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Abstract

Despite recent progress, continual learning still does not match the performance of
batch training. To avoid catastrophic forgetting, we need to build compact memory
of essential past knowledge, but no clear solution has yet emerged, even for shallow
neural networks with just one or two layers. In this paper, we present a new method
to build compact memory for logistic regression. Our method is based on a result
by Khan and Swaroop [2021] who show the existence of optimal memory for such
models. We formulate the search for the optimal memory as Hessian-matching
and propose a probabilistic PCA method to estimate them. Our approach can
drastically improve accuracy compared to Experience Replay. For instance, on
Split-ImageNet, we get 60% accuracy compared to 30% obtained by replay with
memory-size equivalent to 0.3% of the data size. Increasing the memory size to
2% further boosts the accuracy to 74%, closing the gap to the batch accuracy of
77.6% on this task. Our work opens a new direction for building compact memory
that can also be useful in the future for continual deep learning.

1 Introduction

Continual learning aims for a continual lifelong acquisition of knowledge which is challenging
because it requires a delicate balance between the old and new knowledge [Mermillod et al., 2013].
New knowledge can interfere with old knowledge [Sutton, 1986] and lead to catastrophic forget-
ting [Kirkpatrick et al., 2017]. Thus, it is necessary to compactly memorize all the past knowledge
required in the future to quickly learn new things. This is a difficult problem and no satisfactory
solution has been found yet, even for simple cases such as logistic regression and shallow neural
networks. The problem is important because solving it can also drastically reduce the cost and
environmental impact of batch training which requires access to all of the data all the time.

The most straightforward method to build memory is to simply store old models and data examples,
but such approaches do not perform as well as batch training. For instance, weight-regularization uses
old parameters to regularize future training [Kirkpatrick et al., 2017, Li and Hoiem, 2017, Lee et al.,
2017, Zenke et al., 2017, Ebrahimi et al., 2020, Ritter et al., 2018, Nguyen et al., 2018]. While this is
memory efficient, it often performs worse than replay method that simply store old raw data for reuse
in the future [Rolnick et al., 2019, Lopez-Paz and Ranzato, 2017, Aljundi et al., 2019, Chaudhry et al.,
2019, Titsias et al., 2020, Buzzega et al., 2020, Pan et al., 2020, Scannell et al., 2024]. The memory
cost of replay can be reduced by combining it with weight regularization, but so far the performance
still lags behind the batch training [Daxberger et al., 2023]. The goal of this work is propose new
methods to build compact memory for the simplest non-trivial case of logistic regression. With this,
we hope to gain new insights to be able to do the same in the future for continual deep learning.

We build upon the work of Khan and Swaroop [2021] who show the existence of compact memory for
logistic regression but do not give a practical method to estimate them. They propose a prior called
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Figure 1: Standard continual-learning methods, such as those using weight regularization, use past
parameters θt to update θt`1 for the new task Dt`1 (shown on the left). We propose a new method
(shown on the right) that also builds compact memory and reuses it to continually learn. The memory
consists of a set Ut of memory vectors and a weight vector wt. These are used to update θt`1 when
new Dt`1 arrives. Afterward, the memory is updated to get the new pUt`1,wt`1q.

the Knowledge-adaptation prior (K-prior) which uses a ‘memory’ set to approximate the full-batch
gradient. More precisely, given parameter θt after training until task t, a subsetMt of the past data
D1:t “ tD1,D2, . . . ,Dtu is used to construct the K-prior Ktpθ;Mtq such that the following holds:

t
ÿ

j“1

∇¯̀
jpθ;Djq « ∇Ktpθ;Mtq, (1)

where ¯̀
jpθ;Djq denotes the loss over examples in Dj . Khan and Swaroop [2021, App. A] show

that, for logistic regression, it is also possible to construct an optimal memory by using the singular
vectors of the feature matrix. The optimality refers to the fact that the memory can, in theory, pefectly
recover full-batch gradient, that is, the approximation in Eq. 1 becomes an equality. The optimal
memory size depends on the rank of the feature matrix, not on the size of whole D1:t, yielding a
compact optimal memory. The main issue with the method is that it requires access to the whole D1:t

to construct the memory which is not possible when learning continually. Our goal here is to propose
a practical alternative to estimate such memory for continual logistic regression.

In this paper, we reformulate the search for the optimal memory as Hessian-matching and propose a
practical method to estimate them (Fig. 1). We are motivated by the fact that, in linear regression,
estimation of optimal memory can be reformulated as Hessian matching. We generalize this to
logistic regression by posing it as a maximum likelihood estimation problem which uses the classical
Probabilistic Principal Component Analysis [PPCA; Tipping and Bishop, 1999a]. The method does
not yield perfect gradient reconstruction anymore, but can still drastically improve performance
compared to replay of raw old data. For instance, on the Split-ImageNet dataset, we obtain 60%
accuracy compared to the 30% accuracy obtained by replay with memory-size equivalent to 0.3%
of the data size. A small memory size of 2% of the data size is sufficient to obtain an accuracy of
74%, closing the gap to the batch accuracy of 77.6% on this task. Our work opens a new direction
for building compact memory that can also be useful in the future for continual deep learning. Our
code is available at https://github.com/team-approx-bayes/compact_memory_code.

2 Compact Memory for Continual Learning

We consider continual learning for supervised problems where the data of the j’th task consists of Nj

input-output pairs of form pxj , yjq. The goal is to learn the parameter vector θ whose predictions
closely match the true labels yj . The empirical loss over task j is defined as

¯̀
jpθ;Djq “

ÿ

iPDj

L pyj , ŷpfθpxjqqq , (2)

where Lpy, ŷq is chosen to be the cross-entropy loss over predictions ŷ obtained by passing the logits
fθpxq through the softmax function. As discussed earlier, learning continually requires a delicate
balance between old and new knowledge. Tasks may arrive one at a time and there may be little
flexibility to revisit them again. This is unlike the standard ‘batch’ training where the goal is to
obtain the parameter θ˚T obtained by jointly training over the sum

řT
j“1

¯̀
j over all T tasks. Such

batch training typically requires access to all the data all the time. Continual learning eliminates this
requirements and aim to recover θ˚T by incrementally training of tasks one at a time.
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Continual learning however is extremely challenging, even for simple cases such as logistic regression
and shallow neural networks. If new task interferes with the old knowledge, there is a chance the
model may catastrophically forget the previously acquired knowledge. Because the tasks are not
revisited, the model may never be able to relearn it. It is therefore important to compactly memorize
all essential knowledge that may be needed to learn new things in the future. This is challenging
because the future is uncertain and new tasks may be very different from old ones. No satisfactory
solution has been found yet to build compact memory that facilitates accurate continual learning.

Currently, there are two most popular methods to build memory and both do not perform as well as
batch training. The first method is to store the old model parameters θt after training until task t and
reuse it to train over the next task. For example, we can use a quadratic weight-regularizer:

θt`1 Ð arg min
θ

¯̀
t`1pθ;Dt`1q `

1
2δt}θ ´ θt}

2, (3)

where δt ą 0 is the regularization parameter. This is memory efficient because the memory cost
does not grow with tasks and requires storing only one model parameters. It is also possible to use
multiple checkpoints as long as the memory does not grow too fast.

