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Abstract

Climate science demands automated workflows to transform comprehensive questions into
data-driven statements across massive, heterogeneous datasets. However, generic LLM
agents and static scripting pipelines lack climate-specific context and flexibility, thus, per-
form poorly in practice. We present CLIMATEAGENT, an autonomous multi-agent frame-
work that orchestrates end-to-end climate data analytic workflows. CLIMATEAGENT decom-
poses user questions into executable sub-tasks coordinated by an ORCHESTRATE-AGENT
and a PLAN-AGENT; acquires data via specialized DATA-AGENTs that dynamically in-
trospect APIs to synthesize robust download scripts; and completes analysis and report-
ing with a CODING-AGENT that generates Python code, visualizations, and a final re-
port with a built-in self-correction loop. To enable systematic evaluation, we introduce
CLIMATE-AGENT-BENCH-85, a benchmark of 85 real-world tasks spanning atmospheric
rivers, drought, extreme precipitation, heat waves, sea surface temperature, and tropical cy-
clones. On CLIMATE-AGENT-BENCH-85, CLIMATEAGENT achieves 100% task completion
and a report quality score of 8.32, outperforming GITHUB-COPILOT (6.27) and a GPT-5
baseline (3.26). These results demonstrate that our multi-agent orchestration with dynamic
API awareness and self-correcting execution substantially advances reliable, end-to-end au-
tomation for climate science analytic tasks.

1 Introduction

The rapid pace of climate change and the growing severity of its impacts have created an urgent need to
advance data-centric climate science, which could deliver timely insights for adaptation and policy (Deelman
et al.l 2009; Overpeck et al., |2011; |[King et al., [2009). Automating the workflows in climate science can
translate comprehensive analytical questions into executable pipelines, enabling rapid, reproducible analysis
of complex environmental phenomena and supporting extreme-event forecasting, impact assessment, and
adaptation planning. On the other hand, such analytic workflows need to process special climate datasets
(e.g., datasets from Copernicus climate data store (CDS|) and the European centre for medium-range weather
forecasts (ECMWF))) with high volume, heterogeneity, and complexity, where intelligent automation has
become essential for processing and integrating these datasets at scale (Hersbach et al.l 2020} [Benestad
et all 2017, Buizza et al. 2018]). In this paper, we aim to explore how Al agents can perform complex
climate-science analytical tasks through carefully designed agentic orchestration.

Building an Al-driven climate agent is a compelling and crucial effort since the stakes of climate change
demand faster and more intelligent ways to derive insights from the complex data. The accelerating pace
of global change and the severity of its impacts suggest that climate scientists and policymakers urgently
need timely, data-driven information for mitigation and adaptation decisions (Overpeck et al.l |2011; King
et all 2009). At the same time, climate science workflows need to process massive and diverse datasets —
from multi-model simulations to satellite and in-situ observations — and turning this data deluge into useful
information has become a bottleneck for discovery and decision-making. A large language model (LLM) based
AT agent can automate complex analytical workflows to address this bottleneck, dramatically accelerating
analysis that would otherwise take a team of experts days or weeks. By translating high-level scientific
questions into executable pipelines, such an agentic paradigm could enable rapid, reproducible analysis of
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complicated climate phenomena like extreme events, climate impacts, and future scenarios (Deelman et al.|
2009; |Overpeck et al.,[2011)). In essence, an Al climate agent can serve as a productive research assistant that
integrates data from various sources on-the-fly and explores many potential hypotheses iteratively, which
would augment human scientists’ abilities, i.e., allowing them to focus on interpretation and strategy, and
accelerate the cycle of the analytic workflow (King et al.l [2009; Reichstein et al. [2019)). By empowering more
interactive and comprehensive data exploration, such an agent could usher in a new paradigm for climate
science, where insights emerge at the pace of computational power rather than human labor.

On the other hand, developing a robust climate agent is challenging due to several inherent complexities
of this domain, where data volume and heterogeneity are primary obstacles: modern climate datasets are
enormous in size and varied in format. For example, a single state-of-the-art reanalysis (ERA5) encompasses
petabytes of multidimensional data (Hersbach et al.|[2020)), and observational records, climate model outputs,
and remote sensing products each come with different resolutions, units, and conventions (Benestad et al.
2017). A simple, hand-crafted pipeline or off-the-shelf use of LLMs (e.g., standard zero-shot LLM approaches)
will quickly break down when faced with such diversity and complexity. Note that many climate workflows
require on-the-fly decision making and expert knowledge — for instance, selecting appropriate data sources,
applying bias corrections, or choosing relevant statistical tests to determine significance. A rigid, hand-
crafted solution cannot easily accommodate these nuanced choices — attempts to force flexibility into static
pipelines often lead to brittle, error-prone processes, highlighting the need for more intelligent, adaptive
automation (Buizza et al., |2018]).

In this paper, we view automating complex climate scientific workflows as a specialized form of planning
and data-processing code generation. Recent LLM-based agentic systems show promising performance, but
those applied to scientific domains still face critical shortcomings (Austin et al. |2021)). Most current agents
use generic, domain-agnostic LLMs that miss the specialized requirements of climate science (Wang et al.
2024; [Yao et al 2022). Concretely, a general LLM agent could be unaware of climate data access APIs,
data formats, and valid parameter choices, while static scripts and libraries lack the flexibility to handle new
scientific questions or evolving data sources. These limitations result in high error rates for LLM-generated
code and a steep learning curve for non-expert users. More importantly, generic approaches cannot support
the iterative, hypothesis-driven nature of climate study — they fail to autonomously handle multi-step
inquiries where initial results could spur new sub-questions — leaving a substantial gap in achieving truly
end-to-end, autonomous climate analysis without requiring human intervention.

To address these gaps, we introduce CLIMATEAGENT, an autonomous multi-agent framework specially de-
signed for climate science workflows. Our approach employs a multi-agent orchestration strategy: a com-
prehensive climate query is first decomposed into a structured sequence of sub-tasks, where each sub-task is
executed by a specialized agent. This modular design injects domain-specific knowledge at every step and
dynamically adapts as the workflow progresses. Additionally, CLIMATEAGENT is also equipped with robust
error handling and self-correction, enabling it to detect failures, recover, and adjust plans without human
intervention in the loop. Concretely, we make the following contributions:

Contribution 1. We propose a multi-agent orchestration paradigm to support complex climate data science
workflows, which comprises the following key agents:

e Agents for planning and orchestration: We introduce an ORCHESTRATE-AGENT for workflow man-
agement and a PLAN-AGENT for task decomposition. Concretely, the ORCHESTRATE-AGENT manages
experiment directories and persistent context, while the PLAN-AGENT interprets the user request, for-
mulates a detailed execution plan, breaks down the high-level goal into discrete subtasks, and delegates
each to the appropriate specialist agent. Together, these two agents provide top-level oversight, adjusting
the plan as needed and ensuring the overall workflow stays on track, including handling runtime issues or
re-planning when necessary.

e Agents for climate data acquisition: We implement a set of DATA-AGENTS each tailored to a specific
data source and handles data retrieval by dynamically introspecting its target API — e.g., fetching the
latest valid parameters or dataset metadata at runtime — and then generating robust download scripts.
This capability allows users to adapt to evolving datasets and API utilization, preventing errors such as
invalid parameter use or format mismatches during data acquisition.
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e Agents for programming and visualization: We include a set of CODING-AGENTs that generate
Python code for data analysis and generate final reports, complete with text summaries and visualizations.
The CODING-AGENTs implement a self-correction loop to debug code based on execution feedback.

Together, these agents form a cohesive system that can autonomously manage the entire climate data science
life-cycle from data acquisition to final analysis, making sophisticated climate science accessible and efficient.

Contribution 2. To systematically evaluate the performance over the climate data science tasks, we in-
troduce CLIMATE-AGENT-BENCH-85, a benchmark of 85 real-world climate workflow tasks spanning six
domains, including atmospheric rivers (AR), drought (DR), extreme precipitation (EP), heat waves (HW),
sea surface temperature (SST), and tropical cyclones (TC). Each task is specified in natural language with
an explicit scientific objective, required datasets, mandatory external tools (e.g., TempestExtremes), and
strict output contracts (filenames and formats), driving multi-step pipelines from data acquisition through
processing, analysis, and visualization. For reproducibility, every task includes a curated reference solution
with a validated Python code base and a human-readable report with figures, and tasks are stratified by
difficulty — easy (single-source), medium (multi-source), and hard (external-tool integration with dynamic
parameters) — to support controlled comparisons across complexity levels.

Contribution 3. We comprehensively evaluate the proposed multi-agent framework, CLIMATEAGENT, on
CLIMATE-AGENT-BENCH-85, where the experimental results indicate that CLIMATEAGENT demonstrates
the ability to autonomously plan and execute the entire workflow. To be specific, our system achieves a
100% success rate in generating the report across the benchmark, with an overall report quality score of
8.32, compared to 6.27 for GITHUB-COPILOT and 3.26 for the GPT-5 baseline. We believe CLIMATEAGENT
significantly reduces the manual effort and specialized expertise required, demonstrating a powerful new
paradigm for Al-driven climate data science discovery and advancing the state-of-the-art in automated
climate research.

2 Related Work

LLM-Based Agentic Systems and Scientific Automation. Large language models such as GPT-3
(Brown et al., [2020), Llama 2 (Touvron et al., 2023)), and PaLM (Chowdhery et al., |2023) have become the
backbone for agentic systems that interpret user instructions, plan tasks, and interact with external APIs
(Yao et al.,|2022; [Shinn et al., |2023)). Frameworks like AutoGPT (Richards, [2023), LangChain (Chase} [2023)),
and CrewAlT (CrewAlL|2023) enable multi-step workflows and collaborative agents, while recent advances have
extended these systems with memory, tool usage, and inter-agent collaboration capabilities (Chen et al.| 2024;
Park et al.2023). In scientific domains, systems such as ChemCrow (Bran et al.,[2024)) and SciFact (Wadden
et al.l 2020) demonstrate automated protocol generation and fact checking. However, these approaches are
generally evaluated in synthetic domains or require extensive human oversight. What remains missing is
a system that combines domain-specific knowledge integration, persistent workflow state management, and
robust error recovery for end-to-end scientific analysis with live, evolving data sources.

Climate Science Workflow Automation. Workflow automation in climate science has evolved from
generic orchestrators like Kepler (Altintas et all [2004) and Apache Airflow to domain-adapted engines
such as Cylc (Oliver et al., 2018) and ESMValTool (Righi et all 2020). Programmatic access to climate
datasets is enabled by libraries like cdsapi, ecmwf-api-client (Copernicus Climate Change Service (C3S),
2019; [European Centre for Medium-Range Weather Forecasts (ECMWF ), 2022)), and processing interfaces
like CDO and xarray (Hoyer & Hamman,|2017)). Recent specialized systems have begun targeting autonomous
climate analysis: ClimSim-Online (Sridhar et al.| [2023]) explored goal-driven automation for climate impact
modeling, while TorchClim (Fuchs et al.||2024) and EarthML (Projectl 2020) focus on deep learning-powered
workflows. However, existing systems either require manual intervention at each workflow stage or lack the
robustness to handle the dynamic nature of climate APIs and heterogeneous data sources, preventing truly
autonomous end-to-end analysis.

Autonomous Research and Multi-Agent Planning. Advanced LLM architectures incorporating meta-
prompting (Zhang et al., [2025c]), chain-of-thought reasoning (Wei et al.l |2022)), and self-correction feedback
loops (Kamoi et al., |2024) have improved task decomposition and reliability in autonomous research sys-
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Figure 1: Overview of the CLIMATEAGENT system architecture. The workflow illustrates how user queries
are decomposed and processed by specialized agents, with robust error recovery and context management,
to produce comprehensive climate science reports.

tems. Prompt-based approaches like PromptCast (Xue & Salim| [2022)) and LLMTime (Gruver et al.| [2023)
demonstrate zero-shot capabilities in time series analysis, while automated debugging agents (Gao et al.,
2024)) enhance code reliability. However, the gap between high-level planning capabilities and execution-level
robustness remains unaddressed: few systems successfully translate broad user goals into complex multi-agent
plans with error-recoverable execution for scientific APIs, particularly in climate science.

To address these gaps, i.e., domain-agnostic agents, brittle workflow execution, and lack of comprehensive
evaluation benchmarks, we introduce CLIMATEAGENT, a specialized multi-agent framework that embeds
climate expertise at every workflow stage while maintaining the flexibility to recover from inevitable failures.

3 ClimateAgent

Climate science workflows present a fundamental challenge for automation: researchers must coordinate mul-
tiple interdependent tasks across heterogeneous data sources, each requiring specialized domain knowledge.
A typical workflow begins with identifying and acquiring data through diverse APIs — reanalysis products,
forecast models, observational datasets — then proceeds through multi-dimensional data processing, statis-
tical analysis, and finally report generation. Each phase demands expertise in domain-specific conventions:
climate data APIs impose unique constraints on spatial and temporal queries, scientific computing libraries
require precise parameter configurations, and analysis must respect the statistical properties of geophysical
data. Existing LLM-based approaches cannot handle this complexity: single-agent systems lack the special-
ized knowledge required at each stage, while monolithic code generation cannot recover from API violations,
parameter errors, or dependency failures.

We observe that the structure of climate workflows naturally suggests a solution. Rather than attempting
monolithic generation, we can decompose complex analyses into specialized subtasks — mirroring how climate
researchers organize their own work into data acquisition, processing, analysis, and reporting phases. By
assigning each subtask to an expert agent with targeted domain knowledge, and coordinating execution
through shared context that accumulates artifacts and enables iterative refinement, we leverage LLMs’ code
generation capabilities while building in the error recovery mechanisms that long scientific workflows require.

We present CLIMATEAGENT, an autonomous multi-agent framework that executes end-to-end climate analy-
ses without human intervention. CLIMATEAGENT decomposes workflows into specialized agents that collabo-
rate through shared context and adaptive feedback loops. The ORCHESTRATE-AGENT coordinates execution
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while the PLAN- AGENT decomposes queries into executable subtasks. DATA- AGENTS introspect climate APIs
to generate validated download scripts, and CODING-AGENTSs produce analysis code with built-in debugging
and self-correction. To achieve truly autonomous scientific workflows, CLIMATEAGENT realizes three core
capabilities that address the fundamental requirements of climate analysis automation:

¢ Coordinated Task Planning. The PLAN-AGENT decomposes comprehensive climate queries into struc-
tured subtasks and delegates each to specialized agents with targeted domain expertise, forming a coop-
erative division of labor that improves the completeness and quality of the resulting analysis and reports.

e Contextual Coordination. Agents operate on a shared, persistent context that enables cross-step
communication and propagation of intermediate results, dynamically adapting as the workflow progresses
and maintaining methodological consistency across multi-stage analyses.

e Adaptive Self-Correction. CLIMATEAGENT incorporates built-in error detection and recovery mecha-
nisms that allow agents to diagnose failures, revise plans, and adapt without human intervention, ensuring
robustness under evolving data and API conditions.

In this section, we first formalize climate report generation as sequential state transformation (, then
describe how our three-layer architecture achieves Coordinated Task Planning (7 how persistent con-
text enables Contextual Coordination (§3.3), and how complementary error recovery strategies provide
Adaptive Self-Correction (§3.4). Finally, we synthesize these mechanisms into a unified orchestration
algorithm ( Additionally, we provided detailed CLIMATEAGENT implementation & reproducibility in

Appendix [B]
3.1 Problem Formulation

We formalize climate workflow execution as a sequential state transformation. Given a task 7', the system
produces a scientific report R as the final output of a multi-stage analytical workflow through coordinated
multi-agent operations that maintain a persistent workflow context C; accumulating all generated artifacts:

C; = {task : T, plan : P, code : {cj};-:l, data : {dj}§:17results : {rj}é-:l,logs : {lj};zl}

The PLAN-AGENT decomposes T into an ordered sequence of subtasks P = [s1, Sa, ..., S,], each specifying
the action, required data, and target agent. Specialized agents Aj execute subtasks via the transition:

Cz' = Execute(Ci_l, Si, Ak-)

This design achieves workflow coherence through context accumulation: each agent operates on the complete
history of prior decisions and artifacts. The context serves as (1) an inter-agent communication protocol,
(2) a checkpoint for workflow resumption, and (3) a provenance record for reproducibility.

