

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LIGHTWEIGHT MSA DESIGN ADVANCES PROTEIN FOLDING FROM EVOLUTIONARY EMBEDDINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

Protein structure prediction often hinges on multiple sequence alignments (MSAs), which underperform on low-homology and orphan proteins. We introduce PLAME, a lightweight MSA design framework that leverages evolutionary embeddings from pretrained protein language models to generate MSAs that better support downstream folding. PLAME couples these embeddings with a conservation–diversity loss that balances agreement on conserved positions with coverage of plausible sequence variation. Beyond generation, we develop (i) an MSA selection strategy to filter high-quality candidates and (ii) a sequence-quality metric that is complementary to depth-based measures and predictive of folding gains. On AlphaFold2 low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements in structure accuracy (e.g., IDDT/TM-score), with consistent gains when paired with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case studies elucidate how MSA characteristics shape AlphaFold confidence and error modes. Finally, we show PLAME functions as a lightweight adapter, enabling ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like inference speed. PLAME thus provides a practical path to high-quality folding for proteins lacking strong evolutionary neighbors.

1 INTRODUCTION

Understanding complex and dynamic protein structures is fundamental to target identification, validation, and drug-target interaction studies in drug design (Baker & Sali, 2001; Khoury et al., 2014). Recent advances such as AlphaFold have revolutionized structural biology, achieving near-experimental accuracy across a broad spectrum of proteins and complexes (Jumper et al., 2021; Ahdriz et al., 2024a; Abramson et al., 2024). However, most state-of-the-art folding pipelines heavily rely on evolutionary information encoded within multiple sequence alignments (MSAs) (Lin et al., 2023; Abramson et al., 2024). Consequently, their accuracy is highly correlated with the quality and depth of available MSAs. This dependency creates failure modes in low-homology families and orphan proteins (those lacking or having few evolutionary neighbors) (Kwon et al., 2021; Webb & Sali, 2016), where even small amounts of noisy or misaligned sequences can dominate the signal.

Historically, two primary classes of techniques have been developed to address weak homology. Physics-based modeling searches for low-energy conformations in energy space through handcrafted or learned force fields, but is often

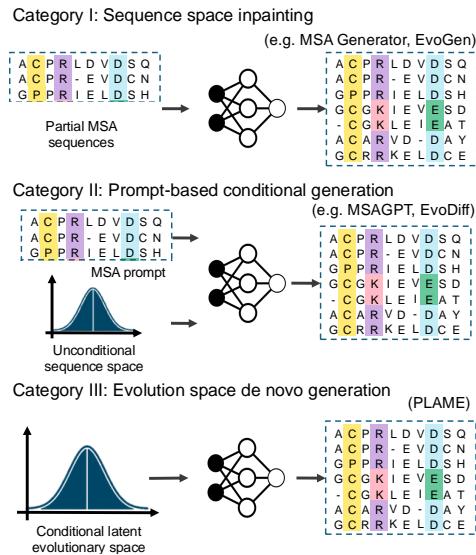


Figure 1: Taxonomy of MSA designers. Most prior work models MSAs through sequence inpainting or prompt-based generation, while PLAME directly generates MSAs *de novo* in evolutionary embedding space without prompts.

054 computationally intensive and limited by approximations in the energy landscape (Rohl et al., 2004;
 055 Cornell et al., 1995). Template-based methods leverage homology detection and profile-profile
 056 alignment to transfer structural priors from known folds to novel sequences (Hildebrand et al., 2009;
 057 Finn et al., 2011), but suffer degraded performance in the absence of evolutionary signals, making
 058 them unsuitable for orphan proteins. These limitations have motivated a shift toward data-driven
 059 strategies that focus on *improving the MSA itself* rather than solely the downstream folding networks.

060 Recent MSA design approaches can be broadly categorized into two paradigms (Figure 1). *Sequence-*
 061 *space inpainting* methods (e.g., MSA Generator, EvoGen) directly learn patterns in discrete sequence
 062 space to augment partial alignments, aiming to reconstruct evolutionary constraints from existing
 063 MSAs (Zhang et al., 2023; 2022). *Prompt-based conditional generation* approaches (e.g., MSAGPT,
 064 EvoDiff) utilize pre-trained models to synthesize additional sequences under MSA-style prompts
 065 (Chen et al., 2024; Alamdari et al., 2023). These methods can deepen alignments and improve folding
 066 accuracy when homologous sequences exist. An orthogonal line of research bypasses explicit MSA
 067 construction by building *implicit* evolutionary representations from single sequences through large
 068 protein language models (PLMs), as demonstrated by ESMFold (Lin et al., 2023). While MSA-
 069 free models avoid the homology bottleneck, they also forgo explicit template usage and enhanced
 070 homology signals, which may limit ultimate folding accuracy in challenging scenarios.

071 Despite existing progress, two critical gaps remain in structure prediction for low-homology proteins.
 072 **(i) Supervision bias:** Methods trained on existing MSA databases inherit biases toward well-
 073 studied families, limiting effectiveness for low-homology and orphan proteins. **(ii) Weak alignment-
 074 folding correlation:** Current approaches lack lightweight metrics linking MSA characteristics to
 075 folding outcomes. Sequence-based generative objectives may not align with factors that improve
 076 structural accuracy, while existing solutions like fine-tuning folding models (Chen et al., 2024) are
 077 computationally expensive and lack universal applicability.

078 In this study, we propose **PLAME**, motivated by the critical need to enhance structure prediction for
 079 low-homology proteins where traditional MSA-based approaches fail due to insufficient evolutionary
 080 signals. Our approach makes the following key contributions:

- 083 **1. Embedding-space MSA generation with conservation-diversity optimization:** Inspired
 084 by PLMs' success in MSA-related tasks (Hong et al., 2024; Wang et al., 2024; McWhite
 085 et al., 2023), we develop the first MSA designer that *generates auto-regressively within the*
 086 *evolutionary embedding space of pre-trained PLMs* rather than discrete sequences (Fig2).
 087 We further propose a novel conservation-diversity loss that captures conserved regions while
 088 extracting diverse variants from ESM embeddings with theoretical guarantee (AppendixA).
 089 The lightweight design enables PLAME to synthesize evolutionary neighborhoods even with
 090 scarce homologous sequences, achieving up to three orders of magnitude speedup while
 091 maintaining template compatibility (Table 4).
- 092 **2. HiFiAD: A principled MSA quality assessment framework:** To address the current weak
 093 alignment-folding correlation problem, we propose **High-Fidelity Appropriate Diversity**
 094 (**HiFiAD**), a lightweight algorithm for MSA filtering that simultaneously considers site-wise
 095 conservation and inter-MSA diversity. This provides the first model-agnostic, computa-
 096 tionally efficient criterion for selecting high-quality alignments that directly correlate with
 097 improved folding outcomes.
- 098 **3. Comprehensive validation across challenging scenarios:** On challenging low-homology
 099 and orphan datasets, PLAME consistently improves folding accuracy in both AlphaFold2
 100 and AlphaFold3, performing similarly to DHR (Hong et al., 2024), AI-based MSA searching
 101 approach. In ablation studies, HiFiAD demonstrates performance gains across all baselines
 102 (Table1). Moreover, case studies on general and *de novo* proteins further demonstrate
 103 PLAME's generalizability while providing novel perspectives on structure enhancement
 104 from an MSA design standpoint (Table8). PLAME offers new insights and possibilities for
 105 folding enhancement through principled MSA optimization.

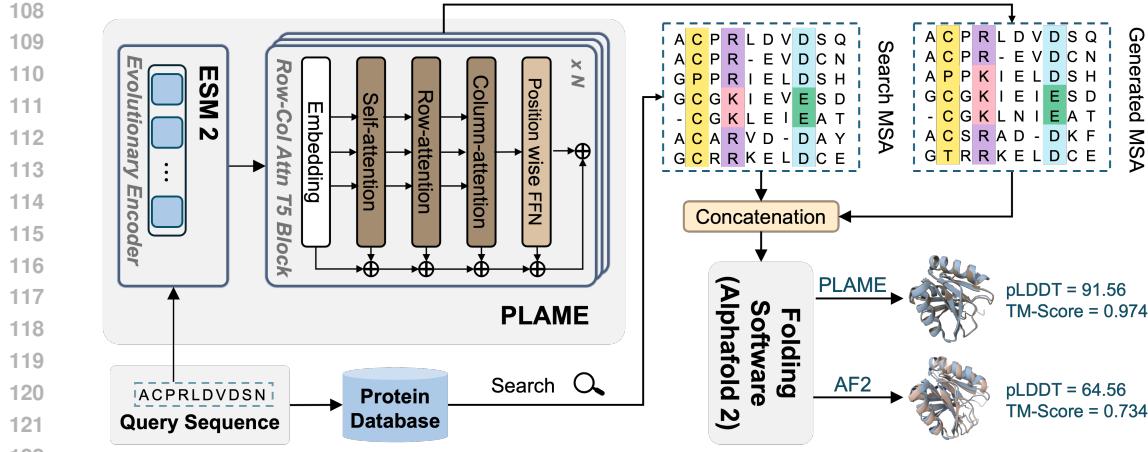


Figure 2: Overview of PLAME framework. PLAME captures ESM-2 evolutionary representations, generating MSAs for augmenting the original MSAs. The augmented MSAs serve as the homology template for folding softwares for folding enhancement. In each block of the T5-architecture, additional row-attention and col-attention are applied to capture co-evolutionary information.

2 METHOD

2.1 PROBLEM FORMULATION

Protein structure prediction relies heavily on high-quality MSAs to provide evolutionary information, but the accuracy of folding software \mathcal{F}_ω significantly drops when MSAs are sparse or insufficient. Given proteins $\mathbf{P} = \{s, x, M\}$, where $s \in \mathcal{S}$ are query sequences, $x \in \mathcal{X}$ are 3D structures, and $M = \{m_1, m_2, \dots, m_n\} \in \mathcal{M}$ are MSAs with each m_i as an aligned homologous sequence. The goal of MSA design models $p_\theta : \mathcal{M} \rightarrow \mathcal{M}$ is designing augmented MSAs M_{aug} that enhances evolutionary information to obtain more accurate structures x' using folding software \mathcal{F}_ω .

$$M' = p_\theta(M), \quad x' = \mathcal{F}_\omega(s, M_{\text{aug}}) \quad (1)$$

where the augmented MSAs are composed of original MSAs M and generated MSAs M' , denoted as $M_{\text{aug}} = \{M, M'\}$. The quality of the enhanced structures is evaluated using several metrics, including RMSD, TM-score, and pLDDT (See details in Section3). The key to high-fidelity MSA generation lies in constructing an informative evolutionary distribution z_{evo} , which serves as the foundation for generating augmented MSAs M_{aug} . Current methods utilize deep neural networks f_θ to learn hidden evolutionary distributions directly from existing MSAs.

$$z_{\text{evo}} = f_\theta(M) \quad (2)$$

However, relying solely on sequence-level information from MSAs fails to capture the complete evolutionary landscape, particularly when MSA coverage is sparse or incomplete. To overcome this limitation, we propose an evolutionary space based on evolutionary embeddings derived from pretrained protein language models (PLMs) g_ϕ .

$$z_{\text{evo}} = f_\theta(g_\phi(s)) \quad (3)$$

2.2 MODEL ARCHITECTURE

PLAME employs an encoder-decoder transformer architecture similar to MSA Transformer (Rao et al., 2021), with adjustments to the T5 block structure (Vaswani, 2017). The encoder and decoder incorporate additional row-wise and column-wise attention mechanisms to better capture evolutionary patterns in MSA data (detailed in Fig 2), which is similarly applied in MSAGenerator (Zhang et al., 2023) and MSAGPT (Chen et al., 2024). Additional mechanisms are introduced as follows.

