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Figure 1: Our method generates high-resolution 3D Gaussians from unposed, sparse, and arbitrary numbers of
multiview images. In a), we follow the current SoTA LGM (Tang et al., 2024) inference pipeline, which takes
a single image as input and uses a multiview diffusion model to generate four views. In b), we compare LGM
and our approach using four random input views without applying a multiview diffusion model. The yellow
dashed box highlights the input views, all of which are provided without pose priors. We then compare the
novel views rendered by LGM and our method in the middle column, as well as the point clouds in the last
column. Note that LGM applies a Gaussian opacity threshold of 0.005 for filtering, whereas our method does
not apply any post-processing thresholds.

ABSTRACT

Recent large reconstruction models have made notable progress in generating
high-quality 3D objects from single images. However, these methods often strug-
gle with controllability, as they lack information from multiple views, leading to
incomplete or inconsistent 3D reconstructions. To address this limitation, we in-
troduce LucidFusion, a flexible end-to-end feed-forward framework that leverages
the Relative Coordinate Map (RCM). Unlike traditional methods linking images to
3D world thorough pose, LucidFusion utilizes RCM to align geometric features
coherently across different views, making it highly adaptable for 3D generation
from arbitrary, unposed images. Furthermore, LucidFusion seamlessly integrates
with the original single-image-to-3D pipeline, producing detailed 3D Gaussians at
a resolution of 512× 512, making it well-suited for a wide range of applications.

1 INTRODUCTION

Digital 3D objects are increasingly essential in a variety of domains, enabling immersive visualiza-
tion, analysis, and interaction with objects and environments that closely mimic real-world experi-
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ences. These objects are foundational in fields such as architecture, animation, gaming, and virtual
and augmented reality, with broad applications across industries like retail, online conferencing, and
education. Despite their growing demand, producing high-quality 3D content remains a resource-
intensive task, requiring substantial time, effort, and domain expertise. This challenge has catalyzed
the rapid advancement of 3D content generation techniques (Mildenhall et al., 2021; Wang et al.,
2021b; He et al., 2023; Hong et al., 2023; Zou et al., 2024; Huang et al., 2024; Liang et al., 2024b;
Wang et al., 2024b).

Among these approaches, LRM-based approaches (Hong et al., 2023; Tochilkin et al., 2024; Zou
et al., 2024) have emerged as promising solutions by training neural networks to directly regress 3D
objects from single-view inputs. Recent works (Lin et al., 2023; Li et al., 2023a; Shi et al., 2023b;
Tang et al., 2024; Wang et al., 2024c; Xu et al., 2024b) extend this by incorporating multi-view
diffusion models to generate additional views from fixed camera positions. Although these methods
achieve state-of-the-art quality with a single image input, they lack control over 3D generation due
to incomplete information from unseen or occluded regions. This limitation often leads to implausi-
ble shapes and textures. A straightforward extension would be to incorporate multiple input images,
which could mitigate these shortcomings by providing more comprehensive visual information for
3D object generation. However, users often face difficulties in providing images with accurately
known camera poses, as estimating or calibrating such poses typically requires specialized equip-
ment and expertise. Existing approaches are therefore limited in their ability to utilize these extra
user inputs because they either require fixed camera poses as inputs (Tang et al., 2024; Wang et al.,
2024c; Xu et al., 2024b) or rely on known pose information (Zhang et al., 2024). The pose infor-
mation here provides essential information that links each 2D image to the 3D world space, which
is important for reconstructing the unified 3D model. To mitigate this need, one could estimate
camera poses first and then apply them to the input images (Wang et al., 2023b; Wu et al., 2023;
Wang et al., 2024a). Unfortunately, estimating camera poses can introduce inaccuracies and increase
computational overhead, which negatively impacts the efficiency and quality of 3D generation.

In response to this limitation, we propose LucidFusion, a flexible end-to-end feed-forward frame-
work that leverages a novel representation—the Relative Coordinate Map (RCM). Instead of directly
linking images to world space, which typically requires pose information, our approach leverages
the RCM to align geometric features consistently across different views. By transforming each view
into a unified reference frame, LucidFusion enables effective 3D reconstruction without relying on
explicit pose data. This bypasses the common challenges associated with pose estimation, allowing
the model to handle arbitrary input images and provide better control over the 3D generation pro-
cess. Additionally, RCM can easily integrate with pre-trained 2D networks, utilizing the rich priors
of foundational models to enhance generalization across diverse objects and viewpoints, making the
framework highly adaptable for 3D generation.

