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ABSTRACT

Protein structure prediction often hinges on multiple sequence alignments (MSAs),
which underperform on low-homology and orphan proteins. We introduce PLAME,
a lightweight MSA design framework that leverages evolutionary embeddings from
pretrained protein language models to generate MSAs that better support down-
stream folding. PLAME couples these embeddings with a conservation—diversity
loss that balances agreement on conserved positions with coverage of plausible
sequence variation. Beyond generation, we develop (i) an MSA selection strategy
to filter high-quality candidates and (ii) a sequence-quality metric that is comple-
mentary to depth-based measures and predictive of folding gains. On AlphaFold2
low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements
in structure accuracy (e.g., IDDT/TM-score), with consistent gains when paired
with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case
studies elucidate how MSA characteristics shape AlphaFold confidence and error
modes. Finally, we show PLAME functions as a lightweight adapter, enabling
ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like
inference speed. PLAME thus provides a practical path to high-quality folding for
proteins lacking strong evolutionary neighbors.

1 INTRODUCTION

Understanding complex and dynamic protein
structures is fundamental to target identification,
validation, and drug-target interaction studies in
drug design (Baker & Sali,[2001; [Khoury et al.
2014). Recent advances such as AlphaFold
have revolutionized structural biology, achiev-
ing near-experimental accuracy across a broad
spectrum of proteins and complexes (Jumper
et al., 20215 |Ahdritz et al., [2024a; /Abramson
et al.l 2024). However, most state-of-the-art
folding pipelines heavily rely on evolutionary
information encoded within multiple sequence
alignments (MSAs) (Lin et al.| 2023} |Abramson:
et al., 2024). Consequently, their accuracy is
highly correlated with the quality and depth of
available MSAs. This dependency creates fail-
ure modes in low-homology families and orphan
proteins (those lacking or having few evolution-
ary neighbors) (Kwon et al.|, 2021} Webb & Salil
2016), where even small amounts of noisy or
misaligned sequences can dominate the signal.

Historically, two primary classes of techniques
have been developed to address weak homol-
ogy. Physics-based modeling searches for low-
energy conformations in energy space through
handcrafted or learned force fields, but is often
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Figure 1: Taxonomy of MSA designers. Most prior
work models MSAs through sequence inpainting or
prompt-based generation, while PLAME directly
generates MSAs de novo in evolutionary embed-
ding space without prompts.
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computationally intensive and limited by approximations in the energy landscape (Rohl et al., 2004;
Cornell et al., |1995). Template-based methods leverage homology detection and profile-profile
alignment to transfer structural priors from known folds to novel sequences (Hildebrand et al., 2009}
Finn et al.}2011)), but suffer degraded performance in the absence of evolutionary signals, making
them unsuitable for orphan proteins. These limitations have motivated a shift toward data-driven
strategies that focus on improving the MSA itself rather than solely the downstream folding networks.

Recent MSA design approaches can be broadly categorized into two paradigms (Figure[T). Sequence-
space inpainting methods (e.g., MSA Generator, EvoGen) directly learn patterns in discrete sequence
space to augment partial alignments, aiming to reconstruct evolutionary constraints from existing
MSAs (Zhang et al., 2023} |2022). Prompt-based conditional generation approaches (e.g., MSAGPT,
EvoDiff) utilize pre-trained models to synthesize additional sequences under MS A-style prompts
(Chen et al.;[2024; |Alamdari et al., 2023). These methods can deepen alignments and improve folding
accuracy when homologous sequences exist. An orthogonal line of research bypasses explicit MSA
construction by building implicit evolutionary representations from single sequences through large
protein language models (PLMs), as demonstrated by ESMFold (Lin et al., [2023). While MSA-
free models avoid the homology bottleneck, they also forgo explicit template usage and enhanced
homology signals, which may limit ultimate folding accuracy in challenging scenarios.

Despite existing progress, two critical gaps remain in structure prediction for low-homology proteins.
(i) Supervision bias: Methods trained on existing MSA databases inherit biases toward well-
studied families, limiting effectiveness for low-homology and orphan proteins. (ii) Weak alignment-
folding correlation: Current approaches lack lightweight metrics linking MSA characteristics to
folding outcomes. Sequence-based generative objectives may not align with factors that improve
structural accuracy, while existing solutions like fine-tuning folding models (Chen et al., 2024)) are
computationally expensive and lack universal applicability.

In this study, we propose PLAME, motivated by the critical need to enhance structure prediction for
low-homology proteins where traditional MSA-based approaches fail due to insufficient evolutionary
signals. Our approach makes the following key contributions:

1. Embedding-space MSA generation with conservation-diversity optimization: Inspired
by PLMs’ success in MSA-related tasks (Hong et al.,[2024; |Wang et al.l 2024; McWhite!
et al.,[2023)), we develop the first MSA designer that generates auto-regressively within the
evolutionary embedding space of pre-trained PLMs rather than discrete sequences (Fig2).
We further propose a novel conservation-diversity loss that captures conserved regions while
extracting diverse variants from ESM embeddings with theoretical guarantee (AppendixA).
The lightweight design enables PLAME to synthesize evolutionary neighborhoods even with
scarce homologous sequences, achieving up to three orders of magnitude speedup while
maintaining template compatibility (Table [4).

2. HiFiAD: A principled MSA quality assessment framework: To address the current weak
alignment-folding correlation problem, we propose High-Fidelity Appropriate Diversity
(HiFiAD), a lightweight algorithm for MSA filtering that simultaneously considers site-wise
conservation and inter-MSA diversity. This provides the first model-agnostic, computa-
tionally efficient criterion for selecting high-quality alignments that directly correlate with
improved folding outcomes.

3. Comprehensive validation across challenging scenarios: On challenging low-homology
and orphan datasets, PLAME consistently improves folding accuracy in both AlphaFold2
and AlphaFold3, performing similarly to DHR (Hong et al.,2024), Al-based MSA searching
approach. In ablation studies, HiFiIAD demonstrates performance gains across all baselines
(TabldI). Moreover, case studies on general and de novo proteins further demonstrate
PLAME’s generalizability while providing novel perspectives on structure enhancement
from an MSA design standpoint (Tabld8). PLAME offers new insights and possibilities for
folding enhancement through principled MSA optimization.
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Figure 2: Overview of PLAME framework. PLAME captures ESM-2 evolutionary representations,
generating MSAs for augmenting the original MSAs. The augmented MSAs serve as the homology
template for folding softwares for folding enhancement. In each block of the T5-architecture,
additional row-attention and col-attention are applied to capture co-evolutionary information.

2 METHOD

2.1 PROBLEM FORMULATION

Protein structure prediction relies heavily on high-quality MSAs to provide evolutionary information,
but the accuracy of folding software F, significantly drops when MSAs are sparse or insufficient.
Given proteins P = {s,x, M}, where s € S are query sequences, x € X are 3D structures, and
M = {my,ma,...,m,} € M are MSAs with each m; as an aligned homologous sequence. The
goal of MSA design models pg : M — M is designing augmented MSAs M, that enhances
evolutionary information to obtain more accurate structures x’ using folding software F,.

M/ = pQ(M)a X/ = Fw(saMaug) (1)

where the augmented MSAs are composed of original MSAs M and generated MSAs M, denoted
as My, = {M, M'}. The quality of the enhanced structures is evaluated using several metrics,
including RMSD, TM-score, and pLDDT (See details in Section3). The key to high-fidelity MSA
generation lies in constructing an informative evolutionary distribution z.y,, which serves as the
foundation for generating augmented MSAs M,,,;. Current methods utilize deep neural networks fy
to learn hidden evolutionary distributions directly from existing MSAs.

Zevo = T (M) 2)

However, relying solely on sequence-level information from MSAs fails to capture the complete
evolutionary landscape, particularly when MSA coverage is sparse or incomplete. To overcome
this limitation, we propose an evolutionary space based on evolutionary embeddings derived from
pretrained protein language models (PLMs) g.