Row Attention Row attention models inter-sequence dependencies by summarizing evolutionary relationships across MSA depth. Given input $H_{\text{enc}} \in \mathbb{R}^{B \times N \times L \times d}$, where B is batch size, N is MSA

162 depth, L is sequence length, and d is hidden dimension, we compute a global representation by
 163 depth-wise averaging:

$$164 \quad \mathbf{H}_r = \frac{1}{N} \sum_{i=1}^N \mathbf{H}_{\text{enc}}[i, :, :] \in \mathbb{R}^{B \times L \times d}, \quad (4)$$

167 where \mathbf{H}_r encodes the evolutionary space for cross-attention during decoding:

$$168 \quad \text{Row-Attn}(\mathbf{Q}_r, \mathbf{K}_r, \mathbf{V}_r) = \text{softmax} \left(\frac{\mathbf{Q}_r \mathbf{K}_r^\top}{\sqrt{h}} \right) \mathbf{V}_r. \quad (5)$$

171 **Column Attention** Column attention captures positional conservation patterns across MSA
 172 columns. We permute the decoder input $\mathbf{X}_{\text{dec}} \in \mathbb{R}^{B \times N \times L \times d}$ to $\tilde{\mathbf{X}}_{\text{dec}} \in \mathbb{R}^{B \times L \times N \times d}$ (swapping MSA
 173 depth N and length L axes) and compute cross-column attention with:

$$174 \quad \mathbf{Q}_c = \tilde{\mathbf{X}}_{\text{dec}} \mathbf{W}_q, \quad \mathbf{K}_c = \tilde{\mathbf{H}}_{\text{enc}} \mathbf{W}_k, \quad \mathbf{V}_c = \tilde{\mathbf{H}}_{\text{enc}} \mathbf{W}_v$$

$$175 \quad \text{Col-Att}(\mathbf{Q}_c, \mathbf{K}_c, \mathbf{V}_c) = \left(\text{softmax} \left(\frac{\mathbf{Q}_c \mathbf{K}_c^\top}{\sqrt{h}} \right) \mathbf{V}_c \right)^\top. \quad (6)$$

179 **Generation & Inference** ESM2 (Lin et al., 2023) encodes the query sequence \mathbf{s} into evolutionary
 180 embeddings $\mathbf{H}_{\text{input}}$. The encoder processes these through N modified T5 layers:

$$182 \quad \mathbf{H}_{\text{Enc}}^{(l)} = \mathbf{Enc}^{(l)}(\mathbf{H}^{(l-1)}), \quad l = 1, \dots, N, \quad \mathbf{H}^{(0)} = \mathbf{H}_r. \quad (7)$$

184 The decoder autoregressively generates tokens conditioned on encoder output and previous tokens:

$$185 \quad \mathbf{y}_t = \mathbf{Dec}(\mathbf{y}_{<t}, \mathbf{H}_{\text{Enc}}^{(N)}). \quad (8)$$

187 Output embeddings are passed through softmax to produce token probabilities.

189 2.3 CONSERVATION-DIVERSITY TRAINING LOSS

191 We propose a position-aware causal inference approach for diverse MSA generation, integrating a
 192 PSSM-Weighted Cross-Entropy (**PCE**) Loss and a DIversity REgularization (**DIRE**) Loss to balance
 193 focus on conserved regions with sampling diversity.

194 **PCE Loss** The PCE Loss emphasizes accurate predictions in conserved regions of the MSA, which
 195 are critical for maintaining protein structure and function. For a single sequence, it is defined as:

$$197 \quad \mathcal{L}_{\text{seq}} = - \sum_{l=1}^L w_l \cdot \log p(y_l \mid y_{<l}), \quad (9)$$

200 where L denotes sequence length, y_l denotes the amino acid at site l , and $p(y_l \mid y_{<l})$ denotes the
 201 predicted discrete probability distribution of y_l . The position-specific weights w_l are derived from the
 202 Position-Specific Scoring Matrix (PSSM) (Henikoff & Henikoff, 1994) and reflect the conservation
 203 level at each position. These weights are normalized to the range $[1 - \delta, 1 + \delta]$, where δ controls
 204 sensitivity to conservation. Specifically,

$$205 \quad w_l = 1 + \delta \cdot \frac{\text{freq}_l - \min(\text{freq})}{\max(\text{freq}) - \min(\text{freq})}. \quad (10)$$

208 where freq denotes the residue-frequency of 20 types of amino acids. During model training, we
 209 apply $\delta = 0.5$, assigning higher weights to conserved positions and lower weights to less conserved
 210 ones. For a batch of N sequences, the PCE loss averages over all sequences and positions:

$$212 \quad \mathcal{L}_{\text{PCE}} = - \frac{1}{N} \sum_{j=1}^N \sum_{l=1}^{L_j} w_l^{(j)} \cdot \log p(y_l^{(j)} \mid y_{<l}^{(j)}), \quad (11)$$

215 where L_j is the length of the j -th sequence, and $w_l^{(j)}$ is the weight for position l in sequence j . This
 loss emphasizes conserved regions while allowing flexibility in less conserved areas.

216 **DICE Loss** The DIRE loss promotes sequence diversity by maximizing amino acid entropy:
 217

$$218 \quad 219 \quad 220 \quad \mathcal{L}_{\text{DIRE}} = -\frac{1}{N} \sum_{j=1}^N \frac{1}{L_j} \sum_{l=1}^{L_j} H_l^{(j)}, \quad (12)$$

221 where $H_l^{(j)} = -\sum_{a \in \mathcal{A}} p(a | y_{<l}) \log p(a | y_{<l})$ is the entropy at position l in sequence j , and \mathcal{A} is
 222 the set of all amino acids.
 223

224 **Combined Loss Function** The combined loss function balances conservation and diversity:
 225

$$226 \quad 227 \quad 228 \quad \mathcal{L} = \alpha \cdot \mathcal{L}_{\text{PCE}} + (1 - \alpha) \cdot \mathcal{L}_{\text{DIRE}}, \quad (13)$$

229 with $\alpha = 0.9$ prioritizing conservation while maintaining variability. Our theoretical analysis in
 230 Appendix A demonstrates that PCE Loss enhances the model’s understanding of MSA profile, while
 231 DIRE Loss functions as a regularizer to prevent neglect of variable regions.
 232

233 2.4 MSA SELECTION METHOD – HiFiAD

234 Starting from MSAGPT’s (Chen et al., 2024) systematic study of selection strategies showing that
 235 naive similarity-based or trimming methods can hurt performance while diversity and structure-aware
 236 filtering help but often require expensive AF2 calls. Building on this, we designed HiFiAD as a
 237 lightweight, model-agnostic selection rule that combines BLOSUM-based fidelity with recovery-
 238 based diversity to avoid both over-conserved and overly noisy sequences.
 239

240 HiFiAD addresses two key challenges: (i) over-conserved sequences that distort evolutionary distributions
 241 when over-concatenated, and (ii) lack of systematic quality assessment for generated MSAs,
 242 by combining sequence similarity (fidelity) with diversity to maintain balanced evolutionary signals.
 243 Given a query sequence s and generated MSAs $M = \{m_1, m_2, \dots, m_n\}$, we define:
 244

$$245 \quad 246 \quad S_{\text{BLOSUM}}(m_i, s) = \sum_{j=1}^L B(s_j, m_{ij}), \quad \forall m_i \in M, \quad (14)$$

$$247 \quad 248 \quad R(m_i, s) = \frac{1}{L} \sum_{j=1}^L \mathbb{I}[s_j = m_{ij}], \quad \forall m_i \in M, \quad (15)$$

249 where B is the BLOSUM62 matrix, $R(m_i, s)$ is the recovery rate, and $\mathbb{I}[\cdot]$ is the indicator function.
 250 **Zero-shot selection** (Orphan proteins): Select top- k sequences by S_{BLOSUM} and sequences from
 251 top/bottom $k/2$ of recovery rate distribution, similar to the Static Diversity Strategy of MSAGPT.
 252 **Few-shot selection** (Low homology proteins): Limit augmented MSAs to $N_{\text{max}} = \max(16, 2N_{\text{orig}})$
 253 where N_{orig} is the original MSA count. This design prevents evolutionary information distortion
 254 caused by excessive generated MSAs.
 255

256 3 EXPERIMENT

257 **Baselines** To evaluate PLAME’s capability in generating high-fidelity and diverse MSAs, we
 258 compared it with several state-of-the-art AI-based MSA generation methods and AlphaFold2’s
 259 MSA pipeline (Jumper et al., 2021). The baselines include AF2 MSA (Johnson et al., 2010),
 260 and open-source methods including EvoDiff and MSAGPT (Chen et al., 2024; Alamdari et al.,
 261 2023). Additionally, we include an MSA-free method, ESMFold (Lin et al., 2023), to evaluate the
 262 complementary benefits of explicit MSA enhancement versus implicit evolutionary modeling.
 263

264 **Datasets** For the training dataset, we used the PDB and UniClust30 subsets from the OpenProteinSet
 265 as our data source (Ahdritz et al., 2024b). The pre-searched MSAs from OpenFold training were also
 266 included. We retained data with at least 64 MSA sequences. To avoid overlap with the test cases, we
 267 removed sequences with over 90% similarity by MMSeqs based on UniClust30 clustering results
 268 (Mirdita et al., 2017; Steinegger & Söding, 2017). This process yielded an initial dataset of 293,979
 269 samples, which were split into training and validation sets with a 90:10 ratio. For the test dataset,
 270 we adopted the curated test cases from MSAGPT (Chen et al., 2024), which consist of 200 protein
 271 samples from three benchmarks: CASP14&15, CAMEO (Haas et al., 2018), and PDB (Berman et al.,
 272 2000). Any > 90% redundancy between the test cases and training dataset was eliminated.
 273

270 **Evaluation Structural Assessment Metric** We evaluate structure quality with local and global
 271 metrics. Local metrics include pLDDT (per-residue confidence) and LDDT (local distance difference
 272 test). Global metrics comprise GDT (global distance test), TM-Score (template modeling score)
 273 (Zhang & Skolnick, 2005), pTM (predicted TM-score), and RMSD (root mean square deviation).

274 **AlphaFold2 Folding Modes** To comprehensively assess MSA augmentation effectiveness, we
 275 evaluate three AF2 configurations with increasing computational complexity:

- 277 • **Mode1**: pTM-3 model without templates (fast baseline) (Jumper et al., 2021)
- 278 • **Mode2**: Default 5 models without templates (standard setting) (Jumper et al., 2021)
- 279 • **Mode3**: Default 5 models with templates (full capability) (Jumper et al., 2021)
- 280 • **AF3**: Default 5 models with templates by AlphaFold3 (Abramson et al., 2024)

282 **Sequence Assessment Metric** We employ four sequence-based metrics to quantify alignment fidelity
 283 and diversity:

285 **1) Conservation Score** measures residue conservation at each position: $C_i = \text{Freq}_{\max}(i)/N$, where
 286 $\text{Freq}_{\max}(i)$ is the most frequent residue at position i and N is the sequence count. Higher scores
 287 indicate stronger evolutionary constraints.

288 **2) Gap Proportion** quantifies alignment completeness: $G_i = G(i)/N$, where $G(i)$ counts gaps at
 289 position i . Lower values indicate better alignment quality.

290 **3) Substitution Compatibility** evaluates evolutionary plausibility using BLOSUM62 scores S_{BLOSUM}
 291 (Eq. 14). Higher scores reflect greater biological relevance.

293 **4) Alignment Entropy** captures positional diversity via Shannon entropy:

$$294 \quad H_i = - \sum_{r \in \{R_i\}} p(r) \log_2 p(r) \quad (16)$$

297 where $\{R_i\}$ represents unique residues at position i and $p(r) = \text{count}(r)/N$. Higher entropy
 298 indicates greater diversity; lower entropy suggests functional conservation.

300 3.1 STRUCTURE BENCHMARK ASSESSMENT

302 We evaluated PLAME across three AF2 folding modes and AF3, using six structural metrics to assess
 303 MSA generation quality (See details in Table1).