The second method is to store old raw data, which is often not the most memory efficient approach.
This is because the memory size could grow larger as new tasks are seen. However, in practice, the
method often performs much better than weight regularization. The method is also easy to implement
within standard stochastic training pipeline. For instance, given a set Et of replay examples, we can
simply us the following update,

θt`1 Ð arg min
θ

¯̀
t`1pθ;Dt`1q `

ÿ

jPEt

L pyj , ŷpfθpxjqqq . (4)

Another alternative is to use a function-space regularizer, defined as Lpŷpfθt
pxjqq, ŷpfθpxjqqq where

instead of predicting the true labels yj , we predict predictions ŷpfθt
pxjqq of θt. This also boosts

performance in practice [Titsias et al., 2020, Buzzega et al., 2020, Pan et al., 2020, Scannell et al.,
2024]. The memory efficiency of all of these methods can be reduced by combining them with weight
regularization, which brings us to the Knowledge-adaptation prior of Khan and Swaroop [2021].

As discussed earlier, K-prior uses both θt and a memory setMt to approximate the full-batch gradi-
ent over the past tasks. The memory set consists of Kt vectors, that is,Mt “ pu1|t,u2|t, . . . ,uKt|tq

where uk|t is the k’th memory vector. K-prior uses a combination of the weight-space and function-
space regularizer to approximate the full-batch gradient. For instance, consider a regularized linear-
regression problem with loss Lpyj , ŷpφJj θqq “ 1

2 pyj ´ φJj θq
2 for each pφj , yjq pair, with a regular-

izer 1
2δt}θ}

2. For this model, we can use the following combination:

Ktpθ;Mtq “
1
2δt}θ ´ θt}

2 `

Kt
ÿ

k“1

1
2

´

uJk|tθt ´ uJk|tθ
¯2

. (5)

The first term ensures that new θ are close to old θt while the second term ensures the same for their
predictions. We then use the following update for the next task,

θt`1 Ð arg min
θ

¯̀
t`1pθ;Dt`1q `Ktpθ;Mtq. (6)

Khan and Swaroop [2021] prove that, for generalized linear models, such an update can perfectly
recover the exact gradient whenMt “ D1:t and θt “ θ˚t (the batch solution over D1:t). Choosing
a subset of D1:t as the memory set yields an approximation of the gradient whose accuracy can be
controlled by carefully choosing the memory set, as long as θt is close enough to θ˚t .

ChoosingMt Ă D1:t however is not the best choice. Khan and Swaroop [2021, App. A] show that it
is also possible to construct a much more compact optimal memory set which can recover prefect
gradients even when |Mt| ! |D1:t|. This can be done by setting uk|t to be the left singular vectors
of the feature matrix. To be precise, denoting by Φ1:t the feature matrix of containing features of
inputs in D1:t as columns, we compute the following singular-value-decomposition (SVD),

Φ1:t “ U˚
t S˚t pV

˚
t q
J, where U˚

t “ pu
˚
1|t,u

˚
2|t, . . .u

˚

K˚t |t
q and V˚

t “ pv
˚
1|t,v

˚
2|t, . . . ,v

˚

K˚t |t
q. (7)

The left and right singular vectors are denoted by u˚k|t and v˚k|t respectively. The rank is denoted by
K˚t and S˚t is a diagonal matrix containing all K˚t non-zero singular values denoted by s˚k|t. Khan
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and Swaroop [2021, App. A] define the optimal memory to beMt “ U˚
t . Then, they construct the

following optimal K-prior, denoted by K˚t pθ; U˚
t q, for binary logistic regression,

K˚t pθ; U˚
t q “

1
2δ}θ ´ θt}

2 `

K˚t
ÿ

k“1

w˚k|t L
´

ŷppu˚k|tq
Jθtq , ŷppu

˚
k|tq

Jθq
¯

, (8)

and show that there exist scalars w˚k|t for which it perfectly recovers the full-batch gradient at θ. Here,
ŷpfq denotes the prediction function which is the sigmoid function for binary logistic regression, that
is, ŷpfq “ σpfq “ 1{p1` expp´fqq. The result shows that the optimal memory size is equal to K˚t
and perfect gradient recovery is possible by simply comparing K˚t predictions at old and new models.
This can be extremely cheap compared to the full batch gradient for long data streams whose intrinsic
dimensionality is much smaller.

The main issue with the method is that computing w˚k|t for each θ is infeasible in practice because it
requires access to all of the past data. Specifically, the optimal value is given by

w˚k|t “
s˚k|tpv

˚
k|tq

Jdx

σpuJk|tθq ´ σpu
J
k|tθtq

(9)

which require computation of the vector dx whose length is equal to the data size |D1:t|, with the j’th
entry is equal to σpφJj θq ´ σpφ

J
j θtq. Since we do not have access to old features φj , it is impossible

to find the optimal w˚k|t for all θ values. In what follows, we propose a practical method to estimate
such compact memory for continual logistic regression, for both binary and multi-class cases. We do
not aim to exactly obtain the optimal memory but still hope to keep the memory size small enough so
that it is not much larger than the rank of the feature matrix.

3 Compact Memory for K-prior

We now present a practical alternative to estimate the optimal memory for continual logistic regression.
Throughout, we assume a quadratic regularizer 1

2δt}θ}
2 needed for training at task t; the method can

easily handle other regularizers as well. Motivated by Eq. 8, we propose to define the K-prior by
using a set of unit-norm memory vectors uk|t and their weights wk|t, as shown below:

Ktpθ; Ut,wtq “
1
2δt}θ ´ θt}

2 `

Kt
ÿ

k“1

wk|t L
´

ŷpuJk|tθtq , ŷpu
J
k|tθq

¯

, (10)

The set of memory and weight vectors are respectively defined as follows,

Ut “
`

u1|t u2|t . . . uKt|t

˘

and wt “
`

w1|t w2|t . . . wKt|t

˘

, (11)

and we denote by Wt the diagonal matrix whose diagonal is the vector wt. Clearly, a fixed wt

will not yield the optimal K-prior but we still hope that it will make the memory more compact. To
estimate the memory and weights, we start with an initial value of pU0,w0q at t “ 0 and use the
following iterative procedure (illustrated in Fig. 1),

1. Estimate θt`1 by training over ¯̀
t`1pθ;Dt`1q `Ktpθ; Ut,wtq.

2. Estimate pUt`1,wt`1q by using Hessian matching (with PPCA).

The first step is simply the standard K-prior training as in Eq. 6. Next, we motivate the second step
on a linear regression problem and then present an extension for logistic regression.

3.1 Compact Memory for Linear Regression

We consider the following linear regression problem and show that estimating the second step can be
realized via Hessian matching,

t
ÿ

j“0

¯̀
jpθ;Djq “

1
2δt}θ}

2 `

t
ÿ

j“1

ÿ

iPDj

L
´

yi, ŷpφ
J
i θq

¯

, where Lpy, ŷq “ 1
2 py ´ ŷq

2. (12)

Here, we denote the quadratic regularizer 1
2δt}θ}

2 by ¯̀pθ;D0q. For this problem, the K-prior can
perfectly recover the joint loss if memory is chosen optimally, as stated in the following theorem.
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Theorem 1 For the problem in Eq. 12, the K-prior shown in Eq. 10 is equivalent to the original loss
and takes a quadratic form if we set θt Ð θ˚t , Ut Ð U˚

t and Wt Ð S˚t , that is, we have
t
ÿ

j“0

¯̀
jpθ;Djq “ Ktpθ; Ut,wtq “

1
2 pθ ´ θtq

JHpθtqpθ ´ θtq, (13)

where Hpθtq “ Φ1:tΦ
J
1:t ` δtI is the Hessian of the objective in Eq. 12.

A proof is included in App. A.1.

