
Under review as a conference paper at ICLR 2024

SPECTRAL GREEDY CORESETS FOR GRAPH NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ubiquity of large-scale graphs in node-classification tasks significantly hinders
the real-world applications of Graph Neural Networks (GNNs). Node sampling,
graph coarsening, and dataset condensation are effective strategies for enhancing
data efficiency. However, owing to the interdependence of graph nodes, coreset
selection, which selects subsets of the data examples, has not been successfully
applied to speed up GNN training on large graphs, warranting special treatment.
This paper studies graph coresets for GNNs and avoids the interdependence issue
by selecting ego-graphs (i.e., neighborhood subgraphs around a node) based on
their spectral embeddings. We decompose the coreset selection problem for GNNs
into two phases, a coarse selection of widely spread ego graphs and a refined selec-
tion to diversify their topologies. We design a greedy algorithm that approximately
optimizes both objectives. Our spectral greedy graph coreset (SGGC) scales to
graphs with millions of nodes, obviates the need for model pre-training, and is
applicable to low-homophily graphs. Extensive experiments on ten datasets demon-
strate that SGGC outperforms other coreset methods by a wide margin, generalizes
well across GNN architectures, and is much faster than graph condensation.

1 INTRODUCTION

Graph neural networks (GNNs) have found remarkable success in tackling a variety of graph-related
tasks (Hamilton, 2020), e.g., node classification and link prediction. However, the prevalence of
large-scale graphs in real-world contexts (e.g., social, information, and biological networks) poses
significant computational issues for training GNNs, as graphs in these domains frequently scale to
millions of nodes and edges. Training a single model is costly, and this increases when training
multiple times, for instance, to validate design choices like architectures and hyperparameters (Elsken
et al., 2019). To tackle the above issues, we adopt a natural data-efficiency approach — simplifying
the given graph data appropriately, with the goal of saving training time. In particular, we ask the
following question: how can we appropriately simplify graphs while preserving the performance of
GNNs?

A simple yet effective solution to simplify a dataset is coreset selection, despite other methods such as
graph sparsification, graph coarsening, and graph condensation reviewed in the related work Section 5.
Typically, the coreset selection approach (Toneva et al., 2018; Paul et al., 2021) finds subsets of data
examples that are important for training based on certain heuristic criteria. The generalization of
coreset selection to graph node/edge classification problems is then to find the important “subsets”
of the given graph, e.g., nodes, edges, and subgraphs. This challenge arises from graph nodes’
interdependence and GNNs’ non-linearities. We focus on node classification in this paper as it is
among the important learning tasks on graphs and is still largely overlooked.

In this paper, we find a new approach to formulate graph coreset selection for GNNs. It avoids GNN’s
interdependent nodes and non-linear activation issues by selecting ego-graphs, i.e., the subgraph
induced by the neighborhood around a center node, based on their node embeddings in the graph-
spectral domain. Our ego-graph-based coreset is inspired by two observations. (1) We find that most
GNNs applied to large graphs follow the nearest-neighbor message-passing update rule and have
ego-graph-like receptive fields. Thus, by selecting the ego-graphs (which is equivalent to selecting
their center nodes), we avoid the problem of finding subsets of nodes and edges independently, which
typically leads to complex combinatorial optimization; see Section 2. (2) Moreover, we identify
that when expressing the node embeddings in the graph-spectral domain, the non-linear spectral

1

Under review as a conference paper at ICLR 2024

embeddings of GNNs on ego-graphs are “smooth” functions of the center node, i.e., nearby nodes are
likely to have similar spectral embeddings on their corresponding ego-graphs (Balcilar et al., 2021),
which we will theoretically justify under certain assumptions in Section 3.

Using (1) and (2), we propose approximating the GNN’s spectral embedding using a subset of ego-
graphs. To approximate the spectral embedding with fewer ego-graphs (which one-to-one correspond
to their center nodes), one should select center nodes that are far from each other since nearby ones
are likely to have similar embeddings, thus, being less informative. We derive an upper bound on
the coreset objective independent of the spectral embedding. This enables us to find the coreset of
center nodes without evaluating the GNN’s spectral embeddings on any ego-graph. With the coreset
objective substituted by the upper-bound, we adopt the greedy iterative geodesic ascent (GIGA)
approach (Campbell and Broderick, 2018; Vahidian et al., 2020) to obtain the coresets.

The above procedure of selecting distant ego-graphs is sufficient to approximate the whole graph’s
spectral embedding well. However, the selected center nodes do not necessarily approximate the
node classification loss well, and the topological information of ego-graphs is not considered. To
approximate the GNN training loss, we propose to refine the coreset selection by filtering out some
of the selected ego-graphs whose topologies are not distinctive enough. Since the transformation
from the spectral to the spatial domain is a linear operation depending on the graph topology, the
approximated spatial embeddings of ego-graphs will differ more when they have more distinctive
topologies. Hence, we exclude ego-graphs with non-distinctive spatial embeddings to enhance
efficiency. This is solved by the submodular coreset algorithm (Iyer et al., 2021; Kothawade et al.,
2022) using greedy submodular maximization (Mirzasoleiman et al., 2020).

As a result, we decompose the ego-graph selection into two stages: a coarse selection of widely
spread ego-graphs that approximate the whole graph’s spectral embedding (as detailed in Eq. (NAC))
and a refined selection to approximate the node classification loss with improved sample efficiency
(as detailed in Eq. (LCC)). Specifically, the first stage (which is solved via GIGA) extrapolates the
graph to find distant center nodes over the original graph, and the second stage (which is solved via
submodular maximization) exploits the candidate center nodes and keeps the most informative ones
based on their topologies. We call this two-stage algorithm spectral greedy graph coresets (SGGC).
Our SGGC compresses node attributes of selected ego-graphs using low-rank approximations,
maintaining efficient storage without compromising GNN performance, as shown in Section 6.

SGGC scales to large graphs, needs no pre-training, and performs well on both high- and low-
homophily graphs. SGGC surpasses other coreset methods in our experiments on ten graph datasets.
We show that the combined algorithm is better than applying either algorithm (GIGA or submodular
maximization) individually. Moreover, SGGC matches graph condensation’s performance (Jin et al.,
2021), but is significantly faster and better generalizes across GNN architectures.