Zevo = fg(g¢(s)) 3)
2.2 MODEL ARCHITECTURE

PLAME employs an encoder-decoder transformer architecture similar to MSA Transformer
2021)), with adjustments to the T5 block structure 2017). The encoder and decoder
incorporate additional row-wise and column-wise attention mechanisms to better capture evolutionary
patterns in MSA data (detailed in Fig[2), which is similarly applied in MSAGenerator (Zhang et al |
and MSAGPT 2024). Additional mechanisms are introduced as follows.

Row Attention Row attention models inter-sequence dependencies by summarizing evolutionary
relationships across MSA depth. Given input He,. € REXVxLxd wwhere B is batch size, N is MSA
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depth, L is sequence length, and d is hidden dimension, we compute a global representation by
depth-wise averaging:

N
1 ) .
HT:N;HW[Z,:,:] € RP*Exd, )
where H,. encodes the evolutionary space for cross-attention during decoding:
KT
Row-Attn(Q,, K,, V,) = softmax <QT L ) V,. 5)
Vh

Column Attention Column attention captures positional conservation patterns across MSA

columns. We permute the decoder input Xge. € REXN*Lxd o Xgee € RBXLxNxd (swapping MSA
depth N and length L axes) and compute cross-column attention with:

Qc = Xdecwqa Kc = ﬂencwka Vc = I:Iencw’u
K/ ! ©)
Col-Att(Q., K., V) = <softmax <QC £ ) VC> .

Vh

Generation & Inference ESM2 (Lin et al.||2023) encodes the query sequence s into evolutionary
embeddings Hi,,u. The encoder processes these through N modified T5 layers:

0

Enc

=Enc@E"Y), 1=1,...,N, HO=H,. @)

The decoder autoregressively generates tokens conditioned on encoder output and previous tokens:

y: = Dec(y <, HI). (8)

Output embeddings are passed through softmax to produce token probabilities.

2.3 CONSERVATION-DIVERSITY TRAINING LOSS

We propose a position-aware causal inference approach for diverse MSA generation, integrating a
PSSM-Weighted Cross-Entropy (PCE) Loss and a DIversity REgularization (DIRE) Loss to balance
focus on conserved regions with sampling diversity.

PCE Loss The PCE Loss emphasizes accurate predictions in conserved regions of the MSA, which
are critical for maintaining protein structure and function. For a single sequence, it is defined as:

L

Log=—Y wi-logp(y | y<1), ©
=1

where L denotes sequence length, y; denotes the amino acid at site [, and p(y; | y<;) denotes the
predicted discrete probability distribution of y;. The position-specific weights w; are derived from the
Position-Specific Scoring Matrix (PSSM) (Henikoff & Henikoff, [1994) and reflect the conservation
level at each position. These weights are normalized to the range [1 — 4,1 4 ], where § controls
sensitivity to conservation. Specifically,

freq, — min(freq)

w =145 (10)

max (freq) — min(freq)

where freq denotes the residue-frequency of 20 types of amino acids. During model training, we
apply d = 0.5, assigning higher weights to conserved positions and lower weights to less conserved
ones. For a batch of IV sequences, the PCE loss averages over all sequences and positions:

N Lj
Loce =~ > > w’ logply” | y2)). (1D
j=11=1
where L is the length of the j-th sequence, and wl(j ) is the weight for position [ in sequence j. This
loss emphasizes conserved regions while allowing flexibility in less conserved areas.
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DICE Loss The DIRE loss promotes sequence diversity by maximizing amino acid entropy:

Lore = NZ ZH“) (12)

j=1 311

where Hl(j) = = aeaPla|y<)logp(a| y<) is the entropy at position [ in sequence j, and A is
the set of all amino acids.

Combined Loss Function The combined loss function balances conservation and diversity:
L=a-Lpcg+ (1 —a)- Lpre, (13)
with o = 0.9 prioritizing conservation while maintaining variability. Our theoretical analysis in

AppendixA]demonstrates that PCE Loss enhances the model’s understanding of MSA profile, while
DIRE Loss functions as a regularizer to prevent neglect of variable regions.

2.4 MSA SELECTION METHOD — HIFIAD

Starting from MSAGPT’s (Chen et al.,|2024) systematic study of selection strategies showing that
naive similarity-based or trimming methods can hurt performance while diversity and structure-aware
filtering help but often require expensive AF2 calls. Building on this, we designed HiFiAD as a
lightweight, model-agnostic selection rule that combines BLOSUM-based fidelity with recovery-
based diversity to avoid both over-conserved and overly noisy sequences.

HiFiAD addresses two key challenges: (i) over-conserved sequences that distort evolutionary distri-
butions when over-concatenated, and (ii) lack of systematic quality assessment for generated MSAs,
by combining sequence similarity (fidelity) with diversity to maintain balanced evolutionary signals.

Given a query sequence s and generated MSAs M = {m,ma, ..., m,}, we define:
SeLosum(mi, s ZB sj,mij), Vmi € M, (14)
L
R(my, s) = Z Z =myj], Ym; € M, (15)

where B is the BLOSUMG62 matrix, R(m;, s) is the recovery rate, and I[-] is the indicator function.
Zero-shot selection (Orphan proteins): Select top-k sequences by Sprosum and sequences from
top/bottom k/2 of recovery rate distribution, similar to the Static Diversity Strategy of MSAGPT.
Few-shot selection (Low homology proteins): Limit augmented MSAS to Ny, = max(16, 2N0rig)
where N is the original MSA count. This design prevents evolutionary information distortion
caused by excessive generated MSAs.

3 EXPERIMENT

Baselines To evaluate PLAME’s capability in generating high-fidelity and diverse MSAs, we
compared it with several state-of-the-art Al-based MSA generation methods and AlphaFold2’s
MSA pipeline (Jumper et al.l [2021). The baselines include AF2 MSA (Johnson et al., [2010),
and open-source methods including EvoDiff and MSAGPT (Chen et al.| 2024; |Alamdari et al.,
2023)). Additionally, we include an MS A-free method, ESMFold (Lin et al., [2023)), to evaluate the
complementary benefits of explicit MSA enhancement versus implicit evolutionary modeling.

Datasets For the training dataset, we used the PDB and UniClust30 subsets from the OpenProteinSet
as our data source (Ahdritz et al.;[2024b). The pre-searched MSAs from OpenFold training were also
included. We retained data with at least 64 MSA sequences. To avoid overlap with the test cases, we
removed sequences with over 90% similarity by MMSeqs based on UniClust30 clustering results
(Mirdita et al.l 2017} [Steinegger & Soding} 2017). This process yielded an initial dataset of 293,979
samples, which were split into training and validation sets with a 90:10 ratio. For the test dataset,
we adopted the curated test cases from MSAGPT (Chen et al., 2024), which consist of 200 protein
samples from three benchmarks: CASP14&15, CAMEO (Haas et al.| 2018)), and PDB (Berman et al.}
2000). Any > 90% redundancy between the test cases and training dataset was eliminated.
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Evaluation Structural Assessment Metric We evaluate structure qualitywith local and global
metrics. Local metrics include pLDDT (per-residue confidence) and LDDT (local distance difference
test). Global metrics comprise GDT (global distance test), TM-Score (template modeling score)
(Zhang & Skolnickl 2005)), pTM (predicted TM-score), and RMSD (root mean square deviation).

AlphaFold2 Folding Modes To comprehensively assess MSA augmentation effectiveness, we
evaluate three AF2 configurations with increasing computational complexity:

* Model: pTM-3 model without templates (fast baseline) (Jumper et al., 2021}

* Mode2: Default 5 models without templates (standard setting) (Jumper et al.,[2021)
* Mode3: Default 5 models with templates (full capability) (Jumper et al.,2021)

* AF3: Default 5 models with templates by AlphaFold3 (Abramson et al., 2024)

Sequence Assessment Metric We employ four sequence-based metrics to quantify alignment fidelity
and diversity:

1) Conservation Score measures residue conservation at each position: C; = Freq,,,, (¢)/N, where
Freq,,,, (7) is the most frequent residue at position ¢ and NV is the sequence count. Higher scores
indicate stronger evolutionary constraints.