LucidFusion operates in two key stages. First, it learns to map input images to the RCM, produc-
ing a pixel-aligned point cloud representation. Second, the point cloud is refined using 3D Gaus-
sians (Szymanowicz et al., 2024) through a rendering loss, improving fidelity and preserving object
details. As demonstrated in Fig. 1 b), LucidFusion excels at generating 3D objects from arbitrary
viewpoints, achieving both geometric consistency and high visual quality at 13 frames per second
(FPS) for 512 × 512 resolution. Furthermore, when only a single view is available, LucidFusion
can also leverage multi-view diffusion models for 3D generation, as shown in Fig. 1 a), making it a
more flexible solution for 3D generation tasks.

In summary, our contributions are threefold:

• We train a network to map images to a novel Relative Coordinate Map (RCM), which
embeds pixel-wise correspondences across different input views to a main view and can be
converted to its point cloud representation.

• We demonstrate that RCMs can be easily obtained by fine-tuning a pre-trained 2D network
to capitalize on existing 2D foundation models.

• We showcase the superior quality of our flexible method, enabling rapid 3D generation
from mobile phone image captures within seconds.
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2 RELATED WORK

2.1 MULTI-VIEW 3D RECONSTRUCTION

Multi-view 3D reconstruction typically relies on multi-view stereo (MVS), which reconstructs the
visible surface of an object by triangulating between multiple views. MVS-based methods can
be broadly classified into three categories: depth map-based methods (Campbell et al., 2008;
Schönberger et al., 2016; Chang et al., 2022; Ren et al., 2023; Liang et al., 2024a), voxel grid-
based methods (Kutulakos & Seitz, 2000; Yao et al., 2019; Chen et al., 2021), and point cloud-based
methods (Furukawa & Ponce, 2009; Chen et al., 2019). These methods generally operate by taking
multi-view images and constructing a 3D cost volume through the unprojection of 2D multi-view
features into plane sweeps. However, they all depend on the availability of camera parameters with
the input multi-view images, either provided during data acquisition or estimated using Structure-
from-Motion (SFM) (Schonberger & Frahm, 2016; Jiang et al., 2013) for in-the-wild reconstruc-
tions. Consequently, these methods often fail when handling sparse-view inputs without known
camera poses. In contrast, our approach leverages the RCM representation, enabling 3D genera-
tion from uncalibrated and unposed sparse inputs, thereby offering a robust solution for real-world
applications.

2.2 RADIANCE FIELD RECONSTRUCTION

Neural radiance fields (NeRF) (Mildenhall et al., 2021) have recently driven significant advance-
ments in radiance field methods, achieving state-of-the-art performance (Chen et al., 2021; Wang
et al., 2021a; Ge et al., 2023). These approaches optimize radiance field representations through
differentiable rendering, diverging from traditional MVS pipelines, yet they still rely on dense sam-
pling for precise reconstruction. To address sparse-view challenges in NeRF, recent works have
incorporated regularization terms (Niemeyer et al., 2022; Wang et al., 2023a) or leveraged geomet-
ric priors (Chen et al., 2021; Yang et al., 2023). However, these methods continue to require image
samples with known camera poses. Another research direction explores SDS-based optimization
techniques, distilling detailed information from 2D diffusion models into 3D representations (Poole
et al., 2022; Wang et al., 2024b; Liang et al., 2024b), which enables the rendering of high-fidelity
scenes but requires lengthy optimization for each individual scene. In contrast, our approach elimi-
nates the need for known camera poses and operates in a feed-forward manner, supporting general-
izable 3D generation without extensive optimization.