3.2 Multi-Agents for Coordinated Task Planning

To realize the coordinated task planning capability, CLIMATEAGENT employs a three-layer hierarchical archi-
tecture (see Figure [1)) that mirrors how climate scientists organize collaborative investigations. Specialized
agents at each layer encode distinct domain expertise: the PLAN-AGENT and ORCHESTRATE-AGENT coor-
dinate workflow execution, DATA- AGENTs handle data acquisition, and CODING-AGENTs perform analysis
and synthesis.

Agents for Planning and Orchestration. ORCHESTRATE-AGENT manages workflow execution (Step
1 in Figure |1) by creating timestamped experiment directories, persisting context, and coordinating agent
invocation. PLAN-AGENT decomposes queries into executable subtasks using climate-domain reasoning: it
recognizes standard analysis patterns (climatology — anomalies — extremes — report), dataset dependencies
(reanalysis vs. forecasts), and temporal constraints (initialization dates, lead times, aggregation windows).

Agents for Climate Data Acquisition. DATA-AGENTS interface with heterogeneous climate data sources
(Step 2) through specialized implementations. The CDS variant uses cdsapi to access the Copernicus
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Climate Data Store, validating variables, time ranges, and spatial domains. The ECMWF variant uses
ecmwf-api-client to retrieve S2S forecasts, encoding knowledge of model origins (ECMWF, NCEP, JMA),
parameter types (pressure-level, surface, daily-averaged), and forecast conventions.

Agents for Programming and Visualization. CODING-AGENTs generate Python code (Steps 3-5) for
data processing and report visualization. They incorporate expertise in climate libraries (xarray, cartopy,
cf-python), domain-appropriate statistical methods (anomaly calculations, running means, extreme value
statistics), and scientific computing practices (vectorized operations, memory management, unit handling).

This three-layer architecture separates concerns that require distinct expertise: data acquisition demands
API knowledge, processing requires computational skills, and reporting requires synthesis ability. Encoding
domain expertise at each layer achieves modularity and reliability.

3.3 Contextual Coordination

Building upon the hierarchical architecture in §3.2] CLIMATEAGENT achieves the second core capability,
i.e., contextual coordination, by maintaining a persistent and interpretable workflow memory shared across
all agents. This shared context records plans, data artifacts, and execution outputs, enabling continuity,
communication, and reproducibility throughout the workflow. Formally, the persistent workflow context C;
serves as the central mechanism that connects agents, supports error recovery, and preserves the system
state. Context functions as both a communication protocol and a state management system.

Context Evolution. In this procedure, each agent receives C;_; and produces C; by appending new
artifacts (scripts, outputs). This monotonic accumulation preserves all information across agent transitions.
For example, CODING-AGENT accesses original data files, processed results, and prior code when generating
visualizations.

Context-Driven Code Generation. The agents should then leverage context to generate coherent code.
Concretely, CODING-AGENT examines C;_1 to discover available files, understand data structure, and main-
tain consistent naming conventions. This prevents common errors: hard-coded paths, incorrect variable
assumptions, and redundant computations.

Serialization and Persistence. We serialize context to JSON after each subtask, enabling: (1) workflow
resumption from the last completed subtask after interruption; (2) reproducibility by preserving complete
decision history; (3) debugging without re-executing earlier stages. This persistent state transforms indepen-
dent agents into a coherent, traceable workflow engine.

3.4 Adaptive Self-Correction

Building on the contextual coordination mechanisms in CLIMATEAGENT realizes the third core capa-
bility, i.e., adaptive self-correction, which provides robustness and adaptability under real-world scientific
constraints. Note that climate workflows could face unexpected execution failures: APIs impose inconsis-
tent parameter rules, data availability fluctuates, and generated code contains subtle errors in coordinate
transformations, unit conversions, or array indexing. Single mistakes cascade through entire workflows in
baseline LLM systems.

CLIMATEAGENT employs three complementary error recovery strategies. Multi-candidate generation ad-
dresses API variability: DATA-AGENT generates m = 8 candidate download scripts with varying interpre-
tations (spatial bounds, temporal aggregations, variable selections) and executes them sequentially until
one succeeds. Iterative refinement handles runtime errors: CODING-AGENT retries up to Rpax = 3 times,
incorporating diagnostics from previous failures, with up to 5 debug iterations per candidate. LLM-based
semantic validation catches subtle correctness issues (wrong statistical tests, incorrect climatological periods)
that produce scientifically invalid results without runtime errors.

These strategies complement each other: multi-candidate generation explores hard-to-predict parameter
spaces, iterative refinement fixes implementation bugs using error feedback, and semantic validation ensures
scientific correctness. Together, they enable reliable execution of complex workflows involving unpredictable
APIs and intricate computations.
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Algorithm 1: ClimateAgent Orchestration Workflow
Input: Climate research task T'

Output: Scientific report R

Initialize experiment directory and context Co;

// Task decomposition phase

2 P < PLAN-AGENT.decompose(T)
3 Co.plan <+ P

10

11
12
13
14
15
16
17

18

19

20

21
22
23
24
25
26
27

28
29

// Sequential subtask execution with error recovery
for i < 1 to |P| do
// Current subtask
S; < P[Z]
// Route to appropriate agent
Ay < select_agent(s;.type)
retry__count < 0
success < false
// Retry loop with maximum attempts
while retry count < Rmax and not success do
if A = DATA-AGENT then
// Strategy 1: Multi-candidate generation for downloads
S « Ag.generate_ candidates(s;,Ci—1,m = 8)
foreach c € S do
result <— execute(c, exp_ dir)
if result.success then
C; < update_context(Ci_1, s;, ¢, result)
success <— true
break

else
// Strategy 2 & 3: Iterative refinement + semantic validation
¢ + Ag.generate(s;,C;—1, error_ history)
// Semantic validation
is_valid + LLM_validate(c, s;, T)
// Runtime execution
result < execute(c, exp_ dir)
if result.success then
C; < update_context(Ci_1, s;, ¢, result)
‘ success <— true
else
error_ history.append (result.error)
L retry_count < retry_count 4 1

// Extract final report from coding agent output
R <+ Cy.results[final _report]
return R

3.5 Orchestration Algorithm

Bringing together the capabilities of Coordinated Task Planning, Contextual Coordination, and Adaptive
Self-Correction, Algorithmsynthesizes the three core capabilities into a unified orchestration process (Steps
1-5 in Figure . This orchestration approach ensures that complex climate science workflows are executed
reliably through: (1) context-driven coordination enabling agents to build on prior work, (2) multi-strategy
error recovery handling diverse failure modes, (3) complete state persistence supporting reproducibility and
debugging, and (4) graceful degradation with clear failure reporting when tasks cannot be completed. These
mechanisms collectively enable researchers to focus on scientific questions rather than technical implemen-
tation details.
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4 Climate Agentic Workflow Benchmark

Another critical question for applying LLM agents for climate workflows is: how can one systematically
evaluate whether these design choices translate into reliable, high-quality scientific outputs? This requires a
benchmark that captures the authentic complexity of climate research — diverse phenomena, heterogeneous
data sources, multi-step reasoning, and domain-specific correctness criteria.

Evaluating LLM-based systems for scientific workflows requires benchmarks reflecting authentic research
complexity. Climate workflows demand domain-specific API knowledge, multi-step reasoning across data
acquisition and analysis, integration with specialized tools, and scientifically interpretable outputs. Existing
benchmarks like DataSciBench (Zhang et al., 2025a) and MASSW (Zhang et al., 2025b)) focus on structured
data science tasks but lack the domain complexity and real-world API integration of climate research.

To address this gap, we introduce CLIMATE-AGENT-BENCH-85, comprising 85 end-to-end workflow tasks
across six climate phenomena. Each task requires executable code that retrieves data from operational APIs,
processes multi-dimensional datasets, performs domain-appropriate analyses, and generates publication-
quality reports. The benchmark evaluates code generation, workflow planning, error recovery under API
constraints, and scientific correctness.

This benchmark operationalizes the three capability dimensions defined in §3]— planning, persistent context,
and robustness — by translating them into measurable workflow tasks. The following sections describe how
these capabilities are reflected in task design and evaluated through a unified protocol.

4.1 Design Principles and Capability Mapping

To empirically evaluate the three system capabilities introduced in §3] CLIMATE-AGENT-BENCH-85 is con-
structed around three guiding principles that mirror the design goals of CLIMATEAGENT:

¢ Coordinated Task Planning. Tasks require multi-stage decomposition — from data retrieval to anal-
ysis and visualization — so that effective workflow planning can be distinguished from ad-hoc single-step
reasoning.

¢ Contextual Coordination. Many tasks contain cross-step dependencies, such as derived variables,
climatological baselines, or intermediate files that must be reused downstream, testing whether an agent
can maintain and propagate state across iterative reasoning and execution.

o Adaptive Self-Correction. Tasks involve real-world API and tool interactions (e.g., ECMWF API,
TempestExtremes) under realistic parameter constraints, stressing the system’s ability to detect, recover,
and adapt to execution or formatting errors.

4.2 Task Domains and Scientific Coverage

CLIMATE-AGENT-BENCH-85 spans six climate phenomena representing diverse analysis patterns:

o Atmospheric Rivers (AR, 15 tasks) require computing integrated vapor transport (IVT) from multi-
level wind and humidity fields, applying physical thresholds, identifying spatial regions, and tracking
temporal evolution. These tests involve vertical integration, spatial pattern recognition, and trajectory
analysis with wraparound coordinates.

e Drought (DR, 15 tasks) compute multi-timescale indices (SPI, soil moisture anomalies) requiring 30-
year climatological baselines, statistical standardization handling seasonal cycles, and categorical severity
visualization. These evaluate temporal aggregation, statistical edge cases (zero variance, missing data),
and standard visualization conventions.

o Extreme Precipitation (EP, 15 tasks) analyze precipitation extremes through percentile metrics,
spatial extent, and multi-day event evolution. Workflows aggregate sub-daily data, identify threshold
exceedance (25-250 mm/day), and visualize progression. These assess temporal conversions, unit man-
agement, and multi-panel figures.

« Heat Waves (HW, 10 tasks) identify prolonged high-temperature events using multiple frameworks
(absolute/percentile thresholds, duration criteria, wet-bulb temperature). These tests include multi-
criteria detection, boolean logic, binary mask handling, and custom colormaps.
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o Sea Surface Temperature (SST, 15 tasks) examine patterns, anomalies, and trends, including ENSO
indices and marine heat waves. Workflows compute climatological anomalies, identify warm/cold events,
and analyze spatial-temporal evolution. These require ocean-atmosphere process understanding, regional
indices (Nifio 3.4), and diverging color schemes.

o Tropical Cyclones (TC, 15 tasks) use TempestExtremes (Ullrich et all [2021)) with ERA5 and IB-
TrACS data for detection, tracking, and intensity analysis. These require dynamic parameter configura-
tion, command-line tool integration, trajectory stitching, and multi-source validation — testing tool I/0,
subprocess management, and error recovery.

These domains cover atmospheric (AR, TC), hydrological (DR, EP), land surface (HW), and oceanic (SST)
processes, spanning diverse scales and methodologies. AR and TC tasks test planning through multi-stage
pipelines; DR and SST test context through climatological dependencies; EP and HW test robustness through
complex thresholding and conversions.

4.3 Task Construction Methodology

Expert-Driven Design. Three atmospheric science graduate students from our institution (co-authors of
this work) with combined expertise spanning synoptic meteorology, climate dynamics, and computational
climate science systematically designed all tasks. The design process followed an iterative methodology:

e Domain Selection: Experts identified six phenomena that (a) represent diverse spatial and temporal
scales (from daily precipitation extremes to seasonal ENSO patterns), (b) require different data sources
and processing pipelines, (c) reflect common research workflows in operational and academic climate
science, and (d) present varying computational and algorithmic challenges.

o Task Diversification: Within each domain, we designed tasks to maximize coverage of analysis patterns,
data sources (ERAS5, S2S forecasts, OISST, IBTrACS), spatial domains (regional to global), and temporal
scales (daily to monthly). Tasks explicitly avoid redundancy — each presents unique requirements in data
handling, statistical methods, or visualization conventions.

¢ Real-World Grounding: All tasks are based on actual research workflows employed in published climate
studies or operational forecasting. For example, AR detection follows algorithms from [Pan & Lul (2019),
drought analysis implements WMO-standardized SPI methodology, and TC tracking uses established
TempestExtremes configurations. This grounding ensures tasks reflect authentic scientific practice rather
than artificial benchmarks.

e Specification Refinement: Initial task descriptions underwent multiple revision cycles to eliminate
ambiguity while preserving implementation flexibility. All three experts reviewed each specification to
ensure clarity, scientific accuracy, and feasibility.

This expert-driven curation ensures that each task not only reflects real-world research practice, but also
targets specific capability dimensions introduced in §3] The following subsection further stratifies these tasks
according to their expected planning depth, context dependence, and robustness requirements.

4.4 Task Complexity Stratification

We stratify tasks by workflow complexity determined by subtask steps, data sources, external tools, and
algorithmic sophistication:

o Easy Tasks (n=25, 30%) require single-source acquisition with straightforward processing — one API
call (ERA5/OISST), standard xarray operations, basic statistics, single-panel visualization. These tasks
test fundamental capabilities: API parameter construction, coordinate handling, unit conversions, and
basic plotting.

o Medium Tasks (n=30, 35%) involve multi-source data integration or multi-step workflows — coor-
dinating multiple APT calls, handling data heterogeneity (mismatched grids, resolutions, conventions),
multi-stage pipelines (compute derived variable — identify events — track evolution), multi-panel fig-
ures. Medium tasks evaluate the system’s ability to maintain workflow coherence across dependent steps,
manage intermediate outputs, and ensure consistency.
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o Hard Tasks (n=30, 35%) require external tool integration with dynamic parameterization — using
TempestExtremes or CDO where parameters depend on runtime-discovered data characteristics, manag-
ing tool I/O, coordinating heterogeneous sources (forecasts + observations + tool outputs), implementing
sophisticated algorithms (trajectory stitching, multi-criteria detection). These tasks test tool integration,
subprocess management, and error recovery.

This distribution reflects realistic research workloads and aligns with capability dimensions: easy tasks assess
planning, medium tasks require context maintenance, hard tasks challenge robustness.

4.5 Evaluation Protocol

To assess end-to-end system performance on CLIMATE-AGENT-BENCH-85, we design a multi-dimensional
evaluation protocol aligned with the scientific communication standards of the climate community. This
framework centers on a unified report score, which quantifies overall output quality on a 1-10 scale across
four dimensions critical for scientific communication:

¢ Readability: Clarity, logical flow, accurate use of scientific terminology, and accessibility to the target
audience.

e Scientific Rigor: Adherence to methodological standards, appropriate statistical analyses, uncertainty
quantification, and validity of result interpretation.

e Completeness: Coverage of all task requirements, inclusion of relevant contextual information, and
delivery of actionable insights.

e Visual Quality: Relevance and clarity of figures, appropriate visualization methods, accurate labeling,
and professional presentation.

Following established practices in recent evaluation literature (Hada et al., |2024; [Li et al., |2025; |Zheng
et al. 2023)), we adopt an LLM-based judging framework for report quality assessment. This approach has
demonstrated high correlation with expert human evaluation while enabling scalable and consistent scoring
across large benchmarks. Our evaluator employs GPT-40’s multimodal capabilities to assess both textual
content and embedded visualizations, comparing system outputs against expert-generated references. This
evaluation protocol provides the foundation for the quantitative and qualitative analyses presented in

5 Experiments

Building upon the system capabilities defined in §3]and the benchmark and evaluation framework established
in §4 we now empirically examine how well CLIMATEAGENT fulfills its design objectives. Our experiments
aim to answer the following three core questions:

e Q1. Coordinated Task Planning: Does collaborative division of workflow among specialized agents
lead to higher-quality scientific reports and more complete end-to-end workflows compared with standard
zero-shot LLM reasoning?

