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ABSTRACT

Learning treatment effect from observational data is a fundamental problem in
causal inference. Recently, disentangled representation learning methods, such as
DR-CFR and DeR-CFR, have witnessed great success in treatment effect estima-
tion, which aim to decompose covariates into three disjoint factors. However, we
argue that these methods cannot identify underlying factors well, as they cannot
obtain independent disentangled factors. Inspired by the success of mutual infor-
mation minimization in disentangled representation learning, we propose a novel
method called MimCE in this paper: Mutual Information Minimization based
Disentangled Learning Framework for Causal Effect Estimation. MimCE mainly
focuses on obtaining independent disentangled factors for treatment effect esti-
mation and numerous experiments demonstrate that it performs better than the
state-of-the-art methods both on the predictive performance and model stability.

1 INTRODUCTION

Treatment effect estimation is of the upmost importance across in many domains, such as policy
making (Lalonde, 1984; Athey & Imbens, 2016), medicine prediction (Shalit et al., 2017) and ad-
vertisement (Bottou et al., 2013; Sun et al., 2015). The causal inference often needs to answer coun-
terfactual problems (Rubin, 1974; Pearl, 2009) like “Would this patient have low blood sugar had
she received a medication?” or “Would the customer buy the product had he got a 70% discount”.

One golden standard approach to learn causal effect is to carry Randomized Controlled Trail (Pearl,
2009), where the treatment assignment mechanism does not depend on the covariates and is assigned
to individuals randomly. However, this method is sometimes expensive, unethical or even infeasible,
thus we often focus on estimating treatment effect from observational data. But, in such dataset, the
treatment depends on some attributes of individual x as p(t|x) 6= p(¬t|x) and will cause selection
bias (Imbens & Rubin, 2015). For example, rich customers are more willing to watch the ads and
buy the expensive goods relative to the poor ones. Therefore, it is vital to find all the confounders
and control them to make precise predictions, which means unconfoundedness assumption often
needs to be satisfied in observational study to make the treatment effect identifiable (Pearl, 2009).

Even though we already have all the confounders in our variables, we face a difficult problem that
we cannot easily identify them from the numerous variables and then adjust them to balance through
the backdoor criterion (Pearl, 2009). Existing methods achieve balance either by propensity score
weighting methods (Austin, 2011) or representation learning methods of reducing the discrepancy
between the treated and control group (e.g., BNN (Johansson et al., 2016) and CFR-net (Shalit et al.,
2017)) while ignoring identification of the other latent factors. Recently, disentangled representation
learning methods, DR-CFR (Hassanpour & Greiner, 2020) and DeR-CFR (Wu et al., 2020), have
been proposed to learn three independent factors {Γ,Υ,∆}, which respectively represents the fac-
tor that partially affects treatment, partially affects outcome and affects both treatment and outcome.
Obviously, disentangled representation learning methods can achieve explicitly identification of the
latent factors. We follow this path and expect to propose more effective and robust disentangled
methods, as we find that existing methods sometimes cannot disentangle well due to the inefficient
design of the disentangled tasks. For example, DR-CFR cannot effectively distinguish the difference
between the ∆ and {Γ,Υ} and therefore it has not achieved competitive performance. DeR-CFR
designs very complicated tasks and needs effective parameter tuning to achieve completely variable
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decomposition. Besides, these two methods cannot obtain independent disentangled representa-
tions, which is a sufficient condition for identifying the treatment effect. Also, generative models
like CEVAE (Louizos et al., 2017) and GANITE (Yoon et al., 2018) also face the problem of model
complexity although they have good explanation to the data generation process.

From these perspectives, we argue that an easy-handling and well-identifying model needs to be
proposed to deal with the problems mentioned above, and we also argue that a good causal infer-
ence algorithm should perform well across different model settings and different datasets without
much parameter tuning. Therefore, we propose to use an efficient share-bottom encoder to extract
the features and three task-specific decoders to disentangle the factors (replace the original three
representations networks in DR-CFR and DeR-CFR), then we put forward a mutual information
minimization framework to obtain ideally independent disentangled factors through CLUB estima-
tor proposed by (Cheng et al., 2020) and use the independent factors to estimate treatment effect.
Theoretical analysis also proves the effectiveness of our proposed method. Then, we summarize our
main contributions as followings:

• We introduce a share-bottom-encoder and task-specific-decoder architecture for counterfactual
inference instead of three separate representation networks.

• We extend state-of-the-art disentangled methods for counterfactual inference using mutual in-
formation minimization method to learn ideally independent disentangled representations and
conduct theoretical analysis to prove the effectiveness.