2 PROBLEM: GRAPH CORESETS FOR GNNS

Figure 1: Relative standard devia-
tion of spectral embeddings on ego-
graphs Z̃i across all the nodes vs.
the ego-graph size p; see Assump-
tion 1.

Figure 2: Conceptual diagram show-
ing the theoretical analysis formulat-
ing the spectral greedy graph core-
sets (SGGC).

Figure 3: Spectral response of
2-layer GCNs on Cora. The
spectral response corresponding
to eigenvalue λi is defined as
∥[UTfθ(A,X)]i,:∥/∥[UTX]i,:∥.

We start by defining the downstream task for graph coresets and node classification with graph neural
networks. For a matrix M , we denote its (i, j)-th entry, i-th row, j-th column by Mi,j , Mi,:, and
M:,j , respectively.

2

Under review as a conference paper at ICLR 2024

Node classification on a graph considers that we are given an (undirected) graph G = (V =
[n], E ⊂ [n]× [n]) with (symmetric) adjacency matrix A ∈ {0, 1}n×n, node features X ∈ Rn×d,
node class labels y ∈ [K]n, and mutually disjoint node-splits Vtrain

⋃
Vval

⋃
Vtest = [n], where we

assume the training split consists of the first nt nodes, i.e., Vtrain = [nt]. Using a graph neural
network (GNN) fθ : Rn×n

≥0 × Rn×d → Rn×K , where θ ∈ Θ denotes the parameters, we aim to
find θ∗ = argminθ L(θ), where the training loss is L(θ) := 1

nt

∑
i∈[nt]

ℓ([fθ,λ(A,X)]i,:, yi). Here
Zi := [fθ,λ(A,X)]i,: is the output embedding for the i-th node. The node-wise loss function is
ℓ(Zi, yi) := CrossEntropy(softmax(Zi), yi). The loss L(θ) defined above is under the transductive
setting, which can be generalized to the inductive setting by assuming only {Aij | i, j ∈ [nt]} and
{Xi | i ∈ [nt]} are used during training.

Graph neural networks (GNNs) can often be interpreted as iterative convolution over nodes (i.e.,
message passing) (Ding et al., 2021), where given inputs X(0) = X ,

X(l+1) = σ(Cα(l)(A)X(l)W (l)) ∀l ∈ [L], (GNN)

and X(L) = fθ(A,X). Here, Cα(l)(A) is the convolution matrix which is (possibly) parametrized by
α(l), W (l) is the learnable linear weights, and σ(·) denotes the non-linearity. See Appendix B for
more details on GNNs.

Graph coresets for GNNs seek to select a subset of training nodes Vw ⊂ Vtrain = [nt] with size
|Vw| ≤ c ≪ nt along with a corresponding set of sample weights such that the training loss L(θ)
is approximated for any θ ∈ Θ. Let w ∈ Rnt

≥0 be the vector of non-negative weights, we require
the number of non-zero weights ∥w∥0 :=

∑
i∈[nt]

1[wi > 0] ≤ c, and hence the search space is
W := {w ∈ Rnt

≥0 | ∥w∥0 ≤ c}. The objective of graph coreset selection is

min
w∈W

max
θ∈Θ

∣∣∣ ∑
i∈[nt]

wi · ℓ
(
[fθ(A,X)]i, yi

)
− L(θ)

∣∣∣, (GC)

which minimizes the worst-case error for all θ. However, the above formulation provides nearly no
data reduction in terms of its size, since both the graph adjacency matrix A and node feature matrix
X are still needed to compute the full-graph embeddings fθ(A,X) in the coreset loss in Eq. (GC).

Since the goal of graph coresets is not only to reduce the number of labels, but more importantly,
the data size, we should formalize how the subsets of A and X are selected in Eq. (GC) to make
the objective practical. A natural convention, considered by related literature including graph
condensation (Jin et al., 2021), is further assuming that only the node features of the selected nodes,
Xw = {Xi,: | i ∈ Vw}, and the subgraph induced by the selected nodes, Aw = {Ai,j | i, j ∈ Vw}
are kept. Under this convention, the central problem of graph coresets changes to selecting the labeled
nodes, as well as their node features and adjacencies, which we call as node-wise graph coresets,

min
w∈W

max
θ∈Θ

∣∣∣ ∑
i∈[nt]

wi · ℓ
(
[fθ(Aw, Xw)]i, yi

)
− L(θ)

∣∣∣. (N-GC)

However, since Aw and Xw are complex discrete functions of w, the above formulation leads to a
complex combinatorial optimization, which we still need to learn how to solve. Moreover, posing Aw

and Xw to be entirely determined by w leads to sub-optimality. For example, it is likely that there
exists another set of sample weights w′ ∈ W such that using Aw′ and Xw′ in Eq. (N-GC) results in a
smaller error.

Alternative formulation of graph coresets. The critical difference between Eq. (N-GC) and a
typical coreset problem like Eq. (GC) is that the node-pair-wise relation encoded in the adjacency
matrix A forbids us to select nodes as independent samples. In this paper, we consider another
formation of graph coresets, to avoid the non-independent issue. The idea is to use the property
that most GNNs (especially those applied to large graphs) are “local functions” on the graph, i.e.,
the output embedding Zi = [fθ,λ(A,X)]i,: of the i-th node may only depend on the close-by
nodes {j ∈ [n] | d(i, j) < D} where d(i, j) denotes the shortest-path distance. Without loss of
generality, we consider nearest-neighbor message passing (including GCN, GAT, and GIN), whose
convolution/message-passing weight is non-zero Ci,j ̸= 0 if and only if i = j or Ai,j = 1. More
specifically, we define the receptive field of a node i for an L-layer GNN (Eq. (GNN)) as a set of
nodes V L

i whose features {Xj,: | j ∈ V L
i } determines Zi. For nearest-neighbor message passing,

3

Under review as a conference paper at ICLR 2024

it is easy to see V 1
i = {i} ∪ {j ∈ [n] | Ai,j = 1} = {j ∈ [n] | d(i, j) ≤ 1}. Then by induction,

for L-layer GNNs, the respective filed of node i is V L
i = {j ∈ [n] | d(i, j) ≤ L}, which is exactly

its depth-L ego-graph. Here, we assume the GNN is L-layered, and the depth-L ego-graph of
node i, denoted by Gi, is defined as the induced subgraph of nodes within distance L. The above
characterization of the “local property” of GNNs leads to the following equation,[

fθ(A,X)
]
i,:

=
[
fθ(AGi , XGi)

]
1,:

∀ i ∈ [n], (RF)

where AGi
and XGi

denote the adjacencies and node features in the ego-graph Gi, respectively,
where we always re-number the center node i in Gi as the first node.

