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ABSTRACT

Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable
success in classification, retrieval, and generative tasks. For this, VLMs determin-
istically map images and text descriptions to a joint latent space in which their
similarity is assessed using the cosine similarity. However, a deterministic mapping
of inputs fails to capture uncertainties over concepts arising from domain shifts
when used in downstream tasks. In this work, we propose post-hoc uncertainty
estimation in VLMs that does not require additional training. Our method leverages
a Bayesian posterior approximation over the last layers in VLMs and analytically
quantifies uncertainties over cosine similarities. We demonstrate its effectiveness
for uncertainty quantification and support set selection in active learning. Com-
pared to baselines, we obtain improved and well-calibrated predictive uncertainties,
interpretable uncertainty estimates, and sample-efficient active learning. Our results
show promise for safety-critical applications of large-scale models.

Post-hoc Probabilistic Model Uncertainty Quantification Active Learning

Pre-trained VLM
(CLIP, SigLIP)

Laplace approximation

BayesVLM Glasses: 0.45
Scissors: 0.55

Glasses: 0.99
Scissors: 0.01

Uncertain Certain

Update model

Use uncertainty to
select fine tuning data Glasses: 0.2

Scissors: 0.8
More certain now

Figure 1: We introduce an efficient and effective post-hoc method to provide uncertainty estimates
for vision-language models (e.g., CLIP, SigLIP) using a Laplace approximation. We demonstrate that
uncertainty estimates derived from this approximation improve the calibration of these models on
several zero-shot classification benchmarks (Sec. 4.1) and are effective in active learning (Sec. 4.2).

1 INTRODUCTION

Pre-trained large-scale vision-language models (VLMs) (Bordes et al.; Zhang et al., 2024), such
as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023), have achieved remarkable success
in tasks like zero-shot classification, retrieval, and generation, driven by training on billion-scale
datasets (Gadre et al., 2023; Schuhmann et al., 2022). However, when employing large-scale machine
learning models reliably in real-world settings and on downstream applications, we expect them not
only to provide accurate predictions but also to enable us to quantify their predictive uncertainties.
Obtaining efficient and effective uncertainty estimates is particularly relevant for safety-critical
applications, as well as when making decisions based on those estimates, such as in active learning.

Previous work on uncertainty quantification for VLMs has primarily focused on calibration (Guo
et al., 2017; Tu et al., 2023), test-time adaptation (Ayhan & Berens, 2018; Farina et al., 2024; Yoon
et al., 2024; Lafon et al., 2025), fine-tuning (Fort et al., 2021; Tu et al., 2023; Ju et al., 2025), or
training probabilistic VLMs from scratch (Chun, 2024; Chun et al., 2025). However, each of those
approaches has limitations regarding its applicability in real-world settings. For example, calibration
methods cannot capture epistemic uncertainties, adapter and retraining-based methods come with
substantial computational demands and require retraining in streaming/active learning settings, and
test-time adaptation methods significantly increase inference costs.

To manifest efficient and effective uncertainty quantification for the reliable application of VLMs,
we identify the following desiderata: The method should be applicable to any VLM architecture
(model-agnostic), and uncertainties should be obtained in a post-hoc manner without retraining the
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Figure 2: Predictive error vs. uncertainty (entropy) on the EuroSAT data set (Helber et al., 2019)
for the OpenCLIP ViT-H-14 model. The zero-shot comparison (left side) of the original model ( )
and its Bayesian counterpart ( ) indicates that our Bayesian model exhibits better calibration and
substantially reduces overconfident predictions. Active Learning results (right side) show that those
improvements lead to a substantially reduced misclassification rate after adaptation; quadrant (b).

model from scratch. During inference, it should have low to no computational overhead (efficient) and
capture relevant sources of uncertainties (effective). Finally, the method should extract uncertainties
from the original VLM without adding new layers or adapters that require training (training-free).

The Bayesian framework provides a principled way to model epistemic and aleatoric uncertainties,
and has shown promise as a ‘toolbox’ for uncertainty quantification in deep learning (Papamarkou
et al., 2024). Consider Fig. 2, which shows results on the EuroSAT data set (Helber et al., 2019),
a land use and land cover classification task based on Sentinel-2 satellite images, for the popular
OpenCLIP model ( ). We observe that the Bayesian counterpart ( ) results in less overconfident
predictions before active learning (compare quadrant b and a) and substantially reduces the error in
the predictions after active learning, compared to the fine-tuned OpenCLIP model ( ). Much of the
misclassification of the OpenCLIP model after active learning can be attributed to its overconfident
behaviour before and after active learning, indicating the benefits of using a Bayesian formulation.

This work proposes BayesVLM, an efficient and effective post-hoc uncertainty quantification method
for pre-trained VLMs that adheres to the outlined desiderata. We leverage a Laplace approximation
(MacKay, 1992) to the Bayesian posterior, thereby eliminating the need for additional training,
architectural changes, or modifications to the training objective. For this, we introduce independent
probabilistic models for each modality, adhering to the i.i.d. assumption and enabling efficient
posterior inference. Further, we derive an analytical expression for the distribution over cosine
similarities for efficient uncertainty propagation. We evaluate our approach on zero-shot classification
benchmarks and for uncertainty-aware active fine-tuning (Gal et al., 2017; Hübotter et al., 2024),
finding improvements in performance over baselines in both scenarios. Lastly, we assess the efficiency
and robustness of our approach (BayesVLM) and find that BayesVLM provides efficient, effective
and robust uncertainty estimates, even when the VLM is pre-trained on proprietary data.

Contributions The overall contributions are illustrated in Fig. 1 and can be summarised as follows:
(i) we propose BayesVLM, an efficient and effective post-hoc method for uncertainty quantification
in pre-trained VLMs, without architecture changes or further training (Sec. 3); (ii) we present the
first direct Bayesian formulation of vision-language models and derive an analytical expression
of the distribution over cosine similarities for efficient uncertainty propagation (Sec. 3.2); (iii) we
demonstrate the efficacy of BayesVLM in both zero-shot and active learning settings, showing
improvements over baselines in both settings. And we assess its efficiency and robustness, finding that
BayesVLM provides robust estimates while introducing little to no computational overhead (Sec. 4).

2 RELATED WORK

Vision-language models Models like CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023),
trained on massive datasets such as LAION (Schuhmann et al., 2022), have become widespread in
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various applications, including zero-shot classification, generative modeling (Rombach et al., 2022;
Podell et al., 2024), and retrieval (Saito et al., 2023; Karthik et al., 2024). This work presents an
effective post-hoc approach to uncertainty estimation for these pre-trained VLMs.

Uncertainty in vision-language models Quantifying uncertainties in VLMs has observed increasing
interest, with approaches involving learning probabilistic embeddings, for example, by learning
additional probabilistic adapters (Chun et al., 2025; Lafon et al., 2025) or through pre-training/fine-
tuning with a probabilistic loss (Chun, 2024; Ju et al., 2025). In addition, recent approaches also
explored training-free uncertainty quantification, e.g., through test-time augmentation (Ayhan &
Berens, 2018) or zero-shot out-of-distribution detection (Fu et al., 2025). Another key approach is to
solely focus on calibration through methods such as temperature scaling (Guo et al., 2017). Further
related works are discussed in App. B.1. In contrast, we present a training-free post-hoc approach that
does not require architectural changes, but estimates the Bayesian posterior of a pre-trained model
and efficiently propagates uncertainty arising from the Bayesian posterior to the VLM output.

Active learning The goal of active learning (Ren et al., 2021; Settles, 2009) is to improve model
performance by ‘actively’ selecting additional informative data through an acquisition function
(Holub et al., 2008; Sener & Savarese, 2018). A particularly relevant area is Bayesian active
learning (MacKay, 1992; Gal et al., 2017), where acquisition functions leverage model uncertainties.
Notable examples include the BALD score (Houlsby et al., 2011) and EPIG (Bickford Smith et al.,
2023), both of which are functions of information gain. While such methods are gaining traction in
large language models (Hübotter et al., 2025), they remain relatively underexplored for VLMs, where
ad-hoc strategies are more prevalent. In our work, we bridge this gap.

3 METHODS

Notation We denote vectors by bold lower-case letters (e.g., x,a) and use bold upper-case letters
for matrices (e.g., X,P ). Further, sets are denoted in upper-case calligraphic letters (e.g., D, I) and
model parameters or hyperparameters are denoted using Greek letters (e.g., α,θ). In particular, let
xIMG
i ∈ RpIMG and xTXT

j ∈ RpTXT denote the ith image and jth text description, respectively. Further,
let ϕ : RpIMG → RdIMG and ψ : RpTXT → RdTXT denote the image and text encoders of the VLM, where
pIMG and pTXT are the respective input dimensionalities and dIMG, dTXT is the dimensionality of the
respective feature space. Then, by denoting the linear image and text projections as P ∈ Rd×dIMG and
Q ∈ Rd×dTXT respectively, the feature embeddings in the joint space can be written as g = Pϕ(xIMG)
and h = Qψ(xTXT). We write G and H to denote the matrices of stacked image and text embeddings,
respectively, whose rows correspond to the individual gi and hj . Lastly, we use the hat symbol to
denote unit-length normalised vectors, e.g., ĝ = g/∥g∥. The notation is listed in full in App. A.

3.1 BACKGROUND

Language-image pre-training We consider VLMs trained by minimising the InfoNCE loss
(Oord et al., 2018) (e.g., CLIP (Radford et al., 2021)) and present additional experiments for the
SigLIP loss (Zhai et al., 2023). Specifically, the InfoNCE loss is defined as the sum of two cross-
entropy terms, one for each relational direction—image to text (LCE(X

IMG,XTXT)) and text to image
(LCE(X

TXT,X IMG)). The total loss is defined as follows LInfoNCE(X
IMG,XTXT) =

− 1

2n

∑n
i=1 log

exp(tĝ⊤i ĥi)∑n
j=1 exp(tĝ

⊤
i ĥj)︸ ︷︷ ︸

IMG→TXT,LCE(X IMG,XTXT)

− 1

2n

∑n
i=1 log

exp(tĥ⊤i ĝi)∑n
j=1 exp(tĥ

⊤
i ĝj)︸ ︷︷ ︸

IMG←TXT,LCE(XTXT,X IMG)

, (1)

where t is a learnable temperature parameter, n denotes the number of image-text pairs, and ĝ and ĥ
are the unit-length normalised embeddings. This contrastive loss function encourages embeddings
for matching image-text pairs to be similar while simultaneously pushing unrelated image-text pairs
away from each other (Oord et al., 2018). In practice, evaluating this loss is infeasible on billions of
data points. The common practice adopted is to evaluate it on a sufficiently large batch. Recently,
the SigLIP loss (Zhai et al., 2023) was proposed as an alternative to the InfoNCE loss, a binary
classification loss over cosine similarities, cf., App. B.2.
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An image of {reading glasses}.

An image of {scissors}.

An image of {crayon pencils}.

ϕ

ψ

ϕ(xIMG
i )×

N (P ,ΣIMG)

ψ(xTXT
i )×

N (Q,ΣTXT)

Embeddings Become
Probablistic (Eq. (7))

Cosine Similarities Become
Probablistic (Eq. (10))

Inputs Encoders
�

Laplace Approx.
(Eq. (6))

Figure 3: Illustration of uncertainty propagation in BayesVLMs: We estimate uncertainties over
the last layers of both encoders using a Laplace approximation, which induces probabilistic feature
embeddings. We then approximate the distribution over cosine similarities by estimating the expected
value and variance. The cosine similarity distribution is then propagated to the VLM output.

Laplace approximation Given a data set D = {(xi,yi)}ni=1 and denote the neural network
parameters as θ, in Bayesian deep learning we aim to estimate the posterior distribution

p(θ | D) =
p(θ)

∏n
i=1 p(yi | xi,θ)∫

θ
p(θ)

∏n
i=1 p(yi | xi,θ) dθ

=
prior × likelihood

marginal likelihood
. (2)

Since the marginal likelihood involves an intractable high-dimensional integral, we approximate the
posterior. We adopt the Laplace approximation (LA) (MacKay, 1992), a post-hoc method that has
been increasingly used in the Bayesian deep learning community (Daxberger et al., 2021; Li et al.,
2025; Meronen et al., 2024; Ritter et al., 2018; Roy et al., 2022; Scannell et al., 2024).

Specifically, LA fits a Gaussian distribution to the posterior, centred at the MAP estimate of a pre-
trained model, and is therefore ‘post-hoc’. The prior is implicitly defined by the L2 regularisation
(weight decay) commonly used during training (Radford et al., 2021; Zhai et al., 2023), and corre-
sponds to a diagonal Gaussian prior on the parameters, i.e., p(θ) = N (0, λ−1I). The likelihood is
defined by the training loss. The final approximate posterior is given as p(θ | D) ≈ N (θMAP,Σ)
where θMAP is the MAP estimate and Σ = (−∇2

θ log p(D | θ)|θ=θMAP
+ λI)−1 is the Hessian of

the negative log joint evaluated at θMAP. A detailed derivation is given in App. B.3.

3.2 BAYESVLM: POST-HOC PROBABILISTIC VLMS

To estimate predictive uncertainties in a post-hoc fashion for VLMs, we independently estimate the
posterior of the image projection P and text projection Q. For CLIP, we reformulate the contrastive
loss to obtain tractable likelihoods for P and Q, enabling separate posterior inference. We then
approximate the Hessian of the log-likelihood and show how the resulting posteriors induce a
distribution over cosine similarities. Finally, we derive a Gaussian approximation of this distribution
for efficient downstream inference. Our BayesVLM pipeline is illustrated in Fig. 3.

