

(18)

where u(x, t) is the option price, x is the stock price, σ = 0.2 is volatility, r = 0.05 is risk-free rate,
K = 100 is strike price, and T = 1 is expiration time. The analytical solution is:

u(x, t) = xN(d1)−Ke−r(T−t)N(d2), (19)

with d1 and d2 defined as:

d1 =
ln(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

(20)

where N(·) is the cumulative distribution function of the standard normal distribution. The base
neural network is a 3-layer MLP with 128 neurons and tanh activation in each hidden layer. In
tensor-train (TT) compressed training, the input layer (2 × 128) and the output layer (128 × 1) are
left as-is, while we fold the hidden layer as size 4 × 4 × 8 × 8 × 4 × 4. We preset the TT-ranks as
[1,r,r,1], where r controls the compression ratio.

20-dim HJB Equation. We consider the following 20-dim HJB PDE for high-dimensional opti-
mal control:

∂tu(x, t) + ∆u(x, t)− 0.05 ∥∇xu(x, t)∥22 = −2,
u(x, 1) = ∥x∥1 , x ∈ [0, 1]20, t ∈ [0, 1].

(21)

Here ∥·∥p denotes an ℓp norm. The exact solution is u(x, t) = ∥x∥1 + 1− t. The base network is a
3-layer MLP with 512 neurons and sine activation in each hidden layer. For TT compression, we
fold the input layer and hidden layers as size 1×1×3×7×8×4×4×4 and 4×4×4×8×8×4×4×4,
respectively,with TT-ranks [1,r,r,r,1]. The output layer (512× 1) is left as-is.

A.3 EXPERIMENTAL SETTINGS

Loss Evaluation Set-ups. We compare three methods for computing derivatives in the loss func-
tion equation 3: 1) automatic differentiation (AD) as a golden reference, 2) Monte Carlo-based Stein
Estimator (SE) He et al. (2023), and 3) our sparse-grid (SG) method. For Black-Scholes, we ap-
proximate the solution uθ using a neural network fθ(x, t), which can be either the base network
or its TT-compressed version. In the AD approach, uθ(x, t) = fθ(x, t), while for SE and SG,
uθ(x, t) = E(δx,δt)∼N (0,σ2I)fθ(x + δx, t + δt). We set the noise level σ to 1e-3 in SE and SG,
using 2048 samples in SE and 13 samples in SG with a level-3 sparse Gaussian quadrature rule to
approximate the expectations equation 7 and equation 8. For HJB, we employ a transformed neural
network f

′

θ(x, t) = (1− t)fθ(x, t) + ∥x∥1, where fθ(x, t) is the base or TT-compressed network.
The solution approximation follows the same pattern as in the Black-Scholes case. Here the trans-
formed network is designed to ensure that our approximated solution either exactly satisfies (AD) or
closely adheres to the terminal condition (SE, SG), allowing us to focus solely on minimizing the
HJB residual during training. We set the noise level σ to 0.1 in SE and SG, using 1024 samples in
SE and 925 samples in SG with a level-3 sparse Gaussian quadrature rule.

Training Set-ups. We implemented all methods in PyTorch, utilizing an NVIDIA GTX 2080Ti
GPU and an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz.
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Data Sampling. For Black-Scholes, we uniformly sample 100 random residual points, 10 initial
points, and 10 boundary points on each boundary per epoch to evaluate the PDE loss equation 3. For
HJB, we select 100 random residual points per epoch. The model architecture for the HJB equation
incorporates the terminal condition, eliminating the need for additional terminal loss term.

ONN Simulation Settings. We apply the same setups as that in L2ight Gu et al. (2021b) to
implement uncompressed ONNs in baseline methods FLOPS Gu et al. (2020) and L2ight Gu et al.
(2021b). The linear projection in an ONN adopts blocking matrix multiplication, where the M ×N
weight matrix is partitioned into P × P blocks of size k × k. Here P = ⌈M/k⌉, Q = ⌈N/k⌉.
Implementing ONNs with smaller MZI blocks is more practical and robust, and provides enough
trainable parameters (N2/k singular values) for first-order based method L2ight. We select k = 8
for practical consideration.