This result gives a clue on how to estimate the next pUt`1,wt`1q. Essentially, if θt`1 Ð θ˚t`1 as
well, then we should choose pUt`1,wt`1q such that the following holds for all θ,

Kt`1pθ; Ut`1,wt`1q “ ¯̀
t`1pθ;Dt`1q `Ktpθ; Ut,wtq. (14)

Such a choice will ensure that the batch training loss for tasks 1 to t` 1 is perfectly reconstructed
with the new K-prior Kt`1. For linear regression, this condition is satisfied by using the second-order
optimality condition, obtained by taking the second derivative of both sides at θt`1. This is because
the Hessian is independent of θ and Hessian matching yields

Ut`1Wt`1U
J
t`1 ` εt`1I “ Φt`1Φ

J
t`1 `UtWtU

J
t , (15)

where εt`1 “ pδt`1 ´ δtq. We note that this is not possible by using the first-order optimality
condition because gradients are of the same size as θ, which is not enough to estimate a (larger) Ut.
In contrast, the condition above is sufficient and is just another way to formulate an online SVD
procedure. Essentially, we can concatenate pΦt`1, UtW

1{2
t q and apply SVD to it to obtain Ut`1

and wt`1. The last term εt`1 represents the error made in this process which can be driven to zero
by choosing Kt`1 appropriately. SVD can however be numerically unstable and we will use an
alternative based on PPCA, which is easier to implement and also have an intuitive interpretation.

3.2 Hessian Matching via Probabilistic PCA (PPCA)

Hessian matching can be formulated as Probabilistic PCA [Tipping and Bishop, 1999a] and conve-
niently solved using the Expectation Maximization (EM) algorithm. Essentially, we aim to find Ut`1

whose columns can accurately predict the columns of Φt`1 and Ut. More formally, we define the
following two matrices,

T Ð
?
NpΦt`1, UtW

1{2
t q, (16)

where N Ð Kt ` |Dt`1|. Then, we use the following PPCA model to predict the columns ti of T,

ti “ Ut`1W
1{2
t`1zi ` ei, where zi „ N p0, Iq and ei „ N p0, εt`1Iq. (17)

We now show that maximum-likelihood estimation on this model can find pUt`1,wt`1q that solve
Eq. 15. As shown by Tipping and Bishop [1999a, Eq. 4], the log marginal-likelihood of this model is
obtained by noting that ti follows a Gaussian distribution too, which gives (details in App. A.2)

log ppT|Ut`1,wt`1q “ ´
1
2N

”

log |C| ` Tr
´

C´1TTJ{N
¯ı

` cnst. (18)

where C “ Ut`1Wt`1U
J
t`1 ` εt`1I. Then, taking the derivative and setting it to 0, we can show

that the optimality condition is to set C “ TTJ{N which is equivalent to Eq. 15; a derivation is
included in App. A.2. Similarly to online SVD, maximum likelihood over PPCA also performs
Hessian matching. PPCA also enables us to estimate εt`1, but for simplicity we fix it to a constant
value (denoted by ε from now onward).

The main advantage of this formulation is that it leads to an easy-to-implement EM algorithm.
Essentially, in the E-step, we find the posterior over zi, then in M-step, we update Ũ. The two steps
can be conveniently written in just one line [Tipping and Bishop, 1999a, Eq. 29]. This is obtained by
denoting Ũ Ð Ut`1W

1{2
t`1 and updating it as follows:

Ũ Ð SŨpεI`M´1ŨJSŨq´1, where M “ ŨJŨ` εI and S “ TTJ{N. (19)
Derivation is included in App. A.2 and an algorithm to implement this procedure is outlined in Alg. 1,
where in lines 11-12, we normalize columns of Ũ to obtain pUt`1,wt`1q. The algorithm assumes
that Kt`1 “ Kt, but if memory size is increased, then we need just one additional step to initialize
the additional vectors (we can do this in line 1). In practice, we use a subset of Φt`1 to initialize the
new memory vectors. The EM procedure implements Hessian matching by essentially finding new
memory vectors that can predict old memories as well as the new features.
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Algorithm 1: Hessian Matching by PPCA
Require: Φt`1, Ut,wt and ε

1: W Ð Diagpwtq and Ũ Ð UtW
1{2

2:
3: T Ð pΦt`1, UtW

1{2
q

4: S Ð TTJ

5: while not converged do
6:
7: M Ð ŨJŨ` εI
8: Ũ Ð SŨpεI`M´1ŨJSŨq´1

9:
10: end while
11: w Ð diagpŨJŨq and W Ð Diagpwq
12: U Ð ŨW´1{2

13: return Ut`1 Ð U and wt`1 Ð w

Algorithm 2: Extension for Logistic Regression
Require: Φt`1, Ut,wt, ε, and θt`1

1: W Ð Diagpwtq and U Ð Ut

2: λ1 Ð ŷ1pΦJt`1θt`1q and λ2 Ð ŷ1pUJ
t θt`1q

3: T Ð
`

Φt`1Diagpλ1q
1{2, UtW

1{2λ
1{2
2

˘

4: S Ð TTJ

5: while not converged do
6: λÐ ŷ1pUJθt`1q and Ũ Ð UpWλq1{2

7: M Ð ŨJŨ` εI
8: Ũ Ð SŨpεI`M´1ŨJSŨq´1

9: Ũ Ð Ũλ´1{2

10: w Ð diagpŨJŨq and W Ð Diagpwq
11: U Ð ŨW´1{2

12: end while
13: return Ut`1 Ð U and wt`1 Ð w

Figure 2: The left side shows a Hessian-matching algorithm for linear regression obtained using
EM for PPCA. On the right, an extension for logistic regression is shown where differences to the
regression case highlighted in red. The main differences are in line 2, 3, 6, and 9, and they all mostly
due to the inclusion of terms that contain ŷ1pfq. For logistic regression, ŷ1pfq “ σpfqr1 ´ σpfqs.
When operated on a vector f , ŷ1pfq returns a vector of ŷ1pfiq. Diagpwq denotes a diagonal matrix
with vector w as the diagonal, while diagpWq returns back the diagonal vector of W.

3.3 An Extension for Binary Logistic Regression

We now show an extension for binary logistic regression. The procedure also works for other
generalized linear models but we omit it because the derivation is straightforward. We will however
briefly discuss an extension to multi-class afterward.

For binary logistic regression, aiming for a recursion similar to Eq. 14 is challenging. As discussed
earlier, this is because computing the optimal wk|t is infeasible in practice. To simplify the estimation,
we relax this requirement and aim for Hessian matching at θt`1. That is, we reformulate the search
for pUt`1,wt`1q as the following Hessian-matching problem at θt`1,

∇2Kt`1pθt`1; Ut`1,wt`1q “ ∇2 ¯̀
t`1pθt`1;Dt`1q `∇2Ktpθt`1; Ut,wtq. (20)

This condition leads to an equation shown below which takes a form similar to Eq. 15 obtained for
the linear regression case. A derivation is given in App. A.3, where we show that the only difference
is in the diagonal matrices which are defined differently:

Ut`1W̃t`1U
J
t`1 ` εt`1I “ Φt`1Bt`1Φ

J
t`1 `UtW̃tU

J
t , (21)

where W̃t`1,W̃t, and Bt`1 are the diagonal matrices defined as follows:

W̃t`1 “ Wt`1 ŷ
1pUJ

t`1θt`1q, W̃t “ Wt ŷ
1pUJ

t θt`1q, Bt`1 “ Diagrŷ1pΦJt`1θt`1qs. (22)
Here, the function ŷ1pfq denotes the first derivative of ŷpfq with respect to f . For binary logistic
regression, ŷpfq “ σpfq, therefore ŷ1pfq “ σpfqp1´σpfqq. When applied to a vector f , ŷpfq returns
a vector of ŷpfjq, which is the case for all the quantities used above. In last expression Diagpfq forms
a diagonal matrix who diagonal is the vector f .