Ego-graph-wise graph coreset can then be formulated by substituting Eq. (RF) into Eq. (GC),

min
w∈W

max
θ∈Θ

∣∣∣ ∑
i∈[nt]

wi · ℓ
(
[fθ(AGi

, XGi
)]1,:, yi

)
− L(θ)

∣∣∣. (EG-GC)

Compared with node-wise graph coreset (Eq. (N-GC)), ego-graph-wise selection has the following
advantages: (1) it avoids the non-independence issue as we are now selecting ego-graphs indepen-
dently, i.e., whether Gj (j ̸= i) is selected will not affect the embedding [fθ(AGi

, XGi
)]1,: of node i;

(2) it is equivalent to the original objective (Eq. (GC)) which ensures optimality; and (3) although
the adjacencies and node features in the union of selected ego-graphs

⋃
i∈Vw

Gi are kept and their
size could be O(dLmax) times of the node-wise selected data (where dmax is the largest node degree),
we find that we can highly compress the ego-graph node features via principal component analysis
(PCA), depending on how far away the nodes are from the selected center nodes Vw, which eventually
leads to comparable data size reduction. See Fig. 4 and Appendix A for details.

3 SPECTRAL GREEDY GRAPH CORESETS

Although selecting subsets of ego-graphs has many advantages, solving Eq. (EG-GC) is still chal-
lenging since the GNN fθ is highly non-linear, and expensive since evaluating AGi and XGi requires
finding the ego-graph Gi, which takes O(dLmax) time. In this section, we propose an efficient yet
effective approach to solve Eq. (EG-GC) that avoids the non-linearities in fθ and does not require
explicit evaluation of AGi

and XGi
for any node. The key idea is to re-write Eq. (EG-GC) in the

graph spectral domain.

Graph spectral domain denotes the eigenspace of graph Laplacian (and the corresponding spectral
feature space). Consider the symmetrically normalized Laplacian L = In −D−1/2AD−1/2 where
D is the diagonal degree matrix. Through eigendecomposition, L = Udiag(λ1, . . . , λn)U

T where
the eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2 and each column of ui = U:,i is an eigenvector. We can
transform the features/embeddings to the spectral domain by left multiplying UT, e.g., UTX , where
the i-th row [UTX]i,: is the features of eigenvalue λi.

Similarly, for each ego-graph Gi, we can find the spectral representation of ego-graph embeddings,
denoted by Z̃i = UT

Gi
fθ(AGi , XGi). To ease our analysis by making Z̃i of different eigenvalues to

have the same dimensions, we consider a slightly modified notion of ego-graphs, diffusion ego-graphs.
Consider the diffusion matrix P = 1

2In + 1
2D
−1A, which is right stochastic (i.e., each row summing

to 1) and describes a lazy-random walk on the graph. P is simultaneously diagonalizable with L,
whose eigenvalues are 1 ≥ 1 − 1

2λ1 ≥ · · · ≥ 1 − 1
2λ1 ≥ 0. We define the diffusion ego-graph

G̃i of node i to be the induced subgraph of Ṽ L
i = {indices of the p largest entries of [PL]i,:}. For

sufficiently large p, G̃i ⊇ Gi for all i and Eq. (RF) holds.

Small variation of spectral embeddings on ego-graphs. We start from a key observation that
the variation of the spectral embeddings on ego-graphs Z̃i = UT

Gi
fθ(AGi

, XGi
) across all the nodes

i ∈ [n] is small, when p is not too small, for all possible θ. This is formalized as follows.

Assumption 1 (Bounded Variation of Z̃i). For large enough graph size n and ego-graph size p, we

assume for any model parameter θ ∈ Θ, RSD(Z̃) :=
√

1
n

∑
i∈[n] ∥Z̃i − Z̃∥F

/
∥Z̃∥F < B, i.e., the

relative standard deviation (RSD) of Z̃ is upper-bounded by a constant B > 0 independent of θ,
where Z̃ = 1

n

∑
i∈[n] Z̃i is the node-wise average of Z̃i.

4

Under review as a conference paper at ICLR 2024

In Fig. 1, we plot RSD(Z̃i) versus p on the Cora dataset (Yang et al., 2016), where we find the
RSD drops vastly when p increases. The intuition behind this phenomenon is that many real-world
graphs (e.g., citation and social networks) are often self-similar, where the spectral representations of
large-enough ego-graphs are close to the full graphs’.

Approximately decompose the ego-graph-wise graph coreset objective Eq. (EG-GC) in spectral
domain. We can re-write Eq. (RF) in the spectral domain of each ego-graph as

ℓ([fθ(AGi
, XGi

)]1,:, yi) = ℓ([UGi
]1,:Z̃i, yi), (SRF)

since [fθ(AGi
, XGi

)]1,: = [UGi
UT
Gi
fθ(AGi

, XGi
)]1,: = [UGi

]1,:U
T
Gi
fθ(AGi

, XGi
) = [UGi

]1,:Z̃i.
We now denote vi := [UGi

]T1,: ∈ Rp (not an eigenvector), ℓ̃i(Z̃) = ℓ(vTi Z̃, yi), and L̃(Z̃) =
1
nt

∑
i∈[nt]

ℓ̃i(Z̃). Since by Assumption 1, we assume Z̃i ≈ Z̃ for all θ ∈ Θ and i ∈ [n], we propose
to approximately achieve the goal of ego-graph-wise coreset (Eq. (EG-GC)) by: (1) finding the subset
of labeled nodes to approximate the average spectral embedding,

min
wa∈W

max
θ∈Θ

∥∥ ∑
i∈[nt]

wa
i · Z̃i − Z̃

∥∥
F
, (NAC)

which we call node-wise average coresets; and (2) finding the subset of labeled nodes to approximate
the node-classification loss,

min
wc∈W

max
Z̃

∣∣ ∑
i∈[nt]

wc
i · ℓ̃i(Z̃)− L̃(Z̃)

