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ABSTRACT

Backward locking and update locking are well-known sources of inefficiency in
backpropagation that prevent from concurrently updating layers. Several works
have recently suggested using local error signals to train network blocks asyn-
chronously to overcome these limitations. However, they often require numerous
iterations of trial-and-error to find the best configuration for local training, includ-
ing how to decouple network blocks and which auxiliary networks to use for each
block. In this work, we propose a differentiable search algorithm named SEDONA
to automate this process. Experimental results show that our algorithm can consis-
tently discover transferable decoupled architectures for VGG and ResNet variants,
and significantly outperforms the ones trained with end-to-end backpropagation
and other state-of-the-art greedy-leaning methods in CIFAR-10, Tiny-ImageNet
and ImageNet.

1 INTRODUCTION

Backpropagation (Rumelhart et al., 1986) has made a significant contribution to the success of deep
learning as the core learning algorithm for SGD-based optimization. However, backpropagation is
sequential in nature and supports only synchronous weight updates. Specifically, the limited con-
currency in backpropagation breaks down into two locking problems (Jaderberg et al., 2017). First,
update locking – a forward pass must complete first before any weight update. Second, backward
locking – gradient computation of upper layers must precede that of lower layers. Also, backpropa-
gation may be biologically implausible since the human brain prefers local learning rules without the
global movement of error signals (Crick (1989); Marblestone et al. (2016); Lillicrap et al. (2020)).

Greedy block-wise learning is a competitive alternative to backpropagation that overcomes these
limitations. It splits layers into a stack of gradient-isolated blocks, each of which is trained with
local error signals. Therefore, it is possible to simultaneously compute the gradients for different
network components with more fine-grained locks. Limiting the depth of error propagation graphs
also reduces the vanishing gradient and increases memory efficiency. Recently, Belilovsky et al.
(2019), Nøkland & Eidnes (2019), Belilovsky et al. (2020), and Löwe et al. (2019) empirically
demonstrated that greedy block-wise learning could yield competitive performance to end-to-end
backpropagation.

However, greedy block-wise learning introduces a group of new architectural decisions. Let us
consider a case where we want to decouple an L-layer network into K blocks for a given K ∈
{1, . . . , L}. Then, the number of all possible groupings is

(
L−1
K−1

)
. If we want to choose one of

M candidates of auxiliary networks to generate local error gradients, we would have to consider(
L−1
K−1

)
MK−1 different configurations. If local signals are not representative of the global goal, then

the final performance would be damaged significantly.

In this work, we introduce a novel search method named SEDONA (SEarching for DecOupled Neu-
ral Architectures), which allows efficient search of decoupled neural architectures toward greedy
block-wise learning. Given a base neural network, SEDONA optimizes the validation loss by group-
ing layers into blocks and selecting the best auxiliary network for each block. Inspired by DARTS
(Liu et al., 2019), we first relax the decision variables representing error propagation graphs and
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Figure 1: Conceptual comparison of the backward computation graph between (a) end-to-end back-
propagation and (b) greedy block-wise learning with K = 2.

auxiliary networks to continuous domains. We then formulate a bilevel optimization problem for the
decision variables, which is solved via gradient descent.

Our key contributions are summarized as follows.

1. To the best of our knowledge, this work is the first attempt to automate the discovery of
decoupling neural networks for greedy block-wise learning. We propose an efficient search
method named SEDONA, which finds decoupled error propagation graphs and auxiliary
heads suitable for successful greedy training.

2. Through extensive experiments on image classification tasks, we show that our locally
optimized networks outperform not only the ones trained with end-to-end backpropagation
but also two state-of-the-art greedy-learning methods of DGL (Belilovsky et al., 2020) and
PredSim (Nøkland & Eidnes, 2019) in CIFAR-10, Tiny-ImageNet and ImageNet.

3. SEDONA discovers decoupled architectures for VGG (Simonyan & Zisserman, 2015) and
ResNet (He et al., 2016) variants with only 0.25× width on CIFAR-10. The discovered net-
works are transferable to Tiny-ImageNet and ImageNet in which they are high-performing
enough to beat backpropagation and other greedy-leaning methods. It means that no search
is required for every pair of a network and a dataset.

4. Finally, based on experimental results, we analyze the common characteristics among the
architectures that are favorable to greedy-learning, such as avoiding the shallow first block
and using deeper auxiliary networks for lower blocks.

2 PROBLEM STATEMENT AND MOTIVATION

In typical neural network training, backpropagation computes the gradients of weights with respect
to the global loss by the chain rule (Rumelhart et al., 1986). On the other hand, in greedy block-wise
learning (Löwe et al., 2019; Belilovsky et al., 2020), the network is split into several subnetworks
(i.e. blocks), each of which consists of one or more consecutive layers. Next, each block is attached to
a small neural network called the auxiliary network that computes its own objective (i.e. local loss),
from which layer weights are optimized by propagating error signals within the block. Naturally,
each block can independently perform parameter updates even while other blocks process forward
passes. Figure 1 illustrates the high-level overview of greedy block-wise learning.

For successful greedy block-wise learning, one must make two design decisions beforehand: (i) how
to split the original network into a set of subnetworks, and (ii) which auxiliary network to use for
each subnetwork. Finding the best configuration to both problems requires significant time and effort
from human experts. We empirically show that the performance of greedy block-wise learning is
critically sensitive to these two design choices in Appendix A. This sensitivity introduces a paradox
of replacing backpropagation with greedy block-wise learning. If one has to put significant cost and
time through a series of experiments to discover a workable configuration, then the benefit of greedy
learning (e.g. reduction of training time) is diluted. Unfortunately, there has not been a generally
acceptable practice to answer these two design choices.