The new Hessian matching equation can also be solved using an algorithm similar to Alg. 1, shown
in Alg. 2. We will now briefly describe how to derive the algorithm. First, instead of using Eq. 16, we
redefine T as shown below where we include some vectors computed using the function ŷp¨q,

T Ð
?
NpΦt`1Diagpλ1q

1{2, UtW
1{2
t λ

1{2
2 q, (23)

where we use λ1 Ð ŷ1pΦJt`1θt`1q and λ2 Ð ŷ1pUJ
t θt`1q. With this change, TTJ{N is equal to

the matrix in the right hand side of Eq. 20. This is done in line 2 and 3 of Alg. 2. The next change is
in the update of Ut`1. Essentially, we redefine

Ũt`1 Ð Ut`1W
1{2
t`1λ

1{2 (24)
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where λÐ ŷ1pUJ
t`1θt`1q. With this change, the left hand side in Eq. 20 becomes ŨŨJ, and then

we can apply the update shown in Eq. 19. This is done in line 6-8. Finally, because we need to
recompute λ every time we update Ũ, we regularly extract pUt`1,wt`1q from Ũt`1, which is done
in line 9-12. One minor change is to initialize the procedure in line 1.

The computational cost of the EM algorithm is dominated by the inversion in line 8 of a square matrix
of size Kt`1. Therefore, the overall complexity is in OpIK3

t`1q where I is the number of iterations.
For small Kt`1 and I , this cost is manageable and does not add a huge overhead to overall training.

3.4 Extensions for Multi-Class Logistic Regression and Other Generalized Linear Models

Alg. 2 can be easily extended to estimate compact memory for other generalized linear models.
The main change required is to appropriately define the function ŷ1pfq. We demonstrate this for
multi-class logistic regression with number of classes C. For this case, we define a parameter vector
θpcq for each class c, giving rise to the matrix Θ “ pθp1q . . . θpCqqJ. The linear predictor for a
feature φ (of length P) is defined as f “ Θφ and is of length C. Given such a linear predictor, the
prediction function and its derivatives are defined through the softmax function as shown below,

ŷpfq “ p and ŷ1pfq “ Diagppq ´ ppJ, where c’th entry of p is ppcq “
exppf pcqq

řC
c1“1 exppf pc1qq

. (25)

which are vector and matrix of size P , respectively. The gradient and Hessian are given by
BLpy, ŷpfqq
Bθpcq

“ rŷpf pcqq ´ ypcqsφ,
B2Lpy, ŷpfqq

BθpcqBθpc
1qJ

“ rŷ1pfqspc,c
1
qφφJ,

where rŷ1pfqspc,c
1
q denotes the entry pc, c1q of the matrix. As a result, the size of the Hessian of the

loss Lpy, ŷpfqq with respect to (vectorized) Θ is a PC ˆ PC matrix where P is the length of each
θpcq. Since a P ˆP matrix is sufficient to estimate the memory vectors of size P ˆKt`1, we choose
to perform Hessian matching over the sum

řC
c“1

B
2L

BθpcqBθpcq
J , that is, we use the following,

C
ÿ

c“1

∇2Kt`1pθ
pcq
t`1; Ut`1,wt`1q “

C
ÿ

c“1

”

∇2 ¯̀
t`1pθ

pcq
t`1;Dt`1q `∇2Ktpθ

pcq
t`1; Ut,wtq

ı

. (26)

This condition ignores the cross-derivatives between all pairs c ‰ c1, but the Hessian matching takes
a similar form to Eq. 21. Essentially, we can push the sum with respect to c inside because the only
quantity that depends on c is ŷpf pcqq. Due to this change, we need to redefine the diagonal entries of
the matrices W̃t`1,W̃t, and Bt`1 by using the trace of ŷ1pfq, as shown below (details in App. A.4):

W̃
pkkq
t`1 “ wk|t`1Tr

“

ŷ1pΘt`1uk|t`1q
‰

, W̃
pkkq
t “ wk|tTr

“

ŷ1pΘt`1uk|tq
‰

,

B
pjjq
t`1 “ Tr

“

ŷ1pΘt`1φjq
‰

,
(27)

where k runs from 1 to Kt (or Kt`1) and j runs from 1 to |D1`t|. The trace function is denoted
by Trpŷ1pfqq “

ř

c p
pcqp1´ ppcqq which takes a similar form to the binary case. Essentially, a large

value of this quantity indicates that the corresponding feature is important for at least one class. To
improve numerical stability, we clip the vector p away from 1 or 0 by a small amount (we use 10´4).
Overall, this example demonstrates how to extend our approach to other generalized linear models.

4 Experimental Results

We show the following results: (i) multi-output linear regression for sanity check, (ii) two binary
logistic regression on toy data and USPS dataset, and (iii) multi-class logistic regression on four
datasets based on CIFAR-10, CIFAR-100, TinyImageNet-200, and ImageNet-100. The multi-output
regression result is included in App. B.1 where we compare to the vanilla SVD and show that our
method is numerically more robust. The rest of the results are described in the next section. More
details of the experiments are also included in App. B.

4.1 Binary Logistic Regression

We show that for continual logistic regression our method improves over the replay and vanilla
K-prior methods. We start with the toy example on the ‘four-moon’ dataset and then show results for
the USPS dataset. Both results follow the experimental setting used by Khan and Swaroop [2021].
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Figure 3: Binary logistic regression on a toy ‘four-moon’ datasets with four tasks (red Ñ blue
Ñ blackÑ green). The gray line shows the batch training, while our compact-memory method’s
boundary are shown with colors. We see that estimated boundary closely tracks the batch solution
and ultimately recovers it at the end of training. We also show with circles the points in the input
space that are closed to the memories in terms of the loss gradient.
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(a) USPS odd VS even (b) Representation of learned memories

Figure 4: Panel (a) shows results for binary classification on USPS-odd-vs-even dataset. For each
x P R256, the 1-order polynomial feature-map is used, that is, φpxq “ r1,xs P R257 is used. Our
method clearly beats both replay and K-prior (no learned memories) and obtains performance close
to batch. Panel (b) visualizes the learned memories when using memory size of 1%. Each row shows
the learned memory (as images) sorted according to their weights wk|t (left to right in descending
order). We clearly see that new features emerge as new tasks arrive.

Four-moon dataset. We split the four-moon dataset into four binary tasks and perform continual
logistic regression over them. The training set of each task consists of 500 data points and we test
over all inputs obtained on a 2-D grid p´3.2, 3.2q ˆ p´1.2 ˆ 1.2q in the input space (a total of
158,632 . We use a polynomial feature map of degree 5. The memory size is set to the half of feature
dimensions per task and increased in this fashion with every new task. Fig. 3 shows the changes in
the decision boundary as the model trains on tasks, where we see that the classifier closely follows
the decision boundary of the batch training (shown in gray), ultimately recovering them after 4 tasks.

To understand the nature of the newly learned memories, we also plot the data examples that are
closest to the learned memories (shown with circles in Fig. 3). To be precise, we find examples
x˚ in the input space whose gradient is closest to a memory vector, that is, for a given uk|t, we
look for x with the smallest }∇θLpy, ŷpfθpuk|tqqq ´∇θLpy, ŷpfθpxqqq}2 at θ “ θt. We see that
learned memories cover areas in the input space close to the decision boundary. This confirms that
the memories are a reasonable representation of the decision boundary.

USPS odd vs even datasets. The USPS dataset is a 16ˆ16 image dataset of digits from 0 to 9. We
relabel each digit based on whether it is even or odd and consider a continual logistic regression
with 5 task sequences given as p0, 1qÑp2, 3qÑp4, 5qÑp6, 7qÑp8, 9q. The training set of each task
consists of 1000 data points, and the test set of each task consists of 300 data points. We use degree-1
polynomial feature-map yielding 256-dimensional features.