• We perform sufficient experiments that show our method makes great progress in inferring
individual treatment effect across several challenging datasets and robustness analysis demon-
strates that MimCE can enhance model stability.

The rest of the paper is organized as follows: we discuss related work in Section 2, The details of our
MimCE are presented in Section 3. In Section 4, we will talk about the details of our experiments.
Finally, we show the conclusion and future work in Section 5.

2 RELATED WORKS

Estimating treatment effect from observational data is a widespread concerned problem in many
fields. During past decades, several kinds of methods have been proposed to solve this problem,
such as propensity score based matching (Rosenbaum & Rubin, 1983; Dehejia & Wahba, 2002) and
weighting (Austin, 2011) methods, some tree-based estimators like BART (Chipman et al., 2010)
and Causal Forests (Wager & Athey, 2015), deep learning based methods, such as TARNET (Shalit
et al., 2017), BNN (Johansson et al., 2016) and CFR (Shalit et al., 2017), which deal with the selec-
tion bias through reducing the discrepancy of the hidden embedding between the treated and control
group. D2VD (Kuang et al., 2017) proposes a kind of data-driven variables decomposition algorithm
for treatment effect estimation. DR-CFR (Hassanpour & Greiner, 2020) and DeR-CFR (Wu et al.,
2020) extends data-driven variables decomposition algorithm to individual treatment effect estima-
tion (ITE) by explicitly learning three latent factors {Γ,Υ,∆} and have achieved state-of-the-art
performance.

Besides, due to increasing attention of generative models in causal inference, methods like CE-
VAE (Louizos et al., 2017) and GANITE (Yoon et al., 2018) have also been proposed for ITE estima-
tion, while the generative models had not achieved competitive performance until TEDVAE (Zhang
et al., 2021) was proposed, which utilizes variational auto-encoder to learn three disentangled fac-
tors. As can be seen from above works, disentangled representation learning methods have played
an important role in causal inference due to its effective variable decomposition and identification.

Mutual information (MI) is often utilized as a regularizer in loss functions and has widely used
in many machine learning tasks, such as mutual information maximization in representation learn-
ing (Hjelm et al., 2019; Kim & Mnih, 2018) and generative models (Chen et al., 2016). Recently,
mutual information minimization has also gained increasing attention in disentangled representation
learning (Chen et al., 2018) and (Cheng et al., 2020) proposes a MI upper bound called CLUB to
deal with the MI minimization task and various experiments have demonstrated the effectiveness of
this method.

Our work is based on DR-CFR and DeR-CFR, instead of using the complicated disentangled tasks
that are proposed in DeR-CFR, we borrow some ideas about hard variables decomposition from

2



Under review as a conference paper at ICLR 2022

Γ

Δ

Υ

ℎ! ℎ! ℎ!

ℎ" ℎ" ℎ"

Φ

Ω

𝑡

𝑡 = 1

𝑡 = 0

𝜋 𝜋 𝜋

C
O
N
C
A
T

X E

𝑇

𝑌

𝐼𝑃𝑀

...

...

...

E ...

D

D

D

CLUB

CLUB

CLUB

Figure 1: The proposed model architecture of MimCE, X refers to input features, E refers to share-
bottom encoder, D refers to task-specific decoder, {Γ,∆,Υ} are disentangled factors, CLUB is the
upper bound of the mutual information. Ω = CONCAT(Γ,∆), Φ = CONCAT(Υ,∆), Υ and t are
used to calculate the discrepancy IPM.

it. Then we propose a novel method called MimCE, which uses a share-bottom-encoder and task-
specific-decoder architecture to obtain three factors and then make them independent from MI min-
imization task using the CLUB estimator. Experiments show that our method can obtain great
improvement in several benchmarks and achieve effective variables decomposition under different
settings.

3 METHODOLOGY

3.1 PRELIMINARY

We first present some notations. Given the observational dataset D =
{(
xi, ti, y

ti
i

)}N
i=1

, N is the
number of the data samples,

(
xi, ti, y

ti
i

)
is the labeled data pairs, xi ∈ X is the input features

referring context information, yi ∈ Y is observed factual outcome and ti ∈ T refers to potential
interventions (e.g., for binary treatment t ∈ {0, 1}). For example, for decision on medicine usage,
x can be age, gender, economic status and current situation of patients, y can be recovery time or
whether to recover, t can be whether to take the medicine. Mathematically, we define our goal in
this paper is to learn a function F : X ×T → Y to predict the potential outcomes and then estimate
the individual treatment effect (ITE) 1 and the average treatment effect (ATE):

Definition 1. The individual treatment effect (ITE) is formulated as:

ITE = E[y = 1|x, do(t = 1)]− E[y = 1|x, do(t = 0)] (1)

Definition 2. The average treatment effect (ATE) is formulated as:

ATE = E[y = 1|do(t = 1)]− E[y = 1|do(t = 0)] (2)

Where do(t) refers to remove all incoming edges of t (Pearl, 2009).