2.3 UNCONSTRAINED RECONSTRUCTION

Recently, the Large Reconstruction Model (LRM) (Hong et al., 2023) introduced a triplane-based
approach combined with volume rendering, demonstrating that a regression model can robustly
predict a neural radiance field from a single-view image, thereby relaxing the constraints on camera
pose requirements. Follow-up works (Li et al., 2023a; Shi et al., 2023a;b; Xu et al., 2023; Tang
et al., 2024; Zhang et al., 2024) have leveraged diffusion models to extend single-view inputs to
multi-view inputs, bypassing the need for camera poses since the multi-view inputs are predicted
by a pre-trained multi-view diffusion model. These feed-forward methods, trained with simple
regression objectives, have achieved state-of-the-art results. However, the reliance on pretrained
multi-view diffusion models, which are often overfitted to fixed camera poses (e.g., front, back, left,
right), limits their applicability in real-world scenarios.

To address this issue, another line of research explores pose-free 3D optimization using uncalibrated
images as direct input. For instance, BARF (Lin et al., 2021) employs a coarse-to-fine strategy
to jointly optimize the radiance field and camera poses. NeRF– Wang et al. (2021b) enables 3D
scene reconstruction and novel view synthesis without requiring known camera poses. Other ap-
proaches (Bian et al., 2023; Meuleman et al., 2023; Fu et al., 2023) utilize depth information to
constrain the optimization process. More recent work, PF-LRM Wang et al. (2023b), predicts poses
from multi-view images for 3D reconstruction. However, these methods typically require test-time
optimization or are limited to a small number of input views. Another line of work working on an in-
termediate 3D representation to bridge 2D and 3D, SweetDreamer (Li et al., 2023b) and CRM (Wang
et al., 2024c) leverages pointmap for geometry regularization. Dust3R (Wang et al., 2024a) and In-
stantSplat (Fan et al., 2024) employ pointmap representations for pose estimation from image pairs,
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Figure 2: Pipeline Overview of LucidFusion. Our framework processes a set of sparse, unposed multi-view
images as input. These images are concatenated along the width dimension and passed through the Stable
Diffusion model in a feedforward manner. The model predicts the RCM representation for the input images.
Additionally, the feature map from the final layer of the VAE is fed into a decoder network to predict Gaussian
parameters. The RCM representation and the predicted Gaussian parameters are then fused and passed to the
Gaussian renderer to generate novel views for supervision.

but they are restricted to pairs of images and necessitate test-time optimization for global align-
ment across all input views. Concurrent work (Xu et al., 2024a) also leverages a coordinate map
representation with a generative diffusion model but relies on an additional PnP solver for refine-
ment and is limited to no more than 6 views. In contrast, our approach utilizes an intermediate
pointmap representation within a regression framework that can be directly fed into the Gaussian
renderer without the need for additional refinement steps. Moreover, our regression-based method
accommodates an arbitrary number of unposed inputs for 3D reconstruction, significantly enhancing
rendering efficiency and producing high-quality results suitable for practical applications.

3 METHOD

Lucidfusion is a feed-forward 3D generation model, which takes one to N input images and ef-
fectively infers their 3D Gaussians, as shown in Fig. 2. LucidFusion can reconstruct the 3D object
effectively from input images, regardless of whether they are captured around the object or generated
by a multi-view diffusion model. In this section, we first explain our motivation for using the RCM
representation in Sec. 3.1, then define our proposed relative coordinate map (RCM) in Sec. 3.2. We
introduce using 3D Gaussian refinement in Sec. 3.3, and finally discuss the loss function in Sec. 3.4.

3.1 PRELIMINARY

Lifting the condition from a single image to multiple images introduces several challenges. We
abstract the 3D generation problem as a mapping task: with a single image, the focus is on ex-
tracting geometric information for generation, but with multiple images, both mapping and scaling
issues arise. This mapping can be explicit, as in traditional MVS-based methods (Yao et al., 2018;
Chen et al., 2021), or implicit, as in LRM-based approaches (Hong et al., 2023). However, both
approaches require pose estimation, where posed images must either be estimated or fixed at spe-
cific viewpoints, limiting the pipeline’s flexibility. To address this, we propose a novel method that
performs the mapping end-to-end without relying on explicit pose information.
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3.2 RELATIVE COORDINATE MAP

We argue that explicitly providing pose information is not necessary in this task. The key is to ensure
consistent geometric feature estimation across different viewpoints and maintain scale-wrapping re-
lationships. Based on this idea, we propose fusing the geometric features with multi-view image
inputs. Specifically, we wrap the object’s location by transforming each individual view’s coordi-
nates to align with a selected main view’s coordinate system. We refer to this new presentation as
the Relative Coordinate Map (RCM), which we formally define in the following section.