Therefore, this work aims to propose an automated search method for the discovery of the best
configuration, which has not been discussed so far. Although there have been several works on mod-
ifying backward computation graphs (Bello et al., 2017; Alber et al., 2018; Xu et al., 2018), they still
rely on global end-to-end learning and focus on finding new optimizers, weight update formulas, or
error propagation rules, assuming that the backward computation graphs are never discontinuous. In
this work, we instead concern ourselves with making backward computation graphs discontinuous,
i.e. finding optimal points where we stop gradient flow and use local gradients instead.
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Figure 2: An illustration of our search problem when L = 4,K = 3 andM = 3. A search procedure
should make two types of categorical choices at each layer: whether to stop the gradient flow and
which auxiliary network to use. These two decision choices are represented by meta-variables α and
β, respectively. Dashed lines represent possible decision choices, and gray ones are not chosen.

3 SEDONA: SEARCHING FOR DECOUPLED NEURAL ARCHITECTURES

We begin by describing the search space (Section 3.1) and present a continuous relaxation strat-
egy that allows searching for the decoupled architecture using stochastic gradient descent on the
validation loss (Section 3.2). Finally, we propose a bilevel optimization that makes SEDONA com-
putationally efficient (Section 3.3) and the discretization on relaxed decision variables (Section 3.4).

3.1 THE SEARCH SPACE

Our goal is to vertically split an input network into a set of blocks to enable greedy block-wise
training. This task is equivalent to solving the following two problems (Figure 2): (i) finding layers
at which we discontinue the gradient flow and (ii) assigning the most appropriate auxiliary network
to each of those layers for generating local error signals.

We assume that an input network consists of L convolutional layers, each of which may contain
normalization and pooling layers. If the network has residual connections, we regard each residual
block as a single layer to simplify our notation. We focus on splitting the convolutional layers only
and treat the last fully connected (FC) layers as the last block’s auxiliary network.

To facilitate our exposition, we introduce two binary variables for every layer. First, the signal vari-
able α(l) ∈ {0, 1} denotes whether layer l should utilize local gradients (i.e. the last layer of a
block) or backpropagated gradients (i.e. the inside layer). In other words, if α(l) = 1, the layer l is
trained using local gradients, hence becoming the last layer in a gradient-isolated block. Otherwise,
the layer is trained with backpropagated gradients, therefore becoming the inside layer in a block.
Second, the auxiliary type variable β(l) ∈ {0, 1}M denotes a one-hot encoding of which auxiliary
is chosen out of M possible candidates for layer l. We here assume that every layer selects its own
auxiliary network; later, we leave it only for the last layer of each block. Note that the last layer of
the whole network does not need these variables because the final classifier acts as its auxiliary head.

Now, we can formulate the loss for layer l as follows:

L(l)
train(θ, φ, β) =

1

|D|
∑

(x,y)∈D

`(l)(y, o(l)) where o(l)(x; θ) =

M∑
m=1

β(l)
m · f (l)m (a(l)(x; θ);φ(l)m ). (1)

D is the training data, `(l) is the loss function, {f (l)m } are M candidates for auxiliary networks, and
a(l) is the activations, θ is the network layer weights, and φ(l)m is them-th auxiliary network weights.

The error gradients at each non-last layer l are calculated as

δ(l) = α(l) · δ(l)local + (1− α(l)) · δ(l)bp , where δ
(l)
local = ∇a(l)L

(l)
train, δ

(l)
bp = δ(l+1) · ∂a

(l+1)

∂a(l)
, (2)

which is equivalent to choosing between local and backpropagated error gradients.
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Algorithm 1: SEDONA – Searching for Decoupled Neural Architectures
Initialize signal variables α and auxiliary type variables β as 0.
Pretrain layer and auxiliary network weights (θ, φ) with Eq.(5)–(6) and store N sets of weights
with the best validation accuracies in memoryM.

while (α, β) not converged do
Sample one set of layer and auxiliary network weights (θ, φ) fromM
Calculate (θT , φT ) by performing T gradient steps on (θ, φ) with Eq.(5)–(6).
Update (α, β) by descending ∇(α,β)L

(L)
val(θT , φT , α, β) with Eq.(7).

Calculate (θ1, φ1) by performing single gradient step on (θ, φ) with Eq.(5)–(6).
Evict the oldest weights inM and save the updated weights (θ1, φ1) intoM.

end
Obtain decoupling by discretizing α and β

3.2 CONTINUOUS RELAXATION

We optimize over α and β after relaxing them to a continuous domain, in a similar way to DARTS
(Liu et al., 2019). It enables a gradient-based optimization, which is significantly faster than directly
optimizing over the discrete domain using reinforcement learning or evolutionary algorithms. This
benefit accelerates especially when the search space is large, i.e. when the input network is deep.
Henceforth, we let α(l) ∈ R2 and β(l) ∈ RM . As a result, we relax the categorical choice of an
auxiliary head to a weighted mixture of all possible auxiliary networks by replacing Eq.(1) with

ō(l) =

M∑
m=1

softmax(β(l))m · f (l)m
(
a(l);φ(l)m

)
. (3)

Also, replacing Eq.(2), the gradients for layer l become a mix of local and backpropagated gradients:

δ̄(l) = ᾱ
(l)
1 · δ

(l)
local + ᾱ

(l)
2 · δ

(l)
bp , (4)

which is the affine combination between δ(l)local = ∇a(l)L
(l)
train and δ(l)bp = δ̄(l+1) · ∂a

(l+1)

∂a(l)
. We use

ᾱ(l) = softmax(α(l)) and δ̄(L) = ∇a(L)L(L).