Estimate posterior: Likelihood approximation The first step in formulating our Bayesian model,
BayesVLM, is to define its likelihood function. When doing so, we encounter the following key
challenges: popular loss functions for VLMs, such as the InfoNCE loss (Eq. (1)), entangle modalities
and data points. While this is a desirable behaviour when learning multi-modal models, it breaks the
usual i.i.d. assumption made in Bayesian models. Specifically, we have that

(xIMG
i ,xTXT

i )
non-i.i.d.∼ p(xIMG

i ,xTXT
i |X IMG

\i ,XTXT
\i ,θ), (3)

which hinders straightforward application of the Bayesian framework, as data is only conditionally
independent. For that purpose, we are instead assuming two independent probabilistic models, one
for each modality, with likelihood functions corresponding to the conditional probability for each
modality rather than their joint, i.e.,

xIMG
i

i.i.d.∼ p(xIMG
i |XTXT,θ), xTXT

i
i.i.d.∼ p(xTXT

i |X IMG,θ). (i.i.d. assumption)

Consequently, in case of the InfoNCE loss, each likelihood function is given by its respective
modality-specific sub-loss term, i.e., in case of the probabilistic model for the image modality, we

4
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have LCE(X
IMG,XTXT), and corresponds to a categorical distribution. A similar approximation

is also applied to SigLIP. Crucially, defining independent probabilistic models for each modality
additionally necessitates independence between the encoders. For example, when treating the
projection layers P and Q probabilistically, we obtain that:

P ⊥⊥ Q. (Consequence of i.i.d. assumption)

Following the i.i.d. assumption, the probabilistic model for the image modality is

xIMG
i ĝi =

Pϕ(xIMG
i )

∥Pϕ(xIMG
i )∥

image encoder ϕ(·) and

image projection layer P
Ĥĝi,

given text embeddings Ĥ

compute logits

and the likelihood becomes a categorical distribution (see App. C.2.1 for formulation)

log p(X IMG |XTXT,θ) = log
∏n
i=1p(x

IMG
i |XTXT,θ) = log

∏n
i=1[softmax(Ĥĝi)]i. (4)

The probabilistic model for text input can be obtained similarly. We can now apply the LA to this
probabilistic model to estimate the approximate posterior.

Why is this still a reasonable approximation? For VLMs, it is important to capture interactions
between modalities, and assuming independence seems problematic at first. However, as we are using
a local post-hoc posterior estimation through the LA, we are effectively introducing an independence
conditionally on the MAP estimate of the (joint) contrastive loss. Thus, crucially, even though we
assume independence between modalities, we can still capture interactions between modalities. Note
that this assumption is also important for computational reasons, as it helps us derive a computationally
efficient approach. A detailed discussion is given in Apps. C.1 and C.2.1.

Estimate posterior: Hessian approximation The Hessian for the negative log likelihood in LA’s
posterior covariance is computationally infeasible for large models and datasets. We adopt Generalised
Gauss–Newton (GGN) approximation (Schraudolph, 2002) for it. In GGN, we need to compute the
Jacobian of model output w.r.t. model parameters. For linear projection layers, this Jacobian can be
obtained analytically, while for the image and text encoders, estimating it is infeasible due to the
large output dimension (32k). Therefore, we treat the image and text encoders as deterministic and
only approximate the posterior for P and Q. To further reduce computational and memory costs,
we use Kronecker-factored (KFAC) Generalised Gauss–Newton (GGN) approximation (Ritter et al.,
2018; Martens & Grosse, 2015), which expresses the Hessian as a Kronecker product of two smaller
matrices. This preserves a richer posterior structure than diagonal approximations. Following (Ritter
et al., 2018), the KFAC GGN approximation for Hessian of P is(

1/
√
n
∑n
i=1ϕ(x

IMG
i )ϕ(xIMG

i )
⊤
)

︸ ︷︷ ︸
AIMG

⊗
(
1/
√
n
∑n
i=1JIMG(x

IMG
i )⊤ΛIMG JIMG(x

IMG
i )

)︸ ︷︷ ︸
BIMG

, (5)

where JIMG(x
IMG
i ) = ∂Ĥ

gi
∥gi∥/∂gi and ΛIMG = diag(π) − ππ⊤, with πc = exp(fc)/

∑
c′ exp(fc′ ),

ĝ⊤i ĥc =: fc. As estimating the Kronecker factors A and B over the training data set is infeasible, fol-
lowing prior work (Ritter et al., 2018), we leverage a subset of the data and include a pseudo-data count
τ to compensate for the reduced sample size. The posterior covariance over P is approximated as

ΣIMG = (τ(AIMG ⊗BIMG) + λI)
−1 ≈

(√
τ AIMG +

√
λ I
)−1

︸ ︷︷ ︸
Ã−1

IMG

⊗
(√

τ BIMG +
√
λ I
)−1

︸ ︷︷ ︸
B̃−1

IMG

. (6)

Note that the Kronecker factors A and B can be understood as model statistics under the training
data. After having the Gaussian posterior over P and Q, as Gaussians are closed under linear
transformations, the distribution over g (and h) can be obtained analytically:

p(g | D) = N
(
PMAPϕ(x

IMG),
(
ϕ(xIMG)⊤Ã−1IMGϕ(x

IMG)
)
B̃−1IMG

)
. (7)

Analogous results hold for the text projection Q and text embedding h, which we omit here for
brevity. See App. C.2.2 for detailed derivations, and Algorithm 1 outlines the steps described above.

Make predictions: Cosine similarities approximation Given a posterior distribution over the model
parameters, evaluating the VLM on an image-text pair yields random image and text embeddings

5
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rather than deterministic ones, inducing a distribution over their cosine similarity. While the cosine
similarity remains well-defined, it becomes a random variable and is generally not Gaussian. The
default prediction method, Monte Carlo estimation, requires costly sampling. To improve efficiency,
we propose ProbCosine, a Gaussian approximation of the cosine similarity distribution based on the
first two moments of the image and text embeddings.

Let the Gaussian distributions for the probabilistic image and text embeddings have means µg =
(µg,1, . . . , µg,d) and µh = (µh,1, . . . , µh,d), and diagonal covariances Σg = diag(σ2

g,1, . . . , σ
2
g,d)

and Σh = diag(σ2
h,1, . . . , σ

2
h,d). Given the cosine similarity SCOS(x,y) = x⊤y/∥x∥∥y∥ between two

vectors, the expected cosine similarity under the distribution of g and h is approximately:

E[SCOS(g,h)] ≈
∑d
i µg,iµh,i√∑

i µ
2
g,i + σ2

g,i

√∑
i µ

2
h,i + σ2

h,i

, (8)

where we use the fact that E[x2] = µ2
x+σ

2
x and E[∥x∥] ≤

√∑
i µ

2
x,i + σ2

x,i by applying the triangle

inequality. We can obtain the second moment (variance) Var[SCOS(g,h)] similarly, which is given as:

Var[SCOS(g,h)] =

∑
i σ

2
g,i(σ

2
h,i + µ2

h,i) + σ2
h,iµ

2
g,i∑

i µ
2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

. (9)

Henceforth, the local Gaussian approximation to the distribution over cosine similarities is:

p(SCOS(g,h)) ≈ N (E[SCOS(g,h)],Var[SCOS(g,h)]) . (10)

Finally, the predictive distribution p(y | x), e.g., in a zero-shot classification setting, is calculated
with the probit approximation (Ghosal et al., 2022; Gibbs, 1998). Hence, our approach allows for
the direct propagation of model uncertainties to the class conditional. As shown in Fig. 9 (App. F),
compared to ground truth, our approximation qualitatively results in a low approximation error. A
detailed derivation can be found in App. C.3, and Algorithm 2 outlines the steps described above.

3.3 APPLICATION: PROBABILISTIC ACTIVE FEW-SHOT LEARNING

Active learning (Ren et al., 2021; Settles, 2009) naturally evaluates uncertainty quality by selecting
informative samples via predictive uncertainties. We assess BayesVLM with Bayesian acquisition
functions and adaptive target-region selection. Given unseen test data Xtest = {x⋆i }

ntest
i=1 with unknown

labels, the goal is to choose a labeled subset {(xj , yj)}mj=1 with xj , yj ∼ p(x, y) that best reduces
label uncertainty on Xtest. We first bias selection toward the query-set predictive distribution, then
rank support candidates by influence or informativeness.

Target region selection Following Margatina et al. (2021); Hübotter et al. (2025), we first apply
k-NN in feature space to pre-select support candidates near the test data, focusing on training points
likely useful for the downstream task and reducing acquisition-function cost. Because features are
stochastic, we compute either the expected cosine similarity (Eq. (8)) or the 2-Wasserstein distance
between image-feature distributions. Details of the calculations are given in App. D.1.

Acquisition functions We consider the BALD (Gal et al., 2017) and EPIG (Bickford Smith et al.,
2023) scores as acquisition functions and assess their viability on downstream tasks. Both acquisition
functions can utilise model uncertainties estimated by the LA, but they differ conceptually in terms
of which uncertainties are targeted. See App. D.2 for details.

Online Laplace approximation We maintain a Laplace posterior over the image-projection matrix
P and update it online by (i) a gradient step on P and (ii) updating the Kronecker factors. The prior
precision can optionally be re-estimated after each step (Lin et al., 2023); see App. D.3.

4 EXPERIMENTS

We outline our setup and address three questions: (i) Uncertainty quantification: Does BayesVLM pro-
vide reliable uncertainty estimates? (ii) Active learning: Can we select informative data for fine-tuning
using BayesVLM uncertainty estimates? (iii) Efficiency and robustness: Does BayesVLM introduce

6
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Table 1: Does BayesVLM provide useful uncertainty estimates in zero-shot settings? Yes. With
the OpenCLIP ViT-B-32 model, our BayesVLM performs on par with CLIP and temp. scaling on
ACC (%) and NLPD, while being better calibrated according to the ECE.

Metrics Methods FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397

ACC ↑
CLIP (Radford et al., 2021) 68.99±0.5899 80.21±0.2507 93.61±0.2446 73.76±0.4399 74.52±0.5032 59.82±0.7971 67.18±0.3333

CLIP (temp. scaling) 68.99±0.5899 80.21±0.2507 93.61±0.2446 73.76±0.4399 74.52±0.5032 59.82±0.7971 67.18±0.3333

TTA (Farina et al., 2024) 68.87±0.5905 81.68±0.2435 88.54±0.3185 65.64±0.4749 78.29±0.4760 63.07±0.7847 68.58±0.3295

BayesVLM 68.87±0.4630 80.43±0.3968 93.62±0.2444 73.63±0.4406 74.45±0.4361 61.43±0.4868 66.96±0.4703

NLPD ↑
CLIP (Radford et al., 2021) 1.90±0.0486 0.70±0.0094 0.21±0.0079 0.97±0.0173 1.07±0.0237 1.59±0.0366 1.16±0.0131

CLIP (temp. scaling) 1.67±0.0373 0.69±0.0073 0.21±0.0061 0.94±0.0138 1.04±0.0191 1.46±0.0282 1.11±0.0100

TTA (Farina et al., 2024) 1.86±0.0475 0.67±0.0094 0.35±0.0092 1.26±0.0178 0.90±0.0210 1.50±0.0363 1.14±0.0131

BayesVLM 1.73±0.0320 0.68±0.0126 0.20±0.0067 0.95±0.0152 1.03±0.0177 1.44±0.0183 1.12±0.0155

ECE ↓
CLIP (Radford et al., 2021) 6.59 3.91 1.45 6.31 5.20 11.52 8.71
CLIP (temp. scaling) 5.51 4.74 1.88 3.07 4.80 3.61 2.67
TTA (Farina et al., 2024) 9.63 4.18 2.02 5.27 2.88 11.75 9.92
BayesVLM 4.22 1.69 0.72 1.92 1.78 3.57 2.06

Table 2: Can ProbCosine improve the zero-shot performance of pre-trained probabilistic
models? Yes. Applying ProbCosine (Ours) to PCME++ (Chun, 2024) consistently improves zero-
shot performance over its standard prediction (Mean) across classification benchmarks and metrics.

Metrics Methods FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397
Mean 40.59±0.0063 65.47±0.0030 75.16±0.0043 42.52±0.0049 42.87±0.0057 45.97±0.0035 28.50±0.0073ACC ↑ Ours 40.43±0.0063 65.54±0.0030 75.12±0.0043 42.60±0.0049 42.83±0.0057 46.00±0.0035 28.50±0.0073

Mean 3.22±0.0471 1.30±0.0125 0.77±0.0132 2.28±0.0216 2.77±0.0346 2.18±0.0169 3.83±0.0550NLPD ↓ Ours 3.04±0.0407 1.25±0.0109 0.75±0.0117 2.21±0.0193 2.59±0.0301 2.09±0.0146 3.50±0.0472

Mean 8.81 6.78 4.79 10.78 17.38 12.62 26.03ECE ↓ Ours 2.79 1.54 2.02 4.89 10.82 5.61 19.41

overhead during inference, does it work in closed-source data settings, and how sensitive is its perfor-
mance to key hyperparameters? Further setup details and additional results appear in Apps. E and F.

Data sets We evaluate zero-shot classification on FLOWERS-102 (Nilsback & Zisserman, 2008),
FOOD-101 (Bossard et al., 2014), CIFAR-10/100 (Krizhevsky & Hinton, 2009), IMAGENET-
R (Hendrycks et al., 2021), UCF101 (Soomro et al., 2012), and SUN397 (Xiao et al., 2010). For
active learning, we form a cross-domain setup with test data from a single domain and a training pool
spanning all domains, using OfficeHome (Venkateswara et al., 2017) (Art, Clipart, Product) and an
ImageNet variant with ImageNet-R and ImageNet-Sketch (Wang et al., 2019).