Given a set of N input images, denoted as Ii ∈ RH×W×3, and the RCM is defined as Mi ∈
RH×W×3, where i = 1, 2, 3, . . . , N , and H and W represent the height and width of the corre-
sponding image. The RCM is therefore the corresponding coordinates of each image pixel in the
3D space. To facilitate the model’s learning of these coordinates from arbitrary viewing directions,
we reproject all N input images into the coordinate system of one of the input views, selected ran-
domly. This process allows the model to generalize to varying viewpoints. Given the camera pose
Pi ∈ R4×4 and intrinsic K ∈ R4×4 in homogeneous form, along with the depth map Di ∈ RH×W ,
we randomly choose one of the Pi as main camera pose Pmain. The main camera’s RCM is thus
defined as:

Mmain = PmainP
−1
mainK

−1 ∗Dmain. (1)
Therefore, the RCM for the main camera is formulated as:

Mmain = K−1 ∗Dmain, (2)

as defined in its own camera coordinate frame. The remaining input views are reprojected into the
main camera’s coordinates as

Mj = PmainP
−1
j K−1 ∗Dj , (3)

where j = 1, 2, 3, . . . , N − 1. The RCM values are constrained within the range of [−1, 1]. To
enhance 3D consistency across multi-view inputs, we concatenate the input images along the width
dimension W , enabling the model to leverage self-attention mechanisms to explore multiple views
simultaneously.

The RCM representation offers several key advantages. First, as an image-based representation,
it benefits from pre-trained foundation models, thereby simplifying the learning process. Second,
RCM maintains a one-to-one mapping between image pixels and the 3D seen surface, effectively
capturing the geometric information of objects as a point cloud. Finally, by concatenating multiple
input images into a unified input, the model facilitates geometric scale interactions and alignment
across viewpoints through a self-attention mechanism, ensuring 3D consistency in the coordinate
map across different viewpoints.

Specifically, to obtain the RCM representation, we train a network E that processes N RGB images
Ii ∈ RH×W×3, predicting the corresponding RCMs Mi ∈ RH×W×3, where i = 1, 2, 3, . . . , N .
Additionally, We extract the intermediate feature map fi ∈ RH

8 ×W
8 ×l from network E and pass it

to the decoder network G to predict 3D Gaussians (Szymanowicz et al., 2024) for rendering, which
we will discuss in details in Sec. 3.3. Formally, this process can be defined as:

Mi, fi = E(Ii). (4)

The network E maps the RGB inputs to their corresponding RCM representations, enabling the use
of a generic 2D model for the network E without the need for 3D priors. The RCM Mi represents
the 3D surface visible in the input images, maintaining per-pixel alignment with the corresponding
RGBs.

3.3 3D GAUSSIAN REFINEMENT

We observed that the point cloud obtained from the RCM representation in Sec. 3.2 is noisy, as
shown in Fig. 3.We attribute this effect to two primary factors. First, the RCM is regressed solely
from a set of 2D images without any explicit 3D prior information, making it challenging to maintain
3D consistency. Second, due to the inherent limitation of convolutional models, the RCM struggles
to accurately capture object boundaries, often resulting in partial misalignment. To refine this noisy
point cloud, we adopted 3D Gaussians (Szymanowicz et al., 2024), which complement the RCM
representation by introducing global 3D awareness and improving overall geometric consistency.
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Only Stage 1 Stage 1 & 2Image Input Image Input Only Stage 1 Stage 1 & 2

Figure 3: Point Cloud comparison, a) stage 1 only, b) stage 1 with stage 2 refinement.
Specifically, we use the noisy point cloud as initialization and refine it through rendering loss, with
the refined point cloud shown in Fig. 3. We utilize the feature map fi obtained from Eq. 4 and
employ the decoder G to transform it into 3D Gaussian parameters. This process is formally defined
as:

Θi = G(fi), (5)
where the Θi denotes the 11-channel 3D Gaussian parameters: 3-channel RGB variation δc, 3-
channel scale s, 4-channel rotation quaternion rot, and 1-channel opacity σ for each input image Ii.
Given that the RCM Mi represents the corresponding coordinates of the object, the final input to the
3D Gaussian render is defined as:

Θi = (Mi, Ii + δci , si, roti, σi), (6)

where i = 1, 2, 3, . . . , N . Consequently, we generate a total of {N ×H ×W} 3D Gaussians Θ. It
is important to note that the number of output Gaussians Θ scales proportionally with the number of
input views.