305 3.1.1 GENERAL PERFORMANCE COMPARISON

306 PLAME demonstrates consistent superiority across both zero-shot and few-shot scenarios against
 307 traditional MSA searching, AI-based searching, and AI-based generative methods, establishing
 308 a new paradigm for MSA generation without traditional homology search. In zero-shot settings,
 309 where proteins lack existing MSAs, PLAME achieves remarkable improvements with pLDDT scores
 310 reaching 71.50 in Mode3, significantly outperforming competing methods like EvoDiff (64.39) and
 311 MSAGPT (68.39). Moreover, the performance gap becomes even more pronounced in challenging
 312 scenarios: while EvoDiff and MSAGPT often introduce detrimental noise when their generated
 313 sequences are concatenated with original AF2 MSAs, PLAME consistently enhances folding quality.
 314 Interestingly, few-shot scenarios reveal that existing methods can partially recover performance when
 315 guided by initial homologous sequences, yet PLAME maintains its edge by generating more coherent
 316 evolutionary profiles that complement rather than interfere with existing MSAs.

317 3.1.2 MODE-DEPENDENT PERFORMANCE PATTERNS

319 The progression from Mode1 through AF3 reveals intriguing insights about the relationship between
 320 model sophistication and MSA augmentation benefits. Mode1 and Mode2 demonstrate the strongest
 321 relative improvements from PLAME-generated MSAs, with pLDDT gains of up to 5 points across
 322 different baseline methods. As configurations advance to Mode3 with structural templates, the
 323 enhancement effects become more nuanced—while absolute performance continues to improve, the
 marginal gains from MSA augmentation diminish because template information already captures

324
 325 Table 1: Performance metrics across different modes and models. The best results in each folding
 326 mode are highlighted in bold. Zero and Few indicate zero-shot (proteins without MSAs) and few-shot
 327 cases (proteins with existing MSAs), respectively.

	pLDDT (↑)		GDT (↑)		TMscore (↑)		RMSD(↓)		LDDT (↑)		pTM (↑)	
	Zero	Few	Zero	Few	Zero	Few	Zero	Few	Zero	Few	Zero	Few
ESMFold	66.26	62.62	0.6	0.53	0.6	0.57	9.58	12.04	0.62	0.59	/	/
Mode1												
AF2 MSA	60.07	62.14	0.50	0.52	0.50	0.57	12.34	12.16	0.54	0.58	0.44	0.49
EvoDiff	58.68	61.83	0.46	0.50	0.46	0.54	13.81	12.95	0.50	0.56	0.40	0.48
MSAGPT	59.81	61.18	0.48	0.51	0.48	0.56	12.62	12.35	0.53	0.57	0.43	0.48
DHR	63.64	62.60	0.51	0.52	0.52	0.57	12.04	11.92	0.55	0.59	/	/
PLAME	66.54	66.08	0.53	0.54	0.53	0.58	11.48	12.14	0.57	0.60	0.49	0.52
Mode2												
AF2 MSA	66.56	66.32	0.51	0.55	0.52	0.60	12.06	11.84	0.55	0.61	/	/
EvoDiff	61.98	65.83	0.48	0.53	0.48	0.58	14.23	11.82	0.52	0.59	/	/
MSAGPT	64.88	65.96	0.51	0.56	0.51	0.60	12.60	11.90	0.55	0.61	/	/
PLAME	67.77	67.48	0.53	0.55	0.54	0.60	12.62	11.90	0.57	0.61	/	/
Mode3												
AF2 MSA	70.31	69.61	0.57	0.60	0.57	0.64	10.53	10.24	0.60	0.65	/	/
EvoDiff	64.39	68.54	0.51	0.57	0.51	0.61	13.20	10.81	0.54	0.62	/	/
MSAGPT	68.39	69.30	0.57	0.60	0.56	0.64	11.05	10.40	0.59	0.64	/	/
PLAME	71.50	70.48	0.58	0.59	0.58	0.64	11.41	10.62	0.60	0.64	/	/
AF3												
AF2 MSA	66.34	72.54	0.55	0.61	0.56	0.65	11.29	10.29	0.58	0.66	/	/
PLAME	70.23	72.00	0.55	0.62	0.55	0.65	11.23	10.26	0.59	0.65	/	/

353
 354 substantial evolutionary constraints. This phenomenon reflects a fundamental trade-off in modern
 355 protein folding: as models become more powerful and incorporate diverse information sources, the
 356 additional value of synthetic MSAs decreases, though PLAME’s high-quality generations continue to
 357 provide meaningful contributions. The AF3 results further validate this trend, showing that PLAME
 358 maintains its effectiveness even with more advanced folding architectures, suggesting that high-quality
 359 virtual MSAs remain valuable complements to cutting-edge structural prediction methods.

3.1.3 PLAME vs ESMFOLD: BRIDGING EFFICIENCY AND ACCURACY

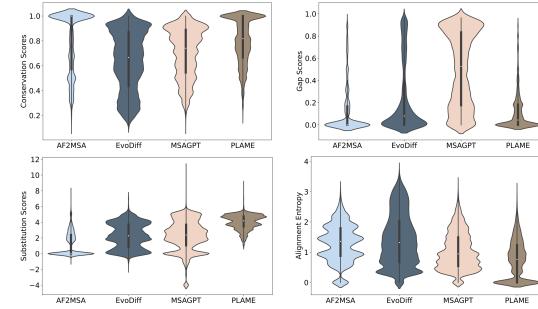
363 The comparison with ESMFold reveals PLAME’s unique position in the protein folding landscape,
 364 offering a compelling alternative that combines computational efficiency with enhanced accuracy.
 365 While ESMFold achieves reasonable baseline performance (pLDDT of 66.26), PLAME progressively
 366 widens this gap as more sophisticated folding configurations are employed. In basic Mode1, PLAME
 367 shows modest improvements, but the advantage becomes substantial in Mode3 where PLAME
 368 reaches 71.50 pLDDT compared to ESMFold’s unchanged 66.26. This trend suggests that PLAME-
 369 generated MSAs provide increasingly valuable evolutionary context that more advanced folding
 370 models can effectively exploit. The consistent RMSD improvements across all modes further validate
 371 that PLAME’s virtual MSAs contribute meaningful structural constraints, enabling users to achieve
 372 AF2-level accuracy while maintaining the computational advantages of MSA-free approaches.

3.2 SEQUENCE QUALITY ASSESSMENT

374 To evaluate generated MSA quality beyond structural perspectives, we conducted sequence-level
 375 analysis by fidelity and diversity metrics. This provides an additional critical gap—establishing
 376 criteria for understanding generated MSA quality. Figure 3 presents our comparative analysis.

378 **PLAME achieves superior evolutionary fidelity by closely mimicking the distributional char-
379 acteristics of natural MSAs across all key metrics.** The results reveal PLAME’s distribu-
380 tions align most closely with AF2 MSAs in Conservation Score, Gap Proportion, and Sub-
381 stitution Compatibility, demonstrating its ability to capture authentic evolutionary constraints.
382 This fidelity advantage manifests in higher Conservation Scores and Substitution Compati-
383 bility values, indicating that PLAME-generated sequences preserve functionally critical residues
384 while incorporating biologically plausible substitutions. The significantly lower Gap Proportion
385 validates PLAME’s approach, as the evolutionary latent space from ESM-2 provides richer
386 homology information enabling more complete alignments.
387

388 **PLAME maintains diversity levels comparable to natural AF2 MSAs, supporting our
389 hypothesis that excessive diversity introduces detrimental noise.** Rather than maximizing di-
390 versity like EvoDiff, this measured approach aligns with our selection strategy principles,
391 where balanced information enrichment proves more effective than naive sequence proliferation (Section 2.4). The findings suggest successful
392 MSA generation requires maintaining the delicate balance between providing sufficient homologous
393 information and avoiding noise from unconstrained sequence generation, positioning PLAME as a
394 method that respects fundamental biological constraints.
395



396 Figure 3: Comparison of sequence-based metrics
397 for AF2 MSAs and MSAs generated by EvoDiff,
398 MSAGPT, and PLAME.

400 Table 2: Ablation study of HiFiAD on PLAME and other baselines.

	pLDDT (\uparrow)		GDT(\uparrow)		TMscore (\uparrow)		RMSD (\downarrow)		LDDT (\uparrow)		pTM (\uparrow)	
	Zero	Few	Zero	Few	Zero	Few	Zero	Few	Zero	Few	Zero	Few
Random-16	63.61	62.63	0.52	0.51	0.52	0.56	12.01	12.67	0.55	0.58	0.46	0.49
Blosum-8	61.04	62.71	0.5	0.52	0.51	0.57	12.53	12.69	0.55	0.58	0.45	0.50
Blosum-32	62.97	62.40	0.50	0.50	0.51	0.55	12.28	12.84	0.55	0.57	0.45	0.48
Top-Rec-16	62.04	62.93	0.51	0.51	0.51	0.55	12.15	12.48	0.55	0.57	0.45	0.49
Top-down-Rec-16	63.43	63.10	0.52	0.52	0.51	0.57	11.97	12.15	0.55	0.58	0.46	0.49
EvoDiff-HiFiAD	58.24	60.89	0.46	0.49	0.46	0.54	13.74	12.39	0.51	0.56	/	/
MSAGPT-HiFiAD	60.16	62.63	0.48	0.52	0.48	0.57	12.54	12.18	0.53	0.59	/	/
DHR-HiFiAD	66.01	66.08	0.53	0.55	0.53	0.60	11.48	12.14	0.57	0.60	/	/
PLAME-HiFiAD	66.54	66.08	0.53	0.54	0.53	0.58	11.48	12.14	0.57	0.60	0.49	0.52

419 3.3 ABLATION STUDIES

420 To validate our HiFiAD selection strategy, we conducted ablation experiments across different
421 selection approaches and baseline methods. Table 2 compares various selection strategies and
422 evaluates HiFiAD’s effectiveness on other generative methods.

423 **HiFiAD consistently outperforms alternative selection strategies by optimally balancing fidelity
424 and diversity constraints.** Compared to similarity-based methods (Top/Down-Rec) and substitution
425 matrix approaches (BLOSUM-32), HiFiAD achieves superior performance with pLDDT scores of
426 66.54 in zero-shot settings, demonstrating the importance of jointly considering evolutionary fidelity
427 and controlled diversity. The strategy effectively identifies high-fidelity sequences while maintaining
428 sufficient diversity to prevent overly deterministic conservation patterns. HiFiAD automatically
429 adapts to varying MSA quality levels and shot configurations, making it robust without requiring
430 manual parameter tuning.

When applied to competing baselines, HiFiAD consistently improves performance: EvoDiff benefits from a 58.24 to 60.89 pLDDT improvement, MSAGPT gains from 60.16 to 62.63, and DHR advances from 66.01 to 66.08. These improvements demonstrate that HiFiAD addresses fundamental challenges in MSA selection across all generative approaches. The consistent gains across different generation paradigms—from diffusion-based (EvoDiff) to autoregressive (MSAGPT) and retrieval-based (DHR) methods—validate that the fidelity-diversity trade-off represents a universal principle in MSA augmentation. The improvement margins correlate with baseline method quality, suggesting HiFiAD provides proportional benefits while maintaining relative performance hierarchy.

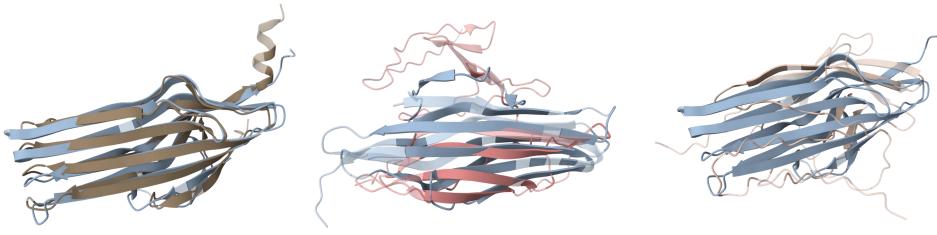
Also, we conducted ablation study on MSA length (See Table3). PLAME shows overall improvement on all length ranges, where performs the largest improvement on 100-300 range. We believe this is because the MSA training data are mainly concentrated in this range (Chen et al., 2024).

Table 3: Ablation on protein length.