We consider the following baselines: K-prior [Khan and Swaroop, 2021] and experience replay [Rol-
nick et al., 2019] that store partial datasets of past tasks as memory. The replay set of K-prior and
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(b) Split-CIFAR-100
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Figure 5: Results for multi-class logistic regression. For panel (a), we use features extracted using
a pre-trained Vit-B/32 and the rest use features of a pre-trained Vit-L/14. Similarly to binary
classification, our method get much better accuracy compared to replay and K-prior for the same
memory size. For intance, on Split-ImageNet-1000, we get 30% improvement over replay when
using memory size equivalent to 0.3% of the data size. With 2% memory, we obtain 74% accuracy
which is close to the batch accuracy of 77.6% on this dataset.

experience replay are initialized by random data subsets as done in Daxberger et al. [2023]. We also
compare to the batch training.

Fig. 4a shows the averaged accuracies on the test set over five tasks when the varying memory sizes
are considered. For each experiment we use five different random seeds. We plot results for memory
sizes equivalent to 1, 2, and 5% of dataset for memory. The result shows that our method outperforms
other baselines significantly when using small memory sizes. Fig. 4b shows the visualization of the
ten trained memories when memory size is set to 1% of the data. The memory vectors are sorted
according to their weights wk|t (left to right in descending order) and visualized in an image form.
With new tasks arriving, memories with new features are learned.

4.2 Multi-Class Logistic Regression using Pre-Trained Neural Network Features

We now show results following those done by Carta et al. [2023]. We use the feature map φpxq
of Vision Transformer (Vit) [Dosovitskiy et al., 2021] which is pre-trained using CLIP1. These are
known to yield effective features for classifying various image datasets [Radford et al., 2021]. We
construct the features tφpxq; px, yq P Dtu for t-th taskDt while freezing the parameters of the feature
extractor and then use them for multi-class classification with logistic regression. We use the same
baselines as the previous experiment.

We compare the performance on the following benchmarks:
1The pre-trained Vision transformer models are available at https://github.com/openai/CLIP.
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1. Split-CIFAR-10 is a sequence of 5 tasks constructed by dividing 50,000 examples of CIFAR-10
into non-overlapping subsets. Each task contains 2consecutive classes.

2. Split-CIFAR-100 is a sequence of 20 tasks constructed by dividing 50,000 examples of CIFAR-
100 into non-overlapping subsets. Each task contains 5 consecutive classes.

3. Split-TinyImageNet-200 is a sequence of 20 tasks constructed by dividing 100,000 examples of
TinyImageNet-200 into non-overlapping subsets. Each task contains 10 consecutive classes.

4. Split-ImageNet-1000 is a sequence of 10 tasks constructed by dividing 1,281,167 examples of
ImageNet-1000 into non-overlapping subsets. Each task contains 100 consecutive classes.

Results. Fig. 5 shows the test accuracy on each benchmark over 5 random seeds. In each figure,
the x-axis shows the memory size and the y-axis shows the average accuracy over all tasks. Notably,
when only 1% of the dataset is used for memory, our method significantly outperforms both replay
and K-prior that use randomly selected memory. For instance, on Split-ImageNet-1000, we get 30%
improvement by just using 0.3% memory size, and obtain close to batch performance by just using
2% of the data (74% vs 77.6% obtained by batch). These results clearly show the memory efficiency
of our method.
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Figure 6: Running time.

Fig. 6 illustrates the computational overhead of our method com-
pared to experience replay. Under the same setting as the Split-
ImageNet-1000 experiment, we consider 5 and 10 EM iterations
per task; the result of 10 iterations are reported in Fig. 5. The ratio
of running times, ours to replay, is reported to directly compare
computational overhead. The result shows that the computational
overhead of our method increases only marginally when using
a smaller amount of memory. We believe that this level of com-
putational overhead is acceptable for learning compact memory,
which is the primary target of our research.

5 Discussion

As large pre-trained neural networks show remarkable performance, adaptation of these models to new
environments is becoming increasingly important. However, even in the case of continual learning
with a shallow neural network, the performance tends to degrade due to catastrophic forgetting issues.
To remedy this issue, models require storing a substantial memory as the learning progresses, which
makes continual learning less practical.

In this work, we present a Hessian matching method to obtain compact memory for continual logistic
regression. We demonstrate that, this compact memory, seeking for accurate gradient reconstructions
of past tasks’ losses, significantly boosts memory efficiency. We further show that the memory
efficiency holds even when the compact memory is used jointly with the pre-trained neural network
as a feature extractor. Although our algorithm is currently limited to the use of only the last-layer of a
neural network with a frozen feature extractor, to ensure the principle of gradient reconstruction, we
expect that this simple solution opens a new path to finding the compact memory for large-scale deep
neural networks such as a foundation model, and that this compact memory enables these models to
continually adapt to new tasks in a memory-efficient way.
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A Method Details

A.1 Proof of Theorem 1

We first write the quadratic form by noting that Φ1:tΦ
J
1:t “ UtWtU

J
t ,

Ktpθ; Ut,wtq “
1
2δt}θ ´ θt}

2 `

Kt
ÿ

k“1

1
2wk|t pu

J
k|tθt ´ uJk|tθq

2

“ 1
2 pθ ´ θtq

J
´

δtI`UtWtU
J
t

¯

pθ ´ θtq

“ 1
2 pθ ´ θtq

J
´

δtI`Φ1:tΦ
J
1:t

¯

pθ ´ θtq

“ 1
2 pθ ´ θtq

JHpθtqpθ ´ θtq

(28)

Next, we note that θt “ Hpθtq
´1ΦJ1:ty1:t, therefore, we can write

Ktpθ; Ut,wtq “
1
2 pθ ´ θtq

JHpθtqpθ ´ θtq

“ 1
2θ
JHpθtqθ ´ θJHpθtqθt ` cnst.

“ 1
2δt}θ}

2 ` 1
2θ
JΦ1:tΦ

J
1:tθ ´ θJΦJ1:ty1:t ` cnst.

“ 1
2δt}θ}

2 `

t
ÿ

j“1

ÿ

iPDj

1
2 pyi ´ φJk θq

2 ` cnst.

“

t
ÿ

j“0

¯̀
jpθ;Djq

(29)

This completes the proof.

A.2 Details of PPCA and EM algorithm

The marginal likelihood in Eq. 18 is obtained by noting that, if we marginalize out zi and ei, then
ti „ N p0,Cq. Since all ti are identically distributed, the likelihood is simply a sum:

log ppT|Ut`1,Wt`1q “

N
ÿ

i“1

logN pti|0,Cq “ ´
N
ÿ

i“1

“

1
2 log |C| ` 1

2tJi C´1ti
‰

` cnst.

“ ´ 1
2

”

N log |C| ` Tr
´

C´1TTJ
¯ı

` cnst.

(30)

The stationarity condition can be derived by taking derivative with respect to Ũ “ Ut`1W
1{2
t`1:

pC´1TTJC´1Ũ´NC´1Ũq “ 0 ùñ TTJC´1Ũ “ NŨ, ùñ C “ TTJ{N, (31)

where the last expression holds when Ũ has full rank.

The EM algorithm is obtained by noting that the posterior of zi is also a Gaussian

zi|ti „ N pM´1
t`1Ũ

J
t`1ti, εM

´1
t`1q, (32)

where Mt`1 “ ŨJ
t`1Ũt`1 ` εI; see Tipping and Bishop [1999b, Eq. 6]. Using the mean and

covariance of this Gaussian in the following M-step, we get

Ũt`1 Ð

˜

N
ÿ

i“1

tiErzisJ
¸˜

N
ÿ

i“1

ErzizJi s

¸´1

“

˜

N
ÿ

i“1

tit
J
i Ũt`1M

´1
t`1

¸˜

N
ÿ

i“1

”

εM´1
t`1 `M´1

t`1Ũ
J
t`1tit

J
i Ũt`1M

´1
t`1

ı

¸´1

“ SŨt`1M
´1
t`1

´

εM´1
t`1 `M´1

t`1Ũ
J
t`1SŨt`1M

´1
t`1

¯´1

“ SŨt`1

´

εI`M´1
t`1Ũ

J
t`1SŨt`1

¯´1

.