Besides, we assume that the following fundamental assumptions for treatment effect estimation are
satisfied in this paper (Rosenbaum & Rubin, 1983):

Assumption 1. (SUTVA) The Stable Unit Treatment Value Assumption requires that the response of
a unit depends only on the treatment to which he himself was assigned and not affected by others.

Assumption 2. (Unconfoundedness) The treatment assignment mechanism is independent of the
potential outcome when conditioning on the observed variables, Formally: Y0, Y1 ⊥⊥ t | x.

1The individual treatment effect (ITE) aka called conditional average treatment effect (CATE).
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Assumption 3. (Positivity) Each unit has a non-zero probability to be assigned to each treatment
when given the observed contexts, i.e., 0 < P (t = 1|x) < 1.

3.2 PROPOSED METHOD

The model architecture of MimCE is shown in Figure 1. It is consist of three components, which
are share-bottom-encoder and task-specific-decoder part, CLUB mutual information minimization
part and predictions task part (i.e., outcome prediction task, treatment prediction task and imbalance
prediction task respectively). We introduce the details of our method as followings.

3.2.1 DISENTANGLED REPRESENTATIONS FOR COUNTERFACTUAL INFERENCE

Without loss of generality, for the dataset D =
{(
xi, ti, y

ti
i

)}N
i=1

, similar to DR-CFR (Hassanpour
& Greiner, 2020), we argue that it is generated from three underlying factors {Γ,∆,Υ}. Then we
aim to recover the underlying factors from the input variables by defining three prediction tasks as
follows:

• Predict outcomes from Φ = CONCAT(Υ,∆) and define the loss as: Lpred = L[yi, h
ti(Φ(xi))].

• Predict treatment from Ω = CONCAT(Γ,∆) and define the loss as: Ltreat = L[ti, π(Ω(xi))].

• Calculate discrepancy loss by Ldisc = IPM
(
{Υ(xi)}i:ti=0 , {Υ(xi)}i:ti=1

)
.

Then we summarize the loss function LMAIN based on the three base tasks:

LMAIN = Lpred + α · Ltreat + β · Ldisc (3)

We also find that the sample weight ωi used in DR-CFR is often harm to treatment effect estimation,
the reason may due to the flowing of some information of Υ into ∆, which will cause biased estima-
tor of treatment assignment mechanism. Therefore, we exclude the weight as we cannot guarantee
perfectly disentanglement between ∆ and Υ, and the weight may hurt the robustness of our model
in unknown real environment (i.e., we can utilize the weight if and only if we disentangle Υ from
∆ thoroughly). Besides, α and β are weights for each task, and we use Wasserstein distance as our
integral probability metric in this paper.

3.2.2 SHARE-BOTTOM ENCODER AND TASK-SPECIFIC DECODER

As we discussed above, efficient treatment effect estimation models should effectively disentangle
the factors first. Most of existing disentangled methods use three isolated representation learning
networks to extract underlying factors2, we argue that this method is lack of efficiency because of
redundant parameters and little information exchange between tasks. Instead, we adopt a share-
bottom-encoder and task-specific-decoder architecture to extract the latent factors, which can be
formulated as:

zh = E(x)

zΓ = DΓ(zh), zΥ = DΥ(zh), z∆ = D∆(zh)
(4)

x is input features and x ⊆ Rd, d refers to dimension of input features. zh is hidden embedding and
zh ⊆ Rk, k refers to dimension of the hidden units. zΓ, z∆, zΥ are representations of the underlying
factors respectively and zΓ, z∆, zΥ ⊆ Rd (i.e., consistent with input dimension). The E refers to a
share-bottom-encoder with multi-layer MLPs and the D is a task-specific-decoder with an one-layer
MLP (we use ReLU activation in decoder to obtain non-negative factors).

The intuition of the architecture actually derives from multi-task learning (Ma et al., 2018). We
can treat the disentangling process as three single prediction tasks, then we can get more time-
efficient and memory-efficient model through parameter sharing on the bottom layers, and sharing
information among different tasks can further enhance feature representation. Hence, instead of
disentangling the factors directly from input features, we disentangle them from a common hidden
feature space. Experiments show that the proposed encoder-decoder architecture performs better
than three isolated representation learning networks significantly.