2) Gap Proportion quantifies alignment completeness: G; = G(i)/N, where G(i) counts gaps at
position i. Lower values indicate better alignment quality.

3) Substitution Compatibility evaluates evolutionary plausibility using BLOSUMG62 scores Sgr.osum
(Eq. [T4). Higher scores reflect greater biological relevance.

4) Alignment Entropy captures positional diversity via Shannon entropy:

H; = — Z p(r) log, p(r) (16)

re{R;}

where {R;} represents unique residues at position ¢ and p(r) = count(r)/N. Higher entropy
indicates greater diversity; lower entropy suggests functional conservation.

3.1 STRUCTURE BENCHMARK ASSESSMENT

We evaluated PLAME across three AF2 folding modes and AF3, using six structural metrics to assess
MSA generation quality (See details in TabldT).

3.1.1 GENERAL PERFORMANCE COMPARISON

PLAME demonstrates consistent superiority across both zero-shot and few-shot scenarios against
traditional MSA searching, Al-based searching, and Al-based generative methods, establishing
a new paradigm for MSA generation without traditional homology search. In zero-shot settings,
where proteins lack existing MSAs, PLAME achieves remarkable improvements with pLDDT scores
reaching 71.50 in Mode3, significantly outperforming competing methods like EvoDiff (64.39) and
MSAGPT (68.39). Moreover, the performance gap becomes even more pronounced in challenging
scenarios: while EvoDiff and MSAGPT often introduce detrimental noise when their generated
sequences are concatenated with original AF2 MSAs, PLAME consistently enhances folding quality.
Interestingly, few-shot scenarios reveal that existing methods can partially recover performance when
guided by initial homologous sequences, yet PLAME maintains its edge by generating more coherent
evolutionary profiles that complement rather than interfere with existing MSAs.

3.1.2 MODE-DEPENDENT PERFORMANCE PATTERNS

The progression from Model through AF3 reveals intriguing insights about the relationship between
model sophistication and MSA augmentation benefits. Model and Mode2 demonstrate the strongest
relative improvements from PLAME-generated MSAs, with pLDDT gains of up to 5 points across
different baseline methods. As configurations advance to Mode3 with structural templates, the
enhancement effects become more nuanced—while absolute performance continues to improve, the
marginal gains from MSA augmentation diminish because template information already captures
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Table 1: Performance metrics across different modes and models. The best results in each folding
mode are highlighted in bold. Zero and Few indicate zero-shot (proteins without MSAs) and few-shot
cases (proteins with existing MSAs), respectively.

pLDDT (1) GDT (1) TMscore (1) RMSD(]) LDDT (1) pTM (1)
Zero Few Zero Few Zero Few Zero Few Zero Few Zero Few
ESMFold 66.26 62.62 0.6 053 0.6 0.57 9.58 12.04 0.62 0.59 / /
Model
AF2 MSA 60.07 62.14 050 052 050 057 1234 12.16 0.54 0.58 0.44 049
EvoDiff 58.68 61.83 046 050 046 054 13.81 1295 050 0.56 040 048
MSAGPT 59.81 61.18 048 0.51 048 056 12.62 1235 0.53 0.57 043 048
DHR 63.64 62.60 051 052 052 057 12.04 11.92 0.55 0.59 / /
PLAME 66.54 66.08 0.53 0.54 0.53 0.58 1148 12.14 0.57 0.60 0.49 0.52
Mode2
AF2 MSA 66.56 66.32 0.51 055 052 060 12.06 11.84 0.55 0.61 / /
EvoDiff 61.98 6583 048 053 048 0.58 14.23 11.82 0.52 0.59 / /
MSAGPT 64.88 6596 0.51 0.56 0.51 060 1260 11.90 0.55 0.61 / /
PLAME 67.77 6748 0.53 055 0.54 0.60 1262 1190 0.57 0.61 / /
Mode3
AF2 MSA 7031 69.61 0.57 060 0.57 0.64 10.53 10.24 0.60 0.65 / /
EvoDiff 64.39 68.54 0.51 057 051 0.61 13.20 10.81 0.54 0.62 / /
MSAGPT 68.39 69.30 0.57 0.60 056 0.64 11.05 1040 0.59 0.64 / /
PLAME 71.50 7048 0.58 059 0.58 0.64 1141 10.62 0.60 0.64 / /
AF3
AF2 MSA 6634 7254 0.55 061 0.56 065 1129 1029 0.58 0.66 / /
PLAME 70.23 72.00 0.55 0.62 055 0.65 11.23 10.26 0.59 0.65 / /

substantial evolutionary constraints. This phenomenon reflects a fundamental trade-off in modern
protein folding: as models become more powerful and incorporate diverse information sources, the
additional value of synthetic MSAs decreases, though PLAME’s high-quality generations continue to
provide meaningful contributions. The AF3 results further validate this trend, showing that PLAME
maintains its effectiveness even with more advanced folding architectures, suggesting that high-quality
virtual MSAs remain valuable complements to cutting-edge structural prediction methods.

3.1.3 PLAME vs ESMFOLD: BRIDGING EFFICIENCY AND ACCURACY

The comparison with ESMFold reveals PLAME’s unique position in the protein folding landscape,
offering a compelling alternative that combines computational efficiency with enhanced accuracy.
While ESMFold achieves reasonable baseline performance (pLDDT of 66.26), PLAME progressively
widens this gap as more sophisticated folding configurations are employed. In basic Model, PLAME
shows modest improvements, but the advantage becomes substantial in Mode3 where PLAME
reaches 71.50 pLDDT compared to ESMFold’s unchanged 66.26. This trend suggests that PLAME-
generated MSAs provide increasingly valuable evolutionary context that more advanced folding
models can effectively exploit. The consistent RMSD improvements across all modes further validate
that PLAME’s virtual MSAs contribute meaningful structural constraints, enabling users to achieve
AF2-level accuracy while maintaining the computational advantages of MSA-free approaches.

3.2 SEQUENCE QUALITY ASSESSMENT

To evaluate generated MSA quality beyond structural perspectives, we conducted sequence-level
analysis by fidelity and diversity metrics. This provides an additional critical gap—establishing
criteria for understanding generated MSA quality. Figure |3|presents our comparative analysis.



Under review as a conference paper at ICLR 2026

PLAME achieves superior evolutionary fidelity by closely mimicking the distributional char-
acteristics of natural MSAs across all key metrics. The results reveal PLAME’s distribu-
tions align most closely with AF2 MSAs in Conservation Score, Gap Proportion, and Sub-
stitution Compatibility, demonstrating its ability to capture authentic evolutionary constraints.
This fidelity advantage manifests in higher Con-

servation Scores and Substitution Compatibil- |, 1o
ity values, indicating that PLAME-generated .. 0s
sequences preserve functionally critical residues £
while incorporating biologically plausible substi-
tutions. The significantly lower Gap Proportion  * o0

validates PLAME’s approach, as the evolution- ~,, ** " "™ ™« P
ary latent space from ESM-2 provides richer .
homology information enabling more complete  : #
alignments. {:
PLAME maintains diversity levels compara- ~ 0 " O % T

ble to natural AF2 MSAs, supporting our

hypothesis that excessive diversity introduces Fjgyre 3: Comparison of sequence-based metrics

detrimental noise. Rather than maximizing di-  for AF2 MSAs and MSAs generated by EvoDiff,
versity like EvoDiff, this measured approach MSAGPT, and PLAME.

aligns with our selection strategy principles,

where balanced information enrichment proves

more effective than naive sequence proliferation (Section [2.4). The findings suggest successful
MSA generation requires maintaining the delicate balance between providing sufficient homologous
information and avoiding noise from unconstrained sequence generation, positioning PLAME as a
method that respects fundamental biological constraints.