	Length Range	pLDDT(\uparrow)	GDT(\uparrow)	TMscore(\uparrow)	RMSD(\downarrow)	LDdT(\uparrow)
AF2 MSA	<100	71.03	0.64	0.52	7.77	0.61
AF2 MSA	100-300	59.50	0.49	0.53	12.46	0.54
AF2 MSA	>300	56.29	0.43	0.51	15.67	0.53
PLAME	<100	74.12	0.63	0.52	7.49	0.61
PLAME	100-300	65.55	0.53	0.58	11.58	0.58
PLAME	>300	58.31	0.45	0.53	16.16	0.54

Furthermore, we provide additional case studies on folding enhancement. More case studies on orphan *de novo* proteins (SectionE.5), protein failure cases (SectionE.4), selected protein cases with aligned structures (SectionE) can be found in the appendix.

pdb_id: 80kh_B



PLAME

MSAGPT

AF2MSA

pLDDT: 69.67

pLDDT: 32.02

pLDDT: 28.67

TMscore: 0.812

TMscore: 0.205

TMscore: 0.198

RMSD: 2.774

RMSD: 19.49

RMSD: 21.09

Figure 4: Case study of folding enhancement of PLAME, MSAGPT, and AF2 MSA on 80kh_B.

4 CONCLUSION

In this study, we introduce PLAME, the first model to leverage evolutionary embeddings for MSA generation and apply it to protein folding enhancement. Our approach bridges the gap between single-sequence inference and MSA-based methods, effectively improving protein folding performance. Evaluation results demonstrate that PLAME-generated MSAs outperform existing methods in both conservation and diversity metrics, significantly enhancing structural prediction accuracy across different protein families. PLAME serves as both an MSA enhancer and an efficient AlphaFold adapter without requiring time-consuming MSA searches, providing a fast, accurate, and scalable protein structure prediction solution. Additionally, our proposed quality metrics and experiments offer new insights into the relationship between MSA features and folding performance.

486 REFERENCES
487

488 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
489 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
490 prediction of biomolecular interactions with alphafold 3. *Nature*, pp. 1–3, 2024.

491 Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William Gerecke,
492 Timothy J O'Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, et al. Openfold: Retraining
493 alphafold2 yields new insights into its learning mechanisms and capacity for generalization. *Nature
494 Methods*, pp. 1–11, 2024a.

495 Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Lukas Jarosch, Dan Berenberg, Ian Fisk, Andrew
496 Watkins, Stephen Ra, Richard Bonneau, and Mohammed AlQuraishi. Openproteinset: Training
497 data for structural biology at scale. *Advances in Neural Information Processing Systems*, 36, 2024b.

498 Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholtz, Bob Strome, Alan Moses,
499 Alex Xijie Lu, Nicolo Fusi, Ava Pardis Amini, and Kevin K Yang. Protein generation with
500 evolutionary diffusion: sequence is all you need. *BioRxiv*, pp. 2023–09, 2023.

501 David Baker and Andrej Sali. Protein structure prediction and structural genomics. *Science*, 294
502 (5540):93–96, 2001.

503 Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
504 Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic acids research*, 28(1):
505 235–242, 2000.

506 Bernard R Brooks, Charles L Brooks, Alexander D Mackerell, Lennart Nilsson, Robert J Petrella,
507 Benoit Roux, Young Won, Georgios Archontis, Claus Bartels, Stefan Boresch, et al. Charmm: the
508 biomolecular simulation program. *Journal of Computational Chemistry*, 30(10):1545–1614, 2009.

509 Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, and Le Song. Msagpt: Neural prompting
510 protein structure prediction via msa generative pre-training. *arXiv preprint arXiv:2406.05347*,
511 2024.

512 William D Cornell, Piotr Cieplak, Christopher I Bayly, Ian R Gould, Kenneth M Merz, David M
513 Ferguson, David C Spellmeyer, Thomas Fox, James W Caldwell, and Peter A Kollman. A second
514 generation force field for the simulation of proteins, nucleic acids, and organic molecules. *Journal
515 of the American Chemical Society*, 117(19):5179–5197, 1995.

516 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
517 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–based
518 protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.

519 Robert D Finn, Jody Clements, and Sean R Eddy. Hmmer web server: interactive sequence similarity
520 searching. *Nucleic acids research*, 39(suppl_2):W29–W37, 2011.

521 Peter L Freddolino, Christopher B Harrison, Yanxin Liu, and Klaus Schulten. Challenges in protein-
522 folding simulations. *Nature physics*, 6(10):751–758, 2010.

523 Jürgen Haas, Alessandro Barbato, Dario Behringer, Gabriel Studer, Steven Roth, Martino Bertoni,
524 Khaled Mostaguir, Rafal Gumienny, and Torsten Schwede. Continuous automated model evalua-
525 tion (cameo) complementing the critical assessment of structure prediction in casp12. *Proteins:
526 Structure, Function, and Bioinformatics*, 86:387–398, 2018.

527 Steven Henikoff and Jorja G Henikoff. Position-based sequence weights. *Journal of molecular
528 biology*, 243(4):574–578, 1994.

529 Andrea Hildebrand, Michael Remmert, Andreas Biegert, and Johannes Söding. Fast and accurate
530 automatic structure prediction with hhpred. *Proteins: Structure, Function, and Bioinformatics*, 77
531 (S9):128–132, 2009.

532 Liang Hong, Zhihang Hu, Siqi Sun, Xiangru Tang, Jiuming Wang, Qingxiong Tan, Liangzhen Zheng,
533 Sheng Wang, Sheng Xu, Irwin King, et al. Fast, sensitive detection of protein homologs using deep
534 dense retrieval. *Nature Biotechnology*, pp. 1–13, 2024.

540 John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
 541 Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
 542 space with a programmable generative model. *Nature*, 623(7989):1070–1078, 2023.

543

544 L Steven Johnson, Sean R Eddy, and Elon Portugaly. Hidden markov model speed heuristic and
 545 iterative hmm search procedure. *BMC bioinformatics*, 11:1–8, 2010.

546

547 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 548 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 549 protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.

550

551 Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of biomolecules. *Nature
 551 structural biology*, 9(9):646–652, 2002.

552

553 George A Khoury, James Smadbeck, Chris A Kieslich, and Christodoulos A Floudas. Protein folding
 554 and de novo protein design for biotechnological applications. *Trends in biotechnology*, 32(2):
 555 99–109, 2014.

556

557 Sohee Kwon, Jonghun Won, Andriy Kryshtafovych, and Chaok Seok. Assessment of protein model
 558 structure accuracy estimation in casp14: Old and new challenges. *Proteins: Structure, Function,
 559 and Bioinformatics*, 89(12):1940–1948, 2021.

560

561 Sewon Lee, Gyuri Kim, Eli Levy Karin, Milot Mirdita, Sukhwan Park, Rayan Chikhi, Artem Babaian,
 562 Andriy Kryshtafovych, and Martin Steinegger. Petabase-scale homology search for structure
 563 prediction. *Cold Spring Harbor perspectives in biology*, 16(5):a041465, 2024.

564

565 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 566 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 567 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

568

569 Claire D McWhite, Isabel Armour-Garb, and Mona Singh. Leveraging protein language models for
 570 accurate multiple sequence alignments. *Genome Research*, 33(7):1145–1153, 2023.

571

572 Milot Mirdita, Lars Von Den Driesch, Clovis Galiez, Maria J Martin, Johannes Söding, and Martin
 573 Steinegger. Uniclust databases of clustered and deeply annotated protein sequences and alignments.
 574 *Nucleic acids research*, 45(D1):D170–D176, 2017.

575

576 Milot Mirdita, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Martin
 577 Steinegger. Colabfold: making protein folding accessible to all. *Nature methods*, 19(6):679–682,
 578 2022.

579

580 Vijay S. Pande, Kyle Beauchamp, and Gregory R. Bowman. Everything you wanted to know about
 581 markov state models but were afraid to ask. *Methods*, 52(1):99–105, 2010.

582

583 Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
 584 and Alexander Rives. Msa transformer. In *International Conference on Machine Learning*, pp.
 585 8844–8856. PMLR, 2021.

586

587 Carol A Rohl, Charlie EM Strauss, Kira MS Misura, and David Baker. Protein structure prediction
 588 using rosetta. *Methods in Enzymology*, 383:66–93, 2004.

589

590 Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
 591 the analysis of massive data sets. *Nature biotechnology*, 35(11):1026–1028, 2017.

592

593 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

594

595 Xiaoyu Wang, Heqian Zhang, Jiaquan Huang, and Zhiwei Qin. Maape: A modular approach to
 596 evolutionary analysis of protein embeddings. *bioRxiv*, pp. 2024–11, 2024.

597

598 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
 599 Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
 600 structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

594 Benjamin Webb and Andrej Sali. Comparative protein structure modeling using modeller. *Current*
595 *protocols in bioinformatics*, 54(1):5–6, 2016.
596

597 Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan Wu,
598 Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary sequence.
599 *BioRxiv*, pp. 2022–07, 2022.

600 Jun Zhang, Sirui Liu, Mengyun Chen, Haotian Chu, Min Wang, Zidong Wang, Jialiang Yu, Ningxi Ni,
601 Fan Yu, Diqing Chen, et al. Few-shot learning of accurate folding landscape for protein structure
602 prediction. *arXiv preprint arXiv:2208.09652*, 2022.

603

604 Le Zhang, Jiayang Chen, Tao Shen, Yu Li, and Siqi Sun. Enhancing the protein tertiary structure
605 prediction by multiple sequence alignment generation. *arXiv preprint arXiv:2306.01824*, 2023.

606

607 Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
608 tm-score. *Nucleic acids research*, 33(7):2302–2309, 2005.

609

610 Wei Zheng, Qiqige Wuyun, Yang Li, Chengxin Zhang, P Lydia Freddolino, and Yang Zhang.
611 Improving deep learning protein monomer and complex structure prediction using deepmsa2 with
612 huge metagenomics data. *Nature Methods*, 21(2):279–289, 2024.

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A PROOF OF THEOREM**
 649

650 We provide additional statements to demonstrate the superiority of the Conservation-Diversity
 651 Training Loss. Firstly, we demonstrate that the PCE Loss as a conservation-aware weighted loss by
 652 position in the perspective of MSA profiles.

653 **Lemma 1.** *Let $P(l, a)$ be the empirical amino-acid distribution for residue $a \in \mathcal{A}$, and let $Q_\theta(l, a)$
 654 denote the model distribution at the residue (i.e. the conditional probability $p_\theta(a | y_{<l})$ after taking
 655 expectation over prefixes). Assign each column a weight $w_l \in [1 - \delta, 1 + \delta]$ obtained from its
 656 conservation score. Then PCE loss directs optimization preferentially toward conserved positions by
 657 minimizing a weighted KL divergence and scaling gradient magnitudes in proportion to w_l .*
 658

659 *Proof.* For a sufficiently large set of N homologous sequences sampled from P , the expected
 660 cross-entropy loss is

661
$$\mathbb{E}[\mathcal{L}_{\text{CE}}] = - \sum_{l=1}^L \sum_{a \in \mathcal{A}} P(l, a) \log Q_\theta(l, a). \quad (17)$$

664 Re-expressing each column term as $-\sum_a P \log Q = H(P(l, \cdot)) + D_{\text{KL}}(P(l, \cdot) \| Q_\theta(l, \cdot))$, we obtain
 665

666
$$\mathbb{E}[\mathcal{L}_{\text{CE}}] = \sum_{l=1}^L D_{\text{KL}}(P(l, \cdot) \| Q_\theta(l, \cdot)) + \sum_{l=1}^L H(P(l, \cdot)). \quad (18)$$

669 For the PCE loss,

671
$$\mathbb{E}[\mathcal{L}_{\text{PCE}}] = - \sum_{l=1}^L w_l \sum_{a \in \mathcal{A}} P(l, a) \log Q_\theta(l, a), \quad (19)$$

674 which can analogously be rewritten as the position-wise weighted KL

676
$$\mathbb{E}[\mathcal{L}_{\text{PCE}}] = \sum_{l=1}^L w_l D_{\text{KL}}(P(l, \cdot) \| Q_\theta(l, \cdot)) + \sum_{l=1}^L w_l H(P(l, \cdot)). \quad (20)$$

679 Let θ denote the model parameters. The gradient of the CE loss for column l is
 680

681
$$\frac{\partial \mathcal{L}_{\text{PCE},l}}{\partial \theta} = - \sum_{a \in \mathcal{A}} P(l, a) \frac{1}{Q_\theta(l, a)} \frac{\partial Q_\theta(l, a)}{\partial \theta}. \quad (21)$$

684 For PCE the gradient is simply scaled by w_l :

685
$$\frac{\partial \mathcal{L}_{\text{PCE},l}}{\partial \theta} = -w_l \sum_{a \in \mathcal{A}} P(l, a) \frac{1}{Q_\theta(l, a)} \frac{\partial Q_\theta(l, a)}{\partial \theta} = w_l \frac{\partial \mathcal{L}_{\text{CE},l}}{\partial \theta}. \quad (22)$$

688 Consequently, in highly conserved columns the gradient magnitude is amplified by $1 + \delta$, whereas in
 689 variable columns ($w_l \approx 1 - \delta$) it is attenuated, focusing optimization effort on conserved regions. \square
 690

692 Based on the understanding of the PCE Loss, we then demonstrate that PCE Loss is expected to
 693 capture evolutionary information (MSA profile) with less error-measured by KL-Divergence.