∣∣, (LCC)

where now the average spectral embedding Z̃ is treated as an unknown parameter. Since Z̃ is the
output embedding and ℓ̃i(Z̃) = ℓ(vTi Z̃, yi) is a linear classification loss, Eq. (LCC) is the linear
classification coresets. Although the optimal sample weights wa and wc (where the superscript a

stands for average and c stands for classification) are different, we further require the corresponding
subsets of nodes coincide, i.e., Vwa = Vwc , and this is realized by the combined coreset algorithm
(see Algorithm 1). Moreover, given Assumption 1, if we can upper-bound the errors in Eqs. (NAC)
and (LCC) through the combined coreset algorithm, we can show the approximation error on the
node classification loss is also upper-bounded (see Theorem 1).

The remaining of this section analyzes how to solve the two coreset selection problems one by one,
while we defer the combined greedy algorithm and theoretical guarantees to Section 4.

3.1 GRAPH NODE-WISE AVERAGE CORESETS

Solving node-wise average coresets (Eq. (NAC)) approximately without evaluating the spectral
embeddings. For the node-wise average coresets (Eq. (NAC)), since the evaluation of a single
spectral embedding Z̃i is expensive, we ask: is it possible to find the coresets approximately without
evaluating any Z̃i? Surprisingly, this is possible because the spectral embedding Z̃i is a “smooth”
function of nodes i on the graph. Here, “smothness” refers to the phenomena that Z̃i (as a function
of node i) varies little across edges, i.e., Z̃i ≈ Z̃j if Ai,j = 1. The intuition behind this is simple:
ego-graphs of connected nodes have a large overlap G̃i ∩ G̃j , and thus the resulted output embedding
is similar no matter what parameter θ is used.

Spectral characterization of smoothness. The spectral transformation can again be used to
characterize the degree of smoothness since the eigenvalue λi represents the smoothness of eigen-
vector ui. For an entry of the spectral embedding [Z̃i]a,b, we can construct an n-dimensional vector
z̃(a,b) =

[
[Z̃1]a,b, . . . , [Z̃n]a,b

]
∈ Rn by collecting the corresponding entry of the spectral embedding

of each node. Then, we want to show the inner product ⟨z̃(a,b),ui⟩ is larger for smaller eigenvalue
λi. Actually, this can be done by first considering the spectral representation of the inputs, i.e.,
X̃i = UT

Gi
XGi

, where we can similarly define x̃(a,b) =
[
[X̃1]a,b, . . . , [X̃n]a,b

]
and show that if the

node features are i.i.d. unit Gaussians, then in expectation ⟨x̃(a,b),ui⟩ ∝ (1− 1
2λi)

L (see Lemma 2
in Appendix A). Second, we note that the spectral behavior of message-passing GNNs fθ(A,X)
(Eq. (GNN)) is completely characterized by its convolution matrix (Balcilar et al., 2021) (see Fig. 3 for
practical observations). Based on this, we can show the corresponding GNN function in the spectral
domain f̃θ(·) = UTfθ(A,U ·) is Lipschitz continuous if all of the linear weights W (l) in Eq. (GNN)

5

Under review as a conference paper at ICLR 2024

have bounded operator norms (see Lemma 3 in Appendix A). Based on these results, we can formally
characterize the smoothness of spectral embeddings (see Proposition 4 in Appendix A).

Upper-bound on the node-wise average error. Following the work in (Linderman and Steiner-
berger, 2020; Vahidian et al., 2020), and based on Proposition 4, we can obtain an upper-bound
on the node-wise average error ∥

∑
i∈[nt]

wa
i · Z̃i − Z̃∥F ≤ M · ∥Pwa − 1

n1∥ (see Theorem 5
in Appendix A), where wa =

∑
i∈[nt]

wa
i δi ∈ Rn, δi is the unit vector whose i-th entry is one, and

1 is the vector of ones. We then propose to optimize the upper-bound ∥Pwa − 1
n1∥ which does not

depend on Z̃i, enabling us to approximately solve the node-wise average coreset without evaluating a
single Z̃i. (Vahidian et al., 2020) propose to optimize ∥Pwa − 1

n1∥ using a variant of the greedy
geodesic iterative ascent (GIGA) algorithm (Campbell and Broderick, 2018), and we follow their
approach (see Section 4 for details).

3.2 SPECTRAL LINEAR CLASSIFICATION CORESETS

There are more available approaches to solve the linear classification coreset Eq. (LCC), and we
adopt the submodular maximization formulation in (Mirzasoleiman et al., 2020).

Submodular maximization formulation of linear classification coreset. Following (Mirza-
soleiman et al., 2020), we can show the approximation error in Eq. (LCC) can be upper-bounded
by a set function H(·), i.e., |

∑
i∈[nt]

wc
i · ℓ̃i(Z̃) − L̃(Z̃)| ≤ H(Vwc), where H(Vwc) :=∑

i∈[nt]
minj∈Vwc maxZ̃ |ℓi(Z̃) − ℓj(Z̃)| (see Lemma 6 in Appendix A). Then, by introducing

an auxiliary node {i0}, we can define a submodular function F (V) := H({i0}) − H(V ∪ {i0}),
and formulate the coreset selection as a submodular set-cover problem. Due to the efficiency con-
straints, (Mirzasoleiman et al., 2020) propose to solve the submodular maximization problem instead,
maxwc∈W F (Vwc), which is dual to the original submodular cover formulation. We follow this ap-
proach and adopt their CRAIG (CoResets for Accelerating Incremental Gradient descent) algorithm
for the linear classification coreset. It is worth noting that, although the CRAIG formulation discussed
above can be used to solve the original ego-graph-wise coreset problem (Eq. (EG-GC)) directly, it
suffers from a much larger complexity as we have to forward- and backward-pass through the GNN
all the time, and evaluate all ego-graph embeddings explicitly.