The weight matrix W is parameterized by MZI phases Φ as W (Φ) = {Wpq (Φpq)}p=P−1,q=Q−1
p=0,q=0 .

Each block Wpq is parameterized as Wpq (Φpq) = Upq

(
ΦU

pq

)
Σpq

(
ΦS

pq

)
V ∗
pq

(
ΦV

pq

)
.

FLOPs Gu et al. (2020) is a ZO based method. We use zeroth-order gradient estimation to estimate
the gradients of all MZI phases (i.e., ΦU

pq,Φ
S
pq,Φ

V
pq)

L2ight Gu et al. (2021b) is a subspace FO based method. Due to the intractable gradients for ΦU
pq

and ΦV
pq , only the MZI phase shifters in the diagonal matrix ΦS

pq are trainable. This restricts the
training space (i.e., subspace training).

We follow Gu et al. (2021b) to consider the following hardware-restricted objective Φ∗ =
argminΦL(W (ΩΓQ(Φ) + Φb)), which jointly considers control resolution limit Q(·), phase-
shifter γ coefficient drift Γ ∼ N (γ, σ2

γ) caused by fabrication variations, thermal cross-talk between
adjacent devices Ω, and phase bias due to manufacturing error Φb ∼ U(0, 2π).

A.4 SYSTEM PERFORMANCE EVALUATION

We evaluate the system performance of learning the Black-Scholes equation. The system perfor-
mance for the accelerators based on ONNs and TONNs are evaluated and compared assuming the
III-V-on-Si device platform Liang et al. (2022). The total number of wavelengths used is 8 Xiao
et al. (2021). The SVD implementation of the arbitrary matrices is considered in the calculation.

A.4.1 FOOTPRINT:

Only the footprint of the photonic devices, which occupy the major area of the accelerator, is used
for comparison. The photonic footprint includes the areas of hybrid silicon comb laser, microring
resonator (MRR) modulator arrays, photonic tensor cores, MRR add-drop filters, photodiodes, and
electrical cross-connects.

Table 5: Footprint breakdown. All units are mm2.

Laser MRR Mod. Tensor core Photodetector Cross-connect Total

ONN 25.6 1.28 3947.52 1.28 / 3975.68
TONN-1 1.6 0.8 97.92 0.8 1.6 102.72
TONN-2 1.6 0.4 16.32 0.4 / 18.72

A.4.2 LATENCY:

Latency per Inference. The latency per inference is calculated by:

tinference = ncycle ∗ (tDAC + ttuning + topt + tADC) (22)

where tDAC is the DAC conversion delay (∼24 ns), ttuning is the metal-oxide-semiconductor ca-
pacitor (MOSCAP) phase shifter tuning delay (∼0.1 ns), topt is the propagation latency of optical
signal (∼3.20 ns for ONN, ∼0.64 ns for TONN-1, and ∼0.21 ns for TONN-2), tADC is the ADC
delay(∼24 ns). The TONN-2 uses 6 cycles for one inference, while ONN and TONN-1 only needs
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1 cycle. The latency per inference is estimated at 51.30 ns for ONN, 48.74 ns for TONN-1, and
289.86 ns for TONN-2.

Latency per Epoch. The latency per epoch is calculated by:

tepoch = (tinference ×Npoint ×Nloss + ttuning)×Ngrads + tDIG (23)

tDIG is the digital computation overhead (∼500 ns) for gradient accumulation and phase updates at
the end of each epoch. New random perturbation samples could be sampled from environment in
parallel with optical inference, so we didn’t include this overhead. We use Npoint = 130, Nloss =
13, Ngrads = 2. The latency per epoch is estimated at 0.174 ms for ONN, 0.164 ms for TONN-1,
and 0.980 ms for TONN-2.

Total Training Latency. On average our BP-free training finds a good solution after 10000 epochs
of update. The total training latency is estimated as 1.74 s for ONN, 1.64 s for TONN-1, and 9.80 s
for TONN-2.

Table 6 summarizes the breakdown of training latency.

Table 6: Latency breakdown. The results are based on simulation. ONN-1 and TONN-1 denote
space-multiplexing implementation. ONN-2 and TONN-2 denote time-multiplexing implementa-
tion.