694 **Theorem 1.** *Let $P(l, a)$ be the true amino-acid distribution in column l ($l = 1, \dots, L$) of an MSA
 695 and let $Q_\theta(l, a)$ be the distribution produced by a parametrised generative model Q_θ . Denote the
 696 column-wise Kullback-Leibler divergence by*

698
$$D_{\text{KL}}(P(l, \cdot) \| Q_\theta(l, \cdot)) = \sum_{a \in \mathcal{A}} P(l, a) \log \frac{P(l, a)}{Q_\theta(l, a)}. \quad (23)$$

700 Let

701
$$\theta_{\text{CE}}^* = \arg \min_{\theta} \mathcal{L}_{\text{CE}}(\theta), \quad \theta_{\text{PCE}}^* = \arg \min_{\theta} \mathcal{L}_{\text{PCE}}(\theta). \quad (24)$$

702 Define the average profile KL divergence
 703

704
$$D_{KL}^{avg}(\theta) := \frac{1}{L} \sum_{l=1}^L D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot)). \quad (25)$$

 705
 706

707 Under the assumption that both optimization problems are solved to global optimality, the model
 708 trained with PCE Loss captures the MSA profile with less divergence D_{KL}^{avg} :
 709

710
$$D_{KL}^{avg}(\theta_{PCE}^*) \leq D_{KL}^{avg}(\theta_{CE}^*) \quad (26)$$

 711

712 Proof. Rewrite two losses in the form of KL-Divergence $\sum_a P \log Q = H(P(l, \cdot)) +$
 713 $D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot))$, we have:
 714

715
$$\mathcal{L}_{CE}(\theta) = C_0 + \sum_{l=1}^L D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot)), \quad (27)$$

 716
 717
$$\mathcal{L}_{PCE}(\theta) = C_w + \sum_{l=1}^L w_l D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot)),$$

 718
 719

720 where $C_0 = \sum_l H(P(l, \cdot))$ and $C_w = \sum_l w_l H(P(l, \cdot))$ are constants independent of θ . Hence
 721 minimizing \mathcal{L}_{PCE} is equivalent to minimizing the *weighted* KL
 722

723
$$D_w(\theta) := \sum_{l=1}^L w_l D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot)), \quad \theta_{PCE}^* = \arg \min_{\theta} D_w(\theta). \quad (28)$$

 724
 725

726 Then, since every w_l is bounded, we can establish the relations:
 727

728
$$(1 - \delta) \sum_{l=1}^L D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot)) \leq D_w(\theta) \leq (1 + \delta) \sum_{l=1}^L D_{KL}(P(l, \cdot) \| Q_\theta(l, \cdot)). \quad (29)$$

 729
 730

731 Dividing by L gives:
 732

733
$$(1 - \delta) D_{KL}^{avg}(\theta) \leq \frac{D_w(\theta)}{L} \leq (1 + \delta) D_{KL}^{avg}(\theta). \quad (*)$$

 734

735 Based on the fact that θ_{PCE}^* minimizes D_w , denote $\Delta_w := D_w(\theta_{CE}^*) - D_w(\theta_{PCE}^*) \geq 0$. By applying
 736 $(*)$ to both optimal parameters and subtracting, we obtain:
 737

738
$$(1 - \delta) \left[D_{KL}^{avg}(\theta_{CE}^*) - D_{KL}^{avg}(\theta_{PCE}^*) \right] \leq \frac{\Delta_w}{L}. \quad (30)$$

 739

740 Since $\Delta_w \geq 0$ and $1 - \delta > 0$; it is strictly positive whenever $\Delta_w > 0$, Therefore,
 741

742
$$D_{KL}^{avg}(\theta_{PCE}^*) \leq D_{KL}^{avg}(\theta_{CE}^*), \quad (31)$$

 743

744 which completes the proof. \square

745 A natural challenge emerges when applying the PCE Loss—the model tends to accurately capture the
 746 distribution of conserved regions while neglecting the distribution of variable regions. To address this
 747 issue, we demonstrate that the DIRE Loss effectively enhance the modeling in the variable regions.

748 **Theorem 2.** For $l = 1, \dots, L$ let $P(l, a)$ denote the empirical amino-acid distribution and $Q_\theta(l, a)$ any model. When each amino acid site is optimized independently, the minimizer is

749
$$Q_\alpha^*(l, a) = \frac{P(l, a)^{\tau_l}}{\sum_{b \in \mathcal{A}} P(l, b)^{\tau_l}}, \quad \tau_l = \frac{\alpha w_l}{\alpha w_l + (1 - \alpha)} \in (0, 1). \quad (32)$$

 750
 751

752 Moreover,

753
$$H(P(l, \cdot)) \leq H(Q_\alpha^*(l, \cdot)) \leq \log |\mathcal{A}|, \quad (33)$$

 754

755 with the entropy increase largest when w_l is small (variable regions). Thus \mathcal{L}_{DIRE} counter-acts the
 756 entropy suppression of \mathcal{L}_{PCE} and serves as a principled regularizer on variable regions.

756 *Proof.* Since the combined loss \mathcal{L}_α sums over amino acid positions, we may analyze a single site
 757 independently, denoting $P(a) = P(l, a)$, $Q(a) = Q(l, a)$ and $w = w_l$. For each site we minimize,
 758 we have

$$759 \quad 760 \quad 761 \quad F(Q) = \alpha w \sum_a P(a) \log \frac{P(a)}{Q(a)} + (1 - \alpha) \sum_a Q(a) \log Q(a), \quad (34)$$

762 subject to the normalization constraint $\sum_a Q(a) = 1$.

763 Introducing a Lagrange multiplier λ and setting the derivative with respect to $Q(a)$ to zero yields

$$764 \quad 765 \quad 766 \quad -\frac{\alpha w P(a)}{Q(a)} + (1 - \alpha)(1 + \log Q(a)) + \lambda = 0. \quad (35)$$

767 Solving this equation reveals a "temperature-like" solution based on τ :

$$768 \quad 769 \quad 770 \quad Q(a) \propto P(a)^\tau, \quad \tau = \frac{\alpha w}{\alpha w + (1 - \alpha)} \in (0, 1), \quad (36)$$

772 which is exactly the optima $Q_\alpha^*(l, \cdot)$ mentioned earlier.

773 Since $0 < \tau < 1$, this transformation always increases entropy unless P is already uniform:

$$774 \quad 775 \quad H(P(l, \cdot)) \leq H(Q_\alpha^*(l, \cdot)) \leq \log |\mathcal{A}|. \quad (37)$$

776 The entropy gain is larger when w is small (in the variable regions). Consequently, the $(1 - \alpha)$, $\mathcal{L}_{\text{DIRE}}$
 777 term counteracts the over-confidence induced by \mathcal{L}_{PCE} in variable regions, serving as an adaptive
 778 entropy-based regularizer. \square

781 B TRAINING AND SAMPLING DETAILS

782 **Training Details** We trained our model based on a Transformer T5 architecture, incorporating axial
 783 attention and task-specific modifications to enhance performance. The model consists of 12 encoder
 784 layers and 12 decoder layers, with a hidden size of 1024, 12 attention heads, and a feedforward
 785 dimension of 2048. The feedforward projection employs a gated-GELU activation function. During
 786 training, we employed the AdamW optimizer with a learning rate of 5e-5, a weight decay of 1e-5,
 787 and a polynomial decay scheduler with a 1% warmup ratio. Training was conducted on four NVIDIA
 788 A40 GPUs for up to 200,000 steps, with a batch size of 4 per device for both training and evaluation.

789 **Sampling details** The sampling process was configured with the following parameters: we generate
 790 16 MSAs for 4 trials per generation. The sampling used a repetition penalty of 1.0, a temperature of
 791 1.0, and top-p sampling with a threshold of 0.95. Beam search was performed with 4 beams and 1
 792 beam group. Sampling was executed on an A40 GPU.

793 C RELATED WORKS

794 **Protein Structure Prediction** Protein structure prediction methods fall into three main categories:
 795 physics-based, homology-based, and deep learning approaches. Physics-based methods, such as
 796 AMBER and CHARMM, use molecular physics and energy optimization to simulate protein folding
 797 (Cornell et al., 1995; Brooks et al., 2009). While offering detailed folding insights, they are computationally
 798 expensive and sensitive to initial conditions, often yielding suboptimal results (Karplus &
 799 McCammon, 2002; Freddolino et al., 2010; Pande et al., 2010). Homology modeling tools, like
 800 Rosetta and HHpred, use MSAs and evolutionary data to predict structures by refining templates from
 801 known experimental structures (Rohl et al., 2004; Hildebrand et al., 2009). These methods perform
 802 well with suitable templates but struggle with orphan proteins and low-homology families (Webb &
 803 Sali, 2016; Baker & Sali, 2001). Deep learning-based methods, such as AlphaFold2 and OmegaFold,
 804 use advanced neural architectures and protein templates to achieve near-experimental accuracy with
 805 greater speed and scalability (Jumper et al., 2021; Abramson et al., 2024; Wu et al., 2022). Despite
 806 their success, they still depend on high-quality MSAs and struggle with low-homology proteins.

810 **AlphaFold-based Enhancement** Building on AlphaFold’s success, researchers have developed
 811 methods to refine specific modules, aiming to improve accuracy or efficiency. These advancements
 812 can be grouped into three main categories. The first category focuses on homology expansion
 813 techniques, such as MMSeq2 and DeepMSA2, which expand the evolutionary search space to
 814 enhance prediction accuracy. However, these methods often slow down inference despite their modest
 815 performance gains (Johnson et al., 2010; Steinberger & Söding, 2017; Zheng et al., 2024; Lee et al.,
 816 2024). The second category targets search acceleration, with methods like ColabFold and ESMFold
 817 bypassing the MSA search process to enhance computational efficiency. However, this speedup often
 818 results in incomplete evolutionary data, potentially reducing prediction accuracy (Lin et al., 2023;
 819 Mirdita et al., 2022). The third category leverages generative models to capture protein homology
 820 and augment input data, especially for orphan proteins and low-homology families. While promising
 821 in specific scenarios, these models struggle with extremely limited evolutionary signals, and their
 822 artificial sequences often deviate from traditional MSA distributions, limiting broader applicability
 823 (Alamdar et al., 2023; Zhang et al., 2022; 2023; Chen et al., 2024).
 824

825 D COMPARISON ON INFERENCE SPEED AND MEMORY USAGE

827 To further demonstrate PLAME’s efficiency, we calculated the inference time and memory cost
 828 of each method. We used ENZYME 1.2.1.50 (EC Number) with length 488 as the test case. The
 829 results show that PLAME achieved the fastest speed among all AI-based methods while consuming
 830 only 4.5GB of memory. The processing speed is comparable to traditional methods like MMSeq2
 831 and AI-based retrieval methods like DHR. Compared to retrieval-based methods, PLAME does not
 832 require downloading or building databases in advance, nor does it need preprocessing steps. This
 833 makes it more lightweight and efficient for deployment.