4 ALGORITHM AND THEORETICAL ANALYSIS

The spectral greedy graph coresets (SGGC) algorithm. We now describe how we combine
the two greedy algorithms, GIGA and CRIAG, to achieve both objectives respectively, with an
extra constraint that they find the same subset of nodes, i.e., Vwa = Vwc . The idea is to incorporate
the submodular cost F (Vwc) = F (Vwa) into the SCGIGA’s objective. Through the introduction
of a hyperparameter 0 < κ < 1, we change the objective of the node-wise average coreset to be
∥Pwa − 1

n1∥ − κF (Vwa). Now, the submodular cost F (Vwa) can be understood as a selection cost,
and the new objective can be solved by a relaxation on the GIGA algorithm, which is called SCGIGA
as discussed in (Vahidian et al., 2020). The complete pseudo-code is shown below (see Appendix A
for more details).

Algorithm 1: Spectral greedy graph coresets (SGGC).
Input: Diffusion matrix P = 1

2 In + 1
2D

−1A, coreset size c, hyperparameter 0 < κ < 1.
1 Initialize weights wa

0 ← 0, wc
0 ← 0

2 for t = 0, . . . , c− 1 do
3 Compute P (wa

t) =
∑

i∈[nt]
[wa

t]i
P:,i

∥P:,i∥

4 Compute at ←
1−⟨1,P(wa

t)⟩P(wa
t)

∥1−⟨1,P(wa
t)⟩P(wa

t)∥
, and for each i ∈ [nt], bi

t ←
Pi−⟨Pi,P(wa

t)⟩P(wa
t)

∥Pi−⟨Pi,P(wa
t)⟩P(wa

t)∥
5 Find subset Vt = {i ∈ [nt] | ⟨at, bi

t⟩ ≥ κ ·maxj∈[nt]
⟨at, bj

t⟩}
6 Select node i∗ = argmaxi∈Vt F ({i} ∪ Vwa)− F (Vwa)

7 Compute ζ0 = ⟨ 1√
n
, Pi∗ ⟩, ζ1 = ⟨ 1√

n
, P (wt)⟩ , ζ2 = ⟨Pi∗ , P (wt)⟩, and ηt ← ζ0−ζ1ζ2

(ζ0−ζ1ζ2)+(ζ1−ζ0ζ2)

8 Update weights wa
t+1 ←

(1−ηt)w
a
t+ηtδi∗

∥(1−ηt)P(wa
t)+ηtPi∗∥

9 Compute [wa]i ← 1
n∥P:,i∥∥

∑
j∈[nt]

[wa
c]jP:,j∥

[wa
c]i ∀i ∈ [nt]

10 Compute wc =
∑

j∈[nt]
1
{
i = argmink∈Vwa maxZ̃ |ℓ̃j(Z̃)− ℓ̃k(Z̃)|

}
11 Combine wi ← wa

i · w
c
i for each i ∈ [nt], and normalize w ← w/∥w∥1

12 return coreset Vw , weights w

6

Under review as a conference paper at ICLR 2024

Theoretical guarantees of SGGC. Based on the correctness theorems of SCGIGA and CRAIG,
and Assumption 1, we can prove the following error-bound on the node-classification loss, which
shows SGGC approximately solves the graph coresets problem (Eq. (GC)) (see Appendix A).

Theorem 1 (Error-Bound on Node Classification Loss). If both Eq. (N-GC) and Eq. (LCC)
have bounded errors and Assumption 1 holds, then we have, maxθ∈Θ

∣∣∑
i∈[nt]

wa
iw

c
i ·

ℓ
(
[fθ(AGi , XGi)]1,:, yi

)
− L(θ)

∣∣ < ϵ, where ϵ does not depend on the coreset size c and the
number of training nodes nt.

5 RELATED WORK

Table 1: SGGC is better than other model-agnostic/based coresets, graph coarsening, and comparable to graph
condensation. We train 2-layer GCNs on the coreset/coarsened/condensed graphs and report the test accuracy.
OOT and OOM refer to out-of-time/memory.

Dataset Ratio
Model-Agnostic Coresets Model-Based Coresets Graph Reduction Ours Data Condense Oracle

Uniform Herding K-Center Forgetting Cal CRAIG Glister GraNd GradMatch Corasening SGGC GCond Full Graph

Cora
15% 67.7±4.5 66.1±1.2 64.3±4.8 65.4±3.1 71.6±1.0 68.4±4.4 65.6±5.6 71.9±1.7 72.0±1.3 — 72.9±0.6 —

81.2±0.425% 71.8±4.2 69.9±1.0 72.6±2.5 72.6±3.5 75.3±1.5 74.4±1.7 74.3±2.4 74.4±1.5 74.7±2.3 31.2±0.2 78.6±1.0 79.8±1.3
50% 78.3±2.2 70.8±0.4 78.9±1.0 76.1±1.1 80.7±0.5 78.2±2.0 78.3±2.0 79.3±0.8 80.2±0.5 65.2±0.6 80.2±0.8 80.1±0.6

Citeseer
15% 53.6±7.9 46.1±1.6 47.5±6.3 51.5±4.9 53.2±2.0 55.4±6.7 54.0±5.0 57.0±3.9 58.8±3.9 — 63.7±3.1 —

70.6±0.925% 61.7±3.2 54.9±3.9 61.6±4.0 55.3±5.5 56.1±2.8 59.5±4.3 62.0±5.5 64.4±1.5 66.0±1.5 52.2±0.4 67.2±2.4 70.5±1.2
50% 66.9±1.7 68.7±0.5 65.6±1.6 67.6±0.8 68.2±0.8 67.9±2.2 67.9±1.4 70.5±0.8 70.7±0.5 59.0±0.5 68.4±0.9 70.6±0.9

Pubmed
15% 65.7±4.5 61.9±1.0 69.0±4.8 65.4±4.9 71.7±0.8 73.2±4.1 65.6±5.5 62.0±1.0 65.3±4.5 — 72.5±1.5 —