3.3 BILEVEL OPTIMIZATION

We solve our search problem via bilevel optimization (Anandalingam & Friesz, 1992; Colson et al.,
2007; Liu et al., 2019). In the inner level, network weights (θ, φ) are optimized with error gradients
of Eq.(4). To be specific, with fixed (α, β), we take T gradient steps from initial weights (θ0, φ0)
for all layers l ∈ {1, . . . , L} with a learning rate η:

θ
(l)
t (α, β) = θ

(l)
t−1(α, β)− η · δ̄(l)(α, β) · ∂a

(l)

∂θ(l)
, (5)

φ
(l)
t (α, β) = φ

(l)
t−1(α, β)− η∇

φ
(l)
t−1
L(l)
train (θt−1, φt−1, α, β) . (6)

In the outer level, we update the meta variables (α, β) by propagating gradients with respect to the
final classifier’s loss L(L)

val(θT , φT , α, β) back through the T steps:

α← α− η∇αL(L)
val(θT , φT , α, β), β ← β − η∇βL(L)

val(θT , φT , α, β). (7)

Finally, we update (θ, φ) by taking a single gradient step with updated (α, β). We repeat this process
until (α, β) converge. We outline our algorithm in Algorithm 1. We empirically find that a single
inner step is not sufficient to measure the effect of the meta variables on the validation loss. So, we
set T = 5 for all experiments. Since we are only interested in (α, β) in this stage, we discard (θ, φ)
after the search. (θ, φ) are learned again after the the final (α, β) are discretized (Section 3.4).

Additionally, we apply the following techniques for stabilizing the bilevel optimization.

Pretraining. Before starting the optimization of (α, β), we pretrain weights (θ, φ) with (α, β) fixed
to zeros for sufficiently long 40K iterations. This technique avoids poor evaluation of (α, β) caused
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Table 1: Relative parameter and FLOP counts (%) of the auxiliary networks over the ResNet-101 on
ImageNet. Our Aux i heads are much more efficient than the previous MLP-SR (Belilovsky et al.,
2020) and PredSim (Nøkland & Eidnes, 2019).

MLP-SR PredSim Aux 1 Aux 2 Aux 3 Aux 4

Rel. FLOPs 1.34 23.63 1.02 1.35 1.43 1.68
Rel. # Param. 129.33 23.48 6.38 7.59 9.68 12.37

by bad initialization of (θ, φ). Such a warm start technique is not new, as it is adopted in Yan et al.
(2019) and Chen et al. (2019). During pretraining, we store N sets of (θ, φ) with the best validation
accuracies so far in memory for the purpose of weight sampling, which we will explain below. We
use N = 50 as the size of memory.

Weight Sampling. In bilevel optimization, meta variables (α, β) depend on the learning trajectory
of layer and auxiliary weights (θ, φ) (i.e. a sequence of values of (θ, φ) during inner optimization).
As a consequence, there exists a risk of overfitting the meta variables to a specific episode (Zela
et al., 2020; Chen & Hsieh, 2020). To alleviate such risk, we adopt a weight sampling scheme so
that meta variables (α, β) are optimized considering various learning trajectories, not a specific one.
We sample one set of weights from memory with a uniform probability at each outer optimization
step, run an optimization step, and then store the updated weight back to the memory. When the
memory is full, we evict the oldest one.

3.4 DISCRETIZATION

Equipped with α and β optimized in a continuous domain, we make categorical decisions for de-
coupling as in Section 3.1. It is straightforward; given K, we split the network into K blocks by
selecting K − 1 layers with the highest learned values of ᾱ1. Then, for each selected layer l, we
choose the auxiliary head with the largest value among β(l)

1 , ..., β
(l)
M .

This discretization procedure shows an additional advantage of continuous relaxation. Without con-
tinuous relaxation,K would be a pre-defined hyperparameter for finding a decoupling configuration;
therefore, one should search for every possible K. On the other hand, SEDONA makes a decision
based on the learned values of α and β; thus, it can choose any K from a sorted list of ᾱ1 to find the
best decoupling configurations.

4 EXPERIMENTS

We experiment the proposed SEDONA in two stages of search and evaluation. In the search stage,
SEDONA searches for the best decoupling configuration for a given neural network on CIFAR-
10 to minimize the validation loss. In the evaluation stage, we split the networks according to the
searched configuration, and evaluate their greedy block-wise learning performance for classification
in CIFAR-10 (Krizhevsky & Hinton, 2009), Tiny-ImageNet1 and ImageNet (Russakovsky et al.,
2015). This setting will clearly show the efficiency and transferability of SEDONA since no search
is required for every pair of a base network and a dataset.

4.1 EXPERIMENTAL SETTINGS

Base Architectures. We use VGG-19 and ResNet-50/101/152 as base networks, following experi-
ments of previous literature on greedy learning (Nøkland & Eidnes, 2019; Belilovsky et al., 2020).
We take the dataset complexity into account by setting the width 0.25× of the original networks
for CIFAR-10 and 1× for Tiny-ImageNet and ImageNet. It also verifies that SEDONA can search
for the configuration with a network of the reduced width on a small dataset first and apply the
discovered decouplings to the ones with the original width on large datasets. We detail the base
architectures in Appendix D.1

Auxiliary Network Pool. Reducing the size of auxiliary heads is crucial to retain the benefit of
greedy block-wise learning; otherwise, the throughput gain by parallelization is diluted by the over-
head of additional auxiliary heads. Thus, we heavily use depth-wise and point-wise convolution to

1http://tiny-imagenet.herokuapp.com/.
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Table 2: Error rates (%) on CIFAR-10 and Tiny-ImageNet with backprop, PredSim (Nøkland & Ei-
dnes, 2019), DGL (Belilovsky et al., 2020) and SEDONA (ours). For PredSim, DGL and SEDONA,
we set K = 4. For CIFAR-10, we use 0.25× width of the original networks.