2DR-CFR describes its representations of the underlying factors as “Three representation learning net-
works; one for each underlying factor: Γ(x),∆(x),Υ(x)” and DeR-CFR describes it as “Three decomposed
representation networks for learning latent factors, one for each underlying factor: I(X), C(X) and A(X)”.
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3.2.3 MUTUAL INFORMATION MINIMIZATION FRAMEWORK

Through disentangled representation learning, we aim to encode the hidden features into several
separate embedding parts. In order to learn independent disentangled representations in ITE esti-
mation, DeR-CFR uses orthogonal regularizer between product of weight matrices to achieve com-
pletely variables decomposition. However, our experiment shows that this method may become less
effective when representation layer goes deeper3. Besides, it can only acquire uncorrelated factors
instead of independent factors, as orthogonal regularizer can be approximately treated as calculat-
ing Pearson’s Correlation Coefficient ρ4. In order to obtain independent disentangled factors, we
apply recent work on mutual information minimization to our ITE estimation method and propose
to minimize the mutual information among the three underlying factors to ensure independence.
Mutual information is a fundamental measure of the dependence between two random variables.
Mathematically, the definition of MI between variables x and y is:

I(x,y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
(5)

Following (Cheng et al., 2020), we introduce to use Contrastive Log-ratio Upper Bound (CLUB)
to accomplish mutual information minimization among underlying factors, and CLUB is defined
as ICLUB(x,y) = Ep(x,y) [log p(y|x)] − Ep(x)Ep(y) [log p(y|x)] when the conditional distribution
p(y|x) is known. We describe the properties of CLUB in the following theorem:

Theorem 1. For two random variables x and y, ICLUB(x,y) is an upper bound of I(x,y):

I(x,y) ≤ ICLUB(x,y) (6)

Equality is achieved if and only if x and y are independent.

Unfortunately, the conditional relation between variables is unavailable in our task, then we use a
variational distribution qθ(y|x) to approximate p(y|x) to further extend the CLUB estimator into
our scenario. vCLUB is defined as IvCLUB(x,y) = Ep(x,y) [log qθ(y|x)]−Ep(x)Ep(y) [log qθ(y|x)]
and has the following properties:

Theorem 2. The variational CLUB term IvCLUB(x,y) remains a MI upper bound if the variational
joint distribution qθ(x,y) = qθ(x|y)p(x) satisfy the following inequality:

KL(p(x,y)||qθ(x,y)) ≤ KL(p(x)p(y)||qθ(x,y)) (7)

Which means that vCLUB can still hold a MI upper bound when we have good variational approxi-
mation qθ(y|x). The proofs of Theorem 1 and 2 are available in Appendix A1.

Since we aim to obtain independent disentangled representations, we simply minimize the following
objective function:

LCLUB = IvCLUB(zΓ, z∆) + IvCLUB(z∆, zΥ) + IvCLUB(zΥ, zΓ) (8)

We conclude that we can acquire pairwise independent disentangled factors through minimizing
LCLUB, as shown in the following theorem:

Theorem 3. If the objective function LCLUB is minimized to zero, then we have:

p(zΓ, z∆) = p(zΓ)p(z∆), p(z∆, zΥ) = p(z∆)p(zΥ), p(zΥ, zΓ) = p(zΥ)p(zΓ) (9)

That is, z∆, zΓ and zΥ are pairwise independent.

Proof. Due to the I(x,y) is positive semi-definite, then minimizing LCLUB is equal to minimize each
part of it to zero. Without loss of generality, we take IvCLUB(zΓ, z∆) as an example and according to
the Theorem 1 and 2:

0 ≤ I(zΓ, z∆) ≤ IvCLUB(zΓ, z∆) (10)
Ideally, if the MI upper bound between each two variables is minimized to zero, we have:

I(zΓ, z∆) =
∑
zΓ

∑
z∆

p(zΓ, z∆) log
p(zΓ, z∆)

p(zΓ)p(z∆)
= 0⇔ p(zΓ, z∆) = p(zΓ)p(z∆) (11)

3Figure 4 shows the evidence that the performance will drop for IHDP-A when encoder goes deeper.
4Orthogonal regularizer refers toE(xy) = 0, if we simply assume thatE(x) = E(y) = 0, then orthogonal

regularizer is equal to ρ = 0, i.e., uncorrelated.
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Then we conclude that zΓ and z∆ are independent. In the same way, z∆, zΓ and zΥ are pairwise
independent.
Based on the results that we obtain independent disentangled factors from theorem 3, we demon-
strate that individual treatment effect can be identified through following theorem:

Theorem 4. The individual treatment effect is identifiable if we obtain the independent disentangled
representations zΓ, z∆ and zΥ from x.