Table 2: Ablation study of HiFiAD on PLAME and other baselines.
pLDDT (1) GDT(f) TMscore (1) RMSD (|) LDDT (1) pTM (1)

Zero Few Zero Few Zero Few Zero Few Zero Few Zero Few

Random-16 63.61 62.63 0.52 0.51 0.52 0.56 12.01 12.67 0.55 0.58 0.46 0.49
Blosum-8 61.04 6271 0.5 0.52 051 0.57 1253 12.69 0.55 0.58 0.45 0.50
Blosum-32 62.97 62.40 0.50 0.50 0.51 0.55 12.28 12.84 0.55 0.57 0.45 0.48
Top-Rec-16 62.04 6293 0.51 0.51 0.51 0.55 12.15 12.48 0.55 0.57 0.45 0.49

Top-down-Rec-16 63.43 63.10 0.52 0.52 0.51 0.57 11.97 12.15 0.55 0.58 0.46 0.49

EvoDiff-HiFiIAD  58.24 60.89 0.46 0.49 0.46 0.54 13.74 12.39 0.51 0.56 / /
MSAGPT-HiFiAD 60.16 62.63 0.48 0.52 048 0.57 12.54 12.18 0.53 0.59 / /
DHR-HiFiAD 66.01 66.08 0.53 0.55 0.53 0.60 11.48 12.14 0.57 0.60 / /

PLAME-HiFiAD 66.54 66.08 0.53 0.54 0.53 0.58 11.48 12.14 0.57 0.60 0.49 0.52

3.3 ABLATION STUDIES

To validate our HiFiAD selection strategy, we conducted ablation experiments across different
selection approaches and baseline methods. Table [2] compares various selection strategies and
evaluates HiFiAD’s effectiveness on other generative methods.

HiFiAD consistently outperforms alternative selection strategies by optimally balancing fidelity
and diversity constraints. Compared to similarity-based methods (Top/Down-Rec) and substitution
matrix approaches (BLOSUM-32), HiFiAD achieves superior performance with pLDDT scores of
66.54 in zero-shot settings, demonstrating the importance of jointly considering evolutionary fidelity
and controlled diversity. The strategy effectively identifies high-fidelity sequences while maintaining
sufficient diversity to prevent overly deterministic conservation patterns. HiFiAD automatically
adapts to varying MSA quality levels and shot configurations, making it robust without requiring
manual parameter tuning.
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When applied to competing baselines, HiFiAD consistently improves performance: EvoDiff benefits
from a 58.24 to 60.89 pLDDT improvement, MSAGPT gains from 60.16 to 62.63, and DHR
advances from 66.01 to 66.08. These improvements demonstrate that HiFiAD addresses fundamental
challenges in MSA selection across all generative approaches. The consistent gains across different
generation paradigms—from diffusion-based (EvoDiff) to autoregressive (MSAGPT) and retrieval-
based (DHR) methods—validate that the fidelity-diversity trade-off represents a universal principle in
MSA augmentation. The improvement margins correlate with baseline method quality, suggesting
HiFiAD provides proportional benefits while maintaining relative performance hierarchy.

Also, we conducted ablation study on MSA length (See Table3). PLAME shows overall improvement
on all length ranges, where performs the largest improvement on 100-300 range. We believe this is
because the MSA training data are mainly concentrated in this range (Chen et al., 2024)).

Table 3: Ablation on protein length.
| Length Range | pLDDT(1) GDT(t) TMscore(t) RMSD(|) LDDT(1)

AF2 MSA <100 71.03 0.64 0.52 .77 0.61
AF2 MSA 100-300 59.50 0.49 0.53 12.46 0.54
AF2 MSA >300 56.29 0.43 0.51 15.67 0.53
PLAME <100 74.12 0.63 0.52 7.49 0.61
PLAME 100-300 65.55 0.53 0.58 11.58 0.58
PLAME >300 58.31 0.45 0.53 16.16 0.54

Furthermore, we provide additional case studies on folding enhancement. More case studies on
orphan de novo proteins (SectionE.3)), protein failure cases (SectionfE.4)), selected protein cases with
aligned structures (SectiorfE) can be found in the appendix.

pdb_id: 8okh_B
L e
(";—\ L/ ————
o ,\‘ >
PLAME MSAGPT AF2MSA
pLDDT: 69.67 pLDDT: 32.02 pLDDT: 28.67
TMscore: 0.812 TMscore: 0.205 TMscore: 0.198
RMSD: 2.774 RMSD: 19.49 RMSD: 21.09

Figure 4: Case study of folding enhancement of PLAME, MSAGPT, and AF2 MSA on 8okh_B.

4 CONCLUSION

In this study, we introduce PLAME, the first model to leverage evolutionary embeddings for MSA
generation and apply it to protein folding enhancement. Our approach bridges the gap between single-
sequence inference and MSA-based methods, effectively improving protein folding performance.
Evaluation results demonstrate that PLAME-generated MSAs outperform existing methods in both
conservation and diversity metrics, significantly enhancing structural prediction accuracy across
different protein families. PLAME serves as both an MSA enhancer and an efficient AlphaFold
adapter without requiring time-consuming MSA searches, providing a fast, accurate, and scalable
protein structure prediction solution. Additionally, our proposed quality metrics and experiments
offer new insights into the relationship between MSA features and folding performance.
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A PROOF OF THEOREM

We provide additional statements to demonstrate the superiority of the Conservation-Diversity
Training Loss. Firstly, we demonstrate that the PCE Loss as a conservation-aware weighted loss by
position in the perspective of MSA profiles.

Lemma 1. Let P(l, a) be the empirical amino—acid distribution for residue a € A, and let Qy(l, a)
denote the model distribution at the residue (i.e. the conditional probability po(a | y<i) after taking
expectation over prefixes). Assign each column a weight w; € [1 — 6, 1 + §| obtained from its
conservation score. Then PCE loss directs optimization preferentially toward conserved positions by
minimizing a weighted KL divergence and scaling gradient magnitudes in proportion to w;.

Proof. For a sufficiently large set of N homologous sequences sampled from P, the expected
cross-entropy loss is

E[Lcg] = Z Z P(l,a) log Qp(l, a). 17

I=1acA
Re-expressing each column term as — Y~ Plog Q = H(P(l,-)) + Dxr(P(L,-)[|Qs(l,-)), we obtain

L
E[LcE] = ZDKL Qe(l)) + > H(P()). (18)
=1
For the PCE loss,
L
E[Lpcg] = — Zwl Z P(l,a) logQo(l,a), (19)
=1 acA

which can analogously be rewritten as the position-wise weighted KL
E[LpcE] = Z wy D (P(1,)]Qo(l1)) + Z w H(P (20)

Let 0 denote the model parameters. The gradient of the CE loss for column [ is

8£PCEl S X 1 9Qo(l,a) 21

= Qg (l,a) 00

For PCE the gradient is simply scaled by wy:

3£PCE1 B 1 0Qg(l,a)  OLcgy
ZPla @) o6 wy == (22)

acA

Consequently, in highly conserved columns the gradient magnitude is amplified by 1 + ¢, whereas in
variable columns (w; = 1 — ¢) it is attenuated, focusing optimization effort on conserved regions. [

Based on the understanding of the PCE Loss, we then demonstrate that PCE Loss is expected to
capture evolutionary information (MSA profile) with less error—-measured by KL-Divergence.