¢ Q2. Contextual Coordination: Can the system maintain cross-step dependencies and methodological
consistency throughout multi-stage scientific analyses, ensuring coherent reasoning from data acquisition
to interpretation?

¢« Q3. Adaptive Self-Correction: Can our error detection and recovery mechanisms enable the system
to autonomously identify failures, revise its plans, and continue execution without human intervention?

To evaluate these hypotheses, we compare CLIMATEAGENT with strong baseline models on the CLIMATE-
AGENT-BENCH-85 benchmark (§4)), conducting quantitative, qualitative, and ablation-based analyses for
each capability dimension. We first describe our experimental protocol and baseline systems (§5.1)), then
present quantitative results on task planning (7 qualitative analysis on context coordination , and
ablation studies demonstrating adaptive self-correction (§5.4).
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Table 1: End-to-end report quality (Report Score) by domain.

Domain GPT-5 Copilot CLIMATEAGENT
Atmospheric River (AR) 3.05 6.78 7.32
Drought (DR) 7.87 6.87 8.57
Extreme Precipitation (EP) 0.62 5.58 8.43
Heatwave (HW) 3.98 8.30 9.15
Sea Surface Temperature (SST)  4.28 8.10 8.88
Tropical Cyclone (TC) 0.00 2.65 7.85
All Tasks 3.26 6.27 8.32

Table 2: Overall Performance Summary on CLIMATE-AGENT-BENCH-85. All scores are averaged across all
tasks on a 1-10 scale.

System Readability Scientific Rigor Completeness Visual Quality Report Quality
CLIMATEAGENT 8.40 8.72 7.75 8.41 8.32
Baseline (GPT-5) 3.48 3.41 2.8 3.34 3.26
Baseline (Copilot) 6.68 6.89 5.62 5.87 6.27

5.1 Experimental Setup

We evaluate CLIMATEAGENT on the CLIMATE-AGENT-BENCH-85 benchmark using the evaluation protocol
defined in §4.5] We evaluate CLIMATEAGENT against two strong baselines:

¢« GPT-5 Baseline: A sophisticated baseline leveraging GPT-5’s intrinsic reasoning capabilities with ex-
ecution validation. This system employs best-of-N sampling (N=4) to generate multiple code candidates
per task, executes them in a sandboxed environment, and selects the first successful solution. While
capable of multi-step reasoning within single generations, this baseline lacks structured workflow decom-
position, domain-specific knowledge integration, and iterative refinement mechanisms.

¢ GitHub Copilot Agent Mode: An agentic baseline utilizing GitHub Copilot’s conversational capabil-
ities for multi-turn task execution. This system leverages Copilot’s advanced code generation expertise
(powered by OpenAl Codex (Chen et al. [2021)) combined with its ability to maintain conversational
context, execute code iteratively, and provide refinements based on execution feedback. While represent-
ing state-of-the-art general-purpose coding assistance, Copilot relies on broad programming knowledge
without the domain-specific climate science expertise, structured workflow decomposition, or specialized
agent coordination that characterizes our approach.

Both baseline systems utilize GPT-5 as the foundational LLM, ensuring our comparison isolates the effects
of specialized agent coordination versus advanced single-model reasoning with execution validation.

5.2 Experimental Results about Task Planning

To answer Q1, we assess how coordinated task planning impacts end-to-end report generation on CLIMATE-
AGENT-BENCH-85 using the setup in §4)and For each of the six climate domains, systems must execute
the full data-to-report workflow under the evaluation protocol of We compare CLIMATEAGENT against
the GPT-5 and Copilot baselines, which share the same underlying LLM but lacks explicit multi-agent
decomposition and domain-specialized roles. Results are shown in Tables [T] and [2]

Under the evaluation protocol in higher scores on Readability, Scientific Rigor, Completeness, Visual
Quality, and overall Report Quality can all be interpreted as downstream consequences of more effective task
planning: more coherent decomposition and delegation should yield clearer narratives (Readability), more

11
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appropriate methodological choices (Scientific Rigor), fuller coverage of required steps (Completeness), and
better targeted figures (Visual Quality).

Experiment Results and Discussions. We summarize the main results and discussion below:

¢ Overall Impact of Coordinated Planning. Across all 85 tasks, CLIMATEAGENT achieves the highest
average Report Quality (8.32 vs. 6.27 for Copilot and 3.26 for GPT-5; Table , indicating that explicit
division of labor among specialized agents leads to substantially better end-to-end reports than single-
model reasoning with execution validation. These gains are consistent across all six domains (Table ,
with particularly large margins in complex, multi-stage settings such as Extreme Precipitation (8.43 vs.
5.58 vs. 0.62) and Tropical Cyclones (7.85 vs. 2.65 vs. 0.00), where baselines frequently fail to complete
multi-step analyses.

e Completeness and Scientific Rigor as Planning Outcomes. Beyond overall Report Quality, CLI-
MATEAGENT also substantially outperforms baselines on Completeness (7.75 vs. 5.62 vs. 2.80) and
Scientific Rigor (8.72 vs. 6.89 vs. 3.41). Interpreted through the lens of Q1, higher Completeness
reflects that the PLAN-AGENT decomposes each task into concrete subgoals and assigns them to spe-
cialized DATA-AGENTs and CODING-AGENTS, reducing missing figures, truncated analyses, and omitted
discussion that commonly occur in the GPT-5 and Copilot baselines. Higher Scientific Rigor indicates
that coordinated planning encourages a more disciplined methodological choices — selecting appropri-
ate datasets, applying physically meaningful aggregations, and justifying parameter choices in a way
that aligns with expert expectations — rather than the ad-hoc, inconsistent methods often observed in
single-model workflows.

e Readability and Visual Quality as Planning Effects. Coordinated planning also improves how
results are communicated. As shown in Table [2], CLIMATEAGENT attains higher Readability (8.40 vs.
6.68 vs. 3.48) and Visual Quality (8.41 vs. 5.87 vs. 3.34) than both baselines. From the perspective
of Q1, these gains arise because the PLAN-AGENT explicitly anticipates the narrative and visual require-
ments of each task — specifying which diagnostics, figures, and explanatory sections are needed — and
delegates them to specialized agents. This leads to reports with clearer structure, better-matched figures,
and consistent labeling that directly support the planned analytical storyline. In contrast, single-model
baselines often generate plots and text in a more opportunistic, step-by-step manner, so narrative flow,
figure selection, and captioning drift away from the original task specification, lowering both readability
and visual quality, despite the successful execution of some individual steps.

Summarized Answer to Q1. Taken together, the improvements in Report Quality, Completeness, Scien-
tific Rigor, Readability, and Visual Quality demonstrate that coordinated task planning is a key determinant
of end-to-end performance on CLIMATE-AGENT-BENCH-85. By explicitly decomposing workflows and dis-
tributing responsibilities across specialized agents, CLIMATEAGENT produces higher-quality scientific reports
and more complete end-to-end workflows than strong GPT-5-based single-model baselines. These quanti-
tative findings support Q1, confirming that collaborative division of labor among specialized agents yields
systematic gains over advanced single-model reasoning with execution validation.

5.3 Experimental Results about Context Coordination

To answer Q2, we complement the quantitative report scores with a qualitative analysis of end-to-end work-
flows. Because each report is the outcome of a multi-step climate analysis pipeline, any miscoordination
between stages (e.g., inconsistent data sources, mismatched parameter choices, or failed intermediate steps)
directly degrades report quality or even prevents report generation altogether. While the scores in §5.2]
show how well each system performs overall, they do not reveal why a system succeeds or fails. By qualita-
tively examining generated reports and their underlying execution traces, we can assess whether each system
maintains the necessary cross-step dependencies and methodological consistency that define contextual co-
ordination. Figure [2] presents representative outputs across the six climate domains, which we use to analyze
how each system maintains (or fails to maintain) contextual coordination in practice.

Experiment Results and Discussions. We enumerate the key observations and discussion below:
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(a) Baseline (GPT-5) (b) Baseline (Copilot) (c) Ours (d) Reference

>\ > >

Figure 2: Qualitative comparison of generated figures for representative tasks. Each row corresponds to
a climate task: (1) Drought (DR), (2) Sea Surface Temperature (SST), (3) Extreme Precipitation (EP),
(4-5) Tropical Cyclone (TC), (6) Atmospheric River (AR). Columns: (a) Baseline (GPT-5), (b) Baseline
(Copilot), (c) Ours, (d) Golden answer.

« Baseline Competence in Simpler Domains. For simpler domains such as Drought (DR) and Heat-
wave (HW), both baselines generally produce reasonable figures and narratives: the underlying workflows
involve fewer stages, simpler data choices, and more direct mappings from task description to code. In
these settings, Copilot substantially outperforms GPT-5, reflecting the benefit of iterative code refinement
and execution feedback for correcting obvious bugs and filling in missing steps. However, even in these
easy domains, baseline reports sometimes exhibit mild inconsistencies in variable naming, axis labeling,
or temporal aggregation, foreshadowing the more severe coordination failures that emerge as workflow
complexity increases. In contrast, CLIMATEAGENT maintains a stable mapping between task specifi-
cation, data selection, and visual presentation, even in these simpler cases, indicating that contextual
coordination mechanisms are active across the full task spectrum.

o Monolithic Scripts. As workflows become more complex in Atmospheric River (AR) and Sea Surface
Temperature (SST) tasks, baseline systems increasingly default to monolithic scripts with limited explicit
context management. Qualitative inspection of execution traces shows a recurring pattern: changes made
late in the script to fix an exception or adjust a plot overwrite earlier logic without updating dependent
steps, so the final code no longer matches the original analytical intent. This leads to misaligned prepro-
cessing, inconsistent temporal or spatial domains across figures, and missing climatological references in
SST tasks. CLIMATEAGENT, by contrast, decomposes these workflows into explicit substeps with clearly
defined inputs and outputs, ensuring that updates to one stage (e.g., data filtering or anomaly com-
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putation) can be propagated to downstream analyses and visualizations, thereby preserving cross-step
dependencies required for contextual coordination.

e Untracked External Processes. In demanding domains such as Tropical Cyclone (TC) and Extreme
Precipitation (EP), baseline failures are often driven by how external tools and processes are orchestrated.
When GPT-5 or Copilot spawns new processes (e.g., calling TempestExtremes for TC tracking), return
codes and intermediate outputs are rarely tracked rigorously. Downstream code frequently proceeds as if
upstream stages had succeeded, attempting to read missing files, operate on partially written datasets, or
plot fields that were never computed. This results in runtime crashes, empty or nonsensical visualizations,
and incomplete reports, especially in TC tasks that rely on multi-step external toolchains. In contrast,
CLIMATEAGENT treats each external invocation as an explicit workflow step, recording return statuses,
verifying that expected artifacts exist and are well-formed, and halting or repairing the pipeline when
upstream tools fail, thereby maintaining coherent execution state across process boundaries.

e Missing Intermediate Validation. Across all domains, these issues are compounded by a pervasive
lack of systematic validation of intermediate results in the baselines. Figures are often generated without
checking whether the underlying data satisfy task requirements (e.g., correct spatial subset, sufficient
temporal coverage, or non-degenerate statistics), leading to qualitatively poor or even empty plots when
earlier steps quietly fail or return trivial outputs. A misconfigured data request or misaligned coordinate
system at the beginning of the workflow can thus cascade into misleading or uninformative visualizations
at the end, with no mechanism to detect or correct the deviation. CLIMATEAGENT mitigates this cross-
domain failure mode by embedding validation hooks throughout the workflow — checking the dataset
metadata, asserting non-empty and physically plausible fields, and aligning coordinate systems before
plotting — so that each stage both consumes and produces well-validated context, reinforcing contextual
coordination from data acquisition through to final report generation.

Summarized Answer to Q2. These findings confirm that Contextual Coordination (Q2) is the critical
differentiator for robust scientific workflows. The analysis reveals that baseline failures in complex domains
are rarely due to local coding errors, but rather a structural inability to maintain state across long horizons
and process boundaries. CLIMATEAGENT overcomes this by enforcing explicit, validated handoffs between
agents, effectively treating intermediate artifacts as contracts. This persistent state management ensures
that downstream execution remains strictly conditioned on upstream results, preventing the context drift
that causes single-model baselines to lose the analytical thread in multi-stage tasks.

5.4 Ablation and Case Studies for Adaptive Self-Correction

We now turn to answer Q3 — the system’s ability to autonomously identify failures, revise its plans, and
continue execution without human intervention. This section analyzes common baseline failure modes and
demonstrates how CLIMATEAGENT achieves robustness through multi-layered detection, recovery, and adap-
tive replanning mechanisms. To validate this capability, aggregate performance metrics are insufficient; we
must instead isolate the specific mechanisms of failure and recovery. Therefore, we adopt a two-pronged ap-
proach: (1) an ablation analysis of the distribution of errors in baselines to define the failure modes our system
must overcome, and (2) a case study tracing a complex recovery loop to demonstrate the self-correction mech-
anism in action. Beyond these representative self-correction case studies, we provide a dedicated failure-case
analysis (with logs, artifacts, root causes, and mitigations) in Appendix [Ef and component-level ablation
analysis in Appendix

Ablation Analysis. We systematically classified GPT-5 baseline errors across 35 failed tasks, identifying
six primary categories (Table [3): Data/Array Shape or Key Errors (26%), Data Request Errors (17%),
Syntax/Indentation Errors (11%), Timeout Errors (11%), Type Errors (11%), and Miscellaneous (23%).
These failures predominantly result in incomplete or absent report generation, demonstrating direct LLM
code synthesis limitations without system-level safeguards.

Our system incorporates several architectural and prompt-based interventions that directly address the
failure modes observed in the baseline. Figures [3Hf] illustrate how specialized DATA-AGENT and CODING-
AGENT components validate dataset metadata, enforce typing, and iteratively repair code before execution,
eliminating the majority of such errors. We summarize the key findings below:
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Table 3: Summary of Error Categories and Their Counts

Error Category Count
Data/Array Shape or Key Error 9
Data Request Error
Syntax/Indentation Error
Timeout Error

Type Error

Miscellaneous

O = = O

Baseline GPT-5 Error Example Our System Success
# Incorrect boolean mask shape # Ensures mask shape matches data shape
ivt_selected = ivt[:, mask] mask = (ivt > threshold)

# 1D selection

ivt_selected = ivt[mask]

Figure 3: Comparison of array indexing: the baseline code fails due to a shape mismatch in boolean indexing,
while our system validates shapes and applies correct masking.

Baseline GPT-5 Error Example Our System Success

# Incorrect date range format # Validates date range for each month
# in API request request = {
request = { "year": str(year),
e "month": month,
"date": f"{req_start}/to/{req_end}", "day": days,
}
}

Figure 4: Comparison of ERA5 data request formatting: the baseline code fails due to an invalid date range
string, while our system programmatically generates and validates correct request parameters, preventing
API errors.

Baseline GPT-5 Error Example Our System Success

# Syntaz error: unmatched ’}° # No syntazxz or indentation errors.
dtxt += f} {bearingl}"

Figure 5: Comparison of syntax handling: the baseline code fails with a syntax error due to an unmatched
brace, while our system’s coding agent ensures only syntactically valid code is executed.

o Data/Array Shape or Key Error: As illustrated in Figure [3] baseline approaches often fail due to
incorrect assumptions about data structure or mismatched array dimensions. Our system addresses these
issues: DATA-AGENTs extract and validate dataset metadata before code generation, ensuring that only
available variables and correctly shaped dimensions are used. Furthermore, CODING-AGENTSs perform
LLM-based code validation to verify data access patterns before execution, systematically preventing
such shape and key errors.