Proof. Firstly, we define some notations and rules described in (Pearl, 2009):

Let G be the directed acyclic graph, p(·) stand for the probability distribution. We denote Gt by the
graph obtained by deleting from G all edges pointing into t. Likewise, we denote Gt by the graph
obtained by deleting from G all edges emerging from t. For any disjoint subsets of variables t, y, x
and z, we have the following rules.

Rule 1. (Insertion/deletion of observations)

p(y|do(t),x, z) = p(y|do(t),x) if (y ⊥⊥ z | t,x)Gt (12)

Rule 2. (Action/observation exchange)

p(y|do(t),x, z) = p(y|t,x, z) if (y ⊥⊥ t | x, z)Gt (13)

Then, we denote τ̂ as an estimator of the ITE and use independetn factors zΓ, z∆, zΥ to replace x,

τ̂ = p̂(y = 1|zΓ, z∆, zΥ, do(t = 1))− p̂(y = 1|zΓ, z∆, zΥ, do(t = 0)) (14)

Following Rule 1, we can remove zΓ in equation (14) knowing that (y ⊥⊥ zΓ | t, z∆, zΥ)Gt ,

τ̂ = p̂(y = 1|z∆, zΥ, do(t = 1))− p̂(y = 1|z∆, zΥ, do(t = 0)) (15)

Besides, we have (y ⊥⊥ t | zΥ, z∆)Gt and using Rule 2,

τ̂ = p̂(y = 1|z∆, zΥ, t = 1)− p̂(y = 1|z∆, zΥ, t = 0) (16)

Therefore, the individual treatment effect is identifiable when we condition on z∆ and zΥ.

While in some scenarios, people assume that it is sufficient to estimate ITE under unconfoundedness
assumption and control all variables in model. However, (Zhang et al., 2021; Pearl, 2009; Abadie &
Imbens, 2004; Hahn, 1998) illustrate that conditioning on redundant variables that are uncorrelated
to outcome may bring biased as well as high-variance estimator. Hence, it is significant to estimate
ITE only through the disentangled factors z∆ and zΥ.

Besides, we also compare it to other disentangled methods to prove the effectiveness of MI min-
imization in ITE estimation, one is from the idea of matrix orthogonal regularity used in DeR-
CFR (Wu et al., 2020), called Weight Matrix Orthogonality (WMO), and the other one is to di-
rectly restrict the inner product of the three factors to zero, which is abbreviated as Inner Product
Orthogonality (IPO). WMO and IPO are defined as:{

LWMO = W̄ T
Γ · W̄∆ + W̄ T

∆ · W̄Υ + W̄ T
Υ · W̄Γ

LIPO = zTΓ · z∆ + zT∆ · zΥ + zTΥ · zΓ
(17)

W ⊆ Rd×d refers to products of the encoder and decoder layers, then we use the average of the
W and get W̄ ⊆ Rd×1 to represent the contribution of input variables on disentangled factors. To
ensure we get non-zero disentangled factors, we also restrict the following objectives:

LWREG = θ ·
∑
i

(1−
∑
j

ωij)
2 + (1− θ) ·

∑
i

(1−
∑
j

υij)
2 (18)

Where i ∈ {Γ,∆,Υ} and ωij and υij represent each dimension of W̄ and z respectively, θ is a
parameter to balance these two parts.5 Then we summarize the total objective function LMimCE as:

LMimCE = Lpred + α · Ltreat + β · Ldisc︸ ︷︷ ︸
LMAIN

+ γ · LCLUB + η · LWREG︸ ︷︷ ︸
LMIM

+λ · LREG (19)

We combine LCLUB and LWREG as total MI minimization objective function LMIM. LREG penalizes the
model complexity and α, β, γ, η and λ are weights for these objectives.

5Empirically, we usually set θ = 0 when encoder layers are deep versus θ = 1 when encoder layers are
shallow, as the products of weight matrices may omit some information when layer goes deeper.
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4 EXPERIMENT

4.1 BENCHMARK DATASET

A fundamental problem in causal inference is that we cannot observe factual outcome and counter-
factual outcome simultaneously, an often used solution is to synthesize datasets where the outcomes
of all possible treatments are available or synthesize outcomes from real-worlds covariates. We use
Infant Health and Development Program (IHDP) (Hill, 2011) and our synthetic dataset in this paper.