Figure 4: We compare CCM and RCM to evaluate
their performance from 2D images.

Disccusion. Recent methods (Li et al., 2023b;
Wang et al., 2024c) have explored canonical coor-
dinate maps (CCM) as a representation for 3D ob-
jects. However, these methods focus solely on ge-
ometric representation without addressing the uni-
fication of multiple viewpoints. When regressing
CCM from multi-view inputs, the model operates
under the world coordinate convention and must si-
multaneously infer object’s orientation and geome-
try. This is reflected in visualization, where the same
body parts should retain consistent colors across all
views. For instance, as shown in the middle row of
Fig. 4, the sheep’s head and tail should appear the
same color across all views. This semantic informa-
tion is crucial for indicating an object’s orientation
in world space. Misalignment in color suggests that the model has failed to correctly map the object
from the 2D multi-view inputs.

However, this task is extremely challenging given only a few 2D images as input, because the model
must: a) maintain 3D consistency across input views, and b) learn the object’s orientation, recogniz-
ing that it is the same object across all views rather than a different object with varying orientations.
In contrast, our proposed RCM representation resolves these orientation ambiguities by transform-
ing the coordinates into a unified coordinate system. As shown in the bottom row of Fig. 4, our
approach explicitly addresses the issue of orientation, making it more suitable for our needs.

3.4 LOSS FUNCTIONS

In stage 1, we take N RGB input views and predict their corresponding RCMs, supervising them
with ground truth RCMs obtained using Eq. 3. We minimize the loss between predicted RCMs M̂i

and ground truth RCMs Mi using the Mean Square Error (MSE) loss:

Lrcm =
1

N

N∑
i=1

LMSE(M̂i,Mi). (7)

In stage 2, we utilize the predicted Gaussian splats from Eq. 6 and employ the differentiable renderer
from Kerbl et al. (2023) to render V supervision views. For this stage, we adopt a combination of

6
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Figure 5: Qualitative comparison with baseline models: iFusion (Wu et al., 2023), InstantMesh (Xu et al.,
2024b) and LGM (Tang et al., 2024).

MSE loss, SSIM loss from Kerbl et al. (2023), and VGG-based LPIPS loss (Zhang et al., 2018) to
the RGB image:

Lrgb = (1− λ)LMSE(Îi, Ii) + λLSSIM (Îi, Ii) + LLIPIS(Îi, Ii), (8)

where λ is set to 0.2 as Kerbl et al. (2023). Additionally, to expedite convergence, we apply MSE
loss to the alpha channel image, as proposed in Tang et al. (2024):

Lα = LMSE(Îαi , I
α
i ). (9)

Thus, the final loss for stage 2 is:
L = Lrgb + Lα. (10)

4 EXPERIMENT RESULTS

4.1 IMPLEMENTATION DETAILS

For stage 1, similar to concurrent work (He et al., 2024), we empirically found that using a pre-
trained Stable Diffusion model (Rombach et al., 2022) in a purely feedforward manner, bypassing
the need for multiple diffusion steps achieves the best result. For Stage 2, the SD VAE decoder is
adapted to generate Gaussian splats. We conducted the training on 8 NVIDIA A100 (80G) GPUs
for both Stage 1 and Stage 2. For more details please see the appendix.

GSO ABO
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

iFusion 17.21 0.852 0.180 17.54 0.853 0.180
LGM+iFusion 19.61 0.872 0.131 19.89 0.873 0.131
InstantMesh+iFusion 20.75 0.894 0.127 20.98 0.901 0.129
Ours 25.97 0.930 0.070 25.98 0.917 0.088

Table 1: Performance comparison against baselines
on GSO and ABO for 4 views input.