(a) CIFAR-10

Architecture Backprop PredSim DGL SEDONA

VGG-19 12.31 13.87 12.19 11.58
ResNet-50 7.99 8.93 8.27 7.53

ResNet-101 7.14 7.93 8.30 6.59
ResNet-152 6.35 7.41 6.39 6.13

(b) Tiny-ImageNet

Architecture Backprop PredSim DGL SEDONA

VGG-19 47.11 55.30 48.70 43.44
ResNet-50 46.54 52.22 46.04 45.60

ResNet-101 44.50 46.08 46.20 40.88
ResNet-152 39.18 48.24 42.36 35.90
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Figure 3: Comparison of classification errors of ResNet-101/152 when learning with increasing K.

let auxiliary networks in the pool be computationally lightweight. Inspired by the structure of Mo-
bileNetv2 blocks (Sandler et al., 2018), we design four auxiliary candidates called Aux 1 – 4 from
the shallowest to the deepest. Aux i consists of a point-wise convolution, a depth-wise convolu-
tional layer, (i − 1) inverted residual blocks and a point-wise convolution followed by an AvgPool
and a FC layer. More details of auxiliary heads can be found in Appendix D.2. Table 1 shows that
all four auxiliary heads have much fewer parameters and FLOPs compared to the ones from other
greedy-learning methods.

Baselines. We compare the performance of decoupled architectures found by SEDONA with those
of two state-of-the-art greedy-learning methods. We detail the optimization in Appendix E.

• DGL (Belilovsky et al., 2020) splits the network uniformly for a given K and trains with
greedy block-wise learning. Its auxiliary network is called MLP-SR, consisting of an Avg-
Pool and 3 point-wise convolutional layers followed by an AvgPool and a 3-layer MLP.

• PredSim (Nøkland & Eidnes, 2019) mixes two losses, which require two different auxiliary
networks, AvgPool + FC layers and a convolutional layer, respectively. Since PredSim is
originally designed for greedy layer-wise learning, we split the network uniformly as in
DGL for block-wise training.

4.2 RESULTS ON CIFAR-10 AND TINY-IMAGENET

Table 2 summarizes the classification results on CIFAR-10 and Tiny-ImageNet. DGL and PredSim
perform worse than backpropagation in almost all cases. Especially, PredSim shows performance
degradation on Tiny-ImageNet. Since the similarity loss of PredSim depends on supervised cluster-
ing (Nøkland & Eidnes, 2019), the local error signals could be noisy when using a large number
of classes and small batch sizes. On the other hand, SEDONA enables greedy block-wise learning
to outperform end-to-end backpropagation. Since the widths of the base architectures change from
CIFAR-10 to Tiny-ImageNet, the results show that the decoupling found by SEDONA is success-
fully transferable to an architectural variant with a larger width. Interestingly, SEDONA beats back-
propagation by large margins on Tiny-ImageNet, which has only 500 images per class. It implies
that well-configured greedy learning could be a great learning option under data scarcity.

Figure 3 depicts the results of greedy block-wise learning with various K. Overall, the errors grow
as K increases. DGL and PredSim underperform backpropagation with large gaps when K ≥ 12,
whereas SEODNA still yields better or comparable performances to backpropagation even when
K = 16. This result shows that SEDONA can find workable configurations for sufficiently large K.
The quick escalation of errors with increasing K hints that the block-wise training could be better
than layer-wise training (i.e.K = L) for performance. Moreover, increase ofK significantly inflates
the overhead of auxiliary heads (See Table 1 for memory and computation overheads per head).
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Table 3: Error rates (%) on ImageNet with backprop, DGL and SEDONA (ours). Aux. Ens. denotes
the ensemble of last two blocks’ auxiliary networks.

(a) ResNet-101

Method K Ens.
Aux. Top-1

Err(%)
Top-5
Err(%) Speedup

Backprop 1 21.34 5.86 1

DGL
2 21.53 5.84 1.42

4 23.13 6.82 1.92X 22.35 6.44

SEDONA
2 20.72 5.39 1.67

4 21.32 5.83 2.01
X 21.00 5.52

(b) ResNet-152

Method K Ens.
Aux. Top-1

Err(%)
Top-5
Err(%) Speedup

Backprop 1 21.22 5.79 1

DGL 2 21.45 5.86 1.51

4 22.89 6.80 2.23X 22.20 6.39

SEDONA 2 20.69 5.58 1.61

4 21.09 5.74 2.02
X 20.20 5.13

Table 4: Comparison of error rates (%) on CIFAR-10 between (learned α, learned β), (random α,
learned β) and (learned α, random β) when K = 4.

ResNet-101 ResNet-152

SEDONA random α random β SEDONA random α random β

6.59 ± 0.17 7.49 ± 0.51 7.07 ± 0.37 6.13 ± 0.11 7.46 ± 0.69 7.22 ± 0.45

We detail found decouplings in Appendix D.3.

4.3 LARGE-SCALE EVALUATION ON IMAGENET

We also evaluate the decouplings learned on CIFAR-10 on the large-scale ImageNet dataset. We
present the classification errors on the validation split and training speedup in Table 3. Unlike DGL,
SEDONA slightly outperforms backpropagation with 2× speedup at maximum. When auxiliary
networks are ensembled, SEDONA further expands the performance gaps from backpropagation.
For ensembling, we sum the log-softmax outputs from the last two blocks’ auxiliary headers (i.e.
auxiliary headers of blockK andK−1) and use it for prediction. Note that the top-1 validation error
of 20.20% by SEDONA is the state-of-the-art result in greedy block-wise learning. DGL achieves
the speedup of maximum 2.23×, which means that the uniform split of the network may be a good
policy for the throughput gain by parallelization. However, the speedup may be gained at the expense
of accuracy. The reported speedup is the ratio of wall-clock training time of backprop over DGL or
SEDONA. Following Huo et al. (2018a) and Belilovsky et al. (2020), we measure the speedup by
spreading blocks into K GPUs and do not use data parallelism.