IHDP Benchmark. Similar to (Shalit et al., 2017; Hassanpour & Greiner, 2019; Zhang et al., 2021),
we use a semi-synthetic dataset based on the Infant Health and Development Program (IHDP) as
our benchmark which was first introduced by (Hill, 2011). The covariates come from a randomized
experiment studying the effects of home visits by specialist on future cognitive test scores. The
selection bias has been made by removing a biased subset of the treated population and it comprises
747 instances (139 treated, 608 control) with 25 covariates measuring different attributes of children
and their mothers. The simulated outcomes are implemented as both setting “A” and setting “B” in
the NPCI package and follow linear relationship and nonlinear relationship respectively.

Synthetic Benchmark. Given the observational datasetD =
{(
xi, ti, y

ti
i

)}N
i=1

,N is the number of
the data samples. We assume x is generated from underlying factors {Γ,∆,Υ}, kΓ, k∆ and kΥ refer
to dimension of these factors. Then we generate each datapoint from following 3 steps: 1). For each
xi ∈ {Γ,∆,Υ}, we generate samples from independent normal distributions xi ∼ N (0, 1). 2). We
create selection bias by defining π(t = 1|z) = 1/(1 + e−θt·Ω), where Ω = CONCAT(Γ,∆) + ε,
θt ∼ U((2, 4)kΓ+k∆) and ε ∼ N (0, 1). Then we sample ti from Bern(π(t = 1|zi)) for each unit
i. 3). The outcomes Y0 = θy0 · Φ3/(kΓ + k∆) + ε and Y1 = θy1 · Φ2/(kΥ + k∆) + ε, where
Φ = CONCAT(Υ,∆) + ε, θy0 ,θy1 ∼ U((2, 4)kΥ+k∆) and ε ∼ N (0, 1). Finally, we repeat the
procedure N times to generate train datasets.

4.2 EXPERIMENTAL RESULTS OF TREATMENT EFFECTS

Performance Metrics. Given a synthetic dataset that includes both factual and counterfactual out-
comes, we can evaluate treatment effect estimation methods with two performance measures. The
individual-based performance metric is εPEHE = 1

N

∑N
i=1 (τ̂i − τi)2, where τ̂i = ŷ1

i − ŷ0
i is the

predicted individual treatment effect and τi = y1
i − y0

i is the actual effect. The population-based
performance measure is εATE = |ATE − ÂTE|. The ATE = 1

N

∑N
i=1(y1

i − y0
i ) and the ÂTE is

calculated from the estimated outcomes.

Baselines Methods. We will compare performances of the following treatment effect estimation
methods in this paper, which can be divided into the following categories. Baseline models: TAR-
NET (Shalit et al., 2017), CFR-WASS (Shalit et al., 2017), CFR-ISW (Hassanpour & Greiner,
2019), SITE (Yao et al., 2018). Generative models: CEVAE (Louizos et al., 2017), GANITE (Yoon
et al., 2018), TEDVAE (Zhang et al., 2021). Disentangled models: DR-CFR (Hassanpour &
Greiner, 2020), DeR-CFR (Wu et al., 2020), MimCE and its two variants IpoCE and WmoCE
(i.e., we obtain IpoCE and WmoCE by replacing the LCLUB with LIPO and LWMO). The details of
parameter settings are available in Appendix A.2.

Ablation Study. We also conduct an ablation study to examine the contributions of different compo-
nents in MimCE. w/o ED: remove the share-bottom-encoder and task-specific-decoder. w/o MIM:
remove MI minimization task. w/o MIM+ED: remove MIM and ED both.

In Table 1, we report the average results of the
√
εPEHE and εATE metrics on IHDP-A and IHDP-B

benchmarks (100 realizations with 63/27/10 proportion of train/validation/test splits), results show
that MimCE achieves the best performance among the compared methods and its two variants, which
demonstrate that MimCE is currently the most effective disentangled method in ITE estimation. The
bottom part of Table 1 summarizes the results of the ablation study, from which we observe that all
MimCE variants with some components removed witness clear performance drops when comparing
to the full model on the

√
εPEHE metric, suggesting that each of the designed components contributes

to the success of MimCE. Table 2 shows the average results of 10 replications on synthetic bench-
marks with kΓ = k∆ = kΥ = 6 and N = 10000.
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Table 1: Results of different treatment effect estimation methods and ablation study of MimCE

DATASET IHDP-A IHDP-B

METHOD
In.S Out.S In.S Out.S√

εPEHE εATE
√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

TARNET 0.886 0.231 0.951 0.275 2.512 0.238 3.156 0.354
CFR-WASS 0.729 0.263 0.742 0.296 2.379 0.247 2.518 0.342
CFR-ISW 0.682 0.224 0.691 0.230 2.350 0.291 2.558 0.401
SITE 0.675 0.211 0.683 0.241 2.265 0.261 2.341 0.367