835 Method	836 Time per MSA (s)	836 GPU Memory (Gb)
837 PLAME	837 0.10	837 4.5
838 DHR	838 0.16 + 358.61 (Alignment)	838 1.9
839 MMSeq2	839 0.48	839 0.0
840 MSAGPT	840 62.46	840 41.6
841 EvoDiff	841 478.24	841 4.0

842 Table 4: Comparison on inference speed and memory.

844 E EXTENSIVE CASE STUDIES

846 E.1 CASE STUDY ON SUCCESSFUL DESIGNS

850 To further explore the key pattern of the MSA augmentation, we provide a series of sequence and
 851 structure visualization in Appendix H. We select representative cases collected from different datasets
 852 and range from different lengths to comprehensive evaluate the samples.

853 Among these cases, we can generally observe that most generated MSAs maintain high
 854 similarity with the query sequence. Furthermore, the generated MSAs provide good enhancement
 855 at the originally conserved sites. This indicates that protein language models can still retain some
 856 evolutionary information even for proteins with low homology, although the diversity they can provide
 857 is more limited due to homology constraints.

858 Additionally, we identified several patterns in the sampled MSAs that clearly deviate from the original
 859 distribution, such as consecutive gaps (in 8ehb_F), repeated HHHHHH sequences (in 8okw_B),
 860 and repeated SSSSSSSS (in 7xrl_A). We believe these erroneous generations are related to the
 861 autoregressive generation method, where the model tends to produce excessive hallucinations after
 862 getting trapped in incorrect local probability distributions. We also observed that these failure patterns
 863 occur more frequently in longer sequences, possibly due to insufficient training on cases with greater
 863 length. These represent an area requiring further improvement.

864 E.2 FOLDING ENHANCEMENT ON AVERAGE PROTEINS
865

866 To probe the effectiveness of PLAME on average proteins, we firstly build a dataset from PDB
867 validation set with 36 proteins. These protein MSAs don't have sequence similarity over 90%
868 compared to the PLAME training set. We randomly employ 32 MSAs for each protein and augment
869 them with designed MSAs after HiFiAD filtering. The results are shown in Table 5. From the
870

	pLDDT	GDT	TMscore	RMSD	LDDT	pTM
AF2 MSA	83.156	0.767	0.785	5.243	0.753	0.718
PLAME	83.328	0.775	0.795	5.028	0.757	0.723

871 Table 5: Comparison of folding enhancement on average proteins
872

873 experimental results, the effects of augmentation align with our initial assumptions, demonstrating
874 modest improvements. While the overall topological structure remains unchanged, minor adjustments
875 can be observed in the structural details. As reported in MSAGPT, performance gains approach
876 saturation between 16 and 32 augmentations. The relatively small improvements observed when
877 applying our method to the average protein MSA can be attributed to the fact that these original
878 MSAs already provide sufficient evolutionary information to AlphaFold2's MSA Transformer, thus
879 limiting the potential impact of additional augmentation.
880

881 E.3 FURTHER ABLATION ON MSA FILTERING

882 We further validate the effectiveness of filtered high-quality MSAs by comparing the performance
883 with the more randomly selected MSAs (64 for each protein). From Table 6 and 2, We can observe a
884

	pLDDT	GDT	TMscore	RMSD	LDDT	pTM
More Random MSAs	63.620	0.512	0.533	12.692	0.563	0.473
HiFiAD	66.349	0.534	0.553	11.755	0.581	0.506

885 Table 6: Comparison of folding enhancement based on different filterings.
886

887 slight performance enhancement compared to Random-16 filtering approach according to pLDDT
888 and LDDT. Conversely, the performance on global metric decreases. From the results, more co-
889 evolutionary information may lead to better local geometric conformation, but it will disturb the
890 modeling of the global conformations due to the bias during generation.
891

892 E.4 FAILURE CASE ANALYSIS

893 Other than analyzing successful cases, we analyzed four representative failure cases (3bog_B, 7sxb_A,
894 8gzu_AN, 8gzu_T3) with the largest performance drops, which includes three zero-shot and one
895 few-shot examples. From the detailed results, we observe a clear mismatch between global metric,
896 including GDT, TMscore, and RMSD, and local metric, including pLDDT, LDDT, and pTM
897 on 3bog_B and 8gzu_T3. It is consistent with the metric discrepancies we observed in the main
898 experiment.

899 Among the visualized MSA cases, we observed that generated MSAs contained extremely similar
900 sequences (>90% similarity). Specifically, these high-similarity sequences caused all sites to appear
901 more conserved, resulting in a lack of covariation patterns necessary for AlphaFold2 to infer structural
902 contacts. This pattern was evident across all four cases. Notably, for 3bog_B and 8gzu_T3, the
903 generated high-similarity MSAs further enhanced the conservation of already conserved regions,
904 which consequently led to improvements in global metrics.
905

906 E.5 DE NOVO PROTEIN FOLDING ENHANCEMENT

907 We conduct further experiments on De Novo protein cases, where almost of them are orphan.
908 Examples of de novo proteins include 8SK7 (RFDiffusion (Watson et al., 2023)), 8TNM/8TNO
909

	pLDDT	GDT	TMscore	RMSD	LDDT	pTM
AF2 MSA						
3bog_B	41.493	0.150	0.130	22.443	0.148	0.129
7sxb_A	84.931	0.739	0.757	2.559	0.661	0.753
8gzu_AN	58.189	0.390	0.488	17.630	0.700	0.406
8gzu_T3	59.533	0.591	0.668	14.030	0.659	0.597
PLAME						
3bog_B	32.918	0.169	0.148	17.522	0.158	0.118
7sxb_A	53.956	0.358	0.358	9.988	0.369	0.359
8gzu_AN	51.542	0.393	0.491	17.238	0.513	0.414
8gzu_T3	55.169	0.377	0.480	20.930	0.691	0.394

Table 7: Comparison of folding enhancement on failure cases.

(Chroma (Ingraham et al., 2023)), and 8CYK (ProteinMPNN (Dauparas et al., 2022)). We followed the same augmentation pattern as the main experiment. From Table 8, we observed that PLAME

	pLDDT	GDT	TMscore	RMSD	LDDT	pTM
AF2 MSA	89.27	0.886	0.904	1.658	0.781	0.800
HiFiAD	88.33	0.924	0.940	1.483	0.824	0.800

Table 8: Comparison of folding enhancement on de novo proteins.

experiences a slight decrease in pLDDT scores while simultaneously showing improvements in other metrics. The generated MSA visualizations in Figures 5 and 6 reveal that most generated sequences maintain $> 70\%$ similarity to the query sequences. This phenomenon may be attributed to these test cases being highly Out-Of-Distribution (OOD) relative to the training dataset. Nevertheless, the diverse sampling strategy still effectively enhances the profile information of orphan proteins, resulting in substantial performance improvements. Furthermore, we visualized specific local regions where PLAME achieves superior alignment performance as measured by TMscore. Analysis revealed that across all augmented profiles, these high-performing local regions exhibit remarkable conservation, suggesting a strong correlation between sequence conservation patterns and structural alignment quality.

F DISCUSSION

F.1 LIMITATIONS

Recent advancements in MSA generation models have shown promising results in enhancing protein folding predictions. However, several challenges remain to be addressed for broader applications and improved performance. **1) Limited quality** by current model architectures, data constraints, and generation strategies, such as relying on small MSA prompts, hinders the overall richness and informativeness of the generated MSAs. Future methods should focus on constructing more expressive evolutionary latent spaces to better capture the complexity of protein sequence relationships and improve the informativeness of generated MSAs. **2) Distribution gaps** still exist between the diversity and quality of generated MSAs and their natural counterparts, limiting their utility in broader applications. While current methods show potential in folding tasks, future models should focus on zero-shot generation capabilities to produce MSAs with distributions closer to natural MSAs, enabling broader applications such as conserved residue identification, mutation effect prediction, and functional annotation. **3) Assessing MSA quality** remains an unresolved issue, as current evaluations primarily rely on downstream folding performance to infer quality. Developing direct and robust quality assessment metrics will be crucial for systematically evaluating and improving MSA generation methods, enabling the selection of high-quality MSAs for specific applications and paving the way for next-generation models with enhanced accuracy, broader applicability, and greater biological relevance.

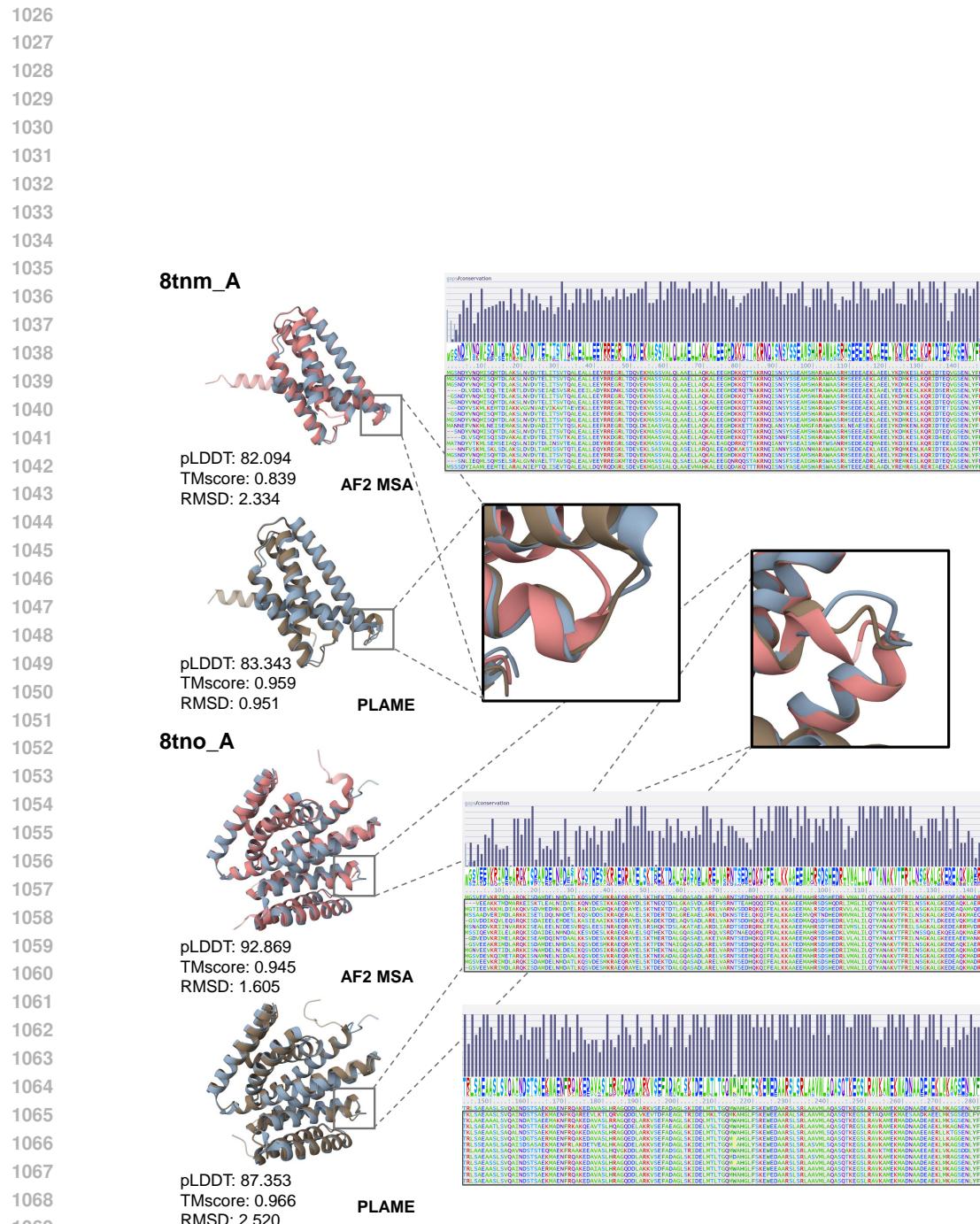
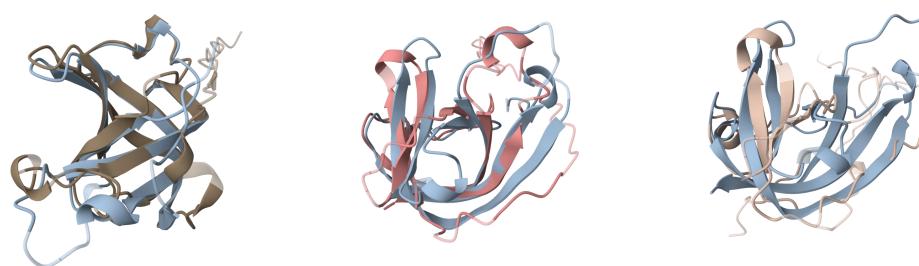


Figure 6: Comparison of structure enhancement of De Novo proteins.