(33)

This is the update shown in Eq. 19.
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A.3 Details of Hessian Matching for Binary Logistic Regression

We derive the Hessian Matching equation given in Eq. 21. For binary logistic regression, the Hessian
with respect to θ is of size PˆP . We start by writing the expression for the Hessian of `t`1pθ;Dt`1q,

B2 ¯̀
t`1pθt`1;Dt`1q

BθBθJ
“

ÿ

jPDt`1

ŷ1pφJj θt`1qφjφ
J
j (34)

where ŷ1pfq “ σpfqr1 ´ σpfqs. The sum can be written conveniently in a P ˆ P matrix form by
defining a diagonal matrix Bt`1, as shown below:

Φt`1Bt`1Φ
J
t`1 “ Φt`1

¨

˚

˚

˚

˝

ŷ1pφJ1 θt`1q 0 . . . 0

0 ŷ1pφJ2 θt`1q . . . 0
...

...
. . .

...
0 0 . . . ŷ1pφJNθt`1q

˛

‹

‹

‹

‚

ΦJt`1,

where we denote the number of examples in Dt`1 by N . Similarly, the Hessian of the K-prior is

B2Ktpθt`1; Ut,wtq

BθBθJ
“ 1

2δtIP `
Kt
ÿ

k“1

wk|tŷ
1puJk|tθt`1quk|tu

J
k|t

“ 1
2δtIP `Ut

¨

˚

˚

˚

˝

w1|tŷ
1puJ1|tθt`1q 0 . . . 0

0 w2|tŷ
1puJ2|tθt`1q . . . 0

...
...

. . .
...

0 0 . . . wKt|tŷ
1puJKt|t

θt`1q

˛

‹

‹

‹

‚

UJ
t .

(35)

We will denote the diagonal matrix by W̃t. The Hessian for the K-prior at task t` 1 is obtained in a
similar fashion. Using these Hessians, we get the condition given in Eq. 21.

A.4 Details of Hessian Matching for Multi-Class Logistic Regression

For multi-class logistic regression, the Hessian with respect to vectorized Θ is of size PC ˆ PC. To
simplify this, we will write the expression in terms of a block corresponding to the second derivative
with respect to θpcq and θpc

1
q which is of size P ˆ P . In total, there are C2 such blocks for all pairs

of pc, c1q, using which the full Hessian can be obtained.

As before, we start by writing the expression for the Hessian of `t`1pθ;Dt`1q,

B2 ¯̀
t`1pΘ;Dt`1q

BθpcqBθpc
1qJ

“
ÿ

jPDt`1

rŷ1pΘφjqs
pc,c1qφjφ

J
j (36)

where rŷ1pΘφjqs
pc,c1q denotes the entry pc, c1q of the P ˆ P matrix ŷ1pΘuk|tq. This can be written

conveniently in a P ˆ P matrix form by defining a diagonal matrix B
pc,c1q
t`1 , as shown below:

Φt`1B
pc,c1q
t`1 ΦJt`1 “ Φt`1

¨

˚

˚

˚

˝

rŷ1pΘφ1qs
pc,c1q 0 . . . 0

0 rŷ1pΘφ2qs
pc,c1q . . . 0

...
...

. . .
...

0 0 . . . rŷ1pΘφN qs
pc,c1q

˛

‹

‹

‹

‚

ΦJt`1.

Next, we write the K-prior at task t,

KtpΘ; Ut,wtq “

C
ÿ

c“1

δt}θ
pcq
´ θ

pcq
t }

2 `

Kt
ÿ

k“1

wk|t L
`

ŷpΘtuk|tq , ŷpΘuk|tq
˘

. (37)
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(a) EM (our) vs SVD (b) Representation of learned memories

Figure 7: In (a) we compare our method with the SVD approach and batch training (oracle) on a
multi-label regression task under two memory scenarios: small (10) and large (160). Our method
achieves nearly the same accuracy as the SVD approach in both memory scenarios. However, for
Tasks 4 and 5, our method with a small memory size outperforms the SVD approach, suggesting
superior numerical robustness to gradient reconstruction errors caused by limited memory. In (b)
we visualize the memories as more tasks are added. Each row shows the eigenimages sorted in
decreasing eigenvalues from left to right. The first 2 images are consistent, and the left images with
smaller eigenvalues (3rd image onward) show the merged features of digits as a new task is learned.

The Hessian is given by following (we denote the indicator by Ipc “ c1q which is 1 when c “ c1),

B2KtpΘ; Ut,wtq

BθpcqBθpc
1qJ

“ 1
2 Ipc “ c1qδtIP `

Kt
ÿ

k“1

wk|trŷ
1pΘuk|tqs

pc,c1quk|tu
J
k|t “ 1

2 Ipc “ c1qδtIP

`Ut

¨

˚

˚

˚

˝

w1|trŷ
1pΘu1|tqs

pc,c1q 0 . . . 0

0 w2|trŷ
1pΘu2|tqs

pc,c1q . . . 0
...

...
. . .

...
0 0 . . . wKt|trŷ

1pΘuKt|tqs
pc,c1q

˛

‹

‹

‹

‚

UJ
t

(38)

We will denote the diagonal matrix by W̃
pc,c1q
t . The K-prior at task t ` 1 is defined in a similar

fashion. Now, applying Hessian matching, we get the following condition for all pc, c1q pair:

Ut`1W̃
pc,c1q
t`1 UJ

t`1 ` Ipc “ c1q εt`1I “ Φt`1B
pc,c1q
t`1 ΦJt`1 `UtW̃

pc,c1q
t UJ

t , (39)

There are C2 such conditions, each involving a P ˆ P matrix. Since one such condition is sufficient,
We choose to match the sum over C conditions for the pair pc, cq, that is, when c “ c1. The advantage
of this choice is that the form of Hessian matching is similar to the binary case. The only modification
needed is to compute the diagonal matrices by summing of the matrix ŷ1pfq, which gives rise to the
matrices shown in Eq. 27.

B Experiment Details

Our code is available at https://github.com/team-approx-bayes/compact_memory_code.
For all experiments, we use NVIDIA RTX 6000 Ada for experiments on Permuted-MNIST and
Split-TinyImageNet. For other experiments, we use NVIDIA RTX-3090.

B.1 Multi-Output Regression on Split-MNIST

Experiment setting. We consider the following hyperparameters:

• For feature map φpxq, we use the identity map where the raw pixel values of the image serve
directly as features.
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Table 1: The result on the Split-MNIST task: the performance of batch training is 0.849˘ 0.008.
#Memory 10 20 40 160 320

Our 0.697˘ 0.004 0.744˘ 0.001 0.798˘ 0.000 0.820˘ 0.000 0.815˘ 0.001
SVD 0.639˘ 0.002 0.685˘ 0.003 0.745˘ 0.001 0.815˘ 0.002 0.828˘ 0.002

• For hyperparameters of learning model parameter θt, we use Adam optimizer with learning
lr “ 10´3. We use 100 epochs for each task. For the weight-space regularization hyperparameter
δ, we use δ “ 0.01.

• For hyperparameters of learning memory Ut`1, we run 10, 000 iterations for each task. For the
noise hyperparameter ε for the EM algorithm, we use ε “ 10´3.