« Data Request Error: As illustrated in Figure [4] baseline approaches fail when interacting with ERA5
or ECMWF APIs, often due to improperly formatted requests or insufficient parameter validation. Our
DATA-AGENTS employ automated metadata extraction and validation routines before code generation,
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Baseline GPT-5 Error Example Our System Success

# TypeError: not all arguments # Convert LON to numeric

# converted during string formatting # before modulo operation

df ["LON"].apply(wrap_lon_to_360) pd.to_numeric(df_filt["LON"])

df _filt ["LON"] % 360

Figure 6: Comparison of longitude alignment: the baseline code fails when non-numeric values are present,
while our system ensures type safety before applying arithmetic operations.

utilizing LLM-driven logic to dynamically select valid variables, date ranges, and request options, refer-
encing up-to-date dataset metadata to construct compliant APT calls.

o Syntax/Indentation Error: Figure [5| highlights how baseline LLM-generated code frequently encoun-
ters syntax and indentation problems that halt execution. Our CODING-AGENTSs proactively check for
such errors before running any code, using diagnostic feedback to iteratively refine and correct the code,
ensuring that only error-free scripts proceed to execution.

o Type Error: As demonstrated in Figure [6] baseline code often fails due to improper handling of data
types. Our system integrates type validation and conversion directly into the workflow, with the CODING-
AGENT automatically checking and enforcing correct data types — guided by both prompt instructions
and LLM-based code review — before any computation is performed.

Case Study. The tropical-cyclone task focusing on Typhoon Noru (SID: 2022264N17132) demonstrates the
full value of our robustness mechanisms. This task compares the observed historical track from the IBTrACS
dataset against a simulated track generated using ERA5 reanalysis data, producing a meteorological map
visualizing both tracks alongside a summary report quantifying track differences and forecast accuracy.

The baseline GPT-5 code fails to complete the workflow, terminating with:
ERROR: Failed to select longest track. single positional indexer is out-of-bounds

This failure is due to incomplete or improperly parsed track data.
In contrast, our system executes a robust, agent-based workflow:

o PLAN-AGENT: Decomposes the TC analysis into 10 explicit subtasks, including: (1) reading and process-
ing IBTrACS data, (2) determining ERA5 download parameters, (3) downloading ERA5 reanalysis data,
(4) computing TempestExtremes detection parameters, (5) running DetectNodes, (6) running StitchN-
odes, (7) extracting the longest simulated track, (8) visualizing meteorological fields, (9) extracting central
pressure, and (10) generating the final Markdown report.

e DATA-AGENT: Utilizes metadata extraction and LLM-guided parameter selection to construct valid ERAS
APT requests. The agent automatically identifies the correct dataset (reanalysis-erab-single-levels)
and validates all required parameters (such as date ranges and area) before making the APT call.

e CODING-AGENT: Implements robust scripts for each downstream subtask, including dynamic parameter
computation, file validation, and error handling. Each script checks for the existence and integrity of its
outputs before passing control to the next step, ensuring that failures are caught early and reported with
actionable diagnostics. Finally, the agent compiles the Markdown report, embedding the meteorological
field plot and central pressure value.

Summarized Answer to Q3. These results substantiate Adaptive Self-Correction (Q3). The proper
handling of errors, combined with the qualitative success in the Typhoon Noru case study, demonstrates
that robustness in scientific agents cannot be achieved by LLM reasoning alone. Instead, it requires a system
architecture that treats code generation as a hypothesis to be validated — using metadata constraints,
static analysis, and execution feedback to autonomously correct the "hallucinations" that otherwise break
long-horizon scientific workflows.
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6 Conclusion

We have introduced CLIMATEAGENT, an autonomous multi-agent system designed to orchestrate complex
climate science workflows from high-level user prompts to comprehensive scientific reports. By leveraging a
hierarchical architecture of specialized LLM-based agents, i.e., each responsible for planning, data acquisi-
tion, analysis, and visualization, our system addresses the limitations of generic code-generation models and
static scripting approaches. FExtensive evaluation on the CLIMATE-AGENT-BENCH-85 benchmark demon-
strates that CLIMATEAGENT substantially outperforms advanced single-model baselines across all domains,
particularly in tasks requiring multi-step reasoning, robust error handling, and domain-specific knowledge.
Our results highlight the effectiveness of modular agent specialization, dynamic error recovery, and context-
aware orchestration in enabling reliable, end-to-end automation of climate research workflows. This work
advances the state-of-the-art in scientific workflow automation and paves the way for more accessible, effi-
cient, and reproducible climate science.
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A Agent Details

A.1 Plan-Agent: Task Decomposition and Agent Assignment

The PLAN-AGENT is responsible for decomposing high-level user tasks into a sequence of actionable subtasks,
each assigned to a specialized agent within the CLIMATEAGENT system. Leveraging large language models,
the PLAN-AGENT generates detailed, chronologically ordered plans that preserve all scientific and technical
requirements from the original user prompt. Each subtask includes explicit instructions, file paths, parameter
values, and workflow conventions to ensure downstream agents can execute their roles unambiguously and
reproducibly.

Prompt Engineering. The PLAN-AGENT constructs prompts that enumerate available agents (data
download, programming, visualization), file system conventions, and dataset constraints. It instructs the
LLM to retain all relevant details from the user task, specify agent assignments, and output the plan as a
structured JSON list. This approach ensures that each subtask is both specific and actionable, minimizing
ambiguity and error propagation.

Plan-Agent LLM Prompt

You are a planning agent for a modular climate forecasting/reporting system. The system has four
main agents:

e cdsapi_download_agent: downloads climate data only using the cdsapi library (for Coper-
nicus Data Store datasets).

e data_download_agent: downloads climate data only using ecmwf-api-client library (for
ECMWF S2S dataset only).

e programming_agent: processes, analyzes, and computes on climate data (but does not down-
load data). It should generate plots/graphs that will be used in the final report.

e visualization_agent: generates the final report in Markdown format, including all re-
quested plots, visualizations, and human-friendly interpretation. The final report generation
should always be handled by the visualization_agent.

File System & Data Conventions
e Only download agents may write files to data/.

o CODING-AGENTs must write all outputs (processed data, intermediate results, analysis out-
puts, figures, etc.) to code_output/.

o Visualization agents should read from code_output/.

o All user-provided data must be referenced under . ./user_provided_data/ (relative to the
task root).

Critical: When generating subtasks, you MUST preserve as much detail as possible from the original
user task prompt. For each subtask, explicitly include all relevant parameters, file paths, scientific
logic, and requirements from the original prompt. Do not summarize or omit details. If the original
prompt specifies variables, thresholds, file formats, coordinate conventions, or workflow steps, these
MUST be included in the subtask description. The goal is for each subtask to be as actionable and
unambiguous as possible for downstream agents.

Planning Guidelines

e Break down the main task into small, logical, and chronologically ordered steps.

o For each subtask, specify the agent, the action, and all required details (parameters, files,
scientific logic, etc.).
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¢ Be specific and unambiguous: name required data sources, variables, parameters, and outputs
precisely.

o If a subtask involves generating a plot/graph, specify the type of plot and the data to be
used.

o If a subtask is for the visualization agent, make sure the description clearly states that it is
for the final report and should include all required plots and interpretation.

e Only include agent types relevant to the task (do not include unused agent types).

Example of Generated Plan. Below is an example of a plan generated by the PLAN-AGENT for an
atmospheric river (AR) detection workflow. Each subtask is assigned to the appropriate agent and includes
a detailed description of the required actions, parameters, and output conventions.

Plan-Agent Output Example

Subtasks:

1. Create configuration file and directory structure for AR detection workflow
Agent: programming__agent
Create code_output/config.py with constants and paths, and ensure all directories exist.
Write run_metadata. json in code_output/outputs_ar_freq with the configuration used.

2. Download ERAS5 pressure-level q, u, v for 2022-12-19 to 2022-12-25 at 00:00 UTC
Agent: cdsapi__download__agent
Use cdsapi to request ’reanalysis-erab-pressure-levels’ data for specific humidity, u
and v wind components, at specified pressure levels and times. Save output to
data/erab_raw/erab5_pl_uvq_20221219-20221225_0000.grib.

3. Compute daily IVT on a 1.5° x 1.5° grid for each date in DATE_ RANGE
Agent: programming _agent
Script: code_output/compute_ivt.py. Load downloaded data, regrid to 1.5° grid, compute
IVT, and save daily NetCDF files with compression.

4. Load monthly IVT threshold and run AR detection per day (extract, rotate,
paths, trajectories, metrics)
Agent: programming _agent
Script: code_output/detect_ar_pathways.py. Load threshold, apply rotation, compute
anomaly, extract paths, generate trajectories, and save outputs in hierarchical date folders.

5. Weekly aggregation of daily pathway presence and create frequency map image
Agent: programming _agent
Script: code_output/visualize_frequency.py. Aggregate daily pathway files, compute
weekly frequency, subset to US West Coast, save NetCDF, and plot frequency map using
Cartopy.

6. Generate final Markdown report with the exact reference text and embedded
image
Agent: wvisualization__agent
Create code_output/report.md referencing the frequency map image and containing the
required summary and bullet points.
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A.2 Data-Agents: Prompt Engineering and Metadata Extraction

The DATA-AGENTS in CLIMATEAGENT, namely ECMWPF-AGENT and CDSAPI-AGENT, are responsible for
generating robust Python scripts to download climate datasets from ECMWEF S2S and Copernicus Data
Store (CDS), respectively. These agents leverage large language models (LLMs) for code synthesis and
employ automated metadata extraction using browser automation to ensure parameter validity and dataset
availability.

Prompt Engineering. Both agents utilize carefully designed prompts to instruct the LLM in generating
executable download scripts. The prompts include explicit requirements for code structure, error handling,

output directory usage, and metadata integration.

ECMWF-Agent Prompt Example. We attach the agent prompt for ECMWF below:

ECMWFEF-Agent LLM Prompt

code.

You are an expert in ECMWEF S2S data download. Given the following task, parameter info, and
metadata JSONs, write a Python script that downloads the required data using the ecmwf-api-client
library.
- Use only the available options in the metadata JSONs (see file names and their content summaries
below).
- The purpose of these metadata JSONSs is to reduce errors in the API calls of the generated Python

General Requirements for the Code:

The code must be modular, well-structured, and include clear, descriptive comments explain-
ing each step and function.

Follow Python best practices for readability, maintainability, and efficiency.

Use appropriate scientific/data libraries (e.g., numpy, pandas, matplotlib, xarray, etc.).
All necessary imports must be included at the top of the script.

All code should be directly executable, with all necessary fields and values filled in.

The script must be runnable as: python [code_name].py (with no arguments). Do not require
or parse any command-line arguments.

All downloaded data files must be saved in the ’data’ subdirectory of the current task folder.
Do not save data files elsewhere.

Do NOT use ’experiments/user_provided_ data’ for any downloaded data outputs. That
directory is reserved for user-provided data only.

All relative paths should be constructed relative to the directory the code is running. Don’t
use absolute paths.

IMPORTANT: For efficiency, always batch all required parameters and levels into a single API
call using ’/’-separated lists for 'param’ and ’levelist’. Do NOT make a separate retrieve call for
each parameter or level unless required by the API. Only loop over forecast type (cf/pf) or origin if
absolutely necessary.

Available parameters (with codes): {AVAILABLE_PARAMS_TEXT?}
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IMPORTANT: Always use the correct ’origin’ code for the requested model/database.

Special Instructions for Data Downloading:

o If the subtask involves data download, you must use the ecmwf-api-client library or the
provided download tool.

e Only include the required fields below in the API call (do not add any others, especially
‘area’):
— class: s2
— dataset: s2s
— date: <date range for real-time|model version date for hindcast>
— expver: prod
— levelist: <level range> (only for pl, omit for sfc)
— levtype: <sfc|pl> (if requesting both, call API separately for each)
— model: glob
— origin: <origin> (e.g. anso, ecmf, kwbc)
— param: <parameter> (if requesting multiple parameters, call API separately for each)
— step: <step range> (use a ’/’-separated list of step values)
— stream: <enfolenth> (enfo: realtime, enfh: hindcast)
— time: ’00:00:00’
— type: <cf|pf> (cf: control, pf: perturbed)
— target: <target file name>
— hdate: <yyyy-mm-dd> (only for hindcast, specify a list of hindcast initialization dates)

— number: <number of ensemble members> (only for perturbed hindcast, use ’/’-separated
list for multiple members)

e Do not include any other fields.
Guideline for Setting 'date’, 'hdate’, and ’step’ Fields in Requests:
1. Real-Time Forecast Setting: Use the operational model version available on the date.

2. Hindcast (Reforecast) Setting: Use the most recent available model version date strictly
before the requested date.

3. ’step’ field: For daily-averaged parameters, use hour ranges representing 24-hour periods; for
instantaneous/accumulated parameters, use single time steps.

After Downloading the Data:

¢ Create/Update a README.md file in the data directory, listing all downloaded files and
their descriptions.

o For GRIB files, use cfgrib to extract and include metadata summaries in the README.
e For other file types, provide appropriate previews or summaries.

Metadata JSONs (file name, description, and content preview): {meta_block}
Task description: {task_description}

Return only the Python code, with all explanations and context provided through code comments.
Do not include any narrative or markdown outside the code block.
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CDSAPI-Agent Prompt Example: We attach the agent prompt for CDSAPI below:

CDSAPI-Agent LLM Prompt

You are an expert in CDS (Copernicus Data Store) data download. Given the following task, write
a Python script that downloads the required data using the cdsapi library.

e The code must be modular, well-structured, and include clear, descriptive comments explain-
ing each step and function.

e Use only the required fields for the cdsapi call (see https://cds.climate.copernicus.eu/api-
how-to for reference).

e All necessary imports must be included at the top of the script.
e All code should be directly executable.

e The script must be runnable as: python [code_name].py (with no arguments). Do not require
or parse any command-line arguments.

e All downloaded data files and the README.md must be saved in the directory:
[DATA_ DIR], which will be the current working directory when the script is run.

e The script must use the current working directory (os.getcwd()) or a provided variable for
all output paths.

o After downloading, create or update a README.md file in the data directory, listing the
files and a brief description of their contents.

o If the dataset or variable is not available, the script should print a clear error message.
o Note that the cdsapi.Client only supports the retrieve method.

e At the end of the script, print to stdout a single line containing a JSON array of
the absolute paths of all files that were downloaded by the script. For example:
print (json.dumps(["/path/to/filel", "/path/to/file2"]))

e Do not print anything else to stdout after this line.

Task description: {task_description}
Metadata: {metadata_str}

Return only the Python code, with all explanations and context provided through code comments.
Do not include any narrative or markdown outside the code block.

Metadata Extraction via Chrome/Selenium. To dynamically identify available datasets, variables,
and valid parameter ranges, both agents use Selenium with Chrome in headless mode. The agent navigates
to the relevant data portal, interacts with web forms, and parses metadata (e.g., from JavaScript objects
or HTML elements). Extracted metadata is saved as JSON and provided to the LLM as context for code
generation, ensuring that only valid options are used in download requests.

Outputs. The agents produce several outputs for each download task:

¢ Generated Python Script: A modular, well-commented script that downloads the requested data
using validated parameters.

e« README.md: A summary file listing downloaded files and their descriptions.
e Metadata JSON: A record of available dataset options and parameters.
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Example: README.md file

ERAS5 Pressure-Level Data Raw Download

Dataset: reanalysis-erab-pressure-levels

Variables: specific_humidity, u_component_ of wind, v_ component_ of wind
Pressure levels (hPa): 1000, 925, 850, 700, 500, 300, 200

Time: 00:00 UTC

Date range: 2022-03-24 through 2022-03-30

Format: GRIB

File path: data/erab_raw/era5_pl_uvq_20220324-20220330_0000.grib

These data are native ERA5 pressure-level fields suitable for IVT computation.