Latency per inference (ns) Time per epoch (ms) Number of epochs Time to converge (s) rel. ℓ2 error

ONN-1 51.30 0.17 10,000 1.74 0.667
ONN-2 1545.92 5.23 10,000 52.27 0.667

TONN-1 (ours) 48.74 0.16 10,000 1.64 0.103
TONN-2 (ours) 289.86 0.98 10,000 9.80 0.103

A.5 ADDITIONAL EXPERIMENTS ON PDE BENCHMARKS

In addition to the experiments discussed in the main text, we have conducted further evaluations
of our method on three additional PDE problems: the one-dimensional Burgers’ equation, the two-
dimensional Navier-Stokes equation for lid-driven cavity flow, and the two-dimensional Darcy flow
problem.

A.5.1 DEFINITIONS OF PDES

One-dimensional Burgers’ Equation Hao et al. (2023):

∂tu+ u∂xu = ν∂xxu, (x, t) ∈ [−1, 1]× [0, 1], (24)

where the viscosity ν = 0.01
π . The initial and boundary conditions are:

u(x, 0) = − sin(πx), x ∈ [−1, 1], (25)
u(−1, t) = u(1, t) = 0, t ∈ [0, 1]. (26)

Two-dimensional Navier-Stokes Lid-driven Flow Hao et al. (2023):

u · ∇u+∇p− 1

Re
∆u = 0, x ∈ [0, 1]2, (27)

∇ · u = 0, x ∈ [0, 1]2, (28)

where u = (u, v) represents the velocity, p is the pressure and Re = 100 is the Reynolds number.
The boundary conditions are specified as:

u(x) = (4x(1− x), 0), x ∈ Γ1, (29)
u(x) = (0, 0), x ∈ Γ2, (30)

p = 0, x = (0, 0). (31)
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with the top boundary denoted by Γ1 and the left, right, and bottom boundaries by Γ2.

Two-dimensional Darcy Flow Li et al. (2020):

∇ · (k(x)∇u(x)) = f(x), x ∈ Ω, (32)
u(x) = 0, x ∈ ∂Ω, (33)

where k(x) is the permeability field, u(x) is the pressure, and f(x) is the forcing function. We
define Ω = [0, 1]2, set f(x) = 1, and use a piecewise constant function for k(x) as shown in Fig. 8.
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Figure 8: Permeability field in the Darcy flow problem.

A.5.2 EXPERIMENTAL RESULTS

Our baseline model aligns with the state-of-the-art PINN benchmark from Hao et al. (2023). It
consists of a fully connected neural network with five hidden layers, each containing 100 neurons,
totaling 30,701 trainable parameters. The dimension of our tensor-compressed training is reduced to
1,241 by folding the weight matrices in hidden layers as size 4×5×5×5×5×4 and decomposing
it with a TT-rank (1, 2, 2, 1). We trained the models for 40,000 iterations on both the Burgers’ and
Navier-Stokes equations, and for 20,000 iterations on the Darcy flow problem. All other training
configurations were kept consistent with our main experimental setups.

The experiment results are provided in Table 7, Table 8, and Table 9. We summarize the findings
from our experiments on the three additional PDE benchmarks as follows:

• BP-free loss computation maintains training performance: As shown in Table 7, our
sparse-grid (SG) method for loss computation is competitive with the original PINN loss
evaluation using automatic differentiation (AD), while requiring significantly fewer for-
ward evaluations compared to the Monte Carlo-based Stein Estimator (SE). This indicates
that the BP-free loss computation does not compromise training performance.

• Tensor-Train (TT) dimension reduction improves ZO training convergence: Table 8
compares first-order (FO) training using backpropagation (BP) and zeroth-order (ZO) train-
ing (BP-free) in both standard uncompressed and tensor-compressed (TT) formats. Stan-
dard ZO training failed to converge well, whereas our ZO training method with TT di-
mension reduction achieved much lower relative ℓ2 error. This demonstrates that our TT
dimension reduction significantly enhances the convergence of ZO training.

• BP-free training achieves the lowest relative ℓ2 error in phase-domain training: As
indicated in Table 9, our method outperforms the ZO method FLOPS Gu et al. (2021b),
which we attribute to our tensor-train (TT) dimension reduction. Furthermore, our method
surpasses the FO method L2ight Gu et al. (2021b); the restricted learnable subspace of
L2ight is not capable of training PINNs from scratch. Our BP-free training achieves the
lowest relative ℓ2 error in phase-domain training.
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These results support our claims in the main text. Our method is the most scalable solution to enable
real-size PINN training on photonic computing hardware.