79.3±0.625% 71.1±1.8 65.9±0.4 73.3±2.6 69.0±2.5 74.7±1.7 71.0±3.3 71.5±3.2 70.6±2.3 71.1±1.4 — 75.8±1.6 —
50% 75.3±1.1 72.2±0.6 77.8±1.3 72.5±2.1 77.3±1.1 74.4±1.7 75.1±2.0 76.0±1.2 74.8±1.1 — 76.5±0.6 —

Flickr
0.2% 47.1±1.6 45.5±1.3 46.9±0.9 46.0±1.2 OOT OOT 48.0±1.0 48.1±0.4 48.2±0.2 41.9±0.2 48.4±0.8 46.5±0.4

49.1±0.71.0% 48.4±1.1 46.7±0.3 47.5±0.9 47.7±2.4 OOT OOT 48.5±0.7 48.8±0.5 48.7±0.6 44.5±0.1 49.0±0.6 47.1±0.1
2.0% 47.0±1.1 45.5±0.6 46.9±0.7 46.6±1.6 OOT OOT 47.4±0.9 OOM 48.5±0.6 — 64.4±0.4 —

ogbn-arxiv
0.5% 58.4±1.5 45.7±4.4 56.8±2.8 55.5±2.4 OOT OOT 57.2±2.1 OOM 53.4±1.9 43.5±0.2 59.7±1.5 63.2±0.3

70.9±0.21.0% 62.0±0.9 47.6±0.4 60.7±0.8 60.4±1.9 OOT OOT 62.2±1.3 OOM 56.5±1.7 50.4±0.1 62.5±0.9 64.0±0.4
2.0% 64.7±0.5 56.5±0.5 62.4±0.9 62.8±2.4 OOT OOT 64.2±1.1 OOM 58.6±1.0 — 64.4±0.4 —

ogbn-products
0.05% 46.8±1.2 31.9±0.5 35.9±1.9 32.9±4.8 OOT OOT OOM OOM OOM — 46.3±4.1 —

75.6±0.2
0.15% 53.0±1.0 36.5±0.3 47.6±0.8 42.0±3.7 OOT OOT OOM OOM OOM — 53.6±1.2 —

Reddit
0.1% 27.4±4.6 18.5±3.5 22.5±4.5 26.4±1.0 OOT OOT OOM OOM 19.4±3.5 — 38.4±3.4 —

92.2±0.6
0.2% 40.7±7.2 17.0±4.0 20.0±3.1 39.7±3.5 OOT OOT OOM OOM 18.3±3.0 — 48.6±4.6 —

In this section, we review general coreset methods, graph coresets, and other graph reduction methods,
as well as graph condensation that adapts dataset condensation to graph (see Appendix C).

Early coreset selection methods consider unsupervised learning problems, e.g., clustering. Coreset
selection methods choose samples that are important for training based on certain heuristic criteria.
They are usually model-agnostic; for example, Herding coreset (Welling, 2009) selects the closest
samples to the cluster centers. K-center coreset (Farahani and Hekmatfar, 2009) picks multiple
center points such that the largest distance between a data point and its nearest center is minimized.
In recent years, more coreset methods consider the supervised learning setup and propose many
model-based heuristic criteria, such as maximizing the diversity of selected samples in the gradient
space (Aljundi et al., 2019), discovering cluster centers of model embedding (Sener and Savarese,
2018), and choosing samples with the largest negative implicit gradient (Borsos et al., 2020).

Graph coreset selection is a non-trivial generalization of the above-mentioned coreset methods
given the interdependent nature of graph nodes. The very few off-the-shelf graph coreset algorithms
are designed for graph clustering (Baker et al., 2020; Braverman et al., 2021) and are not optimal for
the training of GNNs.

Graph sparsification (Batson et al., 2013; Satuluri et al., 2011) and graph coarsening (Loukas
and Vandergheynst, 2018; Loukas, 2019; Huang et al., 2021; Cai et al., 2020) algorithms are usually
designed to preserve specific graph properties like graph spectrum and graph clustering. Such
objectives often need to be aligned with the optimization of downstream GNNs and are shown to be
sub-optimal in preserving the information to train GNNs well (Jin et al., 2021).

Graph condensation (Jin et al., 2021) adopts the recent dataset condensation approach which
synthesizes informative samples rather than selecting from given ones. Although graph condensation
achieves the state-of-the-art performance for preserving GNNs’ performance on the simplified
graph, it suffers from two severe issues: (1) extremely long condensation training time; and (2)
poor generalizability across GNN architectures. Subsequent work aims to apply a more efficient
distribution-matching algorithm (Zhao and Bilen, 2021b; Wang et al., 2022) of dataset condensation
to graph (Liu et al., 2022) or speed up gradient-matching graph condensation by reducing the number
of gradient-matching-steps (Jin et al., 2022). While the efficiency issue of graph condensation is

7

Under review as a conference paper at ICLR 2024

Dataset
Ratio

Selection
Strategy

Model-Agnostic Model-Based Ablation Baselines Ours Oracle

Uniform K-Center CRAIG Glister CRAIG-Linear SCGIGA SGGC Full Graph

Cora

25%

Node 63.3±2.7 67.7±2.7 64.6±4.2 61.9±5.5 64.1±4.0 63.0±2.0 70.3±1.2

81.2±0.4Std. Ego 74.3±2.4 72.7±3.9 74.5±3.3 73.7±1.9 73.0±3.4 75.9±1.5 77.5±0.9

Diff. Ego 73.7±1.1 72.6±2.2 72.0±3.3 74.0±2.3 72.7±3.1 76.7±1.9 76.8±1.0

Citeseer

25%

Node 58.1±3.0 52.0±3.3 58.2±3.9 55.1±3.0 57.2±3.0 55.1±2.8 60.8±1.7

70.6±0.9Std. Ego 61.8±4.8 56.8±4.4 60.0±5.6 59.7±5.9 61.7±5.8 53.4±1.8 67.1±1.5

Diff. Ego 61.7±3.2 61.6±4.0 59.5±4.3 61.9±5.5 59.5±3.8 54.6±2.7 67.2±2.4

Table 2: Selecting diffusion ego-graphs largely outper-
forms node-wise selection and achieves comparable per-
formance to selecting standard ego-graphs with much
smaller ego-graph sizes.