Network architectures In the zero-shot experiments, we used the OpenCLIP (Ilharco et al., 2021)
ViT-B-32 and ViT-L-14, and the SigLIP-B-16 model (Zhai et al., 2023). In the active learning
experiments, we use either CLIP-Huge and SigLIP-Base and fine-tune their projection layers.

Zero-shot baselines We compare with vanilla CLIP/SigLIP, CLIP/SigLIP with temperature scal-
ing (Guo et al., 2017; Nixon et al., 2019), and test-time augmentation (TTA) (Farina et al., 2024). Tem-
perature scaling uses the parameter minimising negative log predictive density (NLPD) (Quinonero-
Candela et al., 2005) on the ImageNet validation set (Deng et al., 2009). We also show ProbCo-
sine can pair with probabilistic VLMs trained from scratch, e.g., ProLIP (Chun et al., 2025) and
PCME++ (Chun, 2024). Our focus is on training-free uncertainty estimation, not methods requiring
extra adaptation (Upadhyay et al., 2023; Zhou et al., 2025).

Acquisition functions For active learning, we incorporate the uncertainties from BayesVLM into
the acquisition functions BALD and EPIG and compare against random and entropy-based selection.
Both BALD and EPIG use target region selection with nearest neighbour (NN), which selects a test
sample based on the uncertainty score, and then selects its 1-NN of the labelled training samples. We
also combine the random and entropy baselines with this targeted selection strategy.

Hyperparameter settings We estimated the Hessian with 327k image-text pairs (10 CLIP
mini-batches) from LAION-400M (Schuhmann et al., 2022), and used the same estimate across all ex-
periments. The pseudo-data count τ was selected via grid search to minimise NLPD on the ImageNet
validation set, and the prior precision λ was set by maximising the marginal likelihood (App. C.2).
The same hyperparameters were used for both zero-shot and active learning experiments.

Evaluation metrics For the zero-shot experiments, we report the mean and standard error of accuracy
(ACC), NLPD (Quinonero-Candela et al., 2005), and the expected calibration error (ECE) (Guo
et al., 2017) computed over the test set. We use a paired t-test with p = 0.05 to bold results with a
significant statistical difference. Active-learning results use class-weighted accuracy and NLPD.
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Figure 4: Can we select informative data for fine-tuning using BayesVLM uncertainty estimates?
Yes. On the OfficeHome data set (OH) and ImageNet variants (IN), when using uncertainty-based
scores (EPIG ( ) and BALD ( )) to select the fine-tuning data, we achieve better performance
compared with Entropy (targeted) ( ), Entropy ( ), Random selection (targeted) ( ) and
Random selection ( ). Thus, highlighting the benefits of using uncertainties from BayesVLM.

4.1 UNCERTAINTY QUANTIFICATION: DOES BAYESVLM PROVIDE RELIABLE ESTIMATES?

We first test the uncertainty estimates of BayesVLM in the zero-shot setting. In Table 1, we report the
zero-shot performance of the CLIP-base model using our post-hoc BayesVLM approach, alongside
baseline methods, with a focus on predictive quality and uncertainty calibration. Results for CLIP-
Large are provided in Table 9 (App. F.7). We observe that BayesVLM achieves similar ACC but lower
NLPD than the deterministic CLIP across all data sets, showing that BayesVLM is less overconfident
when predicting the incorrect class. BayesVLM performs similarly to temp. scaling on ACC and
NLPD, but outperforms all baselines on the ECE. Although TTA achieves higher ACC on some
benchmarks, BayesVLM is significantly better calibrated, which results in more useful uncertainty
estimates. We conclude that BayesVLM improves model calibration and uncertainty estimation
without compromising performance, indicating the effectiveness of our post-hoc strategy.

To test ProbCosine (Sec. 3.2), we applied it to probabilistic embeddings from the pre-trained VLMs
PCME++ (Chun, 2024) and ProLIP (Chun et al., 2025) (see Table 11). Zero-shot results for PCME++
(Table 2) show that PCME++ combined with ProbCosine keeps accuracy while consistently improving
calibration, indicating ProbCosine can improve any VLM with Gaussian embeddings.

4.2 ACTIVE LEARNING: CAN WE SELECT INFORMATIVE DATA USING BAYESVLM?

To further assess the utility of BayesVLM’s uncertainty estimates, we evaluate it in the active
learning setting. We consider a cross-domain setting where the unlabelled target data is from a single
domain while the labelled training samples are from multiple domains. The goal is to select the
most informative samples from the diverse pool for adapting to the target domain, given a maximum
budget (subset size) of support set samples. We experiment with the OfficeHome (Venkateswara
et al., 2017) (OH) dataset, where the domains are {Art, Clipart, Product}, and an ImageNet-variant
(IN) with domains {R, Sketch}. We incorporated the BayesVLM uncertainties into BALD and
EPIG and compared against random and entropy-based selection, either from (i) the full training pool
(Random, Entropy) or with (ii) selection from the test set followed by a 1-NN selection (targeted).

As shown in Fig. 4, both EPIG and BALD, with BayesVLM uncertainties for data selection, out-
perform Random and Entropy across various subset sizes and target domains. On OH-Product and
IN-Sketch, EPIG and BALD obtain similar weighted ACC as Entropy-targeted. However, EPIG
consistently achieves lower NLPD than Entropy-targeted, which shows that the finetuned model is
less overconfident on incorrect predictions when trained with samples selected using BayesVLM.
Similar conclusions can be observed for CLIP-Huge and SigLIP-Base (Figs. 12 and 13 in App. F).

In Fig. 2, we show the change in the predictive error (1−p(y = y∗ | x)) and the predictive uncertainty
(entropy) for BayesVLM before (zero-shot) and after active learning on EuroSAT (Helber et al.,
2019) using EPIG. We use 200 support points and compare against CLIP with entropy selection.
BayesVLM reduces overconfident predictions in the zero-shot setting (samples move (b)→ (a)), and
more effectively adapts to the new data set based on the support set (samples move to (c)).
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4.3 EFFICIENCY AND ROBUSTNESS: HOW EFFICIENT AND ROBUST IS BAYESVLM?

Following the protocol for zero-shot experiments, we assessed the performance of BayesVLM when
estimating the Hessian in settings where the training data is not available, an increasingly common
setting for modern machine learning models. In particular, we estimated the Hessian of BayesVLM
using the CC12M as a proxy dataset for CLIP models and used the LAION-400M dataset as a proxy
for Google’s SigLIP model. We find that BayesVLM provides robust uncertainty estimates for CLIP
even when estimated on the proxy dataset, cf., Table 3. Moreover, BayesVLM provides competitive
results for SigLIP, a VLM model trained on proprietary data (Table 10 in App. F.7), is robust w.r.t. the
pseudo-data count τ (App. F.8), and provides interpretable uncertainties under corruptions (App. F.6).

Table 3: Does BayesVLM work in closed-source data settings? Yes. With OpenCLIP ViT-B-32
trained on LAION-400M and BayesVLM estimated on the proxy dataset CC12M, we find that results
are robust and show only slight degradation; statistically significant differences are bold (p = 0.05).

Metrics Dataset FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397

ACC ↑ LAION-400M 68.87±0.4630 80.43±0.3968 93.62±0.2444 73.63±0.4406 74.45±0.4361 61.43±0.4868 66.96±0.4703

CC12M 68.12±0.4660 80.35±0.3974 93.57±0.2453 73.78±0.4398 74.32±0.4369 61.46±0.4867 66.81±0.4709

NLPD ↓ LAION-400M 1.73±0.0320 0.68±0.0126 0.20±0.0067 0.95±0.0152 1.03±0.0177 1.44±0.0183 1.12±0.0155

CC12M 1.77±0.0330 0.68±0.0129 0.20±0.0067 0.95±0.0152 1.03±0.0180 1.44±0.0185 1.13±0.0162

ECE ↓ LAION-400M 4.22 1.69 0.72 1.92 1.78 3.77 2.06
CC12M 3.84 0.99 0.70 1.43 1.39 3.83 3.89

Computational overhead Compared to the deterministic CLIP, BayesVLM adds under 5% runtime
for CLIP-base and less than 1% for huge models (Table 7 in App. F.5). Inference cost rises only
0.11% GFLOPs for CLIP-base, whereas TTA needs an 80× increase, see Table 8 in App. F.5.

Number of data points for Hessian estimation We evaluated how the number of samples affects
Hessian estimation by computing the trace over 10 random subsets of LAION-400M. As shown in
Fig. 10 (App. F.4), the traces for both image and text projections quickly converge with low variance,
suggesting that 10 mini-batches are sufficient for a stable estimate.

1×K 2×K 3×K 4×K 5×K

0.
98

1.
00

1.
02

# Datapoints (i×K)

t
r
(
B

i
×

K
)

t
r
(
B

5
×

K
)

Figure 5: Relative trace of the image Hessian
B-factor for varying base batch sizes K (2048
( ), 8192 ( ), 32768 ( )) and 1–5 random
batches. Error bars show ±1 std over five trials.

Number of negative samples We vary the
batch size K∈{32768, 8192, 2048} and estimate
the posterior from 1–5 random batches, report-
ing mean±std over five trials. Since the poste-
rior depends on negative samples only via the
Hessian B (cf. Eq. (5)), we show the relative
trace tr(Bi×K)/ tr(B5×K), which is expected
to be one. As observed in Figure 5 and Fig. 15
(App. F.9), a base batch size of 32768 stays near
1 across all batches with minimal variance, indi-
cating stable estimates of the Hessian.

5 CONCLUSION

In this work, we introduced a novel approach for post-hoc uncertainty estimation and propagation
for large-scale vision language models (VLMs) such as CLIP (Radford et al., 2021) and SigLIP (Zhai
et al., 2023). For this, we first formulated probabilistic models admissible to a Bayesian treatment and
then utilised a post-hoc posterior approximation over the last layer of each encoder. Moreover, we
derived an analytic approximation of the distribution over cosine similarities for efficient uncertainty
propagation. Thus, our approach allows efficient and effective uncertainty quantification without any
architectural changes or additional training. We demonstrated the effectiveness of BayesVLM in zero-
shot and active learning settings, showing improvements over baselines, and additionally assessed
its robustness and efficiency, showing BayesVLM is a valuable tool for reliable application of VLMs.

Limitations The limitations of our approach are (i) we need access to training data to estimate the
Hessian, (ii) we require that embeddings are Gaussian distributed, (iii) and our method only utilises
Bayesian projection layers. As the training data is closed-source for many VLMs, we also assessed
potential performance degradation when estimating the Hessian on proxy data sets and found that
BayesVLM provides robust estimates. However, further research is needed in closed-source settings.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our paper, we have provided detailed information on our method and
experimental setups. We will discuss the respective details below.

BayesVLM method & algorithms In addition to the details presented in the main text (Sec. 3),
we provided detailed derivations in App. C of (i) the likelihood function approximation in App. C.1,
(ii) the Laplace approximation used in our method in App. C.2, and (iii) the distribution over cosine
similarities in App. C.3. Moreover, we provided algorithmic descriptions of our method in Algorithm 1
and in Algorithm 2, outlining details on the precomputation of BayesVLM and the forward inference.
Lastly, we presented detailed descriptions of the active learning algorithm used in our work in App. D
and provided specific details on (i) the targeted selection algorithm in App. D.1, (ii) the acquisition
functions used in this work in App. D.2, and (iii) the online Laplace updates in App. D.3.

Experiments In addition to the details provided in the main text in 4, we provided extensive
additional information in App. E. Specifically, we (i) detail information on the pre-trained models used
in this work in App. E.1, (ii) present detailed information on the Hessian estimation and respective
hyper-parameters in App. E.2 and in App. E.3, and (iii) present details on the hyperparameters and
setup of the active learning experiments in App. E.4. We also presented additional experiments and
experimental results that extend beyond those presented in the main text in App. F.

Implementation For reference, we have provided a reference implementation of BayesVLM in the
supplement, which will be made open-access on GitHub upon publication acceptance.
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classification and preference learning. arXiv preprint arXiv:1112.5745, 2011. 3, 17, 29
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Pablo Morales-Álvarez, Stergios Christodoulidis, Maria Vakalopoulou, Pablo Piantanida, and Jose
Dolz. Bayesadapter: enhanced uncertainty estimation in clip few-shot adaptation. arXiv preprint
arXiv:2412.09718, 2024. 16

Andrei Neculai, Yanbei Chen, and Zeynep Akata. Probabilistic compositional embeddings for
multimodal image retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 4547–4557, 2022. 16

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of
classes. In Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729.
IEEE, 2008. 7

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measuring
calibration in deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, volume 2, 2019. 7

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018. 3, 17

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
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APPENDIX

The appendix is structured as follow. App. A introduces notation used throughout the paper. App. B
gives the background for Vision-language model and Laplace approximation. App. C gives the
derivation for the posterior estimation and efficient computation for distribution over cosine similarity.
App. D introduces the setup for active learning. App. E gives the setup for the experiment and
additional experiment results are given in App. F.

Use of Large Language Models In this paper, LLMs were used only for minor grammatical edits,
word polishing, or rephrasing. They did not contribute to research ideation, experiments, or core
writing. All suggestions from LLMs were manually verified and edited by the authors prior to final
inclusion.

A NOTATION

We will briefly summarise the notation used throughout the paper. See Table 4 for the modality-
specific notation used and Table 5 for an overview of the notation of general operands and operators.

Table 4: Summary of modality-specific notation.