Discussion. By combining LLM-driven code generation with automated metadata extraction, the DATA-
AGENTSs reduce errors due to invalid parameters and improve reproducibility. This approach enables the
system to adapt to evolving data portals and ensures that download scripts remain robust and up-to-date.
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A.3 Coding-Agent (Programming): Data Processing and Analysis

The CODING-AGENT (Programming) is responsible for generating Python code to perform analysis and
processing subtasks within the ClimateAgent workflow. This agent leverages large language models (LLMs)
to synthesize modular, well-documented scripts for scientific data analysis and post-processing, based on the
main user task and specific subtask descriptions.

Prompt Engineering. The agent constructs detailed prompts for the LLM, specifying requirements such
as code modularity, use of scientific libraries (e.g., numpy, pandas, xarray, matplotlib), and strict file sys-
tem conventions. The prompt instructs the LLM to avoid data download operations (handled by dedicated
agents), save all outputs in the code_output/ directory, and update or create a README.md file describ-
ing generated outputs. Debugging instructions and error messages are included in the prompt when code
regeneration is required.

Coding-Agent (Programming) LLM Prompt

You are an expert Python programmer and agent developer. You are programming for predicting and
forecasting atmospheric phenomena in climatology. Downloads from ECMWF datasets are already
handled by the DATA-AGENTs. Do not write code to download climate data.

General Requirements for the Code:

e The code must be modular, well-structured, and include clear, descriptive comments explain-
ing each step and function.

o Follow Python best practices for readability, maintainability, and efficiency.

o Use appropriate scientific/data libraries (e.g., numpy, pandas, matplotlib, xarray, etc.).

e All necessary imports must be included at the top of the script.

e All code should be directly executable.

e All output files must be saved in the code_output/ directory under the current task root.
¢ Do not write any files to the data/ directory.

e All user-provided data must be loaded from the directory . ./user_provided_data/.

¢ For every output file generated, also create or update a README . md file in the output directory
describing the outputs.

e Plotting tip: Always place your colorbar or legend outside the main plot area and use
tight_layout or constrained_layout for spacing.

Write a Python script that executes the given subtask. At the end of the script, include a test script
to validate the generated output. Return only the Python code, with all explanations and context
provided through code comments. Do not include any narrative or markdown outside the code block.
Main task: {main_task}

Subtask: {subtask}

Previous subtasks and codes: {previous_codes}

Directory structure: {dir_tree}

README.md summary: {readme_summary}

Workflow and Error Recovery. For each subtask, the agent generates multiple candidate scripts, val-
idates their syntax, and ranks them using LLM-based code review for correctness, robustness, and clarity.
If all candidates fail, the agent enters a debug loop, providing error messages and previous code to the
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LLM for iterative refinement. Successful code execution triggers automatic updates to the README.md file,
documenting outputs and code changes.

Output. The following is an example of a README.md file automatically generated by the CODING-AGENT
(Programming) after completing a subtask for weekly sea surface temperature (SST) analysis. This file
documents the produced figures and reports, describes the contents and projection details, and provides
metadata for reproducibility and further analysis.

Example: README.md for Analysis Output

Weekly SST and SST Anomaly Map
This directory contains the high-resolution two-panel map showing:

o Weekly mean Sea Surface Temperature (SST) for June 12-18, 1997
e Weekly mean SST Anomalies for the same period
File:
o weekly_sst_anomaly_map.png: Two-panel PNG figure [12x8 in, 300 DPI]

The map uses a PlateCarree projection (central longitude = —155°, extent 120°E-290°E, +30°
latitude), with bold black lines at the equator and 180° meridian, and coastlines/land shaded in gray.

Discussion. By automating code generation, validation, and debugging, the programming agent stream-
lines scientific analysis and ensures reproducibility. Its design enforces strict conventions for output manage-
ment and documentation, facilitating transparent and collaborative climate research workflows.
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A.4 Coding-Agent (Visualization): Report Generation and Plotting

The CODING-ACGENT (Visualization) automates the creation of scientific reports and visualizations as the final
step in the ClimateAgent workflow. This agent synthesizes Markdown documents, figures, and summary files
by leveraging large language models to interpret analysis outputs and generate publication-quality content.
It ensures that all results are saved in standardized directories and that each output is accompanied by a
descriptive README . md file for reproducibility.

Prompt Engineering. The visualization agent constructs prompts that specify the required report struc-

ture, output file conventions, and documentation standards. The prompt instructs the LLM to:

¢ Generate all requested plots and Markdown content as specified in the subtask.

o Save all outputs (figures, CSVs, Markdown) in the code_output/ directory.

e For every output file, create or update a README.nd in its directory describing the outputs.

e Ensure the final report is a Markdown file named final_report.md in code_output/, containing all
relevant analysis and images.

¢ Load any user-provided data from the standardized directory experiments/user_provided_data/.

e Return only the Python code, with all explanations and context provided through code comments, and
no extraneous markdown or narrative.

Coding-Agent (Visualization) LLM Prompt

You are responsible for fully executing the following visualization/reporting subtask. Generate all
required plots, Markdown, and outputs as specified, and ensure all results are saved and documented
as described below.

Requirements:

e Assume code is run from the task root ([output_dir]).
¢ Save all outputs (figures, CSVs, Markdown) in code_output/.
o For every output file, create or update a README.md in its directory describing the outputs.

e The final output must be a Markdown report named final_report.md in code_output/,
containing all relevant analysis and images.

e All user-provided data must be loaded from experiments/user_provided_data/.

e Return only the Python code, with all explanations and context provided through code
comments. Do NOT include any narrative, markdown, or code block markers outside the
code.

Subtask to execute: {subtask}
Main Task: {main_task}
Context: Directory structure, previous subtasks, previous codes, and key README.md summaries.

\. J

Workflow and Error Recovery. For each visualization subtask, the agent generates multiple candidate
scripts, validates their execution, and iteratively refines code in response to errors. It gathers context from
previous analysis outputs, directory structure, and documentation to ensure consistency and completeness
in the final report.

Output Examples. Below are two examples of final_ report.md files automatically generated by the
CODING-AGENT (Visualization) after completing different visualization subtasks. These reports demonstrate
the agent’s versatility in synthesizing diverse scientific findings — from multi-day precipitation events to
tropical cyclone meteorological analyses — into publication-ready markdown documents with embedded
figures, spatial analysis, and narrative summaries for transparent communication and reproducibility.
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Example: final_report.md for Extreme Precipitation Event

Extreme Precipitation Event in the Greater Bay Area (2023-09-05 to 2023-09-10)
Introduction

This report summarizes an exceptional precipitation event that affected the China Greater Bay Area
between September 5 and 10, 2023. Hourly total precipitation (tp) data were obtained from the
ERAD reanalysis via the Copernicus Climate Data Store and aggregated to daily totals (mm). Spatial
analysis and visualization were performed on the native ERA5 grid, highlighting regions exceeding
common thresholds (25, 50, 100, 250 mm) and tracking the evolution of rainfall cores.
Multi-Panel Precipitation Map
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Figure 1. Daily total precipitation in the Greater Bay Area from September 5 to 10, 2023. Stepped
color intervals (0, 1, 10, 25, 50, 100, 250 mm) illustrate rainfall intensity. Major cities (Guangzhou,
Shenzhen, Hong Kong) are marked for reference.

Event Evolution Narrative

Onset (Sep 5—6): The event began on September 5 with scattered moderate showers (10-25 mm)
over western Guangdong. By the 6th, a convergence axis intensified over inland hills, producing
localized cores up to 50 mm (sky blue to royal blue shading) northeast of Guangzhou.
Intensification (Sep 7—8): On September 7, rainfall expanded eastward, with cores exceeding 100
mm over the Pearl River Delta. The 8th marked the peak growth phase: a broad swath of hot
pink (100-250 mm) stretched from central Shenzhen northward, triggering flash-flood warnings along
tributaries.

Peak (Sep 9): September 9 saw the maximum daily accumulation, with dark red (>250 mm) cells
persisting near coastal hills. Flood impacts were reported in suburban Foshan and low-lying areas of
Dongguan, where drainage systems were overwhelmed.

Weakening (Sep 10): By the final day, precipitation waned and shifted southward, contracting to
25-50 mm bands around Hong Kong’s northern New Territories. The event concluded with isolated
showers and rapid clearing.

Conclusion

This multi-day event demonstrated a classic inland-to-coastal propagation of heavy rainfall under
synoptic forcing, with peak intensities exceeding 250 mm in localized cores. The spatial shift of
maxima and associated flooding underscores the importance of high-resolution reanalysis for regional
hazard assessment.
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Example: final_report.md for Tropical Cyclone Event

Tropical Cyclone Meteorological Fields (SID: 2022264N17132)

Tropical Cyclone Meteorological Fields
SID: 2022264N17132, Time: 2022-09-26 09:00:00
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This chart shows a low-pressure system, with a central pressure of approximately 991.8969 hPa,
accompanied by a distinct counterclockwise rotating wind field. Such a cyclone may bring strong
winds and heavy rainfall, requiring close monitoring of its path and intensity changes to prevent
potential impacts on coastal areas or maritime activities.

B ClimateAgent Implementation & Reproducibility

This appendix clarifies the concrete software realization of ClimateAgent and provides reproducibility de-
tails requested by reviewers. In our app/report-generate/new-approach implementation, ClimateAgent
is a single-process Python orchestration system that coordinates modular agent classes (planning,
data acquisition, programming, visualization). The orchestrator executes a fixed, plan-driven workflow and
persistently stores run state (context.json), intermediate artifacts, and logs to a per-run workspace under
new-approach/experiments/.

B.1 System Architecture and Entry Points

Single-process orchestrator. ClimateAgent is implemented as a single Python process whose controller
is OrchestratingAgent (agents/orchestrating.py). For each run, the orchestrator (i) creates a task
workspace directory task_YYYYMMDD_HHMMSS under new-approach/experiments/ (or resumes an existing
one), (ii) runs PlanningAgent to obtain a structured subtask list, (iii) routes each subtask to a specialized
agent implementation, (iv) executes generated scripts as subprocesses, (v) applies bounded per-subtask
retries, and (vi) snapshots the persistent workflow state to context.json after planning and after each
subtask.

Modular agents as executable components. FEach specialized agent is implemented as a Python class
that inherits BaseAgent and returns a uniform result dictionary (e.g., status, code, code_path, result,
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error). Agents are instantiated on-demand inside the orchestrator and invoked sequentially as the workflow
progresses.

Runnable interface. A minimal runnable entry point is provided via main.py. It accepts a natural-
language task prompt from a text file (-prompt) and supports resumption and ablations via -task_dir,
-start_from_idx (0-based), and -no-context (disable passing prior context into LLM prompts).

B.2 Runtime Scheduling, Routing, and Retry Policy

Plan-driven scheduling. The orchestrator calls PlanningAgent to generate a plan as a JSON list of
subtasks. Each subtask is a dictionary with minimal schema:

e subtask: a short title;
e agent: a routing label;

e description: a natural-language instruction for downstream execution.

Agent routing. Routing is implemented as a fixed mapping from the agent string label to an executable
agent class:

e data_download_agent — ECMWFDownloadAgent
e cdsapi_download_agent — CDSAPIDownloadAgent
e programming_agent — LLMProgrammingAgent

e visualization_agent — LLMVisualizationAgent

Bounded retries at the subtask level. For each subtask, the orchestrator applies a bounded retry loop
(default max_retrial=3). Failures are detected by (i) non-zero subprocess return codes when executing
generated code or (ii) agent-returned status="error". After exhausting retries, the orchestrator records a
failure message in context.json (Appendix and stops the workflow.

Execution of generated scripts. Generated code is executed by writing it to a temporary script file
_tmp_script.py inside the task workspace and invoking subprocess.run with:

« working directory: the task workspace (cwd=task_dir);
o I/O capture: capture_output=True (text=True);
e timeout: 6000 seconds per script;

 interpreter: invoked as "python" (resolved via the system PATH).

This design allows the orchestrator to capture stdout/stderr and feed error traces back into subsequent
attempts.

B.3 What We Mean by “Agent”: Components vs. Role Prompting

A reviewer concern is whether ClimateAgent is merely a single LLM “role-playing” multiple roles. Our
implementation is a modular agentic workflow coordinated by an orchestration layer:

o FEach “agent” is an executable software component (Python class) with a role-specific prompt, an
explicit I/O contract (the BaseAgent protocol), and dedicated procedures (e.g., metadata scraping,
candidate generation, debugging loops).

e The orchestrator invokes agents as separate calls at different workflow stages. For the
programming_agent and visualization_agent, context passing (directory tree, prior codes,
README summaries) can be disabled with -no-context for ablation.
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Persistence and “memory.”” We do not rely on implicit conversational memory as the primary state.
Instead, persistence is implemented via:

o a serialized workflow context file (context. json);

« on-disk artifacts in the task workspace (downloaded data, generated code, figures, reports, logs).
This externalized state is inspectable, reproducible, and supports explicit resume/recovery (Appendix [B.4)).

B.4 Persistent Workflow Context (context.json)

Top-level schema. In the current new-approach/experiments implementation, context.json contains
four core keys plus one optional key:

o main_task: string;
o subtasks: list of subtask dictionaries (subtask, agent, description);
o codes: mapping from 0-based subtask index (string) to a selected code file path (typically absolute);

o results: mapping from 0-based subtask index (string) to captured stdout (success) or a failure
message;

o user_data_summary (optional): dictionary produced by UserDataInspectAgent.inspect(), in-
cluding paths to code_output/user_data_summary.md and .json.

The optional user_data_summary is included for fresh runs where the orchestrator performs the user-data
inspection step; it may be absent for runs started from a user-specified —task_dir without prior context.

Update policy and failure recording. The orchestrator writes context. json (i) after plan generation
and (ii) after each subtask finishes (success or failure). Failures are recorded as strings in results[idx]
(e.g., "Failed after 3 attempts..."), rather than in a dedicated errors field.

Resume mechanism. Resuming is supported by loading context.json from an existing -task_dir. To
continue from an intermediate point, the user specifies —start_from_idx (0-based); the orchestrator skips

subtasks with indices lower than this value and continues execution from the specified subtask.

Representative (sanitized) snippet.

{
"main_task": "Produce the AR ... 100°W-140°W ...",
"subtasks": [
{
"subtask": "Download S2S forecast data for humidity and winds",
"agent": "data_download_agent",
"description": "Use the ECMWF S2S dataset ... 2022-03-24 ..."
}
1,
"codes": {
"0": ".../experiments/task_YYYYMMDD_HHMMSS/data/download_script_attempt_5.py"
3,
"results": {
"0": "Submitting retrieval request: {... ’origin’: ’ecmf’, ...}"
3,

"user_data_summary": {
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"markdown": ".../experiments/task_YYYYMMDD_HHMMSS/code_output/user_data_summary.md",
"json": ".../experiments/task_YYYYMMDD_HHMMSS/code_output/user_data_summary.json",
"summary": {}
}
}

B.5 Dynamic API Introspection in Data Acquisition Agents

Valid request parameters (variables, levels, lead times, dataset-specific fields) are constrained and may evolve.
Our data acquisition agents therefore include dynamic API introspection to ground request generation
on runtime metadata, rather than relying on the LLM to guess parameters.

ECMWF S2S (ECMWFDownloadAgent). The ECMWF S2S download pipeline proceeds as follows:

1. Parameter extraction: an LLM parses the user instruction into structured JSON specifying
{parameter, origin, type, mode, date}. In the current code, parameter extraction uses a
stronger model (gpt-4.1).

2. Runtime metadata extraction: the agent wuses Selenium-driven scraping (via
data_download_agent/extract_ecmwf_metadata.py) to extract valid options (e.g.,
steps, available levels, and available model-version dates for hindcasts) from the
ECMWEF dataset pages. Metadata are saved under the task’s data/ directory
as JSON (e.g.,, meta_{origin}_{param}_{type}_{mode}.json and, for hindcasts,
hindcast_dates_{origin}_{param}_{type}_{mode}_{selected_model_version_date}.json).