More implementation details can be found in Appendix F.

4.4 ABLATION STUDIES AND DISCUSSIONS

Effects of learned α and β. SEDONA automates two types of decisions for greedy block-wise
training: how to split the network and which auxiliary network to use. The signal variable α and
the auxiliary type variable β reflect each decision. A natural question here may be which variable is
more important. To answer this, we measure the performance after modifying learned α or β with
random values. Table 4 describes the results. Interestingly, α is more critical to the performance than
β, meaning that the decision for how to split is crucial for successful greedy block-wise learning.

Importance of lower blocks. Surprisingly, SEDONA yields much more confident values of ᾱ(l)
1

(i.e. close to either 1 or 0) at lower layers than upper layers, as shown in Figure 4. It may be because
learning the meta variables for upper layers is more difficult than for lower layers. However, with
a sufficiently large K that can split the upper layers more, the accuracy does not harm much (see
Figure 3). We speculate that the difference in confidence indicates finding appropriate lower blocks
is a key to success for greedy block-wise learning.

Avoid the shallow first block. Another interesting observation is that SEDONA prevents the first
block from being too shallow, as the learned values of ᾱ(l)

1 are smallest at several early layers (see
Figure 4). It is known that the complexity of input regions that are represented by a neural network
exponentially increases with its depth (Montufar et al., 2014), and thus a shallow neural network
(with a finite width) may learn only too coarse features to classify complex images, which may be
less meaningful representations for upper layers.
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ᾱ

(l)
1

(a) ResNet-101
5 10 15 20 25 30 35 40 45

l

0.0

0.2

0.4

0.6

0.8

1.0
ᾱ
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Figure 4: Learned values of ᾱ(l)
1 on CIFAR-10. ᾱ(l)

1 are the smallest at first few layers but large
and rather invariant at upper layers. Red indicates the split layers at K = 4 and green indicates
additionally split layers at K = 8.
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Figure 5: Decoupled structures of ResNet-152 searched by SEDONA with K = {4, 8}.

Use deeper auxiliary heads for lower blocks. Figure 5 shows the decoupled structure of ResNet-
152 discovered by SEDONA with K = {4, 8}. While upper layers tend to choose various auxiliary
heads, lower layers prefer Aux 4, which is the deepest one in our pool. This tendency is in agreement
with our intuition that a deeper auxiliary network would help lower layers learn more complex
features that are more helpful for upper layers.

Additional experimental results and discussions can be found in Appendix C.

5 RELATED WORKS

Greedy learning. Greedy learning was first applied to DNNs as a pretraining step (Hinton et al.,
2006). Traditionally, it solved the local optimization problems sequentially; optimization of an up-
per layer starts only after that of a lower layer is finished (Hinton et al., 2006; Bengio et al., 2007;
Belilovsky et al., 2019). However, recent works have shown that it is possible to solve the local opti-
mization problems jointly, with a convergence guarantee. In doing so, backward and update locking
problems are alleviated (Nøkland & Eidnes, 2019; Belilovsky et al., 2020). Moreover, forward un-
locking can also be achieved if each block makes use of a replay buffer (Belilovsky et al., 2020).

Gradient approximation. Another branch of research that tackles backward and update unlocking
is gradient approximation. DNI (Jaderberg et al., 2017) trains a parametric model to output synthetic
gradients from local information, removing the reliance on backpropagation to calculate true gra-
dients. However, training with synthetic gradients often results in suboptimal accuracy, especially
when neural networks are very deep. DDG (Huo et al., 2018b) and Feature Replay (Huo et al.,
2018a) use time-delayed gradients or activations to ease the backward locking. Yet, they require
large amounts of memory to store the activations and gradients of earlier steps. Contrarily, greedy
block-wise learning achieves backward and update unlocking without storing any old information.

Optimizing optimization. Several works have attempted to employ automatic search methods to
discover a variant of neural network optimization. Neural Optimizer Search (Bello et al., 2017)
builds a new mathematical update equation from a set of primitive functions such as gradients or
running average of gradients. Backprop Evolution (Alber et al., 2018) searches for a new error
propagation rule, intending to improve standard backpropagation. AutoLoss (Xu et al., 2018) auto-
matically determines the optimization schedule by selecting the loss function, scope of optimization,
and duration. All of the previous works depend on continuous backward graphs. In this work, we
take a different direction by splitting the backward graphs into multiple blocks.
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6 CONCLUSION

We presented SEDONA, a novel efficient search method for finding decoupled neural architectures
for successful greedy block-wise learning. Multiple state-of-the-art performances in various base
networks and datasets for image classification demonstrated that the discovered architectures out-
perform previous human-designed greedy learning methods as well as end-to-end backpropagation.
There are several interesting directions for improving SEDONA further. First, it would be interesting
to automatically design local loss functions for each block, replacing the well-known cross-entropy.
Second, for efficiency reasons, we used a predefined set of auxiliary heads, but searching the ar-
chitectures of auxiliary networks may improve the performance and reveal each block’s role, which
we are yet to realize. Finally, although we assumed that the input neural network has a fixed archi-
tecture, combining SEDONA with an architecture search method such as DARTS can optimize the
architecture in both forward and backward directions, which may yield intriguing results.
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A IMPORTANCE OF BLOCK CONFIGURATIONS

random backprop SEDONA
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Figure 6: Classification errors of
VGG-19 (0.25× width) with 30
random configurations on CIFAR-
10 at K = 4.