Theorem 1. Let P(l,a) be the true amino—acid distribution in columnl (I =1,...,L) of an MSA
and let Qg (1, a) be the distribution produced by a parametrised generative model Q. Denote the
column—wise Kullback—Leibler divergence by

P(l,a
Dxi(P(1,-) || Qa(l, Z P(l,a) log ((l )) (23)
acA
Let
Oty = arg mein Lce(0), 05cp = arg mein Lpce(0). (24)
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Define the average profile KL divergence

Dt (0) - ZDKL )1 Qa(l,-)). (25)

Under the assumption that both optimization problems are solved to global optimality, the model
trained with PCE Loss captures the MSA profile with less divergence D

Dyt (0pcr) < D (06r) (26)

Proof. Rewrite two losses in the form of KL-Divergence Y. PlogQ = H(P(l,-)) +
Dxi(P(1,-)|Qo (1)), we have:

Lce(f) = CO+ZDKL L,)Qo(, ),

=1
27)
L

EPCE(H) =Cy + Zwl DKL(P(Z7 ')HQG(lv ))7

=1

where Cy = >, H(P(l,-)) and Cy, = >, w; H(P(l,-)) are constants independent of §. Hence
minimizing Lpcg is equivalent to minimizing the weighted KL

§jwﬂkL (1)IQo(1)),  Bpcr = argmin Dy (6). (28)

Then, since every w; is bounded, we can establish the relations:

(1-6 ZDKL NQo(l,-)) < Du(d) < (1+96) ZDKL NQo(l). 29

Dividing by L gives:
Dy, (0)
L

(1-8) D) < < (1+0) Do), )

Based on the fact that 055, minimizes D,,, denote Ay, := D, (0&g) — Dw(05cg) > 0. By applying
(*) to both optimal parameters and subtracting, we obtain:

ﬂV aV Au)
(1—0)| Dy (0cR) — g(9PCE)] < I (30)
Since A, > 0and 1 — ¢ > 0; it is strictly positive whenever A,, > 0, Therefore,
Dyt (Opce) < Dy (08g), (€2
which completes the proof. O

A natural challenge emerges when applying the PCE Loss—the model tends to accurately capture the
distribution of conserved regions while neglecting the distribution of variable regions. To address this
issue, we demonstrate that the DIRE Loss effectively enhance the modeling in the variable regions.

Theorem 2. Forl =1,...,L let P(l,a) denote the empirical amino-acid distribution and Qg (l, a)
any model. When each amnio acid site is optimized independently, the minimizer is
N P(lya)™ aw
Qr(la)= Z P(l,b)ﬂ’ = aw (1) € (0,1). (32)
be A
Moreover,
H(P(1,-)) < H(Qq(1,-)) < log | Al (33)

with the entropy increase largest when wy is small (variable regions). Thus Lpirg counter-acts the
entropy suppression of Lpcg and serves as a principled regularizer on variable regions.
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Proof. Since the combined loss £, sums over amino acid positions, we may analyze a single site
independently, denoting P(a) = P(l,a), Q(a) = Q(l,a) and w = w;. For each site we minimize,
we have

FIQ) = aw Y Pla)log g + (1~ 0) 3 Q(a) oz Qla). (34)

L
Q(a
subject to the normalization constraint ), Q(a) = 1.

Introducing a Lagrange multiplier A and setting the derivative with respect to Q(a) to zero yields

awP(a)
— + 1—a)(l+logQa)) + X = 0. (35)
o+ o (@)
Solving this equation reveals a “temperature-like” solution based on 7:
- B aw
Q(a) x P(a)7, T= uria i—a) € (0,1), (36)

which is exactly the optima Q% (I, -) mentioned earlier.

Since 0 < 7 < 1, this transformation always increases entropy unless P is already uniform:
H(P(,) < H(Q4(L") < log|Al. (37)

The entropy gain is larger when w is small (in the variable regions). Consequently, the (1 — «), Lpire
term counteracts the over-confidence induced by Lpcg in variable regions, serving as an adaptive
entropy-based regularizer. O

B TRAINING AND SAMPLING DETAILS

Training Details We trained our model based on a Transformer T5 architecture, incorporating axial
attention and task-specific modifications to enhance performance. The model consists of 12 encoder
layers and 12 decoder layers, with a hidden size of 1024, 12 attention heads, and a feedforward
dimension of 2048. The feedforward projection employs a gated-GELU activation function. During
training, we employed the AdamW optimizer with a learning rate of 5e-5, a weight decay of le-5,
and a polynomial decay scheduler with a 1% warmup ratio. Training was conducted on four NVIDIA
A40 GPUs for up to 200,000 steps, with a batch size of 4 per device for both training and evaluation.

Sampling details The sampling process was configured with the following parameters: we generate
16 MSAs for 4 trials per generation. The sampling used a repetition penalty of 1.0, a temperature of
1.0, and top-p sampling with a threshold of 0.95. Beam search was performed with 4 beams and 1
beam group. Sampling was executed on an A40 GPU.

C RELATED WORKS

Protein Structure Prediction Protein structure prediction methods fall into three main categories:
physics-based, homology-based, and deep learning approaches. Physics-based methods, such as
AMBER and CHARMM, use molecular physics and energy optimization to simulate protein folding
(Cornell et al., [1995; Brooks et al., 2009). While offering detailed folding insights, they are compu-
tationally expensive and sensitive to initial conditions, often yielding suboptimal results (Karplus
& McCammonl, 2002; [Freddolino et al.,|2010; |[Pande et al.| 2010). Homology modeling tools, like
Rosetta and HHpred, use MSAs and evolutionary data to predict structures by refining templates from
known experimental structures (Rohl et al.| 2004} Hildebrand et al.,[2009). These methods perform
well with suitable templates but struggle with orphan proteins and low-homology families (Webb &
Sali, [2016; Baker & Sali, 2001). Deep learning-based methods, such as AlphaFold2 and OmegaFold,
use advanced neural architectures and protein templates to achieve near-experimental accuracy with
greater speed and scalability (Jumper et al.,|2021} |Abramson et al., 2024 |Wu et al.| 2022). Despite
their success, they still depend on high-quality MSAs and struggle with low-homology proteins.
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AlphaFold-based Enhancement Building on AlphaFold’s success, researchers have developed
methods to refine specific modules, aiming to improve accuracy or efficiency. These advancements
can be grouped into three main categories. The first category focuses on homology expansion
techniques, such as MMSeq2 and DeepMSA?2, which expand the evolutionary search space to
enhance prediction accuracy. However, these methods often slow down inference despite their modest
performance gains (Johnson et al., 2010; [Steinegger & Soding), 2017} [Zheng et al.} 2024; [Lee et al.,
2024). The second category targets search acceleration, with methods like ColabFold and ESMFold
bypassing the MSA search process to enhance computational efficiency. However, this speedup often
results in incomplete evolutionary data, potentially reducing prediction accuracy (Lin et al., 2023}
Mirdita et al.,2022). The third category leverages generative models to capture protein homology
and augment input data, especially for orphan proteins and low-homology families. While promising
in specific scenarios, these models struggle with extremely limited evolutionary signals, and their
artificial sequences often deviate from traditional MSA distributions, limiting broader applicability
(Alamdari et al., 2023} |Zhang et al., 2022} 2023} |Chen et al., [2024).

D COMPARISON ON INFERENCE SPEED AND MEMORY USAGE

To further demonstrate PLAME’s efficiency, we calculated the inference time and memory cost
of each method. We used ENZYME 1.2.1.50 (EC Number) with length 488 as the test case. The
results show that PLAME achieved the fastest speed among all Al-based methods while consuming
only 4.5GB of memory. The processing speed is comparable to traditional methods like MMSeq2
and Al-based retrieval methods like DHR. Compared to retrieval-based methods, PLAME does not
require downloading or building databases in advance, nor does it need preprocessing steps. This
makes it more lightweight and efficient for deployment.