GSO ABO
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

CRM 16.74 0.858 0.177 19.23 0.871 0.169
LGM 14.31 0.824 0.186 16.03 0.861 0.181
InstantMesh 16.84 0.864 0.177 19.73 0.873 0.168
Ours 16.91 0.862 0.177 19.51 0.873 0.168

Table 2: Performance comparison against baselines
on GSO and ABO for single-image-to-3D setting.

4.2 QUALITATIVE COMPARISON

We first compare LucidFusion aginst baseline models under a sparse input view setting, where the
sparse input views without pose are from GSO (Downs et al., 2022), ABO (Collins et al., 2022)

7
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Figure 6: Qualitative comparison with baseline model InstantMesh (Xu et al., 2024b), CRM (Wang et al.,
2024c) and LGM (Tang et al., 2024) under standard single-image-to-3D paradim.

and an iPhone capture. Since the input poses are unknown, we first compare ours with a recent
open-source pose-free reconstruction approach iFusion (Wu et al., 2023) as our baseline. Moreover,
we use the estimated pose from iFusion to the current SoTA reconstruction methods, LGM and
InstantMesh to achieve pose-free sparse view generation for comparison. All baseline models are
used from their official implementations. As shown in Fig. 5, it can be seen that our proposed
Lucidfusion outperforms other baselines with better geometry and visual quality. Also, our method
does not assume pose during inference time, thus is much faster than other baselines that depend on
pose estimation.

We also follow the standard single-image-to-3D paradigm to evaluate our method, demonstrate the
generalizability of our method that can also combine with multi-view diffusion models. Specifically,
we use CRM’s pixel diffusion to generate multi-views with a different seed. As shown in Fig. 6.
Our method can utilize the multi-view diffusion model and faithfully produce high-resolution 3D
Gaussians.

In Fig. 11, we demonstrate our model’s generalization ability across different data sources. Our
model produces high-quality 3D Gaussian at a resolution of 512 × 512. We showcase two real-
world, in-the-wild captures using a handheld iPhone 15, where our method successfully reconstructs
the objects while preserving content from the unposed sparse multi-view inputs.

4.3 QUANTITATIVE COMPARISON

We evaluate our method against baselines by conducting two different experiments on the GSO
and ABO datasets. For each dataset, we randomly sample 100 objects and render 24 images at
elevations of 5◦ and 20◦. We use images from the 20◦ elevation set as input and evaluate the model’s
performance on the 5◦ elevation set. We consider two different input selection strategies: a) four
random input views without pose, and b) single-image-to-3D. To ensure a fair comparison, we use
iFusion (Wu et al., 2023) to estimate pose in a) for baselines that require pose. For the experiment in
b), we utilize the multi-view diffusion model from CRM (Wang et al., 2024c) with a different seed.
As shown in Tab. 1, our model consistently outperforms the baselines across all metrics by a large
margin. Notably, iFusion (Wu et al., 2023) is an optimization-based method, introducing a 5-minute
overhead for pose estimation, whereas our method does not require pose and achieves 13 FPS. As
shown in Tab. 2, our approach works effectively within the existing single-image-to-3D paradigm,
delivering on-par performance with current baselines.
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b)

c)

d)

Generate 3D Gaussians Point CloudUnposed Inputs

a)

Figure 7: Cross-dataset generalization to unseen objects, the first column shows the input unposed sparse
views, the second column shows the generated Gaussian novel views at resolution 512 × 512, and the final
column shows the RCM representation project to its point cloud. a) and b) Multi-view image from GSO
datasets (Downs et al., 2022). c) and d) IPhone captured objects, the multi-view image was captured using a
handheld iPhone 15pro, we first removed the background and recentered the object before passing it into our
pipeline.

Ground Truth

Single Stage

Two Stage

Figure 8: Comparision with single and two-stage training. Without pertaining to RCM representation, the
model struggles to correctly predict Gaussian locations, resulting in mismatches or empty holes in rendering.

4.4 ABLATION STUDY

Single Stage Training. We train the model without Stage 1 RCM training, as depicted in Fig. 2,
meaning the entire model is supervised solely by rendering loss. The visualization results in Fig. 8
demonstrate that without Stage 1 training, the model struggles to accurately predict object coordi-
nates, leading to ambiguous rendering outcomes. The two-stage model consistently outperforms the
single-stage model across all evaluation metrics. Please find more results in the appendix.