3. Multi-candidate script generation: conditioned on the extracted metadata, the agent generates
n = 8 candidate download scripts in one LLM call (default model string o4-mini).

4. Validation and execution: candidates are syntax-checked via compile(...); the orchestrator
executes candidates sequentially and accepts the first script with returncode==0.

CDS (CDSAPIDownloadAgent). The CDS download pipeline is:

1. Dataset selection: an LLM selects a dataset name from a curated list
(agents/cds_datasets. json).

2. Runtime metadata extraction: the agent uses Selenium to open the dataset download page
and parse the form configuration from __NEXT_DATA__, saving a JSON metadata file under
<output_dir>/data/<dataset>_metadata.json (with output_dir set to <task_dir>/data by the
orchestrator).

3. Multi-candidate script generation: the current implementation generates n = 4 candidate
scripts per subtask, conditioned on the metadata, and syntax-checks them with compile(...).

4. Execution: the agent can execute valid candidates concurrently (threads + subprocess; 600-second
timeout per candidate) and selects the first successful run. Candidate scripts are instructed to print
a JSON array of downloaded file paths on the last stdout line for robust parsing and cleanup.

B.6 Execution Artifacts and Traces

Workspace artifacts. Each run creates a task workspace (specified by -task_dir or auto-generated under
experiments/). The workspace contains:

o context.json: persistent workflow state (Appendix [B.4));

e data/: downloaded data, scraped metadata JSONs, and auto-generated download scripts;
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o code/: generated analysis/visualization scripts;

e code_output/: analysis outputs and figures, user_data_summary.md/json, and the final report
(typically final_report.md);

o log/: orchestrator and agent logs (e.g., orchestrating_agent.log, programming_agent.log,
visualization.log).

LLM call traces. LLM call metadata and token usage are recorded in a single JSON file
code_output/token_usage.json. It stores an events list (one entry per API call, including agent name,
subtask index, attempt counters, stage labels, model identifier, token counts, and duration) plus a summary
section aggregating totals and breakdowns by agent/subtask/stage.

B.7 Benchmark—System Interface

ClimateAgent is a reusable system that accepts natural-language climate workflow prompts as input (e.g.,
data acquisition, analysis, visualization, and report generation). Benchmark tasks (e.g., prompt collec-
tions) are executed by invoking the same runner; evaluation is implemented as a separate harness under

eval_scripts/ (e.g., evaluate_reports.py reads evaluation_pair. json and compares system vs. refer-
ence reports).

Example commands.
o Fresh run:
python main.py --prompt path/to/task_prompt.txt
e Resume from an existing workspace starting at subtask k:

python main.py --prompt path/to/task_prompt.txt \
--task_dir path/to/task_YYYYMMDD_HHMMSS --start_from_idx k

e Ablation run without passing context into LLM prompts:
python main.py --prompt path/to/task_prompt.txt --no-context

B.8 Autonomy Assumptions and Practical Deployment Notes

Autonomy definition. By “end-to-end autonomy,” we mean that once a task prompt is provided and the
runtime environment is configured, the system proceeds without human intervention: it plans, downloads
data, generates and executes code, produces visualizations, and writes a report, using bounded retries and
error-driven regeneration.

Required pre-configuration. Autonomous execution assumes:
o LLM access credentials available via environment variables (the code reads OPENAI_API_KEY);

o CDS/ECMWF credentials configured locally (e.g., cdsapi and ecmwf-api-client credential files);

 Selenium-capable browser tooling available for metadata scraping (headless Chrome via Selenium
WebDriver);

« required Python packages installed and network access enabled.
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Failure handling and recovery. Robustness is achieved by:

o bounded per-subtask retries (max_retrial);

» multi-candidate generation for download/code/report steps (defaults: ECMWF n = 8, CDS n = 4,
programming/visualization n = 4), with syntax checks and error-driven regeneration;

 runtime error capture via subprocess stdout/stderr, propagated to subsequent attempts;

 persistent state snapshots (context.json) enabling resume via -task_dir and -start_from_idx.

Security and isolation. The current implementation does not sandbox generated code beyond subpro-
cess execution. Scripts run with the permissions of the local user environment, using the Python interpreter
resolved from PATH. We recommend safer deployment practices (e.g., containerization, least-privilege creden-
tials, and network restrictions) for production use.

Model configuration. Default model identifiers are configured per agent in code: PlanningAgent,
LLMProgrammingAgent, and LLMVisualizationAgent default to gpt-5; download-code generation defaults
to o4-mini; and ECMWEF parameter extraction uses gpt-4.1. All recorded model identifiers and token
usage statistics are saved in code_output/token_usage. json for reproducibility.

C Executable Examples and Traces.

Task requirements (task_SST_1). This task analyzes monthly mean sea surface temperature (SST) and
SST anomalies in the tropical Pacific during the mature phase of the 2002-2003 El Nifio using NOAA OISST
v2.1 (AVHRR-only) daily NetCDF files for 2003-01-01-2003-01-31. The required workflow is: (i) download
all daily files into data/ (skip if present; warn and continue on failures); (ii) process local files on the native
OISST grid to compute monthly means of sst and anom over 30°S-30°N and 120°E-290°E (wrapping
longitudes to 0-360° as needed); (iii) save processed outputs as NetCDF; (iv) create a publication-quality
two-panel map (SST and anomaly) using Cartopy PlateCarree with central_longitude=-155, specified
contour levels/colormaps, land/coastlines, labeled gridlines, and bold equator and 180° meridian; (v) write
a 250—400 word report embedding the figure and documenting data source, methods, and time window.

Agentic decomposition and responsibilities. The orchestrator (orchestrating_agent) decomposes
the task into four subtasks and delegates them to specialized agents:

1. S1 Download (programming agent): loop over 2003-01-01..2003-01-31, construct NOAA
URLs, download into data/, skip existing, continue on failures.

2. S2 Process (programming agent): open data/oisst-avhrr-v02r01.200301%.nc, select sur-
face layer, wrap longitudes if needed, subset to the required domain, compute monthly means, write
two NetCDF files.

3. S8 Plot (programming_agent): load monthly means, generate two-panel Cartopy figure with
required styling, validate PNG output.

4. S4 Report (visualization__agent): generate code_output/final_report.md embedding the
PNG and update code_output/README.md.

A lightweight pre-flight step by user_data_inspect_agent records a data summary artifact (not used by
the OISST pipeline itself).
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Subtask

Agent Artifacts

Attempts, failures, and fix

S1  Down-
load

S2 Process

S3 Plot

S4 Report

programming_agent 31 daily NetCDF files in data/

programming_agent jan2003_sst_monthly_
mean.nc,
jan2003_anom_monthly_
mean.nc

programming_agent jan2003_sst_

anom_two_panel.png

visualization_
agent

final_report.md

4 code candidates were generated; 2 were re-
jected due to SyntaxError: unterminated
string literal. The first executed download
script timed out (120 s). A debug regeneration
fixed this by adding explicit per-request time-
outs and streaming downloads; it then com-
pleted and validated the expected 31 files.
Succeeded on first execution. The pipeline
wraps longitudes to 0-360° when needed, sub-
sets to [—30, 30]° latitude and [120,290]° longi-
tude, computes the mean over time, writes out-
puts, and validates variable/dimension pres-
ence.

Initial plotting failed with TypeError: Input
z must be 2D, not 3D (extra singleton di-
mension). Two debug regenerations later, the
fix was to squeeze(drop=True) the loaded
fields and print dims/shapes before contouring;
the figure was then generated and validated.
Two attempts failed with FileNotFoundError:
Output directory not found:

code_output. The final fix added an
ensure_directory() step and successfully
wrote the report and updated the README.

Table 4: SST 1 trace summary (sources under task_SST_1/log/.

Executable example (end-to-end).

cd task_SST_1

python3 code/subtask_1_c896079c_cand0.py
python3 code/subtask_2_18510429_cand0.py
python3 code/subtask_3_076£29d8_cand0.py

python3 code/subtask_4_636361f2_viz_cand0_debug?2.py
Expected trace highlights (selected stdout lines saved in logs):

[INFO] Saved SST monthly mean to code_output/jan2003_sst_monthly_mean.nc
[INFO] Saved anomaly monthly mean to code_output/jan2003_anom_monthly_mean.nc
[DEBUG] SST dims: (’lat’, ’lon’), shape: (240, 680)

[INFO] Figure saved to code_output/jan2003_sst_anom_two_panel.png

Trace overview (attempts, failures, fixes).

Selected raw failure traces (minimal
(task_SST_1/log/programming_agent.log):

excerpts). S1 generation/runtime

Syntax error: unterminated string literal (subtask_1_c896079c_candl.py)
. timed out after 120 seconds (subtask_1_c896079c_cand0.py)

S3 dimensionality error (task_SST_1/log/43a886fb.log):

TypeError: Input z must be 2D, not 3D

S4 missing output directory (task_SST_1/log/visualization.log):
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FileNotFoundError: Output directory not found: code_output

Final artifacts. The run produces the following deliverables under task_SST_1/code_output/:

¢ jan2003_sst_monthly_mean.nc (monthly mean absolute SST), jan2003_anom_monthly_mean.nc
(monthly mean SST anomaly);

¢ jan2003_sst_anom_two_panel.png (two-panel map; 3000x3600, 300 DPI);

e final_report.md (250-400 word summary report embedding the figure).

Monthly SST (2003-01-15)

S

e

120°E 180° 120°wW

Monthly SST Anomaly (2003-01-15)

=

SST Anomalies (°C)

120°E 180° 120°W

Figure 7: Monthly mean SST (top) and SST anomaly (bottom) for January 2003 from NOAA OISST v2.1
(AVHRR-ounly), averaged over 2003-01-01-2003-01-31 and plotted over 30°S-30°N, 120°E-290°E.

Final result report (generated text). The ﬁgure(FigureIﬂ) above presents a two-panel map of monthly mean
sea surface temperature (SST) and SST anomalies for January 2003 over the tropical Pacific (30°S-30°N, 120°E-
290°E), centered on 2003-01-15. In the upper panel, absolute SST values range from about 18°C in the eastern basin
to over 30°C in the western warm pool. The highest temperatures (>28°C) form a continuous eastward extension
along the equator, peaking near 160°W. Cooler waters (<24°C) occupy the eastern Pacific near South America and
the subtropical gyres north and south of the equator.

The lower panel shows SST anomalies relative to the 1971-2000 climatology. A pronounced El Nifio signature emerges:
positive anomalies up to +3°C span from the dateline (~ 180°E) eastward to around 240°E, concentrated within +5°
of the equator. The warm anomaly tongue extends approximately from 140°E to 260°E. Opposing negative anomalies
(~ —0.5°C to —1°C) appear in the western margin of the tropical Pacific and in higher-latitude subtropical regions,
indicating compensating cooling outside the core equatorial zone. Overall, anomalies exceed +2°C across a broad
central-eastern band, confirming the mature phase of the 2002-2003 El Nifio.

Data were sourced from NOAA OISST v2.1 AVHRR-only daily NetCDF files for January 1-31, 2003. Files were
downloaded locally and processed using xarray: surface fields of sst and anom were combined and averaged over
the month. Subsetting used native longitudes (0-360°) re-wrapped to 120°E-290°E and latitudes —30° to +30°.
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Visualization employed matplotlib and cartopy (PlateCarree projection with central_longitude=-155), using a
sequential colormap for SST (18°C-32°C, 1°C intervals) and a diverging colormap for anomalies (levels —4°C to
+4°C).

D Component-level Ablation Analysis

The reviewer requests component-level evidence that attributes performance gains to specific parts of CLI-
MATEAGENT. Because CLIMATEAGENT is an end-to-end executable workflow, some components (notably
planning and data acquisition) are necessary for executability: removing them entirely would collapse the
pipeline and does not yield a meaningful runnable baseline. Therefore, in this section we provide (i) direct
ablations where the system remains executable (e.g., Contextual Coordination on/off; Sec. , and
(ii) trace-based component attribution for Coordinated Task Planning (CTP), using concrete plans,
artifact chains, and per-subtask attempt logs to isolate the role CTP plays in long-horizon completion and
error localization.

D.1 Ablation Analysis on Coordinated Task Planning (CTP)

What CTP does in our implementation. Coordinated Task Planning (CTP) is the orchestration
mechanism that transforms a high-level scientific request into an ordered list of subtasks, assigns each subtask
to a capability-matched agent (download vs. programming vs. visualization), and enforces explicit artifact
hand-offs (filenames/paths and expected formats) between subtasks. In our system, the resulting subtask
plan is persisted in context.json, and execution is driven by a deterministic loop over these subtasks with
per-subtask retries recorded in log/orchestrating_agent.log (see Appendix for implementation
details and traces).

Why we use trace-based attribution for CTP. CTP cannot be “turned off” without making the
workflow non-executable (e.g., there is no downstream routing without a subtask list). Instead of a non-
runnable ablation, we attribute CTP’s contribution via observable execution evidence:

o Plan validity: whether the plan covers the essential scientific stages (data acquisition — compu-
tation — visualization/reporting) in an expert-reasonable order.

o Artifact-chain explicitness: whether intermediate outputs are explicitly named and reused (e.g.,
GRIB/NetCDF intermediates feeding downstream steps), enabling reproducibility.

o Failure localization: whether failures are contained to a single subtask and resolved via local
retries without discarding previously completed stages.

o Capability boundary compliance: whether tasks that require separation of responsibilities (e.g.,
generating a downloader vs. executing downloads into data/) are handled via explicit hand-offs.

Representative long tasks. To ground the above signals, we report three representative long-horizon
tasks (67 subtasks) that require multi-stage coordination and produce complete artifact chains: task_AR_2
(AR detection + weekly frequency map, US West Coast), task_AR_14 (same workflow for East Asia; includes
permission-aware download separation), and task_DR_6 (SPI-based drought severity mapping over CONUS).
Table [5| summarizes their subtask counts, total attempts (including retries), agent switches, and wall-clock
times, derived from context. json and orchestrator logs.

Evidence from the traces. Across these tasks, CTP produces plans that (i) explicitly separate data
acquisition, computation, and reporting, and (ii) establish a concrete artifact chain that enables downstream
stages to consume intermediate outputs deterministically. Moreover, when errors occur, the orchestrator
retries the failing subtask while preserving already-produced artifacts, demonstrating localized recovery
rather than restarting the entire workflow. Below we summarize the CTP evidence for each representative
task.
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Task #Subtasks F#Attempts Agent switches Wall-clock
task_AR_2 6 6 3 27Tm34s
task_AR_14 7 8 3 47mb52s
task_DR_6 7 7 2 26m21s

Table 5: CTP trace summary for three representative long-horizon tasks (from */context.json and
*/log/orchestrating_agent.log).

Example 1: task_AR_2 (AR detection + weekly frequency map; 6 subtasks)

Plan validity and artifact chain. The plan explicitly separates setup/config, data acquisition, scientific
computation, and reporting, with named hand-offs: GRIB downloads — daily IVT NetCDFs — daily AR
presence/pathway outputs — weekly aggregation — map PNG — report. These artifacts are written under a
structured directory (code_output/outputs_ar_freq/) and referenced by subsequent subtasks, supporting
reproducibility and deterministic execution.

Failure localization. When a downstream stage fails, the orchestrator retries only that subtask (recorded
in orchestrating_agent.log) and reuses previously generated intermediates rather than restarting the
pipeline, illustrating the intended CTP behavior for long-horizon robustness.

Example 2: task_AR_14 (AR detection + weekly frequency map; 7 subtasks)

Capability boundary compliance. This task requires a coordination-critical split: a programming agent
generates a downloader script, while a dedicated download agent executes it to write into data/. CTP makes
this hand-off explicit in the plan (separate subtasks with explicit artifacts), enabling a policy-compliant,
reproducible workflow in which the download script is checked into the workspace and the data-write step
is isolated.