Method | Time per MSA (s) | GPU Memory (Gb)
PLAME 0.10 4.5
DHR 0.16 + 358.61 (Alignment) 1.9
MMSeq2 0.48 0.0
MSAGPT 62.46 41.6
EvoDiff 478.24 4.0

Table 4: Comparison on inference speed and memory.

E EXTENSIVE CASE STUDIES

E.1 CASE STUDY ON SUCCESSFUL DESIGNS

To further explore the key pattern of the MSA augmentation, we provide a series of sequence and
structure visualization in Appendix [Hl We select representative cases collected from different datasets
and range from different lengths to comprehensive evaluate the samples.

Among these cases, we can generally observe that most generated MSA sequences maintain high
similarity with the query sequence. Furthermore, the generated MSAs provide good enhancement
at the originally conserved sites. This indicates that protein language models can still retain some
evolutionary information even for proteins with low homology, although the diversity they can provide
is more limited due to homology constraints.

Additionally, we identified several patterns in the sampled MSAs that clearly deviate from the original
distribution, such as consecutive gaps (in 8ehb_F), repeated HHHHHH sequences (in 8okw_B),
and repeated SSSSSSSSS (in 7xrl_A). We believe these erroneous generations are related to the
autoregressive generation method, where the model tends to produce excessive hallucinations after
getting trapped in incorrect local probability distributions. We also observed that these failure patterns
occur more frequently in longer sequences, possibly due to insufficient training on cases with greater
length. These represent an area requiring further improvement.
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E.2 FOLDING ENHANCEMENT ON AVERAGE PROTEINS

To probe the effectiveness of PLAME on average proteins, we firstly build a dataset from PDB
validation set with 36 proteins. These protein MSAs don’t have sequence similarity over 90%
compared to the PLAME training set. We randomly employ 32 MSAs for each protein and augment
them with designed MSAs after HiFiAD filtering. The results are shown in Table [5] From the

| pPLDDT GDT TMscore RMSD LDDT pTM

AF2MSA | 83.156 0.767 0.785 5.243 0.753 0.718
PLAME 83.328  0.775 0.795 5.028 0.757  0.723

Table 5: Comparison of folding enhancement on average proteins

experimental results, the effects of augmentation align with our initial assumptions, demonstrating
modest improvements. While the overall topological structure remains unchanged, minor adjustments
can be observed in the structural details. As reported in MSAGPT, performance gains approach
saturation between 16 and 32 augmentations. The relatively small improvements observed when
applying our method to the average protein MSA can be attributed to the fact that these original
MSAs already provide sufficient evolutionary information to AlphaFold2’s MSA Transformer, thus
limiting the potential impact of additional augmentation.

E.3 FURTHER ABLATION ON MSA FILTERING

We further validate the effectiveness of filtered high-quality MSAs by comparing the performance
with the more randomly selected MSAs (64 for each protein). From Table E] and We can observe a

| pPLDDT GDT TMscore RMSD LDDT pTM

More Random MSAs | 63.620 0.512 0.533 12.692 0563 0473
HiFiAD 66.349  0.534 0.553 11.755 0581 0.506

Table 6: Comparison of folding enhancement based on different filterings.

slight performance enhancement compared to Random-16 filtering approach according to pLDDT
and LDDT. Conversely, the performance on global metric decreases. From the results, more co-
evolutionary information may lead to better local geometric conformation, but it will disturb the
modeling of the global conformations due to the bias during generation.

E.4 FAILURE CASE ANALYSIS

Other than analyzing successful cases, we analyzed four representative failure cases (3bog_B, 7sxb_A,
8gzu_AN, 8gzu_T3) with the largest performance drops, which includes three zero-shot and one
few-shot examples. From the detailed results, we observe a clear mismatch between global met-
ric, including GDT, TMScore, and RMSD, and local metric, including pLDDT, LDDT, and pTM
on 3bog B and 8gzu_T3. It is consistent with the metric discrepancies we observed in the main
experiment.

Among the visualized MSA cases, we observed that generated MSAs contained extremely similar
sequences (>90% similarity). Specifically, these high-similarity sequences caused all sites to appear
more conserved, resulting in a lack of covariation patterns necessary for AlphaFold2 to infer structural
contacts. This pattern was evident across all four cases. Notably, for 3bog_B and 8gzu_T3, the
generated high-similarity MSAs further enhanced the conservation of already conserved regions,
which consequently led to improvements in global metrics.

E.5 DE NOVO PROTEIN FOLDING ENHANCEMENT

We conduct further experiments on De Novo protein cases, where almost of them are orphan.
Examples of de novo proteins include 8SK7 (RFDiffusion (Watson et al., 2023)), STNM/8TNO
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| pPLDDT GDT TMscore RMSD LDDT pTM
AF2 MSA

3bog B 41.493  0.150 0.130 22443  0.148 0.129
7sxb_A 84.931 0.739 0.757 2.559 0.661 0.753
8gzu AN | 58.189 0.390 0.488 17.630  0.700  0.406
8gzu T3 59.533  0.591 0.668 14.030 0.659  0.597

PLAME

3bog B 32918 0.169 0.148 17.522  0.158 0.118
7sxb_A 53.956  0.358 0.358 9.988 0.369  0.359
8gzu AN | 51.542 0.393 0.491 17.238 0513 0414
8gzu T3 55.169 0377 0.480 20930 0.691 0.394

Table 7: Comparison of folding enhancement on failure cases.

(Chroma (Ingraham et al., 2023)), and 8CYK (ProteinMPNN (Dauparas et al.| 2022))). We followed
the same augmentation pattern as the main experiment. From Table [§| we observed that PLAME

\pLDDT GDT TMscore RMSD LDDT pTM

AF2 MSA 89.27  0.886 0.904 1.658 0.781  0.800
HiFiAD 88.33  0.924 0.940 1.483 0.824  0.800

Table 8: Comparison of folding enhancement on de novo proteins.

experiences a slight decrease in pLDDT scores while simultaneously showing improvements in other
metrics. The generated MSA visualizations in Figures [5|and [6|reveal that most generated sequences
maintain > 70% similarity to the query sequences. This phenomenon may be attributed to these
test cases being highly Out-Of-Distribution (OOD) relative to the training dataset. Nevertheless, the
diverse sampling strategy still effectively enhances the profile information of orphan proteins, resulting
in substantial performance improvements. Furthermore, we visualized specific local regions where
PLAME achieves superior alignment performance as measured by TMscore. Analysis revealed that
across all augmented profiles, these high-performing local regions exhibit remarkable conservation,
suggesting a strong correlation between sequence conservation patterns and structural alignment
quality.

F DISCUSSION

F.1 LIMITATIONS

Recent advancements in MSA generation models have shown promising results in enhancing protein
folding predictions. However, several challenges remain to be addressed for broader applications
and improved performance. 1) Limited quality by current model architectures, data constraints,
and generation strategies, such as relying on small MSA prompts, hinders the overall richness
and informativeness of the generated MSAs. Future methods should focus on constructing more
expressive evolutionary latent spaces to better capture the complexity of protein sequence relationships
and improve the informativeness of generated MSAs. 2) Distribution gaps still exist between the
diversity and quality of generated MSAs and their natural counterparts, limiting their utility in broader
applications. While current methods show potential in folding tasks, future models should focus
on zero-shot generation capabilities to produce MSAs with distributions closer to natural MSAs,
enabling broader applications such as conserved residue identification, mutation effect prediction,
and functional annotation. 3) Assessing MSA quality remains an unresolved issue, as current
evaluations primarily rely on downstream folding performance to infer quality. Developing direct
and robust quality assessment metrics will be crucial for systematically evaluating and improving
MSA generation methods, enabling the selection of high-quality MSAs for specific applications and
paving the way for next-generation models with enhanced accuracy, broader applicability, and greater
biological relevance.
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Figure 5: Comparison of structure enhancement of De Novo proteins.
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G STRUCTURE COMPARISON VISUALIZATION

pdb_id: 8ehb_F

PLAME MSAGPT AF2MSA
pLDDT: 75.64 pLDDT: 41.35 pLDDT: 36.25
TMscore: 0.749 TMscore: 0.563 TMscore: 0.359
RMSD: 3.218 RMSD: 4.462 RMSD: 9.653

Figure 7: Structure comparison visualization of 8ehb_F.
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pdb_id: 8b4k_C

pdb_id: 8fif_A

PLAME AF2MSA
pLDDT: 79.43 pLDDT: 31.49
TMscore: 0.743 TMscore: 0.209
RMSD: 6.10 RMSD: 15.37

Figure 8: Structure comparison visualization of 8b4k_C.