Number of Views. We evaluate our model with varying numbers of input views, ranging from
i = 1, 2, . . . , 8 and report the performance in Tab. 3. As described in Sec. 3, our model is capable
of handling a varying number of input views for 3D reconstruction.

Training with Random Views. We evaluate our model’s performance in Stage 2 training under
fixed and random input view settings. In the fixed setting, we train for 20 epochs with 5 input

9
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Input Generate 3D Gaussians

a)

b)

Figure 9: Visualization of LucidFusion for single image
input results without multi-view diffusion model.

Single Image 
Input

Ground truth Fix # training random # training

a)

b)

Figure 10: Visualization of different training strat-
egy results with single image input.

Fixed Strategy Random Strategy
# of test view PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1 17.36 0.860 0.160 21.83 0.904 0.112
2 21.83 0.904 0.080 23.62 0.915 0.091
4 25.95 0.932 0.070 25.97 0.930 0.070
6 26.15 0.933 0.070 26.11 0.931 0.070
8 26.22 0.933 0.070 26.25 0.933 0.069

Table 3: Comparison between training with a random number of input views. The result shows that different
strategies perform similarly when we have sufficient input views. However, a random number of training views
strategy outperforms a fixed one by a large margin when input views are limited.

views, while in the random setting, we randomly sample between 1 and 5 views per batch over
20 epochs. The results, shown in Tab. 3, indicate that the model trained with random input views
performs better when the number of views is limited. Notably, with only a single input view, the
model trained with random views generates less blurriness and fewer empty textures in unseen re-
gions. However, when the input views provide sufficient coverage of the object, both models exhibit
comparable performance. As demonstrated in Fig. 10, the model trained with a fixed number of
views struggles to predict unseen regions, whereas the random view training strategy still produces
reasonable predictions for those regions. It is important to note that single-image reconstruction is
inherently ill-posed; while the model can faithfully reconstruct seen regions, it may fail in unseen
areas. Nonetheless, LucidFusion provides reliable predictions under such conditions, showcasing
its superior performance. Additional results for single-image input across various data sources are
presented in Fig. 9.

4.5 LIMITATION

Despite the promising results, our model has some limitations. First, it can only render objects
positioned at the center of the scene, without backgrounds. We hypothesize that incorporating back-
ground information into the RCM representation during training could address this issue, which we
leave for future work. Additionally, our current model is trained on Objaverse data with a fixed field
of view (FoV) of 30◦. As a result, objects that deviate significantly from this setting may exhibit
shape distortions. Future work could explore training on a wider variety of settings and FoVs to
enhance the robustness of the RCM representation.

5 CONCLUSION

In this work, we propose LucidFusion, a flexible end-to-end feed-forward framework that leverages
the Relative Coordinate Map (RCM), a novel representation designed to align geometric features
coherently across different views. Our model employs a Stable Diffusion to map RGB inputs to
RCM representations in a feedforward manner and uses an efficient Gaussian renderer to produce
high-resolution 3D content. This approach ensures robust control over the 3D generation process,
delivering high-quality outputs across a range of scenarios. LucidFusion also integrates seamlessly
with the original single-image-to-3D pipeline, making it a versatile tool for 3D object generation.
We believe this work will open new avenues for future research in the field of 3D generation.
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A APPENDIX

A.1 DATASETS

The Objaverse dataset (Deitke et al., 2023) contains approximately 800,000 shapes. Given the pres-
ence of numerous low-quality 3D models in the dataset (e.g., single planes, partial scans), we em-
ployed crowd workers to manually filter the dataset, focusing on objects rather than other assets like
scans of large scenes or buildings. Additionally, we excluded objects that rendered predominantly
in white, as this typically indicates missing textures. After filtering, our final dataset comprises
approximately 98K 3D objects.