Description Image Text

Input xIMG xTXT

Encoder ϕ(·) ψ(·)
Projection matrix P Q
Embedding g h

Normalised embedding ĝ ĥ
Stacked embeddings G H
Kronecker factors AIMG,BIMG ATXT,BTXT

Covariance matrix ΣIMG ΣTXT

Jacobian matrix JIMG JTXT

Table 5: Summary of general notation.

Description Notation

Number of data points n
Number of test data points ntest
Number of support set points m
Kronecker product ⊗
Prior precision λ
Pseudo-data count τ

B BACKGROUND

This section provides additional background information and an extended discussion of related work.

B.1 EXTENDED RELATED WORK

Uncertainty in vision-language models Many efforts have aimed to learn probabilistic embeddings
by making architectural changes to the VLMs and pre-training with a probabilistic loss (Chun,
2024; Chun et al., 2025; 2021; Ji et al., 2023; Li et al., 2022; Neculai et al., 2022). To reduce
training costs, several works have proposed enabling uncertainty estimation in pre-trained VLMs
via additional training of adapters (Morales-Álvarez et al., 2024; Upadhyay et al., 2023; Lafon
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et al., 2025), learning distributions of prompts (Cho et al., 2024; Lu et al., 2022; Yang et al., 2024),
model ensembles (Miao et al., 2024), or test-time adaptation (Zhou et al., 2025). These works use
a proxy data set different from the pre-training set to learn the predictive uncertainties. Test-time
augmentation is a training-free method used for obtaining input-dependent predictive uncertainties
by augmenting the test input (Ayhan & Berens, 2018; Farina et al., 2024; Shanmugam et al., 2021),
which trades off simplicity against higher inference costs. Other recent training-free approaches focus
on zero-shot out-of-distribution detection in CLIP (Fu et al., 2025) or estimating the distribution
on the hypersphere as a von-Mises Fisher distribution (Ju et al., 2025). Moreover, calibration of
VLMs has been studied for mitigating overconfident predictions (Tu et al., 2023; 2024; Yoon et al.,
2024) where temperature scaling is a common post-hoc method for calibrating pre-trained models
using a held-out validation set (Galil et al., 2023; Guo et al., 2017). Here, we apply the Laplace
approximation to estimate uncertainties directly from the pre-trained VLM without the need for
additional training, architectural changes, or training from scratch. Similar to the recent approach by
(Ju et al., 2025) we additionally estimate uncertainties over the Our approach estimates a Bayesian
posterior distribution with the pre-training data or a proxy data set before test time and has a similar
inference speed to the pre-trained VLM.

Active learning In active learning (Ren et al., 2021; Settles, 2009), the model determines through
an acquisition function which additional data points are needed to make reliable predictions on a
given downstream task. The acquisition function quantifies the informativeness of samples using
entropy (Holub et al., 2008; Safaei & Patel, 2025; Wang & Shang, 2014) or diversity-based scores (Ash
et al., 2020; Agarwal et al., 2020), coresets (Sener & Savarese, 2018), and parametric models (Sinha
et al., 2019; Xie et al., 2023). Here, we focus on acquisition functions utilising model uncertainties
from Bayesian active learning (Bickford Smith et al., 2023; Gal et al., 2017; Houlsby et al., 2011).
A popular method is the BALD score (Gal et al., 2017; Houlsby et al., 2011), which measures the
reduction in epistemic uncertainties of the model. More recently, EPIG was proposed to measure
the information gain in the space of predictions rather than parameters (Bickford Smith et al., 2023),
building on MacKay’s foundational work on information-theoretic experimental design (MacKay,
1992). While such acquisition functions have gained traction in large language models (Hübotter
et al., 2025), they remain underexplored in VLMs, where ad-hoc strategies like prompt tuning (Bang
et al., 2024) are more prevalent. This work bridges this gap by adapting Bayesian active learning
methods to VLMs.

B.2 LANGUAGE-IMAGE PRE-TRAINING

We consider VLMs trained by minimising the InfoNCE loss (Oord et al., 2018) (e.g., CLIP (Radford
et al., 2021)) or the SigLIP loss (Zhai et al., 2023). Specifically, the InfoNCE loss is defined as the
sum of two cross-entropy terms, one for each relational direction—image to text (LCE(X

IMG,XTXT))
and text to image (LCE(X

TXT,X IMG)). The total loss is defined as follows LInfoNCE(X
IMG,XTXT) =

− 1

2n

n∑
i=1

log
exp(tĝ⊤i ĥi)∑n
j=1 exp(tĝ

⊤
i ĥj)︸ ︷︷ ︸

IMG→TXT,LCE(X IMG,XTXT)

− 1

2n

n∑
i=1

log
exp(tĥ⊤i ĝi)∑n
j=1 exp(tĥ

⊤
i ĝj)︸ ︷︷ ︸

IMG←TXT,LCE(XTXT,X IMG)

, (11)

where t is a learnable temperature parameter, n denotes the number of image-text pairs, and ĝ and ĥ
are the unit-length normalised embeddings. This contrastive loss function encourages embeddings
for matching image-text pairs to be similar while simultaneously pushing unrelated image-text pairs
away from each other (Oord et al., 2018).

Recently, the SigLIP loss (Zhai et al., 2023) has been proposed as an alternative to the InfoNCE loss,
aimed at improving numerical stability and training speed. In contrast to InfoNCE, the SigLIP loss
uses a binary classification loss over the cosine similarities, i.e., LSigLIP(X

IMG,XTXT) =

− 1

n

n∑
i=1

n∑
j=1

log
1

1 + exp(zij(−tĝ⊤i ĥj + b))
, (12)

where zii = 1, zij = −1 if i ̸= j and b is a learnable bias term. For classification settings, the
SigLIP loss does not provide normalised class conditional probabilities p(y | x) but provides binary
classification probabilities. Henceforth, when fine-tuning a SigLIP pre-trained VLM for classification
tasks, one typically uses the cross-entropy loss instead.
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B.3 LAPLACE APPROXIMATION

Given a data set D = {(xi,yi)}ni=1 and denote the model parameters as θ, in Bayesian deep learning
we aim to estimate the posterior distribution

p(θ | D) =
p(θ)

∏n
i=1 p(yi | xi,θ)∫

θ
p(θ)

∏n
i=1 p(yi | xi,θ)dθ

(13)

=
prior × likelihood

marginal likelihood
.

Unfortunately, computing the denominator (marginal likelihood) is generally intractable (not feasible)
as it requires integration over a high-dimensional space w.r.t. a potentially non-linear function. A
classical approach to circumvent this challenge is to approximate the posterior using a Laplace
approximation MacKay (1992), which has recently gained traction in the Bayesian deep learning
community Ritter et al. (2018); Daxberger et al. (2021); Li et al. (2025); Meronen et al. (2024); Roy
et al. (2022); Scannell et al. (2024).

The Laplace approximation hinges on the idea that the posterior distribution is proportional to the
joint, i.e.,

p(θ | D) ∝ p(θ,D) = p(θ)

n∏
i=1

p(yi | xi,θ) (14)

up to an unknown normalisation constant (the marginal likelihood). Moreover, using a second-order
Taylor expansion of the log joint around the maximum-a-posteriori (MAP) estimate θMAP (mode of
the function) one obtains the unnormalised log density function of a Gaussian centred at θMAP, i.e.,
log p(θ,D) ≈

log p(θMAP,D)−
1

2
(θ − θMAP)

⊤Σ−1(θ − θMAP), (15)

where

Σ =
(
−∇2

θ log p(θ,D)|θ=θMAP

)−1 =
(
−∇2

θ log p(D | θ)|θ=θMAP −∇2
θ log p(θ)|θ=θMAP

)−1
(16)

is the Hessian matrix of the log joint (prior × likelihood) at θMAP. By matching the marginal likeli-
hood in Eq. (2) with the normalisation constant of a Gaussian, we obtain the Laplace approximation:

p(θ | D) ≈ N (θMAP,Σ
−1), (17)

with covariance given by the inverse of the Hessian matrix.

As LA fits a Gaussian distribution to the posterior, centred at the MAP estimate of a pre-trained model,
it is ‘post-hoc’. The prior is implicitly defined by the L2 regularisation (weight decay) commonly
used during training Radford et al. (2021); Zhai et al. (2023), and corresponds to a diagonal Gaussian
prior on the parameters, i.e., p(θ) = N (0, λ−1I). The likelihood is defined by the training loss.

C DERIVATIONS

This section provides detailed derivations of the equations presented in the main text. App. C.1
discusses the setting where the i.i.d. assumption is not made and the challenges associated with it.
App. C.2 discusses the i.i.d. assumption, the resulting probabilistic model, and the derivations for
estimating the posterior. App. C.3 covers the derivations for efficient prediction, i.e., the distribution
over cosine similarities.

C.1 WHAT HAPPENS WITHOUT THE I.I.D. ASSUMPTION

In this section, we derive the Laplace approximation when we don’t make the i.i.d. assumption.
We will show this results in multiple computationally expensive or infeasible terms in the posterior
covariance, and the posterior obtained by our i.i.d. assumption keeps the computationally feasible
term.
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Algorithm 1 Turn VLM into BayesVLM

1: Input: VLM encoders {IMG, TXT}, train-
ing data D

2: for each encoder ENC ∈ {IMG, TXT} do
3: Compute AENC factor with Eq. (48)
4: Compute BENC factor with Eq. (49)
5: end for
6: Find λ by maximising the marginal likeli-

hood (Eq. (78))
7: (Optional) Find optimal τ or set τ = 1
8: for each encoder ENC ∈ {IMG, TXT} do
9: Update ÃENC ←

√
τ AENC +

√
λ I

10: Update B̃ENC ←
√
τ BENC +

√
λ I

11: end for
12: Return: {(ÃIMG, B̃IMG), (ÃTXT, B̃TXT)}

Algorithm 2 Compute Predictions

1: Input: BayesVLM, (xIMG, xTXT)

Compute embeddings using Eq. (7), i.e.,
2: µg ← PMAP ϕ(xIMG)

3: Σg ←
(
ϕ(xIMG)⊤Ã−1IMGϕ(x

IMG)
)
B̃−1IMG

4: µh ← QMAP ψ(xTXT)

5: Σh ←
(
ψ(xTXT)⊤Ã−1TXTψ(x

TXT)
)
B̃−1TXT

Apply ProbCosine, i.e.,
6: Compute E[SCOS(g,h)] with Eq. (8)
7: Compute Var[SCOS(g,h)] with Eq. (9)

Apply probit approximation (Gibbs, 1998),
i.e.,

8: Return: softmax

(
tE[SCOS(g,h)]√

1+π/8∗t2 Var[SCOS(g,h)]

)

We start by reformulating the InfoNCE loss. Given a dataset with n image-text pairs (xIMG
i ,xTXT

i ),
the InfoNCE loss is defined as LInfoNCE(X

IMG,XTXT) =

− 1

2n

n∑
i=1

log
exp(tĝ⊤i ĥi)∑n
j=1 exp(tĝ

⊤
i ĥj)︸ ︷︷ ︸

LIMG
CE (X IMG,XTXT)

− 1

2n

n∑
i=1

log
exp(tĥ⊤i ĝi)∑n
j=1 exp(tĥ

⊤
i ĝj)︸ ︷︷ ︸

LTXT
CE (XTXT,X IMG)

, (18)

where t is a learnable temperature parameter, ĝ and ĥ are the unit-length normalised image and
text embeddings. Evaluating this loss in practice is infeasible on billions of data points. Therefore,
the common practice adopted in VLMs, such as CLIP, is to evaluate it on a sufficiently large batch.
Specifically, denote a batch of image-text pairs as B = {X IMG

B ,X IMG
B }. Then the InfoNCE loss over

the whole data set is approximated by:

LInfoNCE(X
IMG,XTXT) ≈

∑
B
LInfoNCE(X

IMG
B ,XTXT

B ). (19)

For each batch, we can view the InfoNCE loss as two separate classification losses, one over image
inputs and the other over text inputs. To avoid clutter, we drop the temperature parameter from now
on. Looking at the loss for the image inputs LIMG

CE (X IMG
B ,XTXT

B ), we can reformulate it as follows:

LIMG
CE (X IMG

B ,XTXT
B ) = − 1

2|B|

|B|∑
i=1

log
exp(ĝ⊤i ĥi)∑|B|
j=1 exp(ĝ

⊤
i ĥj)

(20)

= − 1

2|B|

|B|∑
i=1

log
[
softmax

([
ĝ⊤i ĥ1, ĝ

⊤
i ĥ2, . . . , ĝ

⊤
i ĥ|B|

])]
i

(21)

= − 1

2|B|

|B|∑
i=1

log
[
softmax

(
Ĥĝi

)]
i
, (22)

where [softmax(z)]i ≜
exp(zi)∑
j exp(zj)

is the i-th output of softmax function. We can see that the loss is

equivalent to the cross-entropy loss on the following model, where label yIMG
i is a one-hot encoded

vector with i-th element equal to one,

xIMG
i ĝi =

Pϕ(xIMG
i )

∥Pϕ(xIMG
i )∥

Image encoder ϕ(·) and

image projection layer P
Ĥĝi.

use text embeddings Ĥ

to compute logit
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Similarly, the text loss LTXT
CE (XTXT,X IMG) can be viewed as cross-entropy loss on the following

model where label yTXT
i is a one-hot encoded vector with i-th element equal to one,

xTXT
i ĥi =

Qψ(xTXT
i )

∥Qψ(xTXT
i )∥

Text encoder ψ(·) and

text projection layer Q
Ĝĥi.

use image embeddings Ĝ

to compute logit

Under this view, VLMs trained with the InfoNCE loss can be viewed as using the following equivalent
model and loss:

f(xIMG
i ,xTXT

i |X IMG
\i ,XTXT

\i ,θ) =
[
Ĥĝi, Ĝĥi

]
, (23)

ℓIMG,TXT
i = − log[softmax

(
Ĥĝi

)
]i︸ ︷︷ ︸

ℓIMG
i

− log[softmax
(
Ĝĥi

)
]i︸ ︷︷ ︸

ℓTXT
i

(24)

LIMG
CE (X IMG

|B| ,X
TXT
|B| ) =

1

2|B|

|B|∑
i=1

ℓIMG,TXT
i . (25)

Because data is only conditionally independent in this model, i.e.,

(xIMG
i ,xTXT

i ) ∼ p(xIMG
i ,xTXT

i |X IMG
\i ,XTXT

\i ,θ), (26)

the usual i.i.d. assumption made in Bayesian models is violated. Note that performing Bayesian
inference over non-i.i.d. data in general settings is an active research field (Ralaivola et al., 2009).
Nevertheless, we can still consider applying the Laplace approximation in this case. Crucially, note
that Laplace approximation is derived through a second-order Taylor approximation of the negative
log joint − log p(D | θ)p(θ), which only requires the negative log joint to be a twice-differentiable
function. Therefore, we can still consider the Laplace for local posterior approximation at the
MAP estimation. The interpretation of the underlying probabilistic model, however, may be more
challenging in those cases.