1080 **G STRUCTURE COMPARISON VISUALIZATION**
1081

1082 `pdb_id: 8ehb_F`
1083



1084 **PLAME**

1085 **MSAGPT**

1086 **AF2MSA**

1087 `pLDDT: 75.64`

1088 `pLDDT: 41.35`

1089 `pLDDT: 36.25`

1090 `TMscore: 0.749`

1091 `TMscore: 0.563`

1092 `TMscore: 0.359`

1093 `RMSD: 3.218`

1094 `RMSD: 4.462`

1095 `RMSD: 9.653`

1096 **Figure 7: Structure comparison visualization of 8ehb_F.**

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 `pdb_id: 8b4k_C`

1135

1136

1137

1138

1139

1140

1141

1142

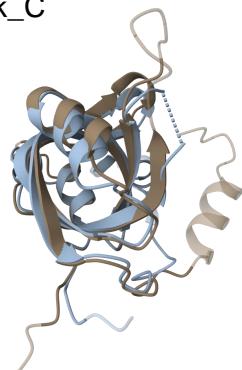
1143

1144

1145

1146

1147



PLAME



AF2MSA

1148 `pLDDT: 79.43`

1149 `TMscore: 0.743`

1150 `RMSD: 6.10`

1148 `pLDDT: 31.49`

1149 `TMscore: 0.209`

1150 `RMSD: 15.37`

1153 Figure 8: Structure comparison visualization of 8b4k_C.

1154

1155 `pdb_id: 8fjf_A`

1156

1157

1158

1159

1160

1161

1162

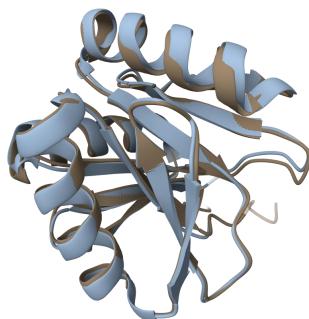
1163

1164

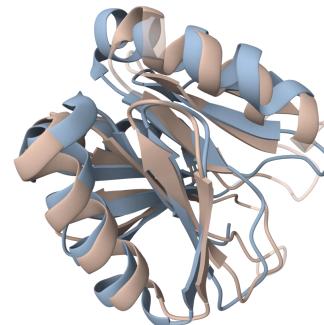
1165

1166

1167



PLAME



AF2MSA

1169 `pLDDT: 91.56`

1170 `TMscore: 0.974`

1171 `RMSD: 0.783`

1169 `pLDDT: 64.56`

1170 `TMscore: 0.734`

1171 `RMSD: 3.193`

1173 Figure 9: Structure comparison visualization of 8fjf_A.

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

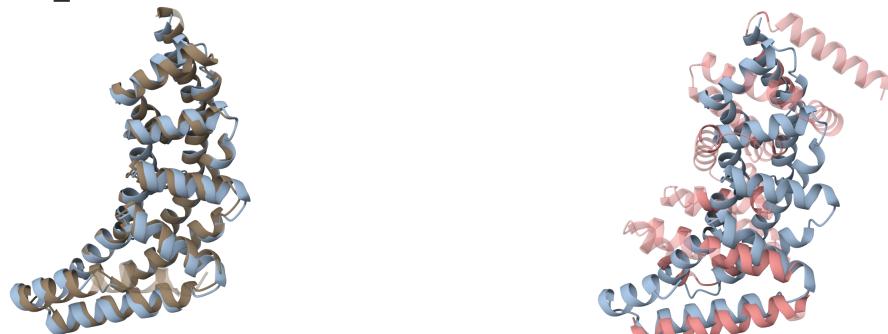
1184

1185

1186

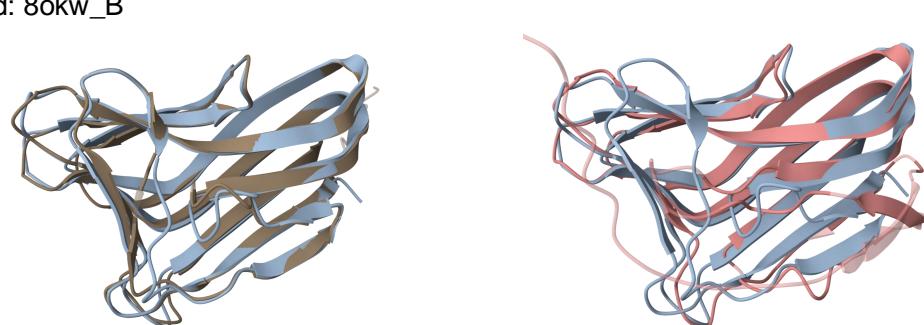
1187

1188
1189
1190
1191
1192 pdb_id: 8eoz_B
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204 PLAME
1205
1206 pLDDT: 88.24
1207 TMscore: 0.958
1208 RMSD: 0.127
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220 pdb_id: 8okw_B
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232 PLAME
1233
1234 pLDDT: 86.18
1235 TMscore: 0.945
1236 RMSD: 1.408
1237
1238
1239
1240
1241



PLAME
MSAGPT
pLDDT: 88.24
TMscore: 0.958
RMSD: 0.127
pLDDT: 48.10
TMscore: 0.290
RMSD: 15.338

Figure 10: Structure comparison visualization of 8eoz_B.



PLAME
MSAGPT
pLDDT: 86.18
TMscore: 0.945
RMSD: 1.408
pLDDT: 52.90
TMscore: 0.658
RMSD: 12.459

Figure 11: Structure comparison visualization of 8okw_B.

1242 **H AUGMENTED MSA VISUALIZATION**
1243

1244 To provide an intuitive understanding of the MSAs generated by PLAME, we selected several
1245 representative cases for visualization. These cases demonstrate consistent improvements in folding
1246 accuracy compared to the MSAs provided by AF2 and cover a range of sequence lengths, including
1247 short (<100), medium (100-300), and long (>300) sequences, as well as cases under few-shot
1248 and zero-shot settings. For each visualization, the generated MSAs are highlighted with a black
1249 box. Additionally, the upper portion of each figure presents conservation information alongside the
1250 corresponding gap information. The protein information is provided in the left-top corner at each
1251 figure.

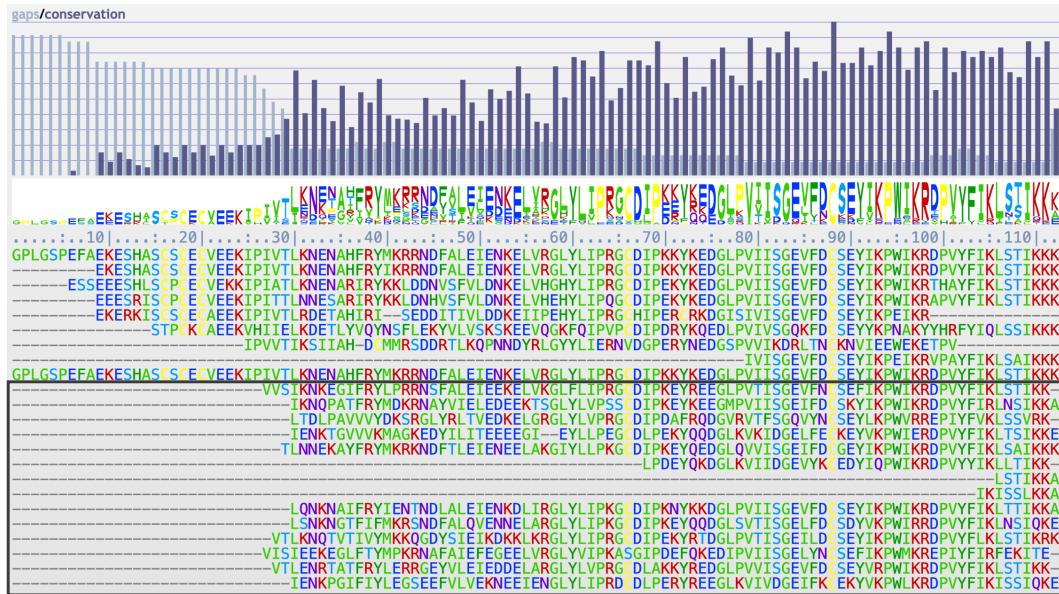
1252 **8ehb_F**

Figure 12: Augmented MSA visualization of 8ehb.F.

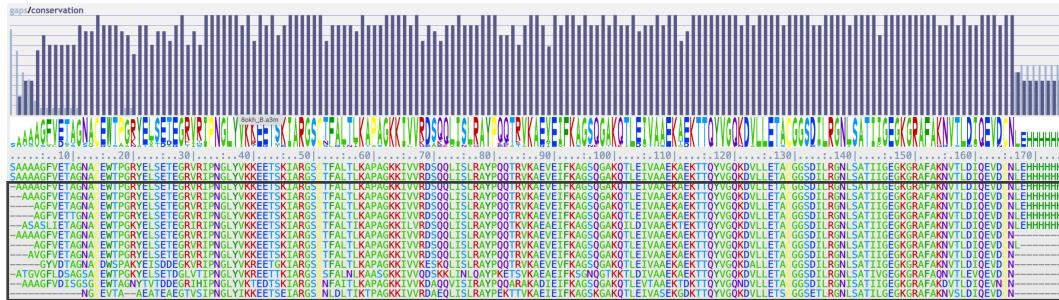
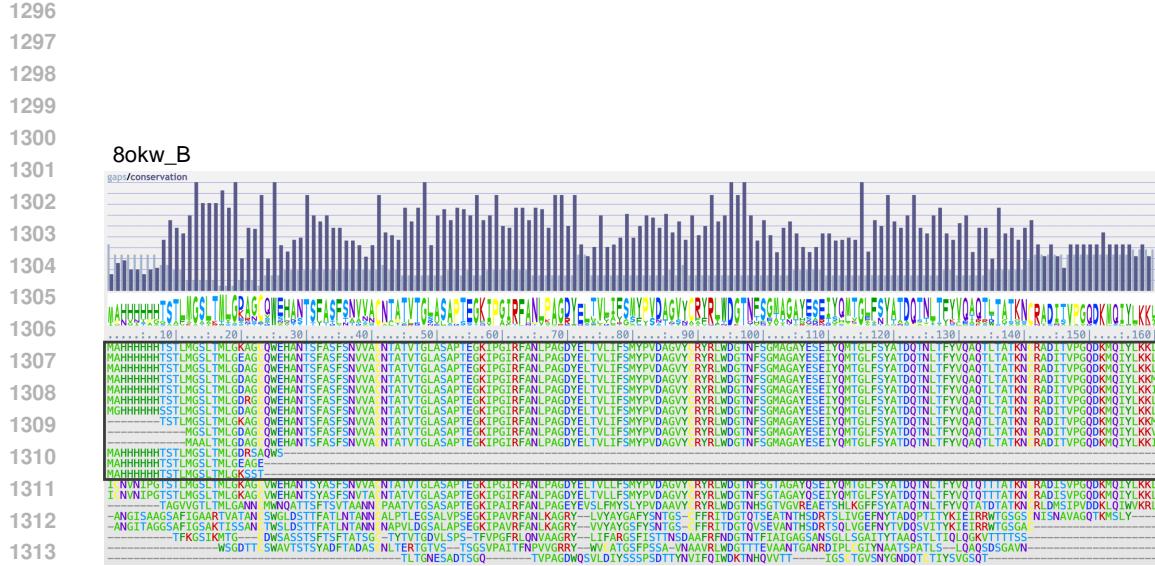
1275 **80kh_B**

Figure 13: Augmented MSA visualization of 80kh_B.