CEVAE 1.831 0.343 2.052 0.391 2.883 0.358 3.214 0.426
GANITE 2.150 0.391 2.429 0.452 3.512 0.435 3.971 0.538
TEDVAE 0.562 0.143 0.586 0.151 2.071 0.228 2.242 0.316

DR-CFR 0.632 0.157 0.643 0.201 2.178 0.279 2.330 0.384
DeR-CFR 0.468 0.136 0.488 0.155 2.091 0.247 2.208 0.329

WmoCE 0.528 0.123 0.583 0.142 2.023 0.216 2.160 0.319
IpoCE 0.446 0.095 0.469 0.103 2.037 0.221 2.191 0.340
MimCE 0.369∗ 0.089∗ 0.378∗ 0.092∗ 1.985∗ 0.210∗ 2.118∗ 0.314∗

w/o ED 0.518 0.122 0.546 0.137 2.136 0.241 2.280 0.339
w/o MIM 0.489 0.128 0.505 0.135 2.131 0.235 2.298 0.321
w/o ED+MIM 0.611 0.145 0.650 0.176 2.164 0.267 2.312 0.370
1 The bolded values mean the best performance and ∗ means significantly different from DR-CFR

(t-test, α = 0.05). In.S means train/validation dataset and Out.S means test dataset.

4.3 IDENTIFICATION OF THE DISENTANGLED FACTORS

As we mentioned above, we use the products of the weight matrices of the encoder layers and
decoder layers to evaluate if our method can achieve effective variables decomposition. Then we
calculate the average of the weight matrix and get W̄ ⊆ Rd×1 and each dimension of the W̄ can ap-
proximately represent the contribution of each dimension of input variables on disentangled factors.
We take ∆ as an example and partition W̄ into two parts W̄∆ and W̄¬∆. Then we sum the absolute
values of weights in W̄∆ and W̄¬∆ , and calculate the percentageM% =

∑
W̄∆/(

∑
W̄∆+W̄¬∆)

to denote “How much effective information is embedded in the disentangled factors, much is better”.

However, W̄ is not the most suitable method to evaluate WmoCE, IpoCE and MimCE simulta-
neously (as only WmoCE directly optimizes the W̄ ). To make the results more explainable and
comparable, we add LWMO in IpoCE and MimCE (aka called IpoCE (+wmo) and MimCE (+wmo) in
Table 3). If IpoCE and MimCE are more efficient, then we expect that the percentageM% of IpoCE
(+wmo) and MimCE (+wmo)) should be higher than that of WmoCE.

(a) Identification of Γ (b) Identification of Υ (c) Identification of ∆

Figure 2: Radar charts that visualize the capability of DR-CFR, WmoCE, IpoCE (+wmo) and
MimCE (+wmo) in identifying the factors {Γ,Υ,∆}, The polygons’ radii denotes M% and each
vertex on the polygons refers to factors’ dimension (k∆, kΓ and kΥ) of synthetic dataset.
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(a) 6-6-6 (b) 8-8-8 (c) 10-10-10

Figure 3: Examples of MimCE (+wmo) in identifying the factors {Γ,Υ,∆}. The x-axis and y-axis
denote variable dimension ki and percentage of each dimension on W̄ respectively. k-k-k refers to
factors’ dimension, 1 ∼ k refers to Γ, k + 1 ∼ 2k refers to ∆ and 2k + 1 ∼ 3k refers to Υ.

The average results of 9× 50 replications on synthetic benchmarks are shown in Figure 2 and Table
3, from which we can observe that MimCE (+wmo) can achieve a good identification on {Γ,Υ,∆},
especially on {Υ,∆}. Figure 3 shows examples of MimCE (+wmo) in identifying the factors.

Table 2: Out.s
√
εPEHE and εATE results on

synthetic benchmarks, represented in the
form of “mean (standard deviation)”

METHOD
√
εPEHE εATE

DR-CFR 1.62 (0.08) 0.15 (0.05)
WmoCE 1.17 (0.06) 0.11 (0.04)
IpoCE 1.22 (0.06) 0.10 (0.02)
MimCE 1.02 (0.05) 0.08 (0.02)

Table 3: Identification of the underlying factors
on synthetic benchmarks, represented in the form
of “M%”

METHOD Γ Υ ∆

DR-CFR 34.4% 38.9% 35.3%
WmoCE 77.9% 66.8% 56.1%
IpoCE (+wmo) 82.9% 49.2% 44.2%
MimCE (+wmo) 79.5% 73.4% 64.8%

4.4 ROBUSTNESS ANALYSIS

It is often a difficult thing to evaluate the treatment effect estimation in real-world scenarios, so
a good treatment effect estimation algorithm should perform well across different model settings.
Then, we attempt to conduct robustness analysis based on changing the size of the encoder layer.