Multi-output linear regression We show that our EM algorithm for Hessian matching achieves
compact memory. We conduct a continual multi-label regression task on Split-MNIST [Zenke
et al., 2017], where the MNIST dataset is divided into five subsets, each corresponding to a binary
classification task with label pairs (0,1), (2,3), (4,5), (6,7), and (8,9). To formulate the binary
classification task as a regression problem, we map each label k P t0, . . . , 9u into a vector 1k ´

1
101

where 1k P R10 is a one-hot vector with only the kth component set to one and all others set to zero,
and 1 P R10 is a vector of ones. For the feature map, we use φpxq “ x P R784, that is, the vectorized
pixel intensities of an image. For the memory, we use constant memory size per task and accumulate
its size as the model trains on new task. After training the model, we measure the classification
accuracy using the entire test dataset for evaluation.

Table 1 shows the averaged accuracy of our method with the SVD approach over three seeds across
memory size t10, 20, 40, 160, 320u to investigate the memory efficiency of our method. The SVD
approach obtains memory Ut`1 by applying SVD to the right side of Eq.(15). Additionally, we
report the result of the batch training, meaning that all tasks are trained without sequentially updating
the memory and thus is regarded as the oracle performance. This result shows that our EM method is
more effective than the SVD approach when using a smaller memory size (10, 20, and 40).

Fig. 7a compares our method with the SVD approach using memory sizes 10, 160, evaluated after
each new task, to investigate its effectiveness with smaller memory. The x-axis denotes the task
index, and the y-axis represents the average accuracy over Tasks 1 to t for t “ 1, . . . , 5; for example,
the result at T-3 indicates the average accuracy over Tasks 1–3 after training on Task 3. The results
show that our method achieves nearly the same accuracy as the SVD approach up to Task 3 and
outperforms it on Tasks 4 and 5. This demonstrates the robustness of our method in training later
tasks, where gradient reconstruction errors are more likely to accumulate, making it harder to retain
the performance on previously learned tasks. This claim is further supported by the additional results
in Table 2, which show that the performance of SVD on past Tasks 1 and 2, evaluated after learning
the final task, decreases substantially when a smaller memory size is used.

Additional results. Table 2 compares the performances of our method and the SVD approach,
which is regarded as the oracle method. For memory size Kt`1, the SVD approach obtains the
optimal memory

Ut`1 “ U1:Kt`1
diagpd

1{2
1:Kt`1

q

sequentially where the columns of eigenvectors U P RHˆR with its rank R and the corresponding
eigenvalues d P RR

` are given by eighpΦt`1Φ
J
t`1`UtU

J
t q “ UdiagpdqUJ for the feature matrix

Φt`1 P RHˆNt`1 and the previous memory Ut P RHˆKt . The ∆Mem denotes the memory size
allocated per task; for example, if ∆Mem “ 10 is used, the memory increases by 10 for each task.

This result demonstrates that our method is effective in mitigating catastrophic forgetting, especially
when using a small amount of memory, because the performance on previous tasks, achieved by our
method, tends to be superior to that of the SVD approach.

B.2 Binary Logistic Regression on the Four-Moon Data Set

Experiment setting. We split all data points of Four-moon datasets into 4 tasks of
r500, 500, 500, 500s where the task proceeds as shown in Fig. 8.
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Table 2: Multi-output regression on Split-MNIST over 3 runs. The performance of batch training is
obtained as 0.839, comparable to the Avg of each method.

∆Mem Method Task 1 Task 2 Task 3 Task 4 Task 5 Avg

10 Ours 0.920˘ 0.001 0.474˘ 0.012 0.616˘ 0.003 0.602˘ 0.001 0.874˘ 0.001 0.697˘ 0.004
SVD 0.776˘ 0.011 0.337˘ 0.005 0.592˘ 0.006 0.587˘ 0.004 0.905˘ 0.002 0.639˘ 0.002

20 Ours 0.941˘ 0.000 0.566˘ 0.001 0.695˘ 0.002 0.680˘ 0.003 0.837˘ 0.000 0.744˘ 0.001
SVD 0.831˘ 0.010 0.417˘ 0.006 0.652˘ 0.004 0.641˘ 0.002 0.884˘ 0.004 0.685˘ 0.003

40 Ours 0.959˘ 0.000 0.689˘ 0.001 0.740˘ 0.001 0.786˘ 0.001 0.816˘ 0.001 0.798˘ 0.000
SVD 0.877˘ 0.006 0.535˘ 0.003 0.688˘ 0.004 0.735˘ 0.004 0.889˘ 0.001 0.745˘ 0.001

160 Ours 0.966˘ 0.000 0.764˘ 0.002 0.738˘ 0.001 0.848˘ 0.001 0.785˘ 0.000 0.820˘ 0.000
SVD 0.895˘ 0.006 0.687˘ 0.006 0.744˘ 0.002 0.862˘ 0.003 0.886˘ 0.001 0.815˘ 0.002

320 Ours 0.965˘ 0.000 0.775˘ 0.002 0.720˘ 0.001 0.842˘ 0.001 0.773˘ 0.001 0.815˘ 0.001
SVD 0.901˘ 0.006 0.730˘ 0.005 0.751˘ 0.004 0.874˘ 0.003 0.887˘ 0.002 0.828˘ 0.002

3.0 2.5 2.0 1.5 1.0

0.5

0.0

0.5

1.0

3 2 1 0 3 2 1 0 1 3 2 1 0 1 2 3

Figure 8: Sequences of four-moon classification task

We consider the following hyperparameters:
• For feature map φpxq, we use polynomial feature polyp5q yielding 21 feature dimension. We use

the scikit-learn package.

• For hyperparameters of learning model parameter θt, we use Adam optimizer with learning
lr “ 0.01. We set the number of iterations across t10000, 20000u to learn the model parameter θt

for each task; we confirm the convergence of the training loss. For weight-space regularization
hyperparameter δ, we set δ “ 10´2.

• For hyperparameters of learning memory Ut`1, we set the number of iterations across
t50, 100, 200u for each task. For the memory size, we consider t7, 14, 21u memory for each
task and accumulate the memory as the task proceeds. For the noise hyperparameter ε, we conduct
a grid search over ε P t10´3, 10´4, 10´5u and use 10´4.

Additional results across varying memory size. Fig. 9 shows the results using the 7 and 21
memory per task. The result using 14 memory is reported in Section 4 of the main manuscript. This
confirms that our method can match the decision boundary of batch training closely even when using
a small amount of memory, as shown in Fig. 9a. As more memory is used, our decision boundary
becomes more equal to that of the batch training, as shown in Fig. 9b.

B.3 Binary logistic regression on USPS odd vs even dataset

Experiment setting. We consider the following hyperparameters:

• For feature map φpxq, we use polynomial feature polyp1q yielding 256 feature dimension. We use
the scikit-learn package.

• For hyperparameters of learning model parameter θt, we use Adam optimizer with learning
lr “ 0.1. We use 5000 iterations to learn the model parameter θt for each task. For the weight-
space regularization hyperparameter δ, we conduct a grid search over δ P t0.5, 0.1, 0.05u and use
δ “ 0.5 for K-prior and our method.

• For hyperparameters of learning memory Ut`1, we use 5000 iterations for each task. For the noise
hyperparameter ε, we conduct a grid search over ε P t10´3, 10´4, 10´5u.
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Figure 9: Investigation on varying memory size used for K-prior.