Using Blender, we generated synthetic images from the 3D meshes and extracted various useful
annotations, including depth maps, camera intrinsics, poses, and images. We rendered these objects
using a field of view (FOV) of 30◦ and elevations of −20◦, 5◦ and 20◦, along with front views. Each
elevation setting was rendered with 24 images, while the front view was rendered with 18 images,
resulting in a total of 90 images per object. During training, N views are randomly sampled from
these 90 images. The rendered images have a resolution of 512 × 512 and are generated under
uniform lighting conditions.

We evaluate our model on two 3D object datasets, Google Scanned Object (GSO) (Downs et al.,
2022) and Amazon Berkeley Objects (ABO) (Collins et al., 2022). For each dataset, we randomly
sample 100 objects and render 24 images at elevations of 5◦ and 20◦. We use images from the 20◦

elevation set as input and evaluate the model’s performance on the 5◦ elevation set.

w/o stage 1
(SD)

w. stage 1
(SD)

w. stage 1
(DPT)

w. stage 1
(SVD)

PSNR↑ 24.15 25.97 24.15 23.96
SSIM↑ 0.916 0.930 0.917 0.916
LPIPS↓ 0.080 0.070 0.091 0.088

Table 4: Performance comparison for Stage 1 with different encoders, tested on GSO dataset with
sparse 4 view setting.

A.2 MORE IMPLEMENTATION DETAILS

Stage 1. Similar to concurrent work (He et al., 2024), we empirically found that using a pre-
trained Stable Diffusion model (Rombach et al., 2022) in a purely feedforward manner, bypassing
the need for multiple diffusion steps achieves the best result, as shown in Tab. 4. The feature map
f is extracted before the final output layer and used by the decoder to generate Gaussian splats in
Stage 2. The feature map f has a shape of {N, 320, H

8 ,
W
8 }, where H and W denote the image

resolution. During training, we unfreeze the VAE decoder and UNet components, training the SD
model in a feedforward manner without utilizing diffusion steps. Specifically, we set the text prompt
to an empty string (””) and use t = 999 for the scheduler. The RGB input views are set to 5.

Stage 2. For Stage 2, the SD VAE decoder is adapted to generate Gaussian splats. We modify the
SD VAE decoder to accept a channel size of 320 and output 11-channel Gaussian splat predictions,
which are then processed by a Gaussian renderer to generate supervision views. During training,
we randomly sample between 1 and 5 input views and render additional novel views to produce a
total of 8 views for supervision. The SD and VAE decoder are trained simultaneously using only the
rendering loss.

We conducted the training on 8 NVIDIA A100 (80G) GPUs for both Stage 1 and Stage 2. In Stage
1, we train the model on images with a resolution of 256×256. The batch size for Stage 1 is set to 4
per GPU, resulting in an effective batch size of 32. We train for 40 epochs and Stage 1 training takes
approximately 3 days. For Stage 2, we use a batch size of 2 per GPU, resulting in an effective batch
size of 16, with training taking around 4 days for 20 epochs. The output 3D Gaussians are rendered

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

at a resolution of 512× 512. We utilize the AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 3× 10−5 for stage 1 and 2.

A.3 MORE VISUALIZATION RESULTS

b)

c)

d)
Generate 3D Gaussians Point CloudUnposed Inputs

a)

Figure 11: More visualization results for cross-dataset generalization, a) We demonstrate that our model can
operate under single-view-to-3D with multi-view diffusion model. Moreover, b),c) and d) shows that our model
generalizes effectively to varying numbers of unposed input views across different data sources.

A.4 VISUALIZATION OF RCM

We visualize the predicted RCM map from input images, as shown in Fig. 12. Starting with a
set of 2D images, we predict their corresponding RCM representation within the range of [−1, 1].
Since the RCM representation is per-pixel aligned with the input images, we concatenate them into
a shape of [N, 6, 3], where N is the total number of points, defined as H ×W ×V , with H , W , and
V representing the image height, width, and number of input views, respectively.

Figure 12: Relative Coordinate Map. Visualization of Relative Coordinate Map (RCM).
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A.5 DIFFERENT STAGE 1 NETWORK

We evaluate the performance of different stage 1 network on 100 randomly selected objects from
GSO (Downs et al., 2022) by training each of them 20 epochs and report their performance in Tab. 4.
The Stable Diffusion (SD) (Rombach et al., 2022) consistently outperforms other stage 1 networks.
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