Figure 4: Robustness analysis of the influence of layer size on the
√
εPEHE metric for IHDP-A, from

which we observe that MimCE performs more robust than other methods as the blue line shows.

5 CONCLUSION

We mainly focus on disentangled representation learning methods for ITE estimation in this paper,
compared to existing disentangled methods, like DR-CFR, DeR-CFR and TEDVAE, we propose
a MI minimization disentangled framework for causal effect estimation called MimCE, which not
only has excellent predictive performance and disentangled performance but also owns good model
stability. And many experiments demonstrate that MimCE is a state-of-the-art method.

For future work, we aim to extend our method to multi-treatment scenarios as existing models mainly
focus on binary treatment. It is also a promising direction to utilize the MI minimization method in
generative models as increasing attention have been paid to this field.
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A APPENDIX

A.1 THEOREMS AND PROOF

𝑋
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Figure 5: (a) refers to the collider in which X means confounding factors. (b) represents do(t) with
removing all incoming edges of T. (c) represents our disentangled causal graph and zε are noise
variables.

Theorem 1. For two random variables x and y,

I(x,y) ≤ ICLUB(x,y) (20)

Equality is achieved if and only if x and y are independent.

Proof. Similar to the proof in (Cheng et al., 2020), The Mutual Information is formulated as:

I(x,y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
= Ep(x,y) [log p(y|x)− log p(y)] (21)

The Contrastive Log-ratio Upper Bound (CLUB) is defined as:

ICLUB(x,y) = Ep(x,y) [log p(y|x)]− Ep(x)Ep(y) [log p(y|x)] (22)

We calculate the gap between ICLUB(x,y) and I(x,y) :

∆ = ICLUB(x,y)− I(x,y)

= Ep(x,y) [log p(y|x)]− Ep(x)Ep(y) [log p(y|x)]− Ep(x,y) [log p(y|x)− log p(y)]

= Ep(x,y) [log p(y)]− Ep(x)Ep(y) [log p(y|x)]

= Ep(y)

[
log p(y)− Ep(x) [log p(y|x)]

]
= Ep(y)

[
log
(
Ep(x) [p(y|x)]

)
− Ep(x) [log p(y|x)]

]
(23)

Due to log(·) is a concave function, by Jensen’s Inequality, we have:

log
(
Ep(x) [p(y|x)]

)
≥ Ep(x) [log p(y|x)] (24)

Therefore, the gap ∆ is always non-negative, we have the following inequality:

I(x,y) ≤ ICLUB(x,y) (25)

We demonstrate that ICLUB(x,y) is an upper bound of I(x,y). The equality is satisfied when vari-
ables x and y are independent.

Theorem 2. The variational CLUB term IvCLUB(x,y) remains a MI upper bound if the variational
joint distribution qθ(x,y) = qθ(x|y)p(x) satisfy the following inequality:

KL(p(x,y)||qθ(x,y)) ≤ KL(p(x)p(y)||qθ(x,y)) (26)

Then I(x,y) ≤ IvCLUB(x,y), the equality holds when x and y are independent.
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Proof. Similar to Theorem 1, we calculate the gap between IvCLUB(x,y) and I(x,y):

∆ = IvCLUB(x,y)− I(x,y)

= Ep(x,y) [log qθ(y|x)]− Ep(x)Ep(y) [log qθ(y|x)]− Ep(x,y) [log p(y|x)− log p(y)]

= Ep(y) [log p(y)]− Ep(x)p(y) [log qθ(y|x)]− Ep(x,y) [log p(y|x)− log qθ(y|x)]

= Ep(x)p(y)

[
log

p(y)

qθ(y|x)

]
− Ep(x,y)

[
log

p(y|x)

qθ(y|x)

]
= Ep(x)p(y)

[
log

p(y)p(x)

qθ(y|x)p(x)

]
− Ep(x,y)

[
log

p(y|x)p(x)

qθ(y|x)p(x)

]
= Ep(x)p(y)

[
log

p(x)p(y)

qθ(x,y)

]
− Ep(x,y)

[
log

p(x,y)

qθ(x,y)

]
= KL(p(x)p(y)||qθ(x,y))− KL(p(x,y)||qθ(x,y))

(27)

Therefore, we conclude that IvCLUB(x,y) is the upper bound of I(x,y) if and only if when
KL(p(x,y)||qθ(x,y)) ≤ KL(p(x)p(y)||qθ(x;y)), and the equality holds when x and y are in-
dependent. More supplementary material about the CLUB estimator and its properties are available
in (Cheng et al., 2020