PLAME AF2MSA
pLDDT: 91.56 pLDDT: 64.56
TMscore: 0.974 TMscore: 0.734
RMSD: 0.783 RMSD: 3.193

Figure 9: Structure comparison visualization of 8fjf_A.
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pdb_id: 8eoz_B

PLAME MSAGPT
pLDDT: 88.24 pLDDT: 48.10
TMscore: 0.958 TMscore: 0.290
RMSD: 0.127 RMSD: 15.338

Figure 10: Structure comparison visualization of 8eoz_B.

pdb_id: 8okw_B

PLAME MSAGPT
pLDDT: 86.18 pLDDT: 52.90
TMscore: 0.945 TMscore: 0.658
RMSD: 1.408 RMSD: 12.459

Figure 11: Structure comparison visualization of 8okw_B.

23



Under review as a conference paper at ICLR 2026

H AUGMENTED MSA VISUALIZATION

To provide an intuitive understanding of the MSAs generated by PLAME, we selected several
representative cases for visualization. These cases demonstrate consistent improvements in folding
accuracy compared to the MSAs provided by AF2 and cover a range of sequence lengths, including
short (<100), medium (100-300), and long (>300) sequences, as well as cases under few-shot
and zero-shot settings. For each visualization, the generated MSAs are highlighted with a black
box. Additionally, the upper portion of each figure presents conservation information alongside the
corresponding gap information. The protein information is provided in the left-top corner at each
figure.
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Figure 12: Augmented MSA visualization of 8ehb_F.
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Figure 13: Augmented MSA visualization of 8okh_B.
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Figure 14: Augmented MSA visualization of 8okw_B.
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Figure 15: Augmented MSA visualization of 8fih_C.
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Figure 16: Augmented MSA visualization of 7opb_D and T1119_D.
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Figure 17: Augmented MSA visualization of 7xr1_A.
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Figure 18: Augmented MSA visualization of 8eOn_F.
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I FAILURE CASE MSA VISUALIZATION
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GSGTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDP
——GSS PPLPDDETVWYEYYGYVDGRHTVGDAAIKDSLENYPPNTHARRH KALSKKADPGEFVAI YQRRGTSESQWQYYPRIAS PDP
——GSS LPLPDNETVWYEYYEYVENRHTVGEAATKDTSGNYPPQTHARAH KALSKKADPGVFVAI YQRRG-—-SQWMYYRNITA PDP
——=YG PPIQDNDKFRHEYYEYAGSRDVVGQAVTKDSSGNYPPQTHARRH QARSVKVDQGELVAI HERSDTGESRWVYYHNIKQ PVP
——GAS LPLSE-ETATYEYYAYSGSRYVDGNPTEKDSSGRYPHGTHAKRF KGSDEEA-—GLFVAI VKYR-———-—- WVYYKDVKP PDF
——DSG MPFSD-EAATYKYVA-KGP-KNIEIPAQIDNSGMYPDYTHVKRF KGLHGEDTTGWFVGI
——-NS MPLSE-ETDTYQYFAQTSNKEE-—-TPARKDSSGMYPEYTHVKRF KGLHGEDKTGEFIGL
——ASG MPFSD—-ETASYKYLT—-ERS—-RNDETPAQNDSSGAYPDHTHVKRF KGLHGEEKTGRYVGI
MPFSD-EAATYKYVA-KGP-| KNIEIPAQIDNSGMYPDYTHVKRF

———TA PPLPDDGIVFYEYYGYAGDRYTVGPVVTKDSTGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDA
GSGTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDT
———TG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDA
———TG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDV
———=S PPLPSSGITFYEYYGYAGDHYTVGPVVTKDATGNYPTPTQVKKQ RVVTEDSDPGEYIAV YKSGTTGESYWEYYKNIGK PD
——GTG PPLPDDGIVFYEYYGYAGDRHTVGPVVSKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDV
——GTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDV
GAGTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RTLSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PD
GAGTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PD
——GMG PALPEDGIIFYEYYGYAGDRYAIGPVITKDSSGNYPSPISARSR RALSQEVEPGKFVAI YKSGTTGDSHWEYYKNIGK PD-—
GSGSG PPLPDDGIVFYEYYGYAGDRHTVGPVITKDSSGNYPSPTHARRR RSLSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PD-
GAGTG PTLPDDGIIFYEYYGYAGDRYTVGPVVTRDSGGNYPSPTHARRR RTLSQEADPGEFVAI YRSGTTGESHWEYYKNIGK PDA
GSGTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PD
————G PPLPEDGILFYEYYNYAGDRHTIGPVITKNSAGKYPTPTQARRR RALSQDADPGEFVGI YTSGTTGESHWEYYKNIGK PA-
-SGTG PPLPDDGIVFYEYYGYAGDRHTVGPVVTKDSSGNYPSPTHARRR RALSQEADPGEFVAI YKSGTTGESHWEYYKNIGK PDA

Figure 19: Failure Case MSA visualization of 7sxb_A.
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HSGLLRNFEKLY QSQLSKAGHKLLLRSPNSTLHPTAFVYKRNSSQRLANEMDVFQLGLAAAALTROAMIVAQLLDQVDKEAVREEVQERITQNHSDUIVYFGEILSLFKXGKKE PVQTVADISYVLAFGPIQVPNAAATITENLLPVLKEKLDY,
HSGLLRNFEKLY QSQLSKAGHKLLLRSPNSTLHPTAFYYKRNSSQRLANENDVFQLGLAAAAL TROANNYAQLLDQVDKEAVREEVOERTTONHSDLNVYFGEILSLFKIGKKE PVQTVADISYVLAFGPIQVPNAAATITENLLPVLKEKLDY.
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PNSTLHPTAFY' SQRLANEMDVFQLG LT ITQNHSDLNVYFGETL! 1Gl PVQTVADISYVLAFGPIQVPNAAATITENLLPVLKEKLI
SGLLRNLEKLLHOSOLAKAGHKLLLRSPNSTLHPTAFWKRNSSORLANEMDIFOLGLAAAALTRQAMVAOLLDQVDKEAIREEAQERITONHSDLNVV SLFKTGKKE PIQTVADISYVLAF VPNAAATTAENLLPVLKEKLD'
SGLLRNFEKLA GNRLLLRSPNSTLHPTAI TNEMDVFQLGLAASALARQANNYAQLLDQIDKEAVREEVQERTAQN! VY= LSLFKIGKKE PIQTVADISYVLAFGPIQVPNAAAIITENLLPVLKEKLD
SGLLRNF KLVWQ QLSKA LLLI SPNSTLHPTAFVYKRN SQRLANEMDVFOLGLAAAALTRON‘NY OLLDQVDKEAVREEVOERITONHSDL YFGEILSLFKIGKKE PVQTVADISYVLAFGPIQVPNAAAIITENLLPVLKEKLD
SGLLRNFEKLV OSQLSKAGHKLLLRS 5 HPTAF KIWSSQRLANEMDV GL L RQAMIVAQL DQVDKEAVREEVQERITQNHSDLNVY] LSLFKIGKKE PVQTVADISYVLAFGPIQVPNAAAIITENLLPVLKEKLD
ISGLLKNFEKIVSQSQLSKAAHRLLSQTSI AAFYYKRNASRRLVSEMD TRQANNYAQLLDQVDKDTIREEVQERI IQNHSDLNVYFAEILSLFKIGKRE PLQSIADILYVLAYGPIQVPNVATIVTENLLPVLKEKLD