Investigation on varying weight-space regularization hyperparameter for K-prior. Fig. 10
compares K-prior and our method across the varying hyperparameters δ P t0.5, 0.1, 0.05u that control
the importance of weight-space regularization hyperparameter term for K-prior. This result confirms
that our method improves the memory efficiency in general and is more effective at δ P t0.1, 0.5u
where the K-prior can match the result of batch training more closely.
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Figure 10: Investigation on varying hyperparameter δ P t0.05, 0.1, 0.5u for K-prior

Investigation on varying noise hyperparameter EM algorithm for PPCA. Table 3 compares
the performances of our method across varying noise hyperparameter ε in the EM algorithm for
PPCA where we run 5 experiments with different random seeds. This confirms that our method is
consistent over the noise hyperparameter ε.

B.4 Multi-label Logistic Regression on Split CIFAR-10, CIFAR-100, and TinyImageNet

Experiment setting. We consider the following hyperparameters:

• For feature map φpxq, we use the feature extractor of ResNet-50 and Vision Transformer (Vit)
that are pretrained by CLIP. For Split CIFAR-10, we use Vit-B/32, meaning the base-scale model
with 32 patch size. For Split CIFAR-100 and Split Tiny-ImageNet, we use Vit-L/14, meaning the
large-scale model size with 14 patch size. The feature extractors of ResNet-50 and Vit yield 2048
features and 768 features, respectively.
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Table 3: Investigation on the effect of noise hyperparameter ε P t10´3, 10´4, 10´5u.
∆Mem ε Task 1 Task 2 Task 3 Task 4 Task 5 Avg

1%
ε “ 10´3 0.769˘ 0.046 0.840˘ 0.012 0.566˘ 0.033 0.982˘ 0.005 0.946˘ 0.002 0.820˘ 0.013
ε “ 10´4 0.791˘ 0.029 0.855˘ 0.014 0.623˘ 0.022 0.983˘ 0.003 0.952˘ 0.005 0.840˘ 0.007
ε “ 10´5 0.772˘ 0.043 0.872˘ 0.010 0.627˘ 0.032 0.980˘ 0.003 0.954˘ 0.002 0.841˘ 0.008

2%
ε “ 10´3 0.860˘ 0.010 0.913˘ 0.002 0.689˘ 0.020 0.979˘ 0.003 0.934˘ 0.003 0.875˘ 0.003
ε “ 10´4 0.885˘ 0.012 0.885˘ 0.018 0.724˘ 0.008 0.981˘ 0.003 0.933˘ 0.005 0.881˘ 0.004
ε “ 10´5 0.891˘ 0.006 0.893˘ 0.012 0.715˘ 0.010 0.982˘ 0.003 0.937˘ 0.002 0.883˘ 0.003

5%
ε “ 10´3 0.932˘ 0.002 0.931˘ 0.003 0.810˘ 0.011 0.980˘ 0.003 0.920˘ 0.003 0.915˘ 0.002
ε “ 10´4 0.950˘ 0.002 0.921˘ 0.003 0.819˘ 0.012 0.983˘ 0.004 0.915˘ 0.005 0.918˘ 0.002
ε “ 10´5 0.948˘ 0.002 0.921˘ 0.007 0.798˘ 0.009 0.984˘ 0.002 0.915˘ 0.004 0.913˘ 0.002

10%
ε “ 10´3 0.933˘ 0.002 0.944˘ 0.005 0.876˘ 0.008 0.972˘ 0.004 0.878˘ 0.003 0.921˘ 0.002
ε “ 10´4 0.962˘ 0.002 0.937˘ 0.003 0.855˘ 0.009 0.976˘ 0.003 0.884˘ 0.003 0.923˘ 0.002
ε “ 10´5 0.969˘ 0.003 0.934˘ 0.002 0.855˘ 0.009 0.977˘ 0.003 0.889˘ 0.003 0.925˘ 0.001

20%
ε “ 10´3 0.949˘ 0.003 0.946˘ 0.002 0.891˘ 0.005 0.971˘ 0.002 0.859˘ 0.002 0.923˘ 0.001
ε “ 10´4 0.979˘ 0.001 0.949˘ 0.002 0.877˘ 0.006 0.965˘ 0.002 0.872˘ 0.003 0.929˘ 0.002
ε “ 10´5 0.981˘ 0.001 0.940˘ 0.001 0.868˘ 0.006 0.967˘ 0.002 0.876˘ 0.004 0.927˘ 0.002

• For hyperparameters of learning model parameter θt, we use Adam optimizer with learning
lr “ 0.1. We use 100 iterations for each task with 1024 batch size. For the weight-space
regularization hyperparameter δ, we conduct a grid search over δ P t0.1, 0.01, 0.001u.

• For hyperparameters of learning memory Ut`1, we set 10 iterations for each task. For the noise
hyperparameter ε, we use ε “ 10´4.
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Figure 11: Investigation on varying feature extractor with Split-CIFAR-10.
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Figure 12: Investigation on varying feature extractor with Split-CIFAR-100.

Investigation on varying feature extractor. Fig. 11 shows the results on Split-CIFAR 10 across
varying feature extractors where the feature extractors of ResNet-50, Vit-B/32, and Vit-L/14 are used
in Figures 11a to 11c, respectively. Similarly, Figures 12 and 13 show the corresponding results
on Split-CIFAR-100 and Split-TinyImageNet, respectively. These results confirm that our method
improves memory efficiency consistently regardless of the feature extractor.
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Figure 13: Investigation on varying feature extractor with Split-TinyImageNet.

B.5 Additional Results on Permuted MNIST

Experiment setting. Following the benchmark experiment setting in [Carta et al., 2023], we also
consider Permuted-MNIST consisting of a sequence of 5 tasks constructed by permuting pixels of
60,000 training samples of MNIST for each task.

We consider the following hyperparameters:

• For feature map φpxq, we use the feature extractor of ResNet-50 and Vision Transformer (Vit) that
are pretrained by CLIP. The feature extractor of ResNet-50 and ViT yield 2048 features and 768
features, respectively

• For hyperparameters of learning model parameter θt, we use Adam optimizer with learning
lr “ 0.1. We use 200 iterations for each task. For the weight-space regularization hyperparameter
δ, we conduct a grid search over δ P t0.01, 0.001u.

• For hyperparameters of learning memory Ut`1, we set 10 iterations for each task. For the noise
hyperparameter ε, we consider ε “ 10´4.

Additional results. Table 4 shows that our method outperforms other baselines, especially when
1, 2, and 5 percent of data points are used as memory. This result confirms that our method also
improves memory efficiency on a domain incremental task.

Table 4: Performance on Permuted-MNIST across varying amount of memory.
Feature Method 1% 2% 5% 10%

ResNet-50
Replay 0.474˘ 0.002 0.508˘ 0.002 0.554˘ 0.001 0.592˘ 0.002
K-prior 0.465˘ 0.003 0.493˘ 0.002 0.534˘ 0.002 0.572˘ 0.003
Our 0.490˘ 0.001 0.521˘ 0.001 0.561˘ 0.002 0.592˘ 0.003

Vit-B/32
Replay 0.490˘ 0.003 0.524˘ 0.002 0.578˘ 0.004 0.623˘ 0.003
K-prior 0.453˘ 0.001 0.489˘ 0.003 0.549˘ 0.005 0.594˘ 0.004
Our 0.522˘ 0.006 0.545˘ 0.007 0.584˘ 0.003 0.613˘ 0.004
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our work focuses on finding compact memory for continual logistic regression
and showing its effectiveness.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention method of our approach in section of Discussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not have a theoretical result and focuses on showing empirical
improvement of the proposed algorithm.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe experiment configuration in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will attach our implementation and share it using anonymous Github.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: We describe experiment configuration in Appendix B.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments? [Yes]
Justification: We obtain statistically significant results after multiple runs with different
random seeds for all experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe experiment configuration in Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is expected to advance continual adaptation procedure effectively,
but it seems to have limited relevance to broader societal impacts.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: this paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: this paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: this paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

26



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for formatting purposes, including figure and tables.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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