Remark: Regarding the Navier-Stokes equation, we observed a larger performance gap compared
with weight-domain FO training, which serves as the “ideal” upper bound. While the Navier-Stokes
PDE is a simple example for traditional non-machine learning PDE solvers, it is a very challenging
case for ZO training and photonic computing. Even the FO training requires over 15,000 iterations
to converge well (versus 4,000 iterations for the HJB PDE) due to its complicated optimization
landscape. All ZO training and photonic training methods failed to achieve good convergence after
40,000 iterations. Among them, our method achieved the best accuracy, with a test relative ℓ2
error of 4.82×10−1 in weight-domain training and 6.99×10−1 in phase-domain photonic training.
Further studies are needed for all tested ZO training and photonic training methods to achieve highly
accurate results for the Navier-Stokes PDE. In addition to optimizing the ZO gradient estimation,
we may need to consider: (1) optimization frameworks beyond popular SGD/GD, (2) improved
PINN architectures, and (3) a deeper understanding of the optimization landscape. ZO training
achieved stable convergence for the Black-Scholes and 20-dim HJB equations in the main text and
the Darcy flow in additional experiments. The gap between ZO training and FO training is narrowed
in the weight-domain training. In phase-domain training simulations, our method also significantly
improved over state-of-the-art photonic training methods FLOPS Gu et al. (2020) and L2ight Gu
et al. (2021b).

Table 7: Relative ℓ2 error of FO training in weight domain using different loss computation methods.

Problem AD SE SG (ours)

Burgers’ 1.37E-02 2.08E-02 1.39E-02
Navier-Stokes 3.79E-02 5.34E-02 3.66E-02

Darcy flow 7.25E-02 7.39E-02 7.07E-02

Table 8: Relative ℓ2 error of different training methods in weight domain. All experiments use
sparse-grid loss computation. The best ZO training results are bolded.

Problem Standard, FO TT, FO Standard, ZO TT, ZO (ours)

Burgers’ 1.39E-02 4.82E-02 4.47E-01 9.50E-02
Navier-Stokes 3.66E-02 6.86E-02 5.69E-01 4.82E-01

Darcy flow 7.07E-02 7.65E-02 2.26E-01 8.93E-02

Table 9: Relative ℓ2 error of phase domain training simulation.

Problem FLOPS Gu et al. (2020) L2ight Gu et al. (2021b) ours

Burgers’ 4.50E-01 5.72E-01 2.79E-01
Navier-Stokes 9.84E-01 7.85E-01 6.99E-01

Darcy flow 4.80E-01 1.27E-01 9.60E-02

A.6 ADDITIONAL EXPERIMENTS OF IMAGE CLASSIFICATION

Our tensor-compressed zeroth-order training is a general back-propagation-free training method that
applies to lightweight neural networks other than PINNs. In this section, we extended it to the
image classification task on the MNIST dataset. Note that our proposed sparse-grid loss evaluation
is designed for PINN training only, so sparse-grid is not used here.

Our baseline model is a two-layer MLP (784×1024, 1024×10) with 814,090 parameters. The di-
mension of our tensor-compressed training is reduced to 3,962 by folding the input and output layer
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as size 7 × 4 × 4 × 7 × 8 × 4 × 4 × 8 and 8 × 4 × 4 × 8 × 1 × 5 × 2 × 1, respectively. Both the
input layer and the output layer are decomposed with a TT-rank (1, 6, 6, 6, 1). Models are trained
for 15,000 iterations with a batch size 2,000, using Adam optimizer with an initial learning rate
1e-3 and decayed by 0.8 every 3,000 iterations. In ZO training, we set query number N = 10 and
smoothing factor µ = 0.01.

Table 10 compares results of weight domain training.

• Our tensor-train (TT) compressed training does not harm the model expressivity, as TT
training achieved a similar test accuracy as standard training in first-order (FO) training.

• Our TT compressed training greatly improves the convergence of ZO training and reduces
the performance gap between ZO and FO.