Failure localization. The orchestrator retries a failing scientific subtask without invalidating the completed
download and intermediate products, illustrating localized recovery in a multi-stage artifact chain.

Example 3: task_DR_6 (SPI drought severity mapping over CONUS; 7 subtasks)

Plan validity aligned with domain workflow. The drought pipeline is decomposed into statistically
meaningful stages (download — crop — climatology split — monthly stats — SPI — map — report). This
decomposition reduces the risk of silent methodological errors (e.g., mixing climatology and target windows)
by making intermediate stages explicit and inspectable.

Artifact-chain explicitness and localized retries. Intermediate products (cropped dataset, climatology
statistics, SPI field) are saved with explicit filenames and consumed downstream. When failures occur, retries
target a single stage, preserving earlier artifacts and preventing unnecessary recomputation.

Takeaway. These traces provide component-level attribution for CTP: it yields expert-reasonable decom-
positions, explicit artifact chains, capability-aware routing, and localized recovery behavior in long-horizon
climate workflows. This complements the direct on/off ablation for Contextual Coordination in Sec.
which quantifies quality drops when cross-step context alignment is removed.

D.2 Ablation Analysis on Contextual Coordination

Contextual Coordination is the mechanism that maintains cross-step consistency by (i) propagating struc-
tured task state (e.g., key file paths, intermediate outputs, and constraints) between subtasks and agents,
and (ii) enforcing that downstream steps consume the actual artifacts produced upstream rather than re-
generating or guessing them. This is particularly important for long-horizon workflows where subtle context
drift (e.g., mismatched filenames, inconsistent regions/time windows, or re-derived parameters) can silently
degrade scientific correctness or cause late-stage failures.
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Task ID  Category With Contextual Coordination w/o Contextual Coordination
Read. Sci. Comp. Vis. Report | Read. Sci. Comp. Vis. Report
AR1 AR 7 6 5 8 6.5 5 3 4 6 4.5
DRI1 DR 8 9 7 8 8.0 7 8 6 7 7.0
EP1 EP 8 9 7 9 8.25 7 8 6 5 6.5
HW1 HW 9 8 9 8 8.5 9 8 9 7 8.3
SST1 SST 9 10 9 8 9.0 6 5 4 7 5.5
TC1 TC 9 8 9 8 8.5 err  err err err err
Table 6: Ablation on Contextual Coordination. Read.=Readability, Sci.=Scientific Rigor,

[43

Comp.=Completeness, Vis.=Visual Quality, Report=overall report score. “err” indicates the run failed

to produce a valid end-to-end output.

Ablation setup. We compare two settings on six representative tasks (one per domain):

e With Contextual Coordination: the orchestrator passes forward the persisted workflow state
and key artifact pointers, enabling agents to reference previously produced outputs and maintain
consistent assumptions across subtasks.

o w/o Contextual Coordination: we remove this cross-step context propagation, forcing each
subtask to proceed with limited knowledge of prior artifacts and decisions, which increases the risk
of drift and brittle interfaces.

Evaluation. We evaluate report quality using the same rubric dimensions as in the main paper: Readabil-
ity, Scientific Rigor, Completeness, Visual Quality, and the aggregated Report Score. We additionally record
whether the run produces a valid final output chain (required figure + report). Table |§| reports results.

Results and attribution. Removing Contextual Coordination causes consistent degradations in report
quality across domains, with particularly large drops on tasks that require careful cross-step reuse of inter-
mediate scientific artifacts.

e Large quality drops on artifact-heavy workflows. SST1 shows a substantial decline in overall
Report Score (9.0 — 5.5), accompanied by sharp reductions in Scientific Rigor and Completeness.
This is consistent with context drift causing downstream steps to mis-handle intermediate datasets,
variable choices, or time/region settings when prior decisions are not propagated.

e Cross-step drift affects scientific correctness signals. In AR1 and EP1, the largest decreases
occur in Scientific Rigor / Completeness and Visual Quality, reflecting that downstream code and
plots are more likely to deviate from upstream constraints (e.g., required thresholds, plotting levels,
or spatial aggregation definitions) when the system cannot reliably reference the correct intermediate
artifacts.

o Hard failure in long-horizon pipelines. TC1 fails entirely (“err”) without contextual coordina-
tion, indicating that brittle multi-step dependencies (e.g., intermediate text/figures written in earlier
subtasks) can break at the final stage when artifact paths and working-directory assumptions are
not consistently maintained.

Takeaway. This ablation provides direct evidence that Contextual Coordination is a key contributor to
end-to-end robustness and report quality in CLIMATEAGENT. By maintaining consistent state and artifact
references across agents and subtasks, it reduces context drift, prevents late-stage contract breaks, and
improves scientific completeness and rigor in the generated reports.
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Table 7: Task stats and errors (short cols)

Name Subtask ProgRet DataRet VizRet ReqErr ShpKey MiscErr SynErr Timeout TypeErr
task_AR_1 4 3 2 0 1 2 1 0 0 0
task_AR_2 6 0 0 0 0 0 0 0 0 0
task_AR_3 5 2 0 4 0 1 4 4 1 1
task_AR_4 7 8 0 0 0 0 2 3 0 8
task_AR_5 5 3 0 1 0 2 4 4 0 4
task_ DR, 1 4 0 1 0 1 0 0 0 0 0
task DR, 2 4 1 0 7 0 0 7 1 0 0
task__DR_3 4 3 0 6 0 0 6 1 0 2
task_DR_4 4 1 11 1 11 0 2 0 0 0
task_DR_5 5 1 0 0 0 0 1 0 0 0
task EP_1 4 2 0 2 0 2 2 2 0 0
task_EP_2 4 2 0 2 0 2 1 1 0 0
task EP_3 5 4 0 1 0 3 2 0 0 0
task__EP_4 4 3 1 1 0 2 1 4 0 1
task_EP_5 4 1 0 43 0 1 22 20 0 0
task HW_ 1 2 0 0 0 0 0 0 0 0 0
task HW_ 2 2 0 0 0 0 0 0 0 0 0
task HW_ 3 2 0 0 0 0 0 0 0 0 0
task HW_4 2 0 0 0 0 0 0 0 0 0
task. HW_5 2 1 0 0 0 0 0 0 0 1
task_SST 1 4 3 0 2 0 0 2 2 1 2
task_SST 2 4 10 0 0 1 1 3 3 2 0
task_SST 3 4 3 0 0 0 1 0 2 0 0
task_SST 4 4 1 0 1 0 0 2 0 0 0
task_SST 5 4 6 0 0 0 1 0 5 0 0

D.3 Ablation Analysis on Adaptive Self-Correction

Adaptive Self-Correction (ASC) is the mechanism that improves CLIMATEAGENT robustness by iteratively
recovering from execution-time failures. In our implementation, ASC operates through bounded retry-and-
regenerate loops: when a subtask fails, the responsible agent (programming/data/visualization) generates
revised candidates conditioned on observed error messages and re-executes until success or the retry bud-
get is exhausted. This behavior is essential in long-horizon climate workflows where failures arise from
heterogeneous I/0 backends, evolving APIs, and brittle code/plotting details.

Why trace-based attribution (instead of full removal). In an end-to-end executable pipeline, ASC
is tightly coupled with the orchestrator’s runtime semantics: subtasks are sequentially dependent, and fail-
ures are handled by retries and regeneration. Rather than introducing additional experimental variants in
this revision, we provide trace-based component attribution grounded in the errors that were actually
encountered and the recovery events that were required for successful completion. Under the orchestrator’s
fail-stop behavior at the subtask level, any subtask that required at least one recovery would have terminated
at its first failure without ASC, thereby preventing downstream subtasks (and thus the final report) from
being produced.

Signals from execution artifacts and logs. We summarize ASC behavior with two log-derived signals:

e Retry volume by stage: the number of retries required for each task in the Programming, Data,
and Visualization stages (ProgRet, DataRet, VizRet).

o Recovered error taxonomy: counts of observed error classes, including request/API er-
rors (ReqErr), shape/key errors (ShpKey), miscellaneous runtime errors (MiscErr), syntax errors
(SynErr), timeouts (Timeout), and type errors (TypeErr).
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Table [7 reports these statistics aggregated from execution logs across representative tasks.

Findings. Two consistent patterns emerge from Table

(1) Recovery is frequently necessary for completion. Many tasks exhibit non-zero retry counts (e.g.,
ProgRet> 0 and/or VizRet> 0), indicating that the first generated candidate is often insufficient and that
successful end-to-end runs depend on iterative correction. Because subtasks are sequentially dependent, a
single unrecovered failure would block all downstream stages and prevent producing the final figure and
report.

(2) Failure modes are heterogeneous and stage-specific. The recovered error taxonomy reveals that
different stages fail in different ways:

o Programming-stage failures (e.g., ShpKey, TypeErr, MiscErr) reflect common scientific-
computing issues such as coordinate/dimension mismatches, variable naming assumptions, or xarray
backend/engine mismatches.

o Visualization-stage failures (often reflected in elevated VizRet and SynErr/MiscErr) frequently
stem from brittle artifact references (paths/filenames) and plotting boilerplate issues; ASC enables
iterative fixes without rerunning the entire workflow.

o Data-stage failures (captured by DataRet and ReqErr) are driven by external service instability,
request /credential issues, or transient connectivity problems; ASC mitigates these via retries and
regenerated download candidates.

Interpretation and linkage to concrete failures. These trace-based statistics attribute a concrete role
to ASC: it resolves diverse runtime failures that occur in practice and would otherwise terminate subtasks un-
der fail-stop execution semantics. While final report scores reflect output quality, ASC primarily contributes
by improving robustness and completion under realistic conditions (external APIs, heterogeneous file
formats, and fragile artifact interfaces). We further connect these error classes to concrete examples with
logs and intermediate artifacts in Appendix [E]

Takeaway. Adaptive Self-Correction is a key robustness component in CLIMATEAGENT, enabling recovery
from syntactic, runtime, data I/O, and external-service failures that are common in long-horizon climate
workflows and that would otherwise block end-to-end execution.

E Dedicated analysis of failure cases

Given the complexity of the multi-agent workflow (data acquisition — scientific computation — visualiza-
tion/reporting), failures typically arise from (i) external data services, (ii) heterogeneous file formats and
coordinate conventions, (iii) runtime/resource constraints, and (iv) brittle artifact contracts (paths/names)
across agents. Below we analyze four representative cases of CLIMATEAGENT, including log evidence, inter-
mediate artifacts, underlying causes, and mitigations done by agents.

E.1 Case 1: External data service failure (connection error during download)

Where it happens. Data acquisition stage (download agent), task_AR_1.

Symptom / impact. The workflow cannot proceed because the required forecast file is missing; the
orchestrator retries.

Log evidence. The orchestrator records a connection error on the first attempt:
task_AR_1/log/orchestrating_agent.log:18-20
Attempt 1 for subtask 1

Subtask 1 failed: Connection error.
Attempt 2 for subtask 1
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Intermediate artifacts.

o Expected (after success): task_AR_1/data/s2s_IAPCAS_20220324_030.nc.

e Download implementation: task_AR_1/data/download_script_attempt_2.py.

Underlying cause. Reliance on an external APT (ECMWEF Web API) introduces transient network/service
failures; the system has no control over availability.
Mitigation / resolution.

e Retry with backoff and idempotency: retries should include exponential backoff and resume-

safe downloads.

o Preflight credential and endpoint checks: detect missing credentials or endpoint issues early
with a lightweight request.

o Cache-first behavior: if the expected file exists and is valid (non-empty, readable), skip re-
download.

E.2 Case 2: Data format and coordinate heterogeneity (xarray engine + concat failures)

Where it happens. Scientific computation stage (programming agent), task_AR_1 subtask 2.

Symptom / impact. Multiple candidates fail during dataset loading: (i) xarray.open_mfdataset cannot
infer concatenation order for threshold files, and (ii) the forecast file cannot be opened using default NetCDF
backends (requires GRIB/cfgrib).

Log evidence. Threshold concatenation failure:

task_AR_1/log/programming_agent.log:851
ValueError: Could not find any dimension coordinates to use to order the
datasets for concatenation

Forecast file backend/engine mismatch (default engines fail; cfgrib succeeds):

task_AR_1/log/programming_agent.log:10364

Engine ’default’ failed: did not find a match in any of xarray’s currently
installed I0 backends [...]

Engine ’netcdf4’ failed: NetCDF: Unknown file format: ’...s2s_TIAPCAS_...nc’

Opened S2S with engine=’cfgrib’

Intermediate artifacts.

e Forecast file: task_AR_1/data/s2s_IAPCAS_20220324_030.nc.
o User thresholds directory: ../user_provided_data/predicted_IVT_thres/.

e (Candidate implementations: task_AR_1/code/subtask_2_x.py.

Underlying cause. “Same extension, different reality”: files named .nc may be NetCDF or GRIB-derived
containers depending on the download pipeline and libraries available; additionally, multi-file threshold
datasets may not share coordinates needed for combine="by_coords" concatenation.

Mitigation / resolution.

o Robust I/O strategy: attempt multiple engines; explicitly use engine="cfgrib" with
indexpath="" when GRIB-like.
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¢ Coordinate standardization: normalize time/lat/lon/level names and ensure time is a di-
mension before slicing.

o Threshold ingestion that does not assume concat coords: open files one-by-one, extract/av-
erage the threshold variable, and regrid/align explicitly (or fail fast with a clear diagnostic about
which coordinate is missing).

o Validation gates: before heavy computation, assert non-empty spatial/time subsets and coordinate
consistency between forecast and thresholds.

E.3 Case 3: Runtime constraints (timeouts + invalid code candidates)

Where it happens. Early-stage programming tasks with heavy I/O or expensive operations (example:
task_SST_1 subtask 1).

Symptom / impact. Some LLM-generated candidates fail immediately due to syntax errors; others time
out under the orchestrator’s execution limit, causing retries and delayed completion.

Log evidence.

task_SST_1/log/programming_agent.log:1-4

Syntax error: unterminated string literal (...) (subtask_1_..._candl.py)
Syntax error: unterminated string literal (...) (subtask_1_..._cand3.py)
Exception during execution (attempt 1): ... timed out after 120 seconds

Intermediate artifacts.

o Candidate scripts: task_SST_1/code/subtask_1_c896079c_cand*.py.
o Partially produced outputs (after eventual success): task_SST_1/data/ downloads and
task_SST_1/code_output/ NetCDF outputs.

Underlying cause. Two distinct issues: (i) generative code may be syntactically invalid, and (ii) even valid
code may exceed a fixed wall-clock budget due to large downloads, slow per-file loops, or non-vectorized
computations.

Mitigation / resolution.
o Pre-execution lint/syntax gate: run a fast parser check (python -m py_compile) before full
execution to avoid wasting the timeout budget.

o Chunked and resumable I/O: download in chunks with checkpointing; avoid re-downloading
existing files.

o Performance-aware prompting and templates: prefer known-efficient patterns (vectorization,
xarray operations, bounded spatial windows) and avoid Python-level loops over grids.

e Adaptive timeouts: allow longer budgets for known-heavy subtasks, or add progress heartbeats

so the orchestrator can distinguish a hang from a slow but healthy job.

E.4 Case 4: Artifact contract break (path/working-directory mismatch halts final reporting)

Where it happens. Reporting stage (visualization agent), task_TC_1 subtask 10.

Symptom / impact. The workflow fails after three attempts at the final reporting step because the
visualization agent cannot find an intermediate file that does exist, but at a different relative path than
assumed.