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

1397
1398
1399
1400
1401
1402
1403

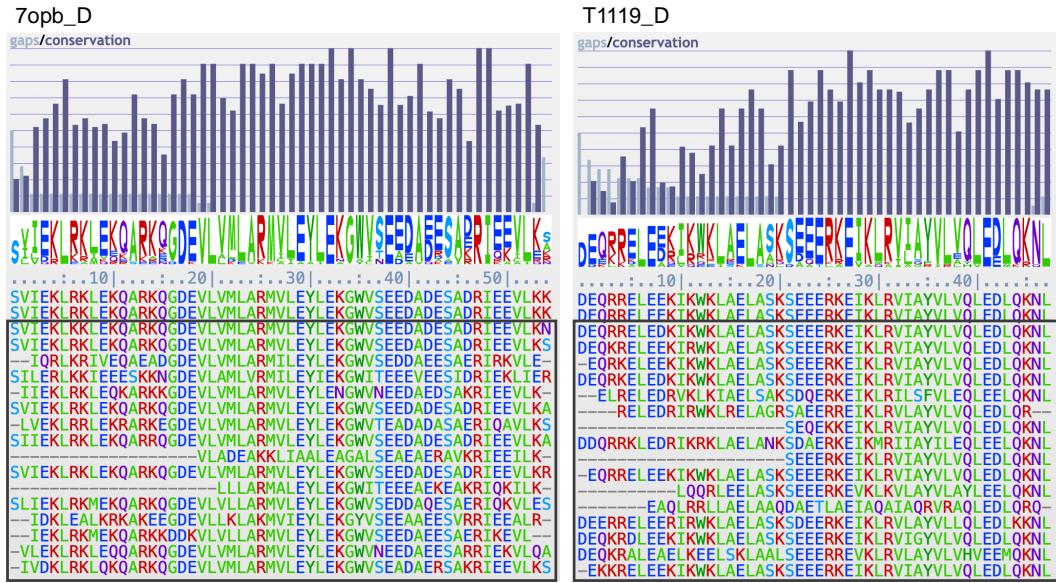


Figure 16: Augmented MSA visualization of 7opb_D and T1119_D.

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

1397
1398
1399
1400
1401
1402
1403



Figure 17: Augmented MSA visualization of 7xr1_A.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

1423 8e0n_F

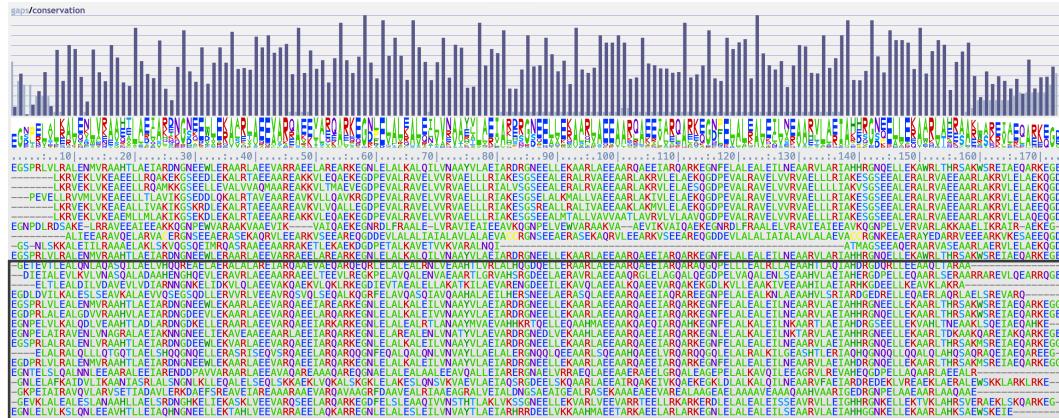


Figure 18: Augmented MSA visualization of 8e0n.F.

1458 I FAILURE CASE MSA VISUALIZATION

1459

1460

1461 7sxb_A

1462

1463 gaps/conservation

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

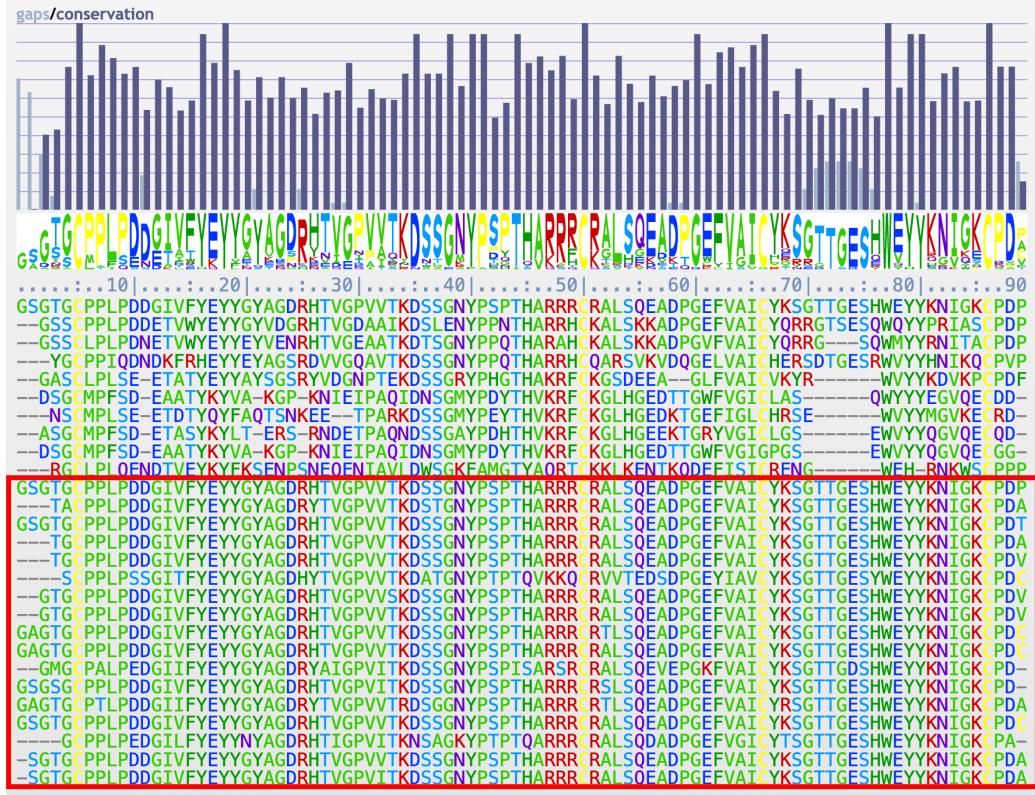


Figure 19: Failure Case MSA visualization of 7sxb_A.

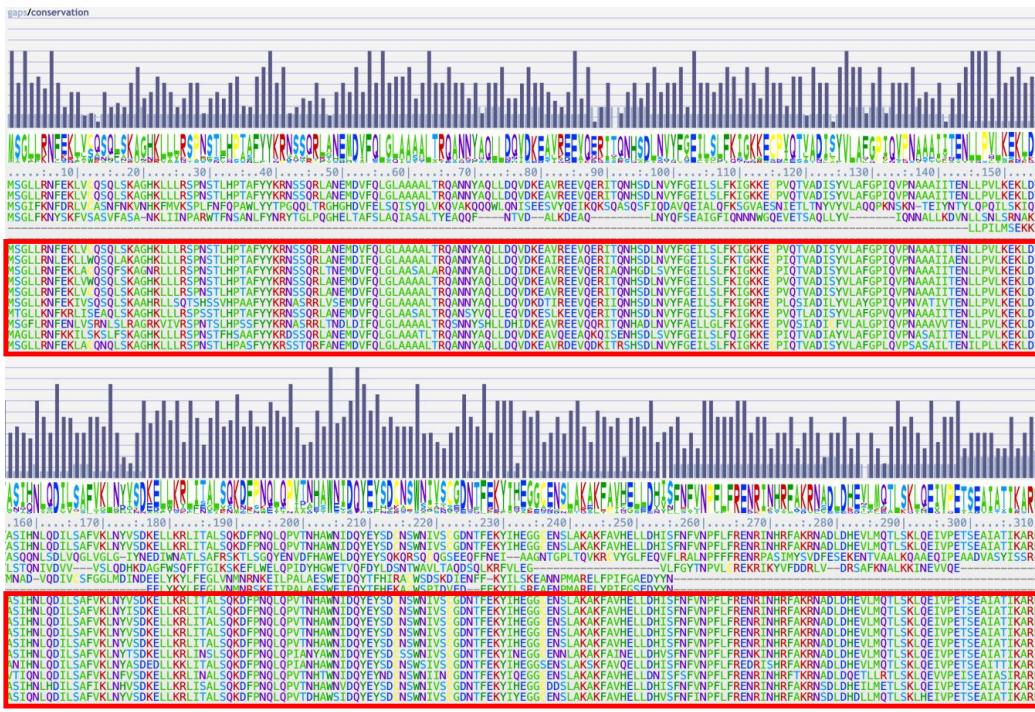
1512 8gzu_T3
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 20: Failure Case MSA visualization of 8gzu_T3.

J USAGE OF LANGUAGE MODELS

We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited to editorial tasks, including proofreading for typographical errors, correcting grammar, and improving the clarity and readability of the text.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580 3bog_B
1581
1582

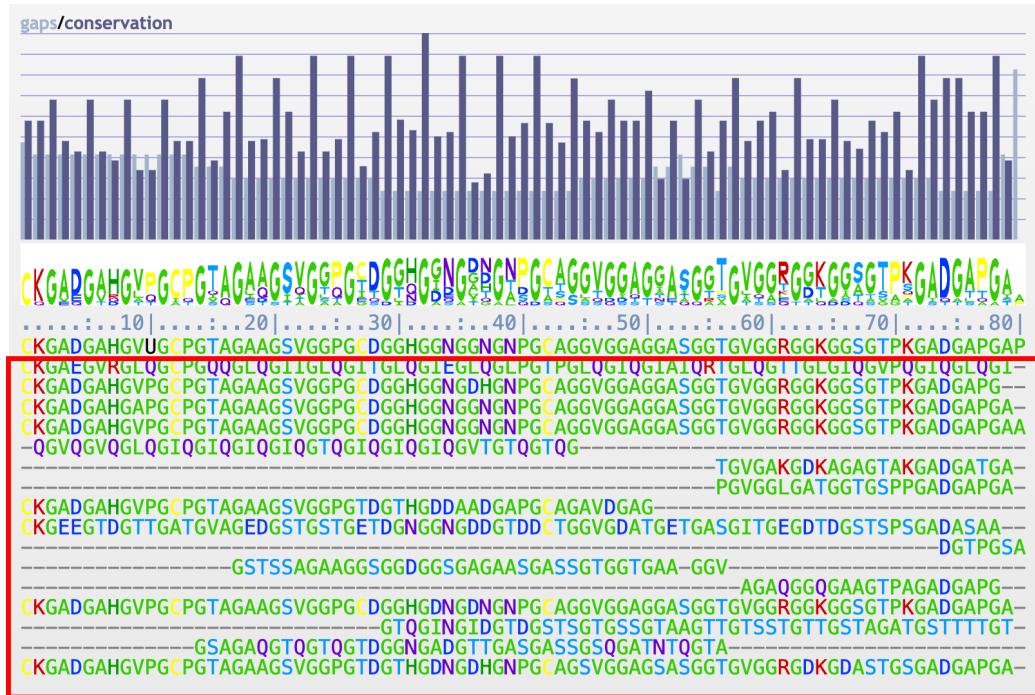


Figure 21: Failure Case MSA visualization of 3bog_B.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

8gzu_AN

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 22: Failure Case MSA visualization of 8gzu_AN.