We will now derive the negative log likelihood Hessian for the image projection layer P . Define
shorthand fP ,Q(xi) = f(xIMG

i ,xTXT
i | X IMG

\i ,XTXT
\i ,θ), the GGN approximation for the Hessian

over image projection layer P is given as

∂2ℓIMG,TXT
i

∂2P
≈ ∂fP ,Q(xi)

∂P

⊤
∂2ℓi

∂2fP ,Q(xi)

∂fP ,Q(xi)

∂P
, (27)

where

∂fP ,Q(xi)

∂P

⊤
=

[(
∂Ĥĝi
∂P

)⊤ (
∂Ĝĥi
∂P

)⊤]
, (28)

∂2ℓIMG,TXT
i

∂2fP ,Q(xi)
=


∂2ℓIMG,TXT

i

∂2Ĥĝi

∂2ℓIMG,TXT
i

∂Ĥĝi∂Ĝĥi

∂2ℓIMG,TXT
i

∂Ĝĥi∂Ĥĝi

∂2ℓIMG,TXT
i

∂2Ĝĥi
.

 (29)
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When writing out the matrix multiplication, we have:

∂2ℓIMG,TXT
i

∂2P
≈ ∂fP ,Q(xi)

∂P

⊤
∂2ℓi

∂2fP ,Q(xi)

∂fP ,Q(xi)

∂P
(30)

=

(
∂Ĥĝi
∂P

)⊤
︸ ︷︷ ︸

Rd×|B|

∂2ℓIMG
i

∂2Ĥĝi︸ ︷︷ ︸
R|B|×|B|

∂Ĥĝi
∂P

(31)

+

(
∂Ĥĝi
∂P

)⊤
∂2ℓTXT

i

∂2Ĥĝi

∂Ĥĝi
∂P

+

(
∂Ĝĥi
∂P

)⊤
∂2ℓIMG,TXT

i

∂Ĝĥi∂Ĥĝi

∂Ĥĝi
∂P

(32)

+

(
∂Ĥĝi
∂P

)⊤
∂2ℓIMG,TXT

i

∂Ĥĝi∂Ĝĥi

∂Ĝĥi
∂P

+

(
∂Ĝĥi
∂P

)⊤
∂2ℓIMG,TXT

i

∂2Ĝĥi

∂Ĝĥi
∂P

(33)

Here only the the first term
(
∂Ĥĝi

∂P

)⊤
∂2ℓIMG

i

∂2Ĥĝi

∂Ĥĝi

∂P can be computed efficiently while terms in red
are intractable or computationally expensive. The approximated posterior for P obtained in our
BayesVLM corresponds to dropping the computationally expensive or infeasible terms in the exact
model.

C.2 ESTIMATING THE POSTERIOR FOR BAYESVLM WITH LAPLACE APPROXIMATION

We now introduce the procedure for estimating the posterior of BayesVLM using the Laplace
approximation in this section. We start by introducing the i.i.d. assumption we made and the resulting
probabilistic model for BayesVLM in App. C.2.1. Then, we give the derivation for the posterior
approximation for BayesVLM in App. C.2.2.

C.2.1 I.I.D. ASSUMPTION AND THE RESULTING PROBABILISTIC MODEL

To efficiently estimate the approximated posterior using the Laplace approximation and obtain a clear
probabilistic model underlying it, we assume two independent probabilistic models, one for each
modality. Specifically, for each modality, we assume data are i.i.d. given the observations from the
other modality:

xIMG
i

i.i.d.∼ p(xIMG
i |XTXT,θ), xTXT

i
i.i.d.∼ p(xTXT

i |X IMG,θ). (i.i.d. assumption)

Following this assumption, the image encoder ϕ(·) and text encoder ψ(·) will become independent,
and image projection layer P and text projection layer Q will become independent as well:

ϕ(·) ⊥⊥ ψ(·), P ⊥⊥ Q. (Consequence from i.i.d. assumption)

Under these assumptions, we can untangle the interaction between two modalities and approximate
their respective likelihoods as categorical distributions.

When the modalities become independent, for image input xIMG
i we can only look at the image loss

defined as

LIMG
CE (X IMG

B ,XTXT
B ) = − 1

2|B|

|B|∑
i=1

log
exp(ĝ⊤i ĥi)∑|B|
j=1 exp(ĝ

⊤
i ĥj)

(34)

= − 1

2|B|

|B|∑
i=1

log
[
softmax

([
ĝ⊤i ĥ1, ĝ

⊤
i ĥ2, . . . , ĝ

⊤
i ĥ|B|

])]
i

(35)

= − 1

2|B|

|B|∑
i=1

log
[
softmax

(
Ĥĝi

)]
i
, (36)

where [softmax(z)]i ≜
exp(zi)∑
j exp(zj)

is the i-th output of softmax function. This corresponds to the

cross-entropy loss on the following model, where label yIMG
i is a one-hot encoded vector with i-th

element equal to one,
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xIMG
i ĝi =

Pϕ(xIMG
i )

∥Pϕ(xIMG
i )∥

Image encoder ϕ(·) and

image projection layer P
Ĥĝi.

given text embeddings Ĥ

compute logit

Therefore, for image input, the corresponding model is

f(xIMG
i |XTXT,θ) = Ĥĝi, (37)

with the corresponding log likelihood

log p(X IMG |XTXT,θ) = log

n∏
i=1

p(xIMG
i |XTXT,θ) (38)

= log

n∏
i=1

[
softmax

(
Ĥĝi

)]
i
. (39)

Similarly, for text input, the corresponding model is

f(xTXT
i |X IMG,θ) = Ĝĥi, (40)

with the corresponding log likelihood

log p(XTXT |X IMG,θ) = log

n∏
i=1

p(xTXT
i |X IMG,θ) (41)

= log

n∏
i=1

[
softmax

(
Ĝĥi

)]
i
. (42)

Why is this still a reasonable approximation? For VLMs, it is important to capture interactions
between modalities, and assuming independence seems problematic at first. However, as we are
using a local post-hoc posterior estimation through the Laplace approximation, we are effectively
introducing an independence conditionally on the MAP estimate of the (joint) contrastive loss. Thus,
crucially, even though we assume independence between modalities, we can still capture interactions
between modalities. Note that this assumption is also important for computational reasons, as it helps
us derive a computationally efficient approach.

C.2.2 POSTERIOR APPROXIMATION WITH LA

Now that we have a well-defined probabilistic model and likelihood, we apply Laplace approximation
on it.

Why only treat P and Q probabilistically In the Laplace approximation, for the posterior
covariance, we need to compute the Hessian of the log likelihood. This is computationally infeasible
for large models and large datasets, and a common approximation is Generalised Gauss–Newton
(GGN) approximation (Schraudolph, 2002). Use shorthand fθ(x) for the model and denote the log
likelihood as ℓ(y, fθ(x)), the GGN approximates to the Hessian is given by

∇2
θℓ(y, fθ(x)) ≈ GGN(θ) ≜

∂fθ(x)

∂θ

⊤
∂2ℓ(y, fθ(x))

∂fθ(x)2
∂fθ(x)

∂θ
(43)

Note that in GGN approximation, we need to compute the Jacobian of the model output w.r.t. to
the model parameters ∂fθ(x)

∂θ . This is computationally infeasible for image and text encoders due
to the large number of output dimensions. For image projection and text projection, this challenge
can be bypassed as the Jacobian can be obtained analytically. Therefore, we treat the vision and
image encoder as fixed and apply the Laplace approximation only for the image projection and text
projection P and Q.

KFAC GGN approximation to Hessian To estimate the Hessian of the log likelihood for P and
Q, we use Kronecker-factored approximate curvature (KFAC), which expresses the Hessian as a
Kronecker product of two smaller matrices. This significantly reduces computational and memory
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costs while preserving a richer posterior structure than diagonal approximations. Following (Ritter
et al., 2018), the KFAC GGN approximation for −∇2

P log p(X IMG |XTXT,P ) is(
1√
n

n∑
i=1

ϕ(xIMG
i )ϕ(xTXT

i )
⊤
)

︸ ︷︷ ︸
AIMG

⊗

(
1√
n

n∑
i=1

JIMG(x
IMG
i )⊤ΛIMG JIMG(x

IMG
i )

)
︸ ︷︷ ︸

BIMG

, (44)

and the KFAC GGN approximation for −∇2
Q log p(D | Q) is

(
1√
n

n∑
i=1

ψ(xTXT
i )ψ(xTXT

i )
⊤
)

︸ ︷︷ ︸
ATXT

⊗

(
1√
n

n∑
i=1

JTXT(x
TXT
i )⊤ΛTXT JTXT(x

TXT
i )

)
︸ ︷︷ ︸

BTXT

, (45)

where JIMG(x
IMG
i ) =

∂Ĥ
gi

∥gi∥
∂gi

and ΛIMG = diag(π)− ππ⊤, with πc =
exp(fc)∑
c′ exp(fc′ )

, ĝ⊤i ĥc =: fc.

As estimating the Kronecker factors over billions of data is computationally infeasible, following
(Ritter et al., 2018), we leverage a subset of the data and include a pseudo-data count τ to compensate
for the reduced sample size. Putting everything together, the posterior covariance over P and Q are
approximated as

ΣIMG = (τ(AIMG ⊗BIMG) + λI)
−1 ≈

(√
τ AIMG +

√
λ I
)−1

︸ ︷︷ ︸
Ã−1

IMG

⊗
(√

τ BIMG +
√
λ I
)−1

︸ ︷︷ ︸
B̃−1

IMG

, (46)

ΣTXT = (τ(ATXT ⊗BTXT) + λI)
−1 ≈

(√
τ ATXT +

√
λ I
)−1

︸ ︷︷ ︸
Ã−1

TXT

⊗
(√

τ BTXT +
√
λ I
)−1

︸ ︷︷ ︸
B̃−1

TXT

, (47)

where the respective factors are given as:

AIMG =
1√
n

n∑
i=1

ϕ(xIMG
i )ϕ(xIMG

i )⊤

ATXT =
1√
n

n∑
i=1

ψ(xTXT
i )ψ(xTXT

i )⊤, (48)

BIMG =
1√
n

n∑
i=1

JIMG(x
IMG
i )⊤ΛIMG JIMG(x

IMG
i )

BTXT =
1√
n

n∑
i=1

JTXT(x
TXT
i )⊤ΛTXT JTXT(x

TXT
i ), (49)

Jacobian computation Here we derive the Jacobians JIMG(x
IMG
i ) and JTXT(x

TXT
i ) used in the KFAC

GGN approximation.

Recall ĝi and ĥj denote the normalized image and text embedding, respectively. Let Ĥ denote the
matrix of normalized text embeddings with ĥj as its columns and Ĝ the matrix of normalized image
embeddings with ĝi as its columns. Then, for the InfoNCE likelihood, which depends on the dot
product between the normalised embedding in the batch, we compute the Jacobian for the image
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encoder as follows:

J InfoNCE
IMG (xIMG

i ) =
∂Ĥĝi
∂gi

(50)

= Ĥ
∂

∂gi

gi
∥gi∥

(51)

= Ĥ
∥gi∥ − gi

∂∥gi∥
∂gi

∥gi∥2
(52)

= Ĥ
∥gi∥ − gig

⊤
i

∥gi∥

∥gi∥2
(53)

= Ĥ

(
1

∥gi∥
− gig

⊤
i

∥gi∥3

)
. (54)

Analogously we obtain the Jacobian for the text encoder given as:

J InfoNCE
TXT (xTXT

i ) = Ĝ

(
1

∥hi∥
− hih

⊤
i

∥hi∥3

)
. (55)

For SigLIP, we obtain the following Jacobians:

JSigLIP
IMG (xIMG

i ) =
∂ĝi
∂gi

=

(
1

∥gi∥
− gig

⊤
i

∥gi∥3

)
, (56)

and

JSigLIP
TXT (xTXT

i ) =
∂ĥi
∂hi

=

(
1

∥hi∥
− hih

⊤
i

∥hi∥3

)
. (57)

Hessian of likelihood w.r.t. model output computation Here we derive the loss Hessian w.r.t.
model output ΛIMG and ΛTXT. For InfoNCE loss used in CLIP, the zero-shot classifier induced
computes unnormalised logits for each class c, represented by ĝ⊤i ĥc =: fc. By applying the softmax
function, we calculate the probabilities for each class c as πc =

exp(fc)∑
c′ exp(fc′ )

. The likelihood Hessian
of the cross-entropy loss for this classifier is represented by

ΛInfoNCE
IMG = diag(π)− ππ⊤. (58)

Similarly, the likelihood Hessian for the text encoder follows analogous principles in the text-to-
image direction. For a more detailed derivation of the likelihood Hessian, we refer to (Rasmussen
& Williams, 2006, Ch. 3.5). Rearranging terms in the analytical expression for J⊤IMGΛ

InfoNCE
IMG JIMG

facilitates space-efficient computation of the GGN approximation.