As mentioned in Section 2, greedy block-wise learning is very
sensitive to the choice of how to split the network into a set
of blocks and the choice of the auxiliary head for each sub-
network. To support our claim, we conduct a preliminary ex-
periment depicted in Figure 6. We set K = 4 and randomly
sample 30 configurations. For comparison, we also depict the
results of backprop and SEDONA with 10 random seeds. Our
experiment shows that difference in these two design choices
can result in 6.01%p difference at maximum in terms of clas-
sification error rate on CIFAR-10, which is larger than the
performance gap between VGG-19 and ResNet.

B ADDITIONAL RELATED WORKS

Feedback without Weight Symmetry. Another biological implausiblity of backpropagation is that
it uses the same weights for both forward and backward passes, often coined as the weight transport
problem (Grossberg, 1987). A group of researches aim to overcome this problem. Target Propagation
(Lee et al., 2015) uses auxiliary auto-encoders to propagate optimal activations rather than gradients.
Feedback Alignment (Lillicrap et al., 2014) replaces symmetric weights of the backward pass with
random weights, which is extended to a variant named Directed Feedback Alignment (Nøkland,
2016) without backward locking. However, aforementioned methods still suffer from update lock-
ing (Belilovsky et al., 2020). Moreover, there has been no result that they can yield comparable
performances to backpropagation on large-scale datasets such as ImageNet. On the other hand, our
work shows that greedy block-wise learning can even outperform backpropagation on ImageNet
without update locking.

Differentiable Architecture Search. DARTS (Liu et al., 2019) provides an efficient way for neural
architecture search (NAS) than previous methods based on reinforcement learning (Zoph & Le,
2017; Pham et al., 2018; Liu et al., 2018) and evolutionary algorithms (Miller et al., 1989; Angeline
et al., 1994; Real et al., 2019). Moreover, it is more efficient than other gradient-based NAS methods
(Luo et al., 2018; Zhang et al., 2019). However, it often fails due to overfitting to network weights,
and thus several works have been proposed to overcome this limitation. Zela et al. (2020) relate the
failure of DARTS with large dominant eigenvalues of∇2

αLval and suggest modifying the landscape
of inner optimization by adding regularization to flatten the learning landscape for outer variables.
Chen & Hsieh (2020) also try to obtain smoother landscape of outer variables by injecting random
or adversarial perturbations to the inner optimization objective. Our pretraining and weight sampling
strategies share the motivation of these works. Rather than monitoring the Hessian or injecting noise,
we regularize outer variables by taking the inner optimization over multiple weights.

C ADDITIONAL EXPERIMENTS AND DISCUSSIONS

C.1 COMPARISON TO FEATURES REPLAY

We compare greedy learning methods (i.e. Predsim, DGL and SEDONA) to Features Replay (Huo
et al., 2018a) with ResNet-101 on CIFAR-10. Features Replay suffers from more severe performance
degradations when K ≥ 12 than greedy block-wise learning methods. For Features Replay, we use
the same optimization setting as in backpropagation.

C.2 ADDITIONAL RESULTS ON IMAGENET

We also test ResNet-152 using setting of Belilovsky et al. (2020) whenK = 2. Results can be found
in Table 5. We find that the SEDONA still achieves lower test errors. However, the training setting of
Belilovsky et al. (2020), which trains only for 50 epochs, does not allow backprop to fully converge,
and thus the reported performance of backprop in Belilovsky et al. (2020) is significantly worse than
that of ours, which trains for 600,000 iterations (≈ 120 epochs) as in He et al. (2016).
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Figure 7: Comparison of classification errors of ResNet-101 when learning with increasing K, in-
cluding Features Replay (Huo et al., 2018a).

Table 5: Error rates (%) on ImageNet with setting of Belilovsky et al. (2020) when K = 2. The
results of Backprop and DGL are cited from Belilovsky et al. (2020).

Method Top-1 Error (%) Top-5 Error (%)

Backprop 25.6 7.9
DGL 25.5 8.0
SEDONA 24.95 7.64

C.3 THE EFFECT OF DISCRETIZATION

SEDONA discretizes (α, β) after optimizing them in a continuous domain. Then, the natural ques-
tion is how much performance loss the discretization procedure induces. Interestingly, we find that
the discretization gap is not significant in a reasonable range of K. When trained on CIFAR-10,
continuous versions of VGG-19 and ResNet variants achieve similar test errors compared to the dis-
cretized ones. We describe the test errors in Table 6. It may be because discretization does not affect
much on both lower and upper layers for the following reasons:

1. As shown in Figure 4, the values of ᾱ1 of lower layers are very close to 0 or 1, so dis-
cretization has little effect on the training of these layers.

2. For upper layers, the local error signal and the global error signal are similar in terms of
their contribution to reducing the final validation loss.
SEDONA optimizes α, which is the relative weight of local and global gradients, to the
direction that minimizes the final validation loss. So, SEDONA learns ᾱ1 close to 0.5 in
upper layers (Figure 4), implying that there is no significant difference between using local
and global gradients for minimizing the global loss.
One possible counterargument is that SEDONA may have learned ᾱ1 close to 0.5 because
it is better to mix local and global gradients with equal weights. However, this counterargu-
ment can be easily refuted by the fact that the discretization gap is still insignificant, even
with a sufficiently large K that can split the upper layers more (Figure 3).

C.4 REGULARIZATION BY GREEDY LEARNING

We show that well-configured greedy learning can outperform backprop on various datasets in Sec-
tion 4. As the reason of that, we conjecture that greedy block-wise learning, in general, has a regu-
larization effect.

Table 7 shows that the training errors of DGL and SEDONA on ImageNet are smaller than that of
backpropagation. However, SEDONA achieves smaller validation errors than backprop, while DGL
does not. So, the decoupling configurations found by SEDONA may better control the regularization
effect of greedy block-wise learning.