Log evidence. Subtask 9 successfully writes code_output/central_pressure_...txt, but subtask 10
searches under code/code_output and fails repeatedly:
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task_TC_1/log/orchestrating_agent.log:2833-2847
Subtask 9 succeeded.
--- Subtask 10/10: Read ’code_output/central_pressure_...txt’
Subtask 10 failed with error:
. file not found at ...\code\code_output\central_pressure_2023036512117.txt

Intermediate artifacts.

o Produced by subtask 9 (exists): task_TC_1/code_output/central_pressure_2023036S12117.txt.

o Produced earlier (exists): task_TC_1/code_output/meteorological_fields_2023036S12117_2023
0207_2100.png.

e Missing due to path mismatch: the report file task_TC_1/report_2023036512117.md is not gener-
ated.

Underlying cause. A brittle contract between agents regarding the working directory and relative paths.
The visualization agent implicitly ran as if its CWD were task_TC_1/code/, while the artifact was written
relative to the task root.

Mitigation / resolution.

o Enforce a single task-root CWD: the orchestrator should run all agent scripts from the task
root and forbid ad-hoc CWD changes.

e« Resolve paths from an explicit root: use a declared TASK_ROOT and construct paths via
Path (TASK_ROOT)/"code_output"/....

o Preflight artifact checks: before generating reports, validate required inputs exist (and are non-
empty) and emit a clear, single error message with the checked paths.

o Contract tests: add small automated checks that the expected filenames/locations match the
previous subtask outputs.

F Human Expert vs. LLM-as-Judge Agreement

To validate the reliability of our LLM-as-a-judge evaluation, we conduct a human expert assessment on
the same set of generated reports and compare domain-expert scores with the LLM judge scores. For each
climate domain, we compute the mean absolute difference between the human expert score and the LLM
judge score (lower is better, indicating stronger agreement).

F.1 Agreement Results Across Domains

Table [§] summarizes the expert—LLLM score gaps across the six domains in CLIMATE-AGENT-BENCH-85.

Domain AR DR EP HW SST TC
Mean absolute score difference (|sexpert — sLrm|)  1.9167  0.3250  0.5500 0.4250 0.4750 0.4750

Table 8: Human expert vs. LLM-as-judge agreement by domain. Values are mean absolute score differences;
smaller values indicate closer agreement.

Overall, the agreement is high in five out of six domains: DR, EP, HW, SST, and TC all exhibit gaps
around ~0.3-0.55, suggesting that the LLM judge largely tracks expert preferences in these settings. In
contrast, AR shows a substantially larger discrepancy (1.9167). This indicates that the Atmospheric
River tasks—often involving stricter visualization requirements and more nuanced spatial diagnostics—can
amplify differences between what an expert prioritizes and what an LLM judge infers from the report and
figures alone. We therefore perform a targeted qualitative analysis of the AR domain below.
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F.2 Analyzing the Most Complex Task: Atmospheric River Example

We analyze two representative AR cases to better understand the source of disagreement between the expert
and the LLM judge. In both cases, we compare the AT Agent output to a Specialist-produced reference.

AR frequency AR frequency
s Init: 2022-03-24 Week 2: 2022-03-31 to 2022-04-06

>l

Initialized on: 2022-03-24 Validity date: 2022-03-31 to 2022-04-06
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Figure 8: Case 1. Left: Output from the AT Agent. Right: Created by Specialist.
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Figure 9: Case 2. Left: Output from the AI Agent. Right: Created by Specialist.

Case 2.

Comments. Across the two cases, the written organization and narrative framework are broadly similar;
the primary difference lies in the visual quality of the AT Agent—Case 1 omits critical information, whereas
Case 2 reproduces the main spatial patterns reasonably well.

¢« Readability. In both cases, the text uses a region-by-region, bullet-point format with clear logic
and generally appropriate scientific terminology. The descriptions of data values and geographic
locations are explicit and accessible to the intended expert audience. However, the phrasing and
terminology are relatively repetitive, with limited linguistic variety.
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o Scientific Rigor. The data sources are clearly stated and credible, and the interpretation of spatial
patterns is generally sound, covering the major regional distributions of AR frequency. Nonetheless,
neither case discusses forecast uncertainty or potential model biases, yielding a comparable, moderate
level of rigor overall.

e« Completeness. Both narratives cover the standard elements of “region—intensity—
hotspots/corridors” and follow a similar structure, but neither includes an assessment of potential
impacts or implications.

e Visual Quality. In Case 1, the AT Agent figure shows an obvious omission/anomaly (the principal
high-frequency band and hotspots are not depicted), which substantially weakens—if not invali-
dates—the evidential basis for the subsequent interpretation. In Case 2, the AI Agent figure is
largely consistent with the Specialist’s map (a pronounced AR band and an offshore high-value
core are evident); remaining differences are minor in extent, thickness, or position and fall within
acceptable plotting variability.

Takeaway. These examples suggest that the larger expert—LLM gap in AR is driven primarily by visual-
evidence sensitivity: domain experts penalize figure omissions or physically implausible spatial patterns
more strongly, whereas an LLM judge may overweight the narrative structure when the text appears coherent.
This motivates (i) stronger visualization validation checks and (ii) incorporating a small amount of expert
auditing for visually critical tasks.

G Computation Cost

This section quantifies the computational overhead of CLIMATEAGENT in terms of (i) LLM token usage and
(ii) end-to-end wall-clock time. Since CLIMATEAGENT uses multi-candidate generation (e.g., n=8 in data
agents) and iterative debugging/retries, reporting these costs is important for interpreting robustness gains.

Per-agent token/time breakdown. Table[9|reports the breakdown by domain (AR/DR/EP/HW /SST)
and by agent type: Planning (Plan), Programming (Prog), and Visualization (Viz). Across the five rep-
resentative domains, CLIMATEAGENT consumes a total of 664,896 input tokens and 938,365 output
tokens (1,603,261 total tokens), with an aggregated wall-clock time of 8,094,272 ms (=~ 134.9 min).
Wall-clock time includes end-to-end execution (tool calls, downloads, Python script execution), not only
LLM inference.

Where the overhead comes from. As expected, the dominant cost is in the Programming agent, which
performs iterative code generation and debugging: Prog accounts for 729,331/938,365 = 77.7% of
output tokens and most of the wall-clock duration across tasks. Planning is comparatively lightweight
(one call per task in these runs), while Visualization can incur additional calls when report synthesis or
figure embedding needs refinement (e.g., HW).

Comparison to a single-pass GPT-5 baseline (tokens). To contextualize the overhead of multi-step
agentic execution, Table [L0| compares output tokens (OtTk) between CLIMATEAGENT and a GPT-5 base-
line for Task 1 in each domain. Summed over the five domains, CLIMATEAGENT produces 938,365 output
tokens versus 176,220 output tokens for the GPT-5 baseline (Task 1), reflecting the additional intermedi-
ate reasoning, multi-candidate generation, and iterative debugging in CLIMATEAGENT. We emphasize that
this overhead directly supports higher robustness in tool-augmented, long-horizon workflows by reducing the
probability of unrecoverable failures.

H Comparison to a General-Purpose Multi-Agent Framework (LangGraph
DeepAgent)

Background and motivation. Our main experiments compare CLIMATEAGENT against strong generic
baselines (e.g., a single-pass GPT-5 workflow and GitHub Copilot). However, these comparisons do not fully
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Table 9: CLIMATEAGENT computational cost and wall-clock time breakdown by domain and agent.
Plan/Prog/Viz denote the Planning/Programming/Visualization agents. SubT = number of subtasks as-
signed to the agent; Invk = number of LLM invocations; InTk/ OtTk = input/output tokens; Dur = wall-
clock duration in milliseconds for that agent; TotO = total output tokens summed over Plan+Prog+Viz;
TotD = total duration (ms) summed over Plan+Prog+Viz.

Plan Prog Viz Total
Task SubT Invk InTk OtTk Dur SubT Invk InTk OtTk Dur SubT Invk InTk OtTk Dur TotO TotD
AR 1 1 9630 6046 103138 4 15 193785 233401 1810552 1 1 3481 25769 138872 265216 2052562
DR 1 1 8337 6291 94427 3 11 99042 123661 1408820 1 1 2366 26971 99090 156923 1602337
EP 1 1 7185 5363 86238 2 10 105741 129339 1020384 1 1 1211 37952 126240 172654 1232862
HW 1 1 8028 5025 90652 1 4 31048 38964 331431 1 4 7589 44129 342029 88118 764112
SST 1 1 7850 6045 144748 3 16 177812 203966 2055904 1 1 1791 45443 241747 255454 2442399

Table 10: Output-token (OtTk) comparison between CLIMATEAGENT and a GPT-5 baseline for Task 1
in each domain. OtTk (CLIMATEAGENT) corresponds to TotO in Table [J] (total output tokens summed
over Plan+Prog+Viz). GPT-5 baseline reports total output tokens for the single-pass run.

Task CLIMATEAGENT OtTk GPT-5 OtTk

AR 265216 62461
DR 156923 30343
EP 172654 35489
HW 88118 11358
SST 255454 36569
Total 938365 176220

isolate whether the observed gains come from our climate-specific design choices (specialized data agents,
explicit persistence, artifact contracts, and targeted self-correction), or simply from using any multi-step
agentic workflow. To address this, we include a comparison against a widely used general-purpose multi-
agent framework built for tool-using, long-horizon tasks: DeepAgent implemented with LangGraph
(via the deepagents package). DeepAgent is prompted with the same tools and required to satisfy the
same output/evaluation contract as CLIMATEAGENT, enabling a controlled assessment of whether domain-
specialized design is necessary beyond generic multi-agent orchestration.

H.1 DeepAgent as a General-Purpose Multi-Agent Baseline

We use DeepAgent as our general-purpose multi-agent baseline. DeepAgent is an LLM-driven supervisor
implemented as a LangGraph runnable that natively supports planning, tool use, and hierarchical delega-
tion. In our setting, the DeepAgent supervisor can: (i) maintain explicit planning state (e.g., a TODO list
via default planning tools such as write_todos/read_todos), (ii) call tools (Python functions exposed as
LangChain tools), (iii) operate over a scoped filesystem backend, and (iv) delegate work to named subagents.

Hierarchical delegation via native subagents. At DeepAgent creation time, we define a set of named
subagents, each with a description, system prompt, and a restricted subset of tools. During execution, the
supervisor decides when to delegate by calling the native subagent tool (shown as task in our traces). Each
subagent then runs its own tool-calling loop (within the same filesystem scope) and returns a result to the
supervisor. Conceptually:

Supervisor — task(Subagent) — (project tools) — Artifacts.
Fairness constraints: same tools, same output contract. To make the comparison con-

trolled and low-risk, we enforce the same evaluator-facing artifacts and directory layout as CLI-
MATEAGENT: both systems write into app/report-generate/new-approach/experiments/task_x/
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and must produce a non-empty code_output/final_report.md. We scope side effects with
FilesystemBackend(root_dir=task_dir), preventing reads/writes outside a single experiment folder. We
also avoid exposing a general shell/execute tool; instead we provide a controlled python_run tool that
executes Python under task_dir with a timeout.

Project tools exposed to DeepAgent. We expose a small, explicit tool set that mirrors the capabilities
used by CLIMATEAGENT while remaining framework-agnostic:

e init_task_dir, inspect_user_data

o context_patch (deep-merge updates into context.json)

e register_code, register_result (update context.json[’codes’] and context.json[’results’])
e python_run (execute a Python file or code string under task_dir, with a timeout)

o validate_contract (checks required keys and code_output/final_report.md)

o get_cds_datasets (returns curated CDS dataset identifiers)

 (optional wrappers) run_download_cds(task_dir, subtask, attempt) and
run_download_ecmwf (task_dir, subtask, attempt)

These tools allow DeepAgent to manage state, create/register artifacts, run controlled code, and (optionally)
reuse the same download wrappers as CLIMATEAGENT, while leaving high-level planning and delegation to
the general-purpose framework.

Named subagents. We define four named subagents with restricted tool subsets to reflect common roles
in tool-using workflows:

o planner: produces and updates a structured subtasks list in context.json (via context_patch).
o downloader: acquires datasets under data/ and registers scripts/results in context.
o analyst: writes analysis scripts under code/ and produces intermediate artifacts under code\_output/.

e reporter: produces code_output/final_report.md and verifies the output contract (via
validate_contract).

Observability and traces. To support qualitative diagnosis of generic-agent behavior, the DeepAgent
baseline emits structured traces: task_x/log/deep_native.log (runner logs), task_*/log/deep_native_
trace. jsonl (structured events such as messages/tool calls/subagent start-end/TODO updates), and task_
*/log/deep_native_trace.txt (a human-readable timeline). These traces enable analysis of whether errors
arise from generic orchestration (e.g., planning drift, inefficient tool use, brittle path assumptions) versus
domain-specific mechanisms implemented in CLIMATEAGENT.

In the next subsection, we report preliminary experiments comparing CLIMATEAGENT to DeepAgent under
identical tool access and the same output contract.

H.2 Preliminary Experiments: ClimateAgent vs. DeepAgent under the Same Tools and Output
Contract

We conducted preliminary experiments comparing CLIMATEAGENT against DeepAgent under identical tool
access and the same evaluator-facing output contract (Sec. [H.1). Table [11] summarizes report-quality scores
for six representative domains.
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Table 11: Report quality comparison between CLIMATEAGENT and DeepAgent. indicates err (DeepA-

gent run failed or did not produce a valid report for scoring).

CLIMATEAGENT DeepAgent

Category Read. Rigor Comp. Vis. Score Read. Rigor Comp. Vis. Score

AR 7 6 5 8 6.50 8 6 5 7 6.50
DR 8 9 7 8 8.00 - - - - -
EP 8 9 7 9 8.25 - - - - -
HW 9 8 9 8 8.50 9 9 8 7 8.30
SST 9 10 9 8 9.00 9 9 9 8 8.75
TC 9 8 9 8 8.50 - - - - -

Overall outcome. DeepAgent successfully produced scorable reports for 3/6 tasks (AR, HW, SST),
while 3/6 runs failed (err) and did not generate a valid report for scoring (DR, EP, TC). In contrast,
CLIMATEAGENT produced valid reports across all six tasks.

Failure modes of a general-purpose framework. The three DeepAgent failures are qualitatively con-
sistent with known brittleness of generic multi-step agents in tool-augmented scientific workflows:

« DR: tool invocation error. The run failed due to incorrect tool usage (tool-call schema/arguments
mismatch), preventing the workflow from progressing to subsequent steps.

e« EP: data download error. The run failed during data acquisition, reflecting difficulty in constructing
valid requests against constrained, evolving climate data APIs.

o TC: file-path error. The run failed at a later stage due to a path/working-directory mismatch, i.e., a
brittle artifact contract between steps (an intermediate file existed but was referenced under an incorrect
relative path).

These failures directly motivate two core design choices in CLIMATEAGENT: (i) Data-Agents with dy-
namic API introspection (querying the latest valid parameters / dataset metadata at runtime to re-
duce invalid-parameter and format-mismatch errors during download), and (ii) Adaptive Self-Correction,
which uses bounded retries and error-conditioned regeneration to recover from runtime failures (including
tool/APT errors and artifact-contract issues).

Quality comparison on successful runs. On the three tasks where DeepAgent completed end-to-end
execution (AR, HW, SST), DeepAgent scores are slightly below CLIMATEAGENT in overall report score
and/or key dimensions (Table. For example, DeepAgent matches CLIMATEAGENT on AR report score but
trails on visual quality, and it is modestly lower than CLIMATEAGENT on HW and SST overall score. While
preliminary, this gap suggests that beyond generic multi-step orchestration, domain-specific knowledge
integration (e.g., climate-aware data handling conventions, robust scientific computation patterns, and
task-specific validation/formatting constraints) contributes to higher scientific rigor/completeness and more
reliable end-to-end outputs.

Takeaway. Taken together, these preliminary tests indicate that improvements are not simply due to
adopting any multi-step agentic workflow. A general-purpose multi-agent framework with the same tools
can still fail due to tool-call brittleness, constrained data APIs, and artifact-contract/path issues, whereas
CLIMATEAGENT’s domain-specialized components (dynamic APT introspection and adaptive self-correction)
improve both completion reliability and report quality under the same output contract.
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