The SigLIP loss is defined as follows

LSigLIP(X
IMG,XTXT) (59)

= − 1

n

n∑
i=1

n∑
j=1

log
1

1 + exp(−zij(tĝ⊤i ĥj + b))
(60)

=
1

n

n∑
i=1

n∑
j=1

− log σ(aij)︸ ︷︷ ︸
:=ℓ(ĝi,ĥj)

, (61)

where σ(a) = 1
1+e−a denotes the sigmoid function, and aij := zij(tĝ

⊤
i ĥj + b), with labels zij ∈

{−1, 1}, a learnable temperature scaling parameter t, and a learnable bias b.
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In order to derive the loss Hessian ΛSigLIP, we first derive the component-wise loss gradient of ℓ:
∂

∂ĝk
ℓ(ĝi, ĥj)

i ̸=k
= 0 (62)

∂

∂ĝk
ℓ(ĝi, ĥj)

i=k
=

∂

∂ĝk
− log σ(aij) (63)

= − 1

σ(aij)

∂σ(aij)

∂aij

∂aij
∂ĝi

(64)

= (σ(aij)− 1) zijtĥj , (65)
which we utilise to derive the component-wise loss Hessian

∂2

∂ĝk∂ĝ⊤k
ℓ(ĝi, ĥj)

i ̸=k
= 0 (66)

∂2

∂ĝk∂ĝ⊤k
ℓ(ĝi, ĥj) (67)

i=k
=

∂

∂ĝ⊤k

(
σ(aij)zijtĥj − zijtĥj

)
(68)

= zijtĥk
∂σ(aij)

∂aij

∂aij
∂ĝ⊤k

(69)

= t2σ(aij) (1− σ(aij)) ĥjĥ⊤j . (70)
Finally, the likelihood Hessian for the SigLIP loss LSigLIP can be expressed as

ΛSigLIP
IMG =

∂2

∂ĝi∂ĝ⊤i
L(ĝ1:n, ĥ1:n) (71)

=
1

n

n∑
j=1

n∑
i=1

∂2

∂ĝi∂ĝ⊤i
ℓ(ĝi, ĥj) (72)

=
t2

n

n∑
j=1

σ(aij) (1− σ(aij)) ĥjĥ⊤j (73)

for the image encoder and as

ΛSigLIP
TXT =

t2

n

n∑
i=1

σ(aij) (1− σ(aij)) ĝiĝ⊤i (74)

for the text encoder.

Marginal likelihood To learn the prior precision parameter λ, we follow prior work (e.g., (Immer
et al., 2021)) and optimise the log marginal likelihood within each probabilistic model. For the image
projection layer P , denote the prior and posterior as below

prior : N (0, λIMGI) (75)
posterior : N (PMAP,ΣIMG) (76)

The marginal likelihood is

log p(X IMG |XTXT) ≈
n∑
i=1

log p(xIMG
i |XTXT,PMAP) (77)

− 1

2

(
P⊤MAPλIPMAP − log det(ΣIMG) + log det(λIMGI)

)
(78)

We can learn the prior precision λIMG using gradient-based optimisation.

Distribution over image and vision features For completeness, we will briefly derive the
distribution over image and vision features. In particular, for the image encoder let P ∼
MN (PMAP,B

−1
IMG,A

−1
IMG), then:

g = Pϕ(xIMG) (79)
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with Pϕ(xIMG) ∼

MN (PMAPϕ(x
IMG),B−1IMG, ϕ(x

IMG)⊤A−1IMGϕ(x
IMG))

g ∼N (PMAPϕ(x
IMG),

(
ϕ(xIMG)⊤A−1IMGϕ(x

IMG)
)
B−1IMG). (80)

C.3 DISTRIBUTION OVER COSINE SIMILARITIES

For the derivation of the distribution over cosine similarities, first recall the definition of the cosine
similarity between two vectors, g and h, which is given as SCOS(g,h) = g⊤h

∥g∥∥h∥ . Now, let g
and h denote random vectors for the image and text embeddings, respectively. Further, let us
assume that their distribution follows a Gaussian distribution with mean µg = (µg,1, . . . , µg,d)
and µh = (µh,1, . . . , µh,d) and diagonal covariance structure, i.e., Σg = diag(σ2

g,1, . . . , σ
2
g,d) and

Σh = diag(σ2
h,1, . . . , σ

2
h,d).

Then the expected value of the cosine similarity is:

E[SCOS(g,h)] =
E[g⊤h]

E[∥g∥]E[∥h∥]
(81)

=

∑d
i µg,iµh,i

E[∥g∥]E[∥h∥]
. (82)

Note that computing E[∥x∥] is intractable, and we, therefore, bound the expected value by application
of the triangle inequality, i.e.,

E[∥x∥] ≤
√∑

i

µ2
x,i + σ2

x,i , (83)

where we use the fact that E[x2] = µ2
x + σ2

x. Consequently, we obtain an approximation to the
expected value of the cosine similarity given by:

E[SCOS(g,h)] ≈
∑d
i µg,iµh,i√∑

i µ
2
g,i + σ2

g,i

√∑
i µ

2
h,i + σ2

h,i

. (84)

Next, we will derive the second moment (variance) of the cosine similarity of two random vectors.
First, note that the variance can be written as the difference between two expectations, i.e.,

Var[SCOS(g,h)] = E[SCOS(g,h)
2]− E[SCOS(g,h)]

2, (85)

where the second expectation corresponds to:

E[SCOS(g,h)]
2 ≈

(
∑d
i µg,iµh,i)

2∑
i µ

2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

. (86)

Next we can obtain E[SCOS(g,h)
2] for which we will use the fact that E[x2] = µ2

x + σ2
x again, i.e.,

E[SCOS(g,h)
2] =

E[(g⊤h)2]∑
i µ

2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

(87)

where

E[(g⊤h)2] =
∑
i

∑
j

µg,iµh,iµg,jµh,j (88)

+
∑
i

σ2
g,iµ

2
h,i + µ2

g,iσ
2
h,i + σ2

g,iσ
2
h,i. (89)

Henceforth, we obtain the variance:

Var[SCOS(g,h)] =

∑
i σ

2
g,i(σ

2
h,i + µ2

h,i) + σ2
h,iµ

2
g,i∑

i µ
2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

. (90)
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Target Space

x

y

Figure 6: Illustration of targeted support set selection. We aim to select an informative support
set that reduces the uncertainty over the predictions on the query set . Only focusing on the
epistemic uncertainties would not lead to a good selection as we would select uninformative support
set candidates with high epistemic uncertainty. Hence, we target the selection process.

D ACTIVE LEARNING DETAILS

We provide additional details on our active learning setup. Active learning provides a natural setting
to evaluate the quality of uncertainty estimates, as it relies on selecting informative samples based
on predictive uncertainty. We assess BayesVLM in this setting using acquisition functions from
Bayesian active learning, combined with adaptive target region selection. Concretely, given a query
set Xtest = {x⋆i }

ntest
i=1 of unseen samples with unknown class labels, our goal is to select a support set

{(xj , yj)}mj=1 of labeled examples such that predictive uncertainty on Xtest is reduced. To this end,
we first target the selection process toward the predictive distribution of the query set, and then select
support candidates based on their estimated influence on predictive or model uncertainty.

We detail our method in three parts: App. D.1 describes how we reduce the candidate pool by selecting
samples that align with the target distribution; App. D.2 outlines the acquisition functions used for
(targeted) active fine-tuning; and App. D.3 explains how we update the Laplace approximation in an
online fashion during the EPIG acquisition process.

D.1 TARGETED SELECTION

To target the active learning process towards relevant areas in the data space, we perform a k-nearest
neighbours (k-NN) search around the test data. The main idea behind our adaptive targeted region
selection is illustrated in Fig. 6.

Specifically, we greedily acquire an intermediate candidate set T ⋆ ⊆ Dtrain using k-NN selection
based on the test set Dtest. For this, we need to compute a metric comparing the random feature
projections. We assessed two different ways, first by computing the 2-Wasserstein distance between
the distributions of the embeddings and the second by computing the expected cosine similarity based
on App. C.3. Recall that for multivariate Gaussian distributions, the 2-Wasserstein distance exists in
closed-form and is given as W 2

2 (N (µ1,Σ1),N (µ2,Σ2)) =

∥µ1 − µ2∥22 + tr
(
Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
, (91)

where ∥ · ∥2 denotes the Euclidean norm, tr(·) is the trace operator, and Σ1/2 is the matrix square root
of Σ. As computing the Wasserstein distance exactly is computationally and memory intensive due
to the matrix square root, we approximate it by assuming both distributions to be isotropic. Hence,
simplifying to W 2

2 (N (µ1,Σ1),N (µ2,Σ2)) =

d∑
i=1

(µ1,i − µ2,i)
2 + σ2

1,i + σ2
2,i − 2σ1,iσ2,i, (92)

where Σ1 = diag(σ2
1,1, . . . , σ

2
1,d) and Σ2 is given respectively.
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Figure 7: Illustration of the nearest neighbour-based support set selection for adaptive targeted
selection. The circles show test data points with uncertainty scores depicted through their colours:
high, medium, low. For each test datum we find the k = 1 nearest neighbour from the support set
candidates . If the k = 1 nearest neighbour is already selected, we increase k for those with occupied
neighbours and choose the second nearest neighbour, i.e., k = 2. This recursion continues until every
test datum has a selected support set candidate. The selected candidates are shown in coloured circles.
Note that in the case of the blue test datum, the closest support set candidate has already been chosen
by the yellow, and hence the second closes candidate is selected in the second stage.

Based on a selected metric, we select the training samples closest to the test set in the joint embedding
space, resulting in:

T =
⋃

g⋆∈T ⋆

Nk(g
⋆,Dtrain), (93)

with Nk(g⋆,Dtrain) denoting the set of k-nearest neighbours of g⋆ in the training set Dtrain. To ensure
that we select k distinct data points for each test sample, we perform an iterative search in which we
discard already selected training samples and iteratively increase the search radius until k distinct
samples are found for each test datum. This process is illustrated in Fig. 7.

D.2 ACQUISITION FUNCTIONS

Given a labelled pool Dtrain and an unlabelled target set Xtest = {x | (x, y) ∈ Dtest}, the goal is to
select m maximally informative samples from Dtrain to reduce predictive uncertainty on Xtest. In this
section, we provide a detailed explanation of the acquisition functions used for this purpose.

Naive random For the naı̈ve random acquisition function, we randomly sample m data points from
the train set Dtrain to form the support set SID.

Targeted random For the targeted random acquisition function, we randomly sample m data points
from the unlabelled test set Xtest to form an intermediate support set T ∗. According to App. D.1, we
then select the nearest neighbours to T ∗ from the training set Dtrain based on the cosine similarity of
the normalized image embeddings to form the support set Tt-ID.

Targeted maximum entropy For the entropy acquisition function, we compute the predictive
entropy H(y∗i | x∗i ) for each data point x∗i ∈ Xtest and select the m data points with the highest
entropy. We use the predictive entropy on the MAP estimate of the model parameters to estimate the
predictive entropy of the model:

H (y | x,θMAP)

= −
C∑
c=1

p(y = c|x,θMAP) log p(y = c|x,θMAP) (94)

According to App. D.1, we then select the most similar data points from Xtrain to form the support set
Tt-entropy.
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BALD We compute the BALD score (Houlsby et al., 2011) for each data point in Xtrain and select the
m data points with the highest score. The score is approximated using nested Monte Carlo sampling,
as in (Houlsby et al., 2011).

BALD(x) (95)
= Ep(y|x) [H (p(θ))−H (p(θ | x, y))] (96)

= Ep(θ|D) [H (p(y | x,θ))−H (p(y | x,D))] (97)

Targeted BALD We compute the BALD score (Eq. (97)) for each data point x∗i ∈ Xtest and select
the m data points with the highest score. According to App. D.1, we then select the most similar data
points from Xtrain to form the support set Tt-BALD.

EPIG The Expected Predictive Information Gain (EPIG) score (Bickford Smith et al., 2023) calcu-
lates the expected mutual information between the model parameters and the predictive distribution
resulting from the acquisition of a training data point. This method is specifically designed to target
relevant information, eliminating the need for a k-nearest neighbour search typically used in other
acquisition functions. The EPIG score is given by

EPIG(x)

= Ep∗(x∗)p(y|x)
[
H (p(y∗ | x∗))−H (p(y∗ | x∗,x, y))

]
(98)

= Ep∗(x∗) [DKL (p(y, y
∗ | x,x∗) ∥ p(y | x)p(y∗ | x∗))] (99)

= Ep∗(x∗)

[∑
y∈Y

∑
y∗∈Y

p(y, y∗ | x,x∗) log p(y, y∗ | x,x∗)
p(y | x)p(y∗ | x∗)

]
(100)

where p∗(x∗) denotes the target input distribution. The EPIG score is approximated using Monte
Carlo sampling, as detailed in(Bickford Smith et al., 2023). For the EPIG selection, we perform
online updates to the model weights using the online Laplace as described in App. D.3.