In fact, gradient directions with decouplings by SEDONA are more aligned to gradients by back-
propagation. Figure 8 shows the average cosine similarities for each timestep interval as well as the
overall cosine similarity. While both the gradients of SEDONA and DGL correlate positively with
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Table 6: Error rates (%) on CIFAR-10 with Backprop, SEDONA (Cont.) and SEDONA (K = 4).
Cont. denotes using (α, β) learned in continuous domains without discretization.

Architecture Backprop SEDONA (Cont.) SEDONA (K = 4)

VGG-19 12.31 12.02 11.58
ResNet-50 7.99 7.60 7.53

ResNet-101 7.14 6.77 6.59
ResNet-152 6.35 6.24 6.13

Table 7: Error rates (%) on train and validation splits of ImageNet with Backprop, DGL and SE-
DONA. For DGL and SEDONA, we set K = 4.

Architectures Method train error val error

ResNet-101
Backprop 5.24 21.34
DGL 7.60 23.13
SEDONA 7.19 21.32

ResNet-152
Backprop 4.11 21.22
DGL 5.56 22.89
SEDONA 4.13 21.09
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Figure 8: Comparison of the average cosine similarities for each timestep interval. We compute
the cosine similarity between backprop gradients and DGL/SEDONA gradients of 3x3 convolution
kernel in each layer on CIFAR-10, while training with DGL and SEDONA, respectively.

the backprop gradients, the correlation in SEDONA is higher than in DGL at all time step intervals
across all architectures.

One reason for appropriate regularization of SEDONA may be because SEDONA directly minimizes
the final classifier’s validation loss for optimizing α and β.

C.5 THE TRADEOFF BETWEEN PERFORMANCE AND SEARCH TIME.

While decoupling configurations found by SEDONA outperforms PredSim, DGL and backprop, it
requires extra search cost. The search cost could be reduced at the cost of performance by removing
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Table 8: Performances and search costs of SEDONA after removing some key components one by
one. Without pretraining, we 8K additional iterations for convergence.

Method Top-1 Error Rates (%) # GPUs
(GPU days)
Search Time

CIFAR-10 Tiny-ImageNet Pretraining Bilevel Opt.

SEDONA (K = 4) 6.59 40.88 1 6 10.1
– extra inner steps 6.62 41.04 1 2 1.3
– weight sampling 6.76 42.70 1 2 0.8
– pretraining 6.89 43.86 - 2 1.9

Backprop 7.14 44.50 - - -
PredSim (K = 4) 7.93 46.08 - - -
DGL (K = 4) 8.30 46.20 - - -

Table 9: Architecture of Aux 4 on ImageNet. For Aux i ≤ 4, we remove final i invertied residual
blocks. Nc denotes the number of channels at the convolutional layer on which the auxiliary head is
augmented.

PwiseConv, ReLU Nc, BN

DwiseConv 3× 3, ReLU Nc

stride 2, padding1, BN

InvResidual, ReLU Nc

stride 1, expansion ratio 4

InvResidual, ReLU 1.5×Nc

stride 2, expansion ratio 4

InvResidual, ReLU 1.5×Nc

stride 1, expansion ratio 4

PwiseConv , ReLU 2048, BN

AdaptiveAvgPool 1× 1

FC 1000

some key components of SEDONA such as extra inner optimization steps, weight sampling and
pretraining. Table 8 shows that all the components are effective for accuracy. Without both extra
inner steps and weight sampling, we can still achieve the better performance than backprop with
only the search cost of 0.8 GPU days.

D ARCHITECTURAL DETAILS

D.1 BASE ARCHITECTURES

ResNet-50/101/152. For CIFAR-10 and Tiny-ImageNet, we remove the MaxPool layer after the
initial convolutional layer in ResNet variants. For CIFAR-10, we also use a kernel size of 3 and a
stride of 1 at the initial convolutional layer. In SEDONA, we regard each residual block in ResNets
as a layer and the first convolutional layer is included in the first layer. The final AvgPool+FC layers
are used as the final block’s auxiliary head.

VGG-19. We add a batch normalization layer (Ioffe & Szegedy, 2015) after every convolutional
layer, and do not use Dropout (Srivastava et al., 2014). We regard the final 3-layer MLP as the final
block’s auxiliary head.

D.2 AUXILIARY HEADS

As mentioned in Section 4.1, Aux i consists of a point-wise convolution, a depth-wise convolutional
layer, (i − 1) inverted residual blocks and a point-wise convolution followed by an AvgPool and a
FC layer. We describe the detailed architectures in Table 9. For CIFAR-10, we use the 0.25× width.
For PredSim, we use the feature dimension of 2048 on Tiny-ImageNet and ImageNet and 512 on
CIFAR-10.
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Table 10: ResNet-152: 16 layers with the highest learned values of ᾱ(l)
1 and their corresponding

auxiliary headers.

Layer Index 11 13 17 19 22 23 25 26 28 29 49 31 48 38 37 36

Aux. Header 4 4 4 3 2 4 2 2 4 2 4 2 4 4 4 4

Table 11: ResNet-101: 16 layers with the highest learned values of ᾱ(l)
1 and their corresponding

auxiliary headers.

Layer Index 7 11 12 22 25 27 28 29 19 32 31 30 26 24 23 20

Aux. Header 4 4 4 4 4 4 4 4 4 3 2 4 4 4 4 4

Table 12: ResNet-50: 15 layers with the highest learned values of ᾱ(l)
1 and their corresponding

auxiliary header.

Layer Index 10 12 11 13 15 14 9 6 5 2 8 4 3 1 7

Aux. Header 4 4 4 4 4 1 1 2 1 1 1 1 1 1 1

Table 13: VGG-19: 15 layers with the highest learned values of ᾱ(l)
1 and their corresponding auxil-

iary header.