Dataset Cora Citeseer Pubmed

Ratio 25% 50% 25% 50% 25% 50%

Full Graph 81.2±0.4 70.6±0.9 79.3±0.6

CRAIG-Linear 72.7±2.9 78.1±1.1 59.5±3.8 66.6±1.9 71.6±3.8 75.4±2.3

SCGIGA 76.7±1.4 78.3±1.0 54.6±2.8 66.9±1.1 69.8±0.7 74.1±0.4

SGGC (Ours) 78.6±1.0 80.2±1.1 67.2±2.4 68.4±0.9 75.8±1.6 76.5±0.6

Table 3: The complete SGGC algorithm is better
than the node-wise average coreset (SCGIGA) and
the linear classification coreset (CRAIG-Linear)
individually.

Figure 4: Test accuracy versus
the selected data size of select-
ing nodes and diffusion ego-grpahs
with/without PCA-based compres-
sion of node attributes.

Figure 5: SGGC is more robust than
SCGIGA on low-homophily graphs.
We select the coresets on the edge-
added graph with lower homophily,
but train and test GCNs on the origi-
nal graph.

Method
Architecture

used during

Compression

Downstream Architecture

GCN SAGE SGC

GCond

GCN 70.6±3.7 60.2±1.9 68.7±5.4

SAGE 77.0±0.7 76.1±0.7 77.7±1.8

SGC 80.1±0.6 78.2±0.9 79.3±0.7

SGGC (Ours) N/A 80.2±1.1 79.1±0.7 78.5±1.0

Table 4: SGGC generalizes bet-
ter across GNN architectures than
graph condensation (GCond) on
Cora with a 50% ratio.

mitigated, the performance degradation on medium- and large-sized graphs (Jin et al., 2021) still
renders graph condensation practically meaningless.

6 EXPERIMENTS

In this section, we demonstrate the effectiveness and advantages of SGGC, together with some
important proof-of-concept experiments and ablation studies that verify our design. We also show
the efficiency, architecture-generalizability, and robustness of SGGC. We define the coreset ratio as
c/nt

1, where c is the size of coreset, and nt is the number of training nodes in the original graph. We
train 2-layer GNNs with 256 hidden units and repeat every experiment 10 times. See Appendix D for
implementation details and Appendix E for more results and ablation studies on more datasets.

SGGC is better than other model-agnostic or model-based coresets and graph coarsening.
Now, we demonstrate the effectiveness of SGGC in terms of the test performance (evaluated on the
original graph) of GNNs trained on the coreset graph on seven node classification benchmarks with
multiple coreset ratios c/nt. Table 1 presents the full results, where SGGC consistently achieves
better performance than the other coreset methods and the graph coarsening approach. Although
graph condensation treats the condensed adjacency Aw and node features Xw as free learnable
parameters (have less constraint than coreset methods), the performance is comparable to or even
lower than SGGC on Cora and Flickr. The advantages of SGGC are often more significant when
the coreset ratio is small (e.g., on Citeseer with a 15% ratio), indicating that SGGC is capable of
extrapolating on the graph and finding informative ego-graphs when the budget is very limited.

Apart from the three small graphs (Cora, Citeseer, and Pubmed), we also consider two mid-scaled
graphs (Flickr and ogbn-arxiv), a large-scale graph (ogbn-products) with more than two million
nodes, and a much denser graph (Reddit) whose average node degree is around 50. In Table 1, we see
that when scaling to larger and denser graphs, many model-based coreset methods, graph coarsening,
and graph condensation are facing severe efficiency issues. SGGC can run on ogbn-product with
a coreset ratio c/nt = 0.05% within 43 minutes, while all the other model-based coresets (except
Forgetting), graph coarsening, and graph condensation run out of time/memory.

1Some paper like Jin et al. (2021) defines this ratio as c/n, which could be small even if we keep all
training/labeled nodes, i.e., c = nt (e.g., on Cora and Citeseer) and is often misleading.

8

Under review as a conference paper at ICLR 2024

Selecting diffusion ego-graphs is better than selecting nodes and standard ego-graphs. We
also verify that selecting diffusion ego-graphs is advantageous to selecting nodes. In Fig. 4, we
show that we can compress the diffusion ego-graphs to achieve data size comparable with node-wise
selection without noticeably lowering the performance. Ego-graph compression is based on the
principal component analysis (PCA), and we compress the node features more when they are far away
from the selected center nodes (see Appendix A). In Table 2, we compare the performance of various
coreset methods with the three selection strategies, including selecting the standard ego-graphs or
diffusion ego-graphs. Not surprisingly, we see ego-graph selection strategies largely outperform node-
wise selection (the largest gap is around 8%). Although selecting standard and diffusion ego-graphs
often lead to similar performance, we note that, by selecting diffusion ego-graphs, we can achieve
comparable performance with ego-graph-size p =8 or 16 on most datasets, which is much smaller
than the average size of standard ego-graphs for L = 2, e.g., around 36 on Cora.

Ablation study: the two-stage SGGC algorithm is better than each stage individually. It is
important to verify that the combined coreset objective is better than the node-wise average coreset
(Eq. (N-GC), implemented as SCGIGA (Vahidian et al., 2020) with zero selection cost) and the linear
classification coreset (Eq. (LCC), implemented as the CRAIG algorithm (Mirzasoleiman et al., 2020)
with a linear model, denoted by CRAIG-Linear) individually (see Appendix D for details). In Table 3,
we see SGGC is consistently better than (1) CRAIG-Linear (outperformed by 3.8% on average),
which over-simplifies GNNs to a linear classifier and completely ignores the graph adjacency and
(2) SCGIGA (outperformed by 4.4% on average), which relies on a possibly wrong assumption that
the node-wise classification loss is a “smooth” function of nodes over the graph. Moreover, we find
SGGC is more robust than SCGIGA, against the variations of homophily in the underlying graph (as
shown in Fig. 5), where the homophily is defined as h(A,y) = 1

|E|
∑

(i,j)∈E 1{yj = yk} (Ma et al.,
2021) (i.e., how likely the two end nodes of an edge are in the same class). SCGIGA’s performance
is greatly degraded on low-homophily graphs because it assumes the node-wise classification loss
to be a “smooth” function of nodes over the graph. When we decrease the graph homophily by
randomly adding edges to Cora, this assumption cannot be guaranteed. Our SGGC does not suffer
from this issue because the spectral embedding of ego-graphs is always a “smooth” function over
graph (see Section 3).