Table 11 compares results of phase domain training. Our method outperforms the baseline ZO
training method FLOPS Gu et al. (2020). This is attributed to the tensor-train (TT) dimension
reduction that reduced gradient variance. Note that the performance gap between phase domain
training and weight domain training could be attributed to the low-precision quantization, hardware
imperfections, etc., as illustrated in Section 5.2. Our ZO training method did not surpass the FO
subspace training method L2ight Gu et al. (2021b). The performance of L2ight versus our
method should be considered case by case. L2ight does not have additional gradient errors due to
its FO optimization. Meanwhile, its sub-space training can prevent the solver from achieving a good
optimal solution. The real performance depends on the trade-off of these two facts. In our PINN
experiments, L2ight underperforms our method because the limitation of its sub-space training
plays a dominant role. L2ight performs better on the MNIST dataset, probably because the model
is more over-parameterized that even subspace training can achieve a good optimal solution.

The results on the MNIST dataset are consistent with our claims in the submission and support our
claim that our method can be extended to image problems with higher dimensions.

Table 10: Validation accuracy of weight domain training on MNIST dataset. We report the averaged
accuracy and the standard deviation across three runs.

Method Standard, FO TT, FO Standard, ZO TT, ZO (ours)

Val. Accuracy (%) 97.83±1.02 97.26±0.15 83.83±0.44 93.21±0.46

Table 11: Validation accuracy of phase domain training on MNIST dataset. We report the averaged
accuracy and the standard deviation across three runs.

Method FLOPS Gu et al. (2020) L2ight Gu et al. (2021b) ours

Val. Accuracy (%) 41.72±5.50 95.80±0.48 87.91±0.59

A.7 ABLATION STUDIES

A.7.1 TENSOR-TRAIN (TT) RANKS

To validate our tensor-train (TT) rank choice, we add an ablation study on different TT ranks. The
results are provided in Table 12 below. We tested tensor-train compressed training with different TT-
ranks on solving 20-dim HJB equations. The model setups are the same as illustrated in Appendix
A.2. We fold the input layer and hidden layers as size 1× 1× 3× 7× 8× 4× 4× 4 and 4× 4×
4 × 8 × 8 × 4 × 4 × 4, respectively, with TT-ranks [1,r,r,r,1]. We use automatic differentiation
for loss evaluation and first-order (FO) gradient descent to update model parameters. Other training
setups are the same as illustrated in Appendix A.3. The results reveal that models with larger TT-
ranks have better model expressivity and achieve smaller relative ℓ2 error. However, increasing
TT-ranks increases the hardware complexity (e.g., number of MZIs) of photonics implementation as
it increases the number of parameters. Therefore, we chose a small TT-rank as 2, which provides
enough expressivity to solve the PDE equations, while maintaining a small model size.
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Table 12: Ablation study on tensor-train (TT) ranks when training the TT compressed model on
solving 20-dim HJB equations. We report the average error and the standard deviation across three
runs.

TT-rank 2 4 6 8

Params 1,929 2,705 3,865 5,409
rel. ℓ2 error (3.17±1.16)E-04 (2.45±0.82)E-04 (4.00±3.69)E-05 (3.02±3.16)E-05

A.7.2 HIDDEN LAYER WIDTH OF BASELINE MLP MODEL

We also performed an ablation study on the hidden layer width of the baseline MLP model. We
trained 3-layer MLPs with different hidden layer widths to solve the 20-dim HJB equation. We use
automatic differentiation for loss evaluation and first-order (FO) gradient descent to update model
parameters. Other training setups are the same as illustrated in Appendix A.3. The results are shown
in Table 13. The MLP model with a smaller hidden layer width leads to larger testing errors. This
indicates that a large hidden layer is favored to ensure enough model expressivity. The MLP model
used in our submission does not have an overfitting problem.

Table 13: Ablation study on hidden layer size of baseline 3-layer MLP model when learning 20-dim
HJB equation. We report the average error and the standard deviation across three runs.