Layer Index 6 13 14 15 12 11 8 9 7 10 4 5 2 1 3

Aux. Header 4 1 1 1 1 2 1 4 1 4 1 1 1 1 1

D.3 FOUND DECOUPLINGS

Table 10 – 13 shows layers with the largest values of ᾱ(l)
1 and their corresponding auxiliary headers

with the largest value of β(l)
m for each architecture. For ResNet-101/152, we show 16 layers with

largest values of ᾱ(l)
1 for better readability.

E OPTIMIZATION DETAILS

E.1 OPTIMIZATION AT SEARCH STAGE

We search for decouplings for VGG-19 and ResNet-50/101/152 on CIFAR-10. We use 40% of
CIFAR-10 training split as a validation set. For the outer optimization, we use Adam optimizer
(Kingma & Ba, 2015) with a fixed learning rate of 0.01 and a weight decay of 0.000001. For the
inner optimization, we use SGD with a momentum of 0.9 and a weight decay of 0.001. We use
an initial learning rate of 0.1 and decay it down to 0.001 with the cosine annealing learning rate
decay (Loshchilov & Hutter, 2017). Label smoothing (Szegedy et al., 2016) of 0.1 is also used.
We repeat bilevel optimization steps for 2K iterations. As mentioned in Section 3.3, we pretrain
weights for 40K iterations with outer variables fixed as zero and store 50 sets of weights with the
best validation accuracies. For pretraining, we use the same setting as in the inner optimization.
During pretraining, we evaluate weights on the validation set at every 80 iterations. For pretraining
and the inner optimization, we use the standard data augmentation strategy of padding, random crop
and random flip.

E.2 OPTIMIZATION AT EVALUATION STAGE

In all experiments, we use the cosine annealing learning rate decay (Loshchilov & Hutter, 2017). La-
bel smoothing (Szegedy et al., 2016) of 0.1 is used for Backprop, DGL and SEDONA. For PredSim,
0.99 is used as a coefficient of similarity loss as in Nøkland & Eidnes (2019).

CIFAR-10. For evaluation on CIFAR-10 dataset, we train all our models for 64K iterations with a
batch size of 128 using SGD with a momentum of 0.9. For all experiments on CIFAR-10, we use
an initial learning rate of 0.1 and decay it down to 0.001. For VGG-19 and ResNet-50/101, we use
a weight decay of 0.0001 while a weight decay of 0.0002 is used for ResNet-152. 10% of train data
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Table 14: Search costs of SEDONA.

Architecture # GPUs Search Time

Pretraining Bilevel Opt. (days)
Pretraining

(days)
Bilevel Opt.

(GPU days)
Total

VGG-19 1 4 0.1 0.5 2.1
ResNet-50 1 4 0.2 0.9 3.8

ResNet-101 1 6 0.3 1.6 10.1
ResNet-152 1 6 0.5 2.5 15.5

Table 15: Wall-clock training times (hours) of Backprop, DGL and SEDONA (ours) on ImageNet .

Architecture Backprop DGL SEDONA

K = 2 K = 4 K = 2 K = 4

ResNet-101 113.5 80.2 59.2 67.3 56.5
ResNet-152 158.5 104.8 71.2 98.5 78.3

is used as the validation set. We follow the standard data augmentation strategy of padding, random
crop and random flip as in Nøkland & Eidnes (2019).

Tiny-ImageNet. For evaluation on Tiny-ImageNet dataset, we train all our models for 30K iter-
ations with a batch size of 256. For Backprop, DGL and SEDONA, an initial learning rate is 0.1,
which is decayed down to 0.001 with cosine annealing, and SGD with a momentum of 0.9 is used.
A weight decay of 0.0001 is used for VGG-19, ResNet-50/101, and a weight decay of 0.0002 is
used for ResNet-152. However, we fail to train well with the momentum optimizer for PredSim. So,
we use Adam optimizer (Kingma & Ba, 2015) instead. We use an initial learning rate of 0.0005,
which is decayed down to 0.000001, and a weight decay of 0.0001 for all architectures for PredSim.
In addition, we subsample 40 classes per batch until 15K iterations following Nøkland & Eidnes
(2019). We use the standard data augmentation strategy of padding, random crop, random rotation
and random flip.

ImageNet. For ImageNet dataset, we train all our models for 600K iterations with a batch size of
256 using SGD with a momentum of 0.9. A weight decay of 0.00005 is used for both ResNet-101
and ResNet-152. We use an initial learning rate of 0.1 decayed down to 0.0001 for ResNet-101, and
0.05 down to 0.00001 for ResNet-152. We use the standard data augmentation of random resized
crop and random flip. We report the accuracy in the single-crop setting.

F IMPLEMENTATION & COMPUTING ENVIRONMENTS

F.1 IMPLEMENTATION DETAILS

For implementation, we use Python 3.8 and PyTorch 1.6.0. At the search stage, we use the higher
library1 to enable differentiable weight updates in PyTorch computational graphs. For evaluation,
we implement asynchronous updates of blocks by introducing queues between blocks. For PredSim,
DGL and Features Replay implementations, we refer to their official PyTorch implementations2. We
use mixed precision training with Apex3 on Tiny-ImageNet and ImageNet.

F.2 COMPUTING ENVIRONMENTS

We report our search cost and wall-clock training time in Table 14 and 15, respectively. All experi-
ments are conducted with total 8 NVIDIA Quadro 6000 GPU cards and 2 8-core Intel Xeon E5-2620
v4 processors with 256 GB RAM. For search, we use 4 GPUs for VGG-19 and ResNet-50 and 6
GPUs for ResNet-101/152.

1https://github.com/facebookresearch/higher.
2PredSim: https://github.com/anokland/local-loss, DGL: https://github.com/

eugenium/DGL, Features Replay: https://github.com/slowbull/FeaturesReplay.
3https://github.com/NVIDIA/apex
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