SGGC generalizes better than graph condensation and is more efficient. Finally, we compare
SGGC with graph condensation (Jin et al., 2021) in terms of the generalizability across GNN archi-
tectures and running time. GCond is model-dependent and generalizes poorly across architectures.
In Table 4, we see the performance of graph condensation heavily relies on the GNN architecture
used during condensation, while our SGGC is model-agnostic and generalizes well to various types
of GNNs. Although the best performance of graph condensation is comparable to SGGC in Table 4,
if we do not tune the architecture for condensation, it is much lower on average. Specifically, when
using SGC for condensation, the test performance of GCond is comparable to SGGC’s. However,
when using other architectures, including GCN and SAGE during condensation, the test accuracy of
GCond drops for at least 2% in all settings. In terms of running time, apart from the fact that GCond
cannot scale to large graphs like ogbn-product, it is much slower than SGGC. On ogbn-arxiv with the
coreset ratio c/nt = 0.05%, graph condensation runs for 494s while SGGC only requires 133s.

7 CONCLUSIONS

This paper proposes spectral greedy graph coreset (SGGC), a coreset selection method on graph
for graph neural networks (GNNs), and node classification. For the theoretical limitations, we
note that the small variation assumption of spectral embeddings on ego graphs may not hold for
non-message-passing GNNs and very dense graphs. For the practical limitations, we address the
problem that although SGGC is practically very efficient, similar to most of the coreset algorithms, it
has a O(cntn) time complexity. This hinders us from applying a large coreset ratio on very large
graphs, which consequently bottlenecks the downstream GNN performance on the coreset graph.
Future work may consider more efficient setups, e.g., online coreset selection and training on graphs
with hundreds of millions of nodes. Considering broader impacts, we view our work mainly as a
methodological contribution, which paves the way for more resource-efficient graph representation
learning. Our innovations can enable more scalable ways to do large-network analysis for social
good. However, progress in graph learning might also trigger other hostile social network analyses,
e.g., extracting fine-grained user interactions for social tracking.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019. 7

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In NeurIPS, pages
1993–2001, 2016. 16

Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H-C Jiang, Robert Krauthgamer, and
Xuan Wu. Coresets for clustering in graphs of bounded treewidth. In International Conference on
Machine Learning, pages 569–579. PMLR, 2020. 7

Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021. 2, 5, 14,
16

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification
of graphs: theory and algorithms. Communications of the ACM, 56(8):87–94, 2013. 7

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021. 16, 17

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. arXiv preprint arXiv:2006.08572, 2020. 17

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in Neural Information Processing Systems, 33:14879–14890,
2020. 7

Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering
in excluded-minor graphs and beyond. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2679–2696. SIAM, 2021. 7

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International
Conference on Learning Representations, 2020. 7

Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy iterative geodesic
ascent. In International Conference on Machine Learning, pages 698–706. PMLR, 2018. 2, 6

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages
257–266, 2019. 18

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. NeurIPS, 33, 2020. 16

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
volume 29, 2016. 16

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom
Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector
quantization. Advances in Neural Information Processing Systems, 34:6733–6746, 2021. 3

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022. 21

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019. 1

10

Under review as a conference paper at ICLR 2024

Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models, algorithms and
case studies. Springer Science & Business Media, 2009. 7

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. arXiv preprint arXiv:2204.08499, 2022. 17, 18, 19, 20

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017. 16, 17

William L Hamilton. Graph Representation Learning. Morgan & Claypool Publishers, 2020. 1

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 675–684, 2021. 7

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
information measures with applications in machine learning. In Algorithmic Learning Theory,
pages 722–754. PMLR, 2021. 2

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2021. 2, 3,
7, 8, 9, 18

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 720–730, 2022. 7

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In International Conference on Machine Learning, pages 11102–11118. PMLR, 2022. 17

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016. 14, 16, 17

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in neural information processing systems. PMLR, 2019. 16

Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Prism: A
rich class of parameterized submodular information measures for guided data subset selection. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 10238–10246,
2022. 2

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 2018. 16

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In ICLR, 2015. 17

George Linderman and Stefan Steinerberger. Numerical integration on graphs: where to sample and
how to weigh. Mathematics of computation, 89(324):1933–1952, 2020. 6, 15

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022. 7

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., 20(116):
1–42, 2019. 7, 16

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In International Conference on Machine Learning, pages 3237–3246. PMLR, 2018. 7

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2021. 9

11

Under review as a conference paper at ICLR 2024

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In NeurIPS, 2019. 16

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020. 2, 6, 9, 15

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019. 16

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In International Conference on Learning Representations, 2020. 17

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
wide convolutional networks. Advances in Neural Information Processing Systems, 34:5186–5198,
2021. 17

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596–20607, 2021. 1, 18

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In Advances in neural information
processing systems, volume 33, 2020. 16

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021. 21

Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable
clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pages 721–732, 2011. 7

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018. 7

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020. 20

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Generative
teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data. In International Conference on Machine Learning, pages 9206–9216. PMLR, 2020.
17

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
In International Conference on Learning Representations, 2018. 1, 18

Saeed Vahidian, Baharan Mirzasoleiman, and Alexander Cloninger. Coresets for estimating means
and mean square error with limited greedy samples. In Conference on Uncertainty in Artificial
Intelligence, pages 350–359. PMLR, 2020. 2, 6, 9, 15

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 16, 17

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12196–12205, 2022. 7

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018. 17

12

Under review as a conference paper at ICLR 2024

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1121–1128, 2009. 7

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018a. 16

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pages 5453–5462. PMLR, 2018b. 20

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In ICLR, 2020. 16

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.
5

OmriPuny HeliBen-Hamu YaronLipman. Global attention improves graph networks generalization.
arXiv preprint arXiv:2006.07846, 2020. 16

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2019. 18

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020. 16

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pages 12674–12685. PMLR, 2021a. 17

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. arXiv preprint
arXiv:2110.04181, 2021b. 7, 17

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2020. 17

13