D.3 ONLINE LAPLACE APPROXIMATION

We use an online Laplace approximation to efficiently update the posterior distribution over the image
projection matrix P during active learning. Instead of recomputing the posterior from scratch after
each support set update, we incrementally refine both the MAP estimate and the Kronecker-factored
Hessian approximation using the newly selected datapoint. Concretely, we perform a gradient step to
update PMAP, and adjust the Kronecker factors AIMG and BIMG based on the contribution of the new
sample. This yields a computationally efficient approximation to the posterior over P conditioned on
the growing support set. Additionally, the prior precision can optionally be re-estimated after each
update step, as commonly done in online Laplace methods (Immer et al., 2021; Lin et al., 2023). In
the following, we outline the structure of the Laplace approximation and describe how it is updated
online during EPIG-based support set construction.

Recall, that we obtain from our post-hoc Laplace approximation the Kronecker factorized Hessian
approximation HIMG ≈ (

√
τ AIMG +

√
λ I)⊗ (

√
τ BIMG +

√
λ I) with

AIMG =
1√
n

n∑
i=1

ϕ(xIMG
i )ϕ(xIMG

i )⊤ and (101)

BIMG =
1√
n

n∑
i=1

JIMG(x
IMG
i )⊤ΛIMG JIMG(x

IMG
i ), (102)

approximating a posterior distribution over the projection weights:

P ∼MN (PMAP, B̃
−1
IMG, Ã

−1
IMG) (103)

Q ∼MN (QMAP, B̃
−1
TXT, Ã

−1
TXT) (104)

with Ã, B̃ denoting the Kronecker factors after applying τ and λ.

Further, utilizing App. C.3 in combination with the generalized probit approximation (as described,
for instance, in (Daxberger et al., 2021)), we obtain an analytical form for the predictive posterior
distribution p(y | x,D) of our few-shot classifier.
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Our goal with EPIG is to iteratively construct a support set Tt, where t denotes the current number of
selected training data points. We construct Tt by greedily selecting the training datum that maximises
the expected information gain on the predictive distribution in the target domain:

xt+1 = argmax
x∈Dtrain

EPIG(x | Tt) (105)

= argmax
x∈Dtrain

Ep∗(x∗)p(y|x)
[
H (p(y∗ | x∗, Tt))−H (p (y∗ | x∗, Tt ∪ {(x, y)}))

]
(106)

and obtain the corresponding label yt+1, forming the support set Tt+1 = Tt ∪ {(xt+1, yt+1)}.
The integration of {(xt+1, yt+1)} into the few-shot training set changes the posterior distribution
over the image projection. To obtain the updated posterior distribution

P | Tt+1 ∼MN (PMAP, B̃
−1
IMG,t+1, Ã

−1
IMG,t+1), (107)

we utilise the following online updates to the projection weights and the Laplace approximation:

PMAP,t+1 = PMAP,t − γ∇PL(xIMG
t+1,X

TXT) (108)

AIMG,t+1 =

√
n+ tAIMG,t + βAxt+1√

n+ t+ 1
(109)

BIMG,t+1 =

√
n+ tBIMG,t + βBxt+1√

n+ t+ 1
. (110)

where γ ≥ 0 and β ≥ 0 are hyperparameters and

Axt+1
= ϕ(xIMG

t+1)ϕ(x
IMG
t+1)

⊤ (111)

Bxt+1
= JIMG(x

IMG
t+1)

⊤ΛIMGJIMG(x
IMG
t+1). (112)

E EXPERIMENTAL DETAILS

This section details the experimental setup used in our study. In App. E.1, we describe the pre-trained
vision-language models and checkpoints used. App. E.2 explains how we computed the Hessian
matrices required for the Laplace approximation. In App. E.3, we outline how we selected the Laplace
parameters, such as the pseudo-data count τ and prior precision λ. App. E.4 describes our active
learning setup, including dataset preparation, selection strategies, and training hyperparameters (see
Table 6).

We run experiments on a compute cluster with NVIDIA P100 16GB, V100 32 GB, and A100 80GB
GPUs. We used V100 or A100 GPUs for the Huge model variants and the ImageNet experiments.

E.1 PRE-TRAINED VISION-LANGUAGE MODELS

In this work, we used the OpenCLIP (Ilharco et al., 2021) implementations of CLIP (Radford et al.,
2021), which was published under the MIT license. We present additional experimental results on the
HuggingFace implementation of SigLIP (Zhai et al., 2023), which was originally published under
Apache2 license.

For PCME++, we used the CLIP ViT-B/16 checkpoint provided by the authors with uncertainty
adapter trained on CC-3M (Sharma et al., 2018), CC-12M (Changpinyo et al., 2021), and Redcaps
(Desai et al., 2021). For ProLIP we used the ViT-B/16 model checkpoint released by the authors at
https://github.com/naver-ai/prolip, which shares the same backbone architecture.

E.2 ESTIMATION OF THE HESSIAN MATRICES

We estimated the Hessians separately for the CLIP image and text encoders using the pre-training
dataset LAION-400M (Schuhmann et al., 2022) published under MIT license. For this estimation, we
randomly sampled a subset of 327.680 data points. The pre-training dataset was filtered to exclude
NSFW content. For the Laplace approximation, we used the GGN approximation of the Hessian
matrices as described in App. C.2 and estimated the covariance matrices A and B for the image and
text encoders.
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E.3 ESTIMATION OF THE HESSIAN PARAMETERS

To ensure that both zero-shot and active learning experiments rely on a well-calibrated posterior
covariance, we estimated the pseudo-data count (Ritter et al., 2018), τ , by performing a grid search
over values in τ ∈ [1, 5, 10, 15, . . . , 200]. In the active learning experiments, the step size was
reduced to 2. The optimal value of τ was selected by minimizing the negative log predictive density
(NLPD) on a random subset of ImageNet consisting of 100 classes and 1097 test data points in
total as a proxy. App. E.3 presents two plots illustrating the NLPD as a function of the pseudo-data
count for SigLIP-Base and CLIP-Base, respectively. Once this optimal τ was identified, we further
optimised the prior precision, λ, using the marginal likelihood on the LAION-400M (Schuhmann
et al., 2022) dataset.
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Figure 8: Grid search over the pseudo-data count parameter τ for CLIP-Base ( ) and SigLIP-Base
( ). The optimal NLPD for CLIP-Base is identified at τ = 10, while the optimal NLPD for
SigLIP-Base is identified at τ = 100.

E.4 ACTIVE LEARNING EXPERIMENTS

We conducted active learning experiments on the OfficeHome data set (Venkateswara et al., 2017),
which consists of the domains: art, clipart, product, and real-world, as well as on the ImageNet dataset
with the domains ImageNet-R (Hendrycks et al., 2021) and ImageNet-Sketch (Wang et al., 2019). For
these experiments, all training sets from the respective domains were combined into a single, large
training set, and the projection layer of either CLIP or SigLIP was fine-tuned for a specific domain.
Data selection was performed based on the acquisition functions described in App. D.2. Performance
was evaluated at the checkpoint corresponding to the lowest NLPD on a domain-specific validation
set. We also performed a grid search for the online learning parameters of the EPIG acquisition rule,
selecting the EPIG learning rate γ from the range [1e-5, 1e-4, 1e-3, 1e-2] and the EPIG Hessian
update scale β from [1, 10, 100, 1000], based on the NLPD on the domain-specific validation set.
Details on the training hyperparameter settings are given in Table 6.

Table 6: Active fine-tuning hyperparameters.

config value

optimiser AdamW
learning rate 1e−5
weight decay 5e−2
optimiser momentum β1, β2 = 0.9, 0.999
batch size 32
epochs 100
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F ADDITIONAL RESULTS

In this Appendix, we provide additional results to support the findings in the main paper. Specifically,
we detail (i) the approximation quality of the Gaussian approximation to the distribution over cosine
similarities in App. F.1, (ii) the active learning experiments in App. F.2, (iii) the ablation of the
k-NN distance metric in App. F.3, (iv) the influence of the number of data points used for Hessian
estimation in App. F.4, (v) the runtime overhead and inference costs of BayesVLM compared to the
baselines in App. F.5, and (vi) additional zero-shot learning results in App. F.7 to demonstrate the
generality of our approach.

F.1 APPROXIMATION QUALITY

To assess the approximation quality of the Gaussian approximation to the distribution over cosine
similarities, we generated 500 samples for the image and text feature distributions for a given input.
For the resulting samples, we then computed the respective cosine similarity for each pair and
performed kernel density estimation with Gaussian kernel and length scale of 0.3 on the similarity
scores. We added increasing shifts to the distribution mean to evaluate the change in the approximation
quality under varying cosine similarity values. The results are depicted in Fig. 9. We can observe that
our approximation through ProbCosine results qualitatively in a low approximation error .

−10 −5 5 10 15 20 25 30 35

0.1

0.2

0.3

0

Cosine Similarity

Density

Figure 9: Approximation quality of the Gaussian approximation (ProbCosine) ( ) to the
distribution over cosine similarities compared to KDE over samples ( ) for image-text pairs with
increasing Euclidean distance between their feature projection means (µg,µh).

F.2 ACTIVE LEARNING EXPERIMENTS

We report the active learning results for CLIP-Huge in Fig. 12 and for SigLIP-Base in Fig. 13. For
CLIP-Huge we observe that active learning based on our post-hoc uncertainties consistently improves
upon random and entropy-based selection. For SigLIP-Base, we observe significant improvements in
terms of accuracy and NLPD on the ImageNet version with active learning based on our post-hoc
uncertainties.

F.3 ABLATION OF THE k-NN DISTANCE METRIC

We performed an ablation study on the k-NN distance metric for our proposed targeted selection in
Sec. 3.3 while fixing the online LA learning rate γ = 1e−4 and the online LA pseudo-data count
β = 10. We evaluate performance using two distance metrics: Wasserstein and cosine similarity.
Results are reported for EPIG and BALD, with Wasserstein (solid lines) and cosine (dashed lines)
metrics. While Wasserstein-based k-NN selection demonstrates improved performance for datasets
such as OfficeHome-Art and ImageNet-R, no clear trend is observed across the other datasets.

F.4 NUMBER OF DATA POINTS FOR HESSIAN ESTIMATION

We assessed the influence of the number of data points used to estimate the Hessian by estimating the
trace of the Hessian using a varying number of data points for 10 random subsets of the Laion400m
data set. Fluctuations of the estimated trace can be understood as an indicator that the Hessian
estimates are unreliable. Fig. 10 shows that the trace of both the Hessian over the image projection
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and the text projection quickly converges to a stable value with low fluctuations, as seen by the low
variance and stable mean. Moreover, the results indicate that 10 mini-batches suffice to obtain a
reliable estimate of the Hessians.
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Figure 10: Hessian (Trace) vs. number of samples. Error bars indicate ±1 standard deviation over 10
random subsets of Laion400m.

F.5 RUNTIME OVERHEAD

We compared our approach against the vanilla CLIP. We report runtimes on CIFAR-100 with CLIP-
Huge/-Base on a Tesla V100 with 3 warmup steps and averaged over 1000 runs (batch size 1) in
Table 7. Indicating minimal computational overhead. In addition, we present inference costs in
GFLOPs, comparing the original VLM (deterministic) against TTA and BayesVLM in Table 8. We
find that BayesVLM results in comparable inference costs while TTA has an 80-fold increase in the
inference cost.

Table 7: Average runtime measured in seconds on CIFAR-100.

Model Vanilla BayesVLM rel. increase

CLIP-Huge 43.8178 43.9712 0.35%
CLIP-Bas 9.4498 9.8929 4.69%

Table 8: Inference computational cost per image on CIFAR-100 (in GFLOPs 109).

Model Vanilla TTA (FARINA ET AL., 2024) BAYESVLM

CLIP-Base 8.83 687.78 8.84
CLIP-Lage 162.06 12638.00 162.07
CLIP-Huge 334.71 26098.06 334.72
SigLIP-Base 47.00 3652.05 47.03

F.6 INTERPRETING PROBABILISTIC COSINE SIMILARITIES

We qualitatively assessed the distribution obtained by ProbCosine on a randomly selected test example
from the OfficeHome clipart domain, evaluating the mean and variance of the cosine similarity under
increasing corruption in both image and text domains. Text corruption was introduced by randomly
replacing characters with ‘x’, and image corruption by randomly adding grey squares. Fig. 11 shows
the mean and variance of cosine similarities as corruption increases. We observe that the expected
cosine similarity generally decreases and variance increases with more corruption, indicating that
our approximation effectively captures model uncertainties under distribution shift. Note that we
observe a slight increase in the cosine similarity after one character has been replaced, indicating that
performing predictions solely on the expected cosine similarity can be problematic. In this case, the
variance over cosine similarities can capture the change in the input, highlighting the importance of
capturing and propagating the model uncertainties.
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Expected Value Variance

17.77 30.66 0.72 1.16

An image of a cup

Ax image of a cup

Ax imaxe of a cup

Ax imaxexof a cup

Ax imaxexxf a cup

Ax imaxexxf axcup

Figure 11: Illustration of ProbCosine under increasing corruption. The mean similarity decreases and
variance increases with higher levels of corruption, demonstrating effective uncertainty estimation
under distribution shift.

F.7 ADDITIONAL ZERO-SHOT RESULTS

Here, we report additional zero-shot results for CLIP-huge and SigLIP-base in Table 9 and Table 10,
respectively. We also report the results for applying our ProbCosine to the ProLIP (Chun et al., 2025)
model in Table 11.

CLIP-huge results In Table 9, BayesVLM consistently matches or outperforms baseline methods
in terms of accuracy (ACC), negative log predictive density (NLPD), and expected calibration error
(ECE). We note that TTA achieves worse ACC than CLIP on CIFAR-10 and -100, which we believe
is due to test-time augmentation in (Farina et al., 2024) not being optimised for small images (32x32),
where the classes could become unrecognisable with additional cropping in the augmentation.