GLLKNFKRLI5EAOLSKAGHKLLLRSPSSTLHPTAF KRNSSQRLANEMDVFOLGLAASALTROANSYVOLLEQVDKESLKEEVQERITONHSDL VY LSLFKIGKKE PVQTLADISYVLAF Q ""IITENLLPVLKEKLD
SGFLRNFENLVSRNI KVIVRSPNTSLHPSSFYYKRNASRRLTNDLDIFQLGLAAAALTRQSNNYSHLLDHIDKEAVREEVQQRITQNI LGl PVQSIADI FVLAL LKEKLD:

FLRNFENLVSRNLSLRAGRKVIVI ITSLI IDLDIFQLG! HADLNVYFAELLGLFKIGKKE 19
GLLRNFKKTLSKSLFSKAGHKLLLRSPNSTFHSAAFYYKRDSSQRLANEMDVFQLGLAAATLTRQANNYAQLLDQVDKEAVQEEAQKQISENHSDLSVYI LSLFQIGKKE PIQTVADIAYVLAFGPIQVP! ASAIITE\ILLPVLKEKLD
SGLLRNFEKLA QNQLSKAGHKLLLRSPNSTLHPASFYYKRSSTQRFANEMDVFQLGLAAAALTRQANNYAQLLDQVDKEAVRDEVQDKITRSHSDLNVYFGEILSLFKIGKKE PIQTVADISYVLAFGPLQVPSASAILTENILPLLKEKLD'
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ASTHNLQDILSAFVKLNYVSDKELLKRLITALSQKDFPNQLQPVTNHAWNIDQYEYSD NSWNIVS GDNTFEKYIHEGG ENSLAKAKFAVHELLDHISFNFVNPFLFRENRINHRFAKRNADLDHEVLMQTLSKLQEIVPETSEAIATIKARL
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DVV~—-VSL QDHKDAGFWSQF FTGTKSKEF LWEL QPTDYHGWETVQFDYL DSNTWAVLTAQDSQLKRFV FGYTNPVL REKRIKYVFDDRLY-—-DRSAFKNALKKINEVVQE-————————-
FNAD-VQDIV SFGGLHMDINDEELYKYLFEGLVNHNRNKEILPALAESWEIDQYTFHIRA WSDSKDIENFF- KYILSKEN‘N ARELFPIFGAEDYYN
- PNOLOF v HAWN W x R
SIHNLODILSAFVKLNYISDKELLKRLITALSQKDFPNOLQPVTNHAM VEVED NSWNIVS CONTFEKYIHECC ENSLAKAKFAVHELL HTSFNFUNPFL FRENRINHRFAKRNADL DHEVLHQTL KL QETVPETSEATATIKAR
hSTHNLQDILSAFVKLNYVSDKEL LKRLITALSQKDFPNQLQPVTNHAWNIDQYEYSD NSWNIVS GDNTFEKYIHEGG ENSLAKAKFAVHELLDHISFNFVNPFLFRENRINHRFAKRNADLDHEVLMQTLSKLQEIVPETSEATATIKAR
STHNLQDILSAFVKLNYVSDKEL LKRL ITALSQKDFPNQLQPVTNHAWNIDQYEYSD NSWNIVS GDNTFEKYTHEGG ENSLAKAKFAVHELLDHISFNFVNPFLFRENRINHRFAKRNADLDHEVLMQTLSKLQETVPETSEATATIKAR
S THNLQDILSAVKLNYVSDKEL LKRL ITAL SQKDFPNOLQPVINHAWNIDQYEYSD NSWNIVS GDNTFEKYIHEGG ENSLAKAKFAVHELLDHESENEVNPELFRENRINHREAKRNADLDHEVLIQTLSKL QE VPETSEAIATIKAR]
STHNLQDILSAFVKLNYTSDKEL LKRLINSLSQKDFPNQLQPTANYAWNIDQYEYSD SSWNIVS GDNTFE NELLDHVSFNFVNPFLFRENKINHRFAKRNADL DHEVI MQTLSKLQETVPETSEATATIKAR ]
DILSAFVKLNYASDI ITALSQKDFPNQLQPTANHAWNIDQYEYSD NSWSIVS FE EGGSENSLAKSKFAVOELLDHI ENFUNPFLFREDRI SHRFAKRNADL DHEVLHQTLSKLQE TVPETS
TQNLQDILSAFVKLNFVSDKEL LKRLINALSQKDFPN Y N GDNTFEKYIQEGG VHEL LDNISFSFVNPFLFRENRINH IADLDQETLLRTLSKLQEVVPEISEATASIRAR!
hSTHNLHDILSAFIKLNHVSDKEL LKRLTSALSQKDFPNQLQPV VEYSD NSWNIVS CONTFEKYINEGG DDSLAKAKFAVHEL LDNI SENFUNDFLFRENRINHREAKRNSDL DUETCHET KL QETVPETSEATATIRAR
O LD LS UKLNY\ SDKEL LKRL17ALSOKDEPNQLOP\ TDHANSIDOYEYSD NWNIVS CONTFEKYIVECC ENSLAKAKEAVHELLDH/SFNF INDFLFRENRINHREAKRNGDLDHDL L1OTLEKLHELVPET SEALATIKAR

Figure 20: Failure Case MSA visualization of 8gzu_T3.

J USAGE OF LANGUAGE MODELS

We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
to editorial tasks, including proofreading for typographical errors, correcting grammar, and improving
the clarity and readability of the text.
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KGADGAHGVUG PGTAGAAGSVGGPG DGGHGCNGONGNPG AGGVGGAGGASGGTGVGGRGGKGGSGTPKGADGAPGAP

KGADGAHGVPG PGTAGAAGSVGGPG DGGHGGNGDHGNPG AGGVGGAGGASGGTGVGGRGGKGGSGTPKGADGAPG——
KGADGAHGAPG PGTAGAAGSVGGPG DGGHGGNGGNGNPG AGGVGGAGGASGGTGVGGRGGKGGSGTPKGADGAPGA-
KGADGAHGVPG PGTAGAAGSVGGPG DGGHGGNGGNGNPG AGGVGGAGGASGGTGVGGRGGKGGSGTPKGADGAPGAA

-QGVQGVQGLQGIQGIQGIQGIQGTQGIQGIQGIQGVTGTQGTQG
TGVGAKGDKAGAGTAKGADGATGA-

PGVGGLGATGGTGSPPGADGAPGA-
KGADGAHGVPG PGTAGAAGSVGGPGTDGTHGDDAADGAPG AGAVDGAG
KGEEGTDGTTGATGVAGEDGSTGSTGETDGNGGNGDDGTDD TGGVGDATGETGASGITGEGDTDGSTSPSGADASAA-——

DGTPGSA

GSTSSAGAAGGSGGDGGSGAGAASGASSGTGGTGAA-GGV
AGAQGGQGAAGTPAGADGAPG—-—
KGADGAHGVPG PGTAGAAGSVGGPG DGGHGDNGDNGNPG AGGVGGAGGASGGTGVGGRGGKGGSGTPKGADGAPGA—
TOGINGIDGTDGSTSGTGSSGTAAGTTGTSSTGTTGSTAGATGSTTTTGT—
—————————————— GSAGAQGTQGTQGTDGGNGADGTTGASGASSGSQGATNTQGTA
KGADGAHGVPG PGTAGAAGSVGGPGTDGTHGDNGDHGNPG AGSVGGAGSASGGTGVGGRGDKGDASTGSGADGAPGA-

Figure 21: Failure Case MSA visualization of 3bog_B.
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Figure 22: Failure Case MSA visualization of 8gzu_AN.
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