Hidden layer size 512 256 128 64 32

Params 274,433 71,681 19,457 5,633 1,793
rel. ℓ2 error (2.72±0.23)E-03 (4.31±0.19)E-03 (7.51±0.36)E-03 (8.15±0.67)E-03 (9.25±0.27)E-03

A.8 MORE TABLES OF EXPERIMENTS

In this section, we provide the extended results of Table 1, 2, and 3. Each relative ℓ2 error takes the
form mean± std, where mean denotes the averaged result over three independent experiments, and
std denotes the corresponding standard deviation.

Table 14: Relative ℓ2 error of FO training using different loss computation methods. We report the
averaged results and standard deviations across three runs.

Problem AD SE SG (ours)

Black-Scholes (5.35±0.13)E-02 (5.41±0.09)E-02 (5.28±0.05)E-02
20dim-HJB (1.99±0.15)E-03 (1.52±0.14)E-03 (8.16±1.24)E-04

Table 15: Relative ℓ2 error achieved using different training methods. We report the averaged results
and standard deviations across three runs. The best ZO training results are bolded.

Problem Standard, FO TT, FO Standard, ZO TT, ZO (ours)

Black-Scholes (5.28±0.05)E-02 (5.97±0.01)E-02 (3.91±0.05)E-01 (8.30±0.08)E-02
20dim-HJB (8.16±1.24)E-04 (2.05±0.39)E-04 (6.86±0.27)E-03 (1.54±0.35)E-03
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Table 16: Comparison between different photonic training methods. We report the averaged relative
ℓ2 error and standard deviations across three runs.

Black Scholes 20dim-HJB

# MZIs # Trainable MZIs rel. ℓ2 error # MZIs # Trainable MZIs rel. ℓ2 error

FLOPS Gu et al. (2020) 18,065 18,065 0.663±0.045 279,232 279,232 (1.38±0.07)E-02
L2ight Gu et al. (2021b) 18,065 2,561 0.192±0.381 279,232 35,841 (2.95±0.99)E-03

Ours 1,685 1,685 0.114±0.095 2,057 2,057 (2.10±0.55)E-03

A.9 MORE FIGURES OF EXPERIMENTS

In this section, we provide the extended results of Fig. 5 and 7. The curves denote averaged rel-
ative ℓ2 error over three independent experiments and shades denote the corresponding standard
deviations.
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Figure 9: Relative ℓ2 error curves of weight domain training for Black-Scholes equation (left) and
20-dim HJB equation (right), respectively. The value at each step is averaged across three runs, and
the shade indicates the standard deviation.
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Figure 10: Relative ℓ2 error curves of phase domain training for Black-Scholes equation (left) and
20-dim HJB equation (right), respectively. The value at each step is averaged across three runs, and
the shade indicates the standard deviation.
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Figure 11: Visualization of Black-Scholes equation in photonic on-chip learning simulation. The
left subfigure shows the ground truth u(x), and the right subfigure shows the learned solution û(x)
using our proposed BP-free PINNs training method.

A.10 ADDITIONAL DETAILS ON TONN-1 ARCHITECTURE
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Figure 12: (The same as Figure 3) TONN-1 architecture. PTC: photonic tensor core, DAC: digital-
analog converter, ADC: analog-digital converter.

In TONN-1, the input data x ∈ RN , is folded to a d-way tensor X ∈ RNd×···×N1 . The indices
of the input tensor is then represented by g wavelength division multiplexing (WDM) channels
at N/g inputs of the tensor cores, where g = Nd/2 × . . . × N1. The light source is provided
by a g-wavelength comb laser and power splitters. The splitted WDM light is modulated by g-
wavelength optical modulator arrays, then multiplied by each of the photonic tensor core layers, and
finally detected by g-wavelength WDM microring add-drop filter and detector arrays. The photonic
tensor core layer k (k = d, . . . , 1, k ̸= d/2 + 1) consists of hk number of Rk−1Mk × NkRk MZI
meshes (tensor cores) and an optical passive cross-connect to switch indices of Mk and Nk−1. Here,
hk = Md . . .Mk+1Nk1 . . . Nd/2+1 for d/2<k<d or Md/2 . . .Mk+1Nk1 . . . N1 for k ≤ d/2. For
TT-core d/2+ 1, the optical passive cross-connect is replaced by a passive wavelength-space cross-
connect to switch the indices between the wavelength domain (Nd/2, . . . , N1) and the space domain
(Md, . . . ,Md/2+1).
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