Table 9: Zero-shot Results: Quantitative evaluation of uncertainty estimation across multiple data
sets in the zero-shot setting for the OpenCLIP ViT-L-14 model. Our proposed BayesVLM consistently
outperforms baseline methods across accuracy (ACC, in %), negative log predictive density (NLPD),
and expected calibration error (ECE, in %) metrics.

Metrics Methods FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397

ACC ↑
CLIP (Radford et al., 2021) 72.04±0.5723 86.60±0.2144 95.57±0.2058 76.74±0.4225 85.51±0.4065 69.60±0.7479 71.48±0.3205

CLIP (temp. scaling) 72.04±0.5723 86.60±0.2144 95.57±0.2058 76.74±0.4225 85.51±0.4065 69.60±0.7479 71.48±0.3205

TTA (Farina et al., 2024) 71.85±0.5735 87.11±0.2109 92.83±0.2580 71.56±0.4511 87.64±0.3800 70.10±0.7443 71.99±0.3187

BayesVLM 72.42±0.4469 87.20±0.3341 95.49±0.2075 76.77±0.4223 85.63±0.3508 70.26±0.4571 71.12±0.4532

NLPD ↓
CLIP (Radford et al., 2021) 1.75±0.0479 0.48±0.0083 0.15±0.0072 0.90±0.0178 0.58±0.0174 1.36±0.0391 1.02±0.0128

CLIP (temp. scaling) 1.51±0.0378 0.47±0.0065 0.15±0.0056 0.87±0.0143 0.59±0.0144 1.20±0.0298 0.96±0.0098

TTA (Farina et al., 2024) 1.74±0.0472 0.49±0.0086 0.24±0.0080 1.15±0.0188 0.49±0.0160 1.34±0.0390 1.06±0.0133

BayesVLM 1.62±0.0335 0.45±0.0110 0.15±0.0061 0.87±0.0155 0.57±0.0132 1.22±0.0204 0.98±0.0154

ECE ↓
CLIP (Radford et al., 2021) 9.47 3.07 0.97 5.73 2.13 10.72 8.60
CLIP (temp. scaling) 4.90 3.00 1.35 2.55 5.21 3.40 1.48
TTA (Farina et al., 2024) 11.96 3.77 1.21 3.92 1.92 11.87 10.53
BayesVLM 4.66 1.00 0.62 1.91 2.15 5.37 3.89

SigLIP-base results In Table 10, for SigLIP, BayesVLM still yields improvements on several
benchmarks (despite using proxy data for Hessian estimation, as the original training set is not
publicly available), demonstrating robustness to such settings. Despite mismatched training and
Hessian estimation datasets, BayesVLM remains competitive, especially on CIFAR-10, UCF101, and
SUN397, effectively improving calibration without sacrificing predictive performance. We note that
TTA achieves better ACC on some benchmarks which is sensible since the model will get better at
predicting the correct class average with more chances (augmentations).

ProbCosine combined with ProLIP results In Table 11, we observe that applying ProbCosine to
ProLIP improves zero-shot performance across classification benchmarks and metrics.

F.8 ROBUSTNESS WRT TO PSEUDO-DATA COUNT

To examine the influence of the pseudo–data count τ on BayesVLM, we evaluated BayesVLM with
the CLIP-Base configuration on four datasets (FLOWERS-102, FOOD-101, CIFAR-10, CIFAR-

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

1025 50 75 10
0

15
0

20
0

0.
9

0.
91

W
ei

gh
te

d
A

C
C
→

OH-Art

1025 50 75 10
0

15
0

20
0

0.
84

0.
86

OH-ClipArt

1025 50 75 10
0

15
0

20
0

0.
96

0.
97

0.
98

OH-Product

1025 50 75 10
0

15
0

20
0

0.
86

0.
87

0.
88

IN-R

1025 50 75 10
0

15
0

20
0

0.
96

0.
97

IN-Sketch

1025 50 75 10
0

15
0

20
0

0.
35

0.
4

Subset Size

N
L

PD
←

1025 50 75 10
0

15
0

20
0

0.
5

0.
6

0.
7

Subset Size

1025 50 75 10
0

15
0

20
0

0.
06

0.
08

0.
1

0.
12

Subset Size

1025 50 75 10
0

15
0

20
0

0.
45

0.
5

0.
55

Subset Size

1025 50 75 10
0

15
0

20
0

0.
14

0.
16

0.
18

Subset Size

Figure 12: Active learning results (CLIP Huge): We present results for EPIG ( ), BALD ( ),
Entropy (targeted) ( ), Entropy ( ), Random selection (targeted) ( ), Random selection ( )
on the OfficeHome dataset (OH) and ImageNet variants (IN). We observe that active learning based
on our post-hoc uncertainties consistently improves upon random and entropy-based selection.
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Figure 13: Active learning results (SigLIP Base): We present results for EPIG ( ), BALD ( ),
Entropy (targeted) ( ), Entropy ( ), Random selection (targeted) ( ), Random selection ( )
on the OfficeHome dataset (OH) and ImageNet variants (IN).
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Table 10: Zero-shot results: Quantitative evaluation of uncertainty estimation across multiple data
sets in the zero-shot setting for the SigLIP-Base model (Zhai et al., 2023). Our proposed BayesVLM
often perform competitively to baseline methods across accuracy (ACC, in %), negative log predictive
density (NLPD), and expected calibration error (ECE, in %) metrics.

Metrics Methods FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397

ACC ↑
SigLIP (Zhai et al., 2023) 82.31±0.4867 88.81±0.1984 93.20±0.2517 71.27±0.4525 89.71±0.3509 59.61±0.7978 67.55±0.3323

SigLIP (temp. scaling) 82.31±0.4867 88.81±0.1984 93.20±0.2517 71.27±0.4525 89.71±0.3509 59.61±0.7978 67.55±0.3323

TTA (Farina et al., 2024) 82.66±0.4828 89.24±0.1950 87.96±0.3254 60.95±0.4879 90.91±0.3320 60.14±0.7960 66.82±0.3342

BayesVLM 82.44±0.3805 88.84±0.3148 93.16±0.2524 71.22±0.4527 89.72±0.3037 59.69±0.4905 67.44±0.4686

NLPD ↓
SigLIP (Zhai et al., 2023) 0.88±0.0285 0.38±0.0061 0.21±0.0063 1.08±0.0168 0.41±0.0139 1.90±0.0438 1.12±0.0117

SigLIP (temp. scaling) 0.84±0.0246 0.40±0.0054 0.22±0.0057 1.09±0.0152 0.43±0.0125 1.77±0.0376 1.12±0.0102

TTA (Farina et al., 2024) 0.85±0.0276 0.37±0.0064 0.36±0.0073 1.62±0.0209 0.37±0.0134 1.88±0.0430 1.18±0.0124

BayesVLM 0.86±0.0210 0.39±0.0091 0.21±0.0061 1.08±0.0163 0.41±0.0114 1.82±0.0248 1.12±0.0154

ECE ↓
SigLIP (Zhai et al., 2023) 4.31 1.66 0.92 1.97 1.36 12.72 3.82
SigLIP (temp. scaling) 6.28 5.54 2.94 4.47 4.85 6.69 2.83
TTA (Farina et al., 2024) 4.56 0.72 3.14 2.09 1.59 13.47 6.81
BayesVLM 4.87 3.49 1.38 1.52 2.79 9.60 1.14

Table 11: Can ProbCosine improve the zero-shot performance of pre-trained probabilistic
models? Yes. Applying ProbCosine to the ProLIP (Chun et al., 2025) model improves zero-shot
performance across classification benchmarks and metrics.

Metrics Methods FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397
Mean (Chun et al., 2025) 77.83±0.0053 90.38±0.0019 96.52±0.0018 82.41±0.0038 84.76±0.0042 69.94±0.0033 65.93±0.0077ACC ↑ ProbCosine (Eq. (10)) 77.74±0.0053 90.35±0.0019 96.52±0.0018 82.48±0.0038 84.91±0.0041 69.99±0.0033 65.82±0.0077

Mean (Chun et al., 2025) 1.36±0.0411 0.33±0.0060 0.11±0.0052 0.64±0.0148 0.59±0.0164 1.05±0.0120 1.28±0.0316NLPD ↓ ProbCosine (Eq. (10)) 1.28±0.0376 0.34±0.0055 0.11±0.0047 0.63±0.0133 0.60±0.0151 1.02±0.0108 1.24±0.0286

Mean (Chun et al., 2025) 5.31 0.79 0.60 3.38 1.08 5.99 7.99ECE ↓ ProbCosine (Eq. (10)) 3.60 2.57 0.76 1.40 3.53 2.23 4.73

100) while varying τ ∈ {1, 3, 5, 7, 9}. For each setting we report classification accuracy (ACC ↑),
negative log predictive density (NLPD ↓), and expected calibration error (ECE ↓) in Table 12.

The results show that performance is stable across the tested range of pseudo–data counts. Accu-
racy and calibration metrics vary only slightly with τ , indicating that the method is robust to this
hyperparameter. In the main manuscript we used τ = 4 as the default setting. We find that slight
improvements can be observed when moving the pseudo–data count away from τ = 4, but the value
found on the proxy dataset (τ = 4) provides reasonable performance in general.

Table 12: Zero-shot CLIP-Base performance versus pseudo-count on four datasets. Each dataset
block shows accuracy (ACC ↑), negative log predictive density (NLPD ↓), and expected calibration
error (ECE ↓).

Pseudo Count FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100
ACC↑ NLPD↓ ECE↓ ACC↑ NLPD↓ ECE↓ ACC↑ NLPD↓ ECE↓ ACC↑ NLPD↓ ECE↓

1 69.04±0.59 1.75±0.04 3.98 80.62±0.25 0.67±0.01 0.85 93.58±0.25 0.20±0.01 0.70 73.82±0.44 0.95±0.02 2.58
3 69.43±0.59 1.81±0.05 3.78 80.45±0.25 0.68±0.01 1.67 93.60±0.24 0.20±0.01 1.10 73.80±0.44 0.95±0.02 4.31
5 69.54±0.59 1.83±0.05 3.97 80.37±0.25 0.68±0.01 2.31 93.60±0.24 0.20±0.01 1.20 73.82±0.44 0.96±0.02 4.82
7 69.36±0.59 1.84±0.05 4.50 80.34±0.25 0.68±0.01 2.63 93.60±0.24 0.21±0.01 1.25 73.81±0.44 0.96±0.02 5.10
9 69.43±0.59 1.85±0.05 4.60 80.33±0.25 0.68±0.01 2.81 93.61±0.24 0.21±0.01 1.27 73.79±0.44 0.96±0.02 5.29

F.9 ROBUSTNESS WRT THE NUMBER OF NEGATIVE SAMPLES

To assess the impact of negative samples on the likelihood approximation, we vary the batch size
K ∈ {32768, 8192, 2048} and estimate the posterior from 1–5 random batches, reporting mean and
standard deviation over five trials. Because the posterior depends on the number of negatives only
through the Hessian B-factor (cf. Eq. (5)), we present the normalised trace ( tr(Bi×K)

tr(B5×K) ). Ideally, this
ratio equals one with zero variance. Results for the image and text surrogate models are shown in
Fig. 15a and Fig. 15b, respectively.

The batch size 32768 yields mean values near one for all numbers of random batches and maintains
low standard deviations, indicating reliable estimates for both modalities.

F.10 ADDITIONAL EXPERIMENTS ON CC12M

We find that BayesVLM provided robust uncertainty estimates for CLIP even when estimated on the
proxy dataset, cf., Table 13.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 13: Does BayesVLM work in closed-source data settings? Yes. With OpenCLIP ViT-B-32
trained on LAION-400M and BayesVLM estimated on the proxy dataset CC12M, we find that results
are robust and show only slight degradation; statistically significant differences are bold (p = 0.05).

Metrics Dataset FLOWERS-102 FOOD-101 CIFAR-10 CIFAR-100 IMAGENET-R UCF101 SUN397

ACC ↑ LAION-400M 68.87±0.4630 80.43±0.3968 93.62±0.2444 73.63±0.4406 74.45±0.4361 61.43±0.4868 66.96±0.4703

CC12M 68.12±0.4660 80.35±0.3974 93.57±0.2453 73.78±0.4398 74.32±0.4369 61.46±0.4867 66.81±0.4709

NLPD ↓ LAION-400M 1.73±0.0320 0.68±0.0126 0.20±0.0067 0.95±0.0152 1.03±0.0177 1.44±0.0183 1.12±0.0155

CC12M 1.77±0.0330 0.68±0.0129 0.20±0.0067 0.95±0.0152 1.03±0.0180 1.44±0.0185 1.13±0.0162

ECE ↓ LAION-400M 4.22 1.69 0.72 1.92 1.78 3.77 2.06
CC12M 3.84 0.99 0.70 1.43 1.39 3.83 3.89
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Figure 14: Ablation study on the k-NN distance metric, fixing the online LA learning rate γ = 1e−4
and the online LA pseudo-data count β = 10. Results are shown for EPIG (Wasserstein) ( ),
EPIG (cosine) ( ), BALD (Wasserstein) ( ), and BALD (cosine) ( ). As shown in Fig. 14,
Wasserstein-based k-NN selection demonstrates improved performance for datasets such as OH-Art
and IN-R, while no clear trend is observed across the other datasets.
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Figure 15: Normalized trace of the image Hessian B-factor for varying base batch sizes K (2048
( ), 8192 ( ), 32768 ( )) and 1–5 random batches. Error bars show ±1 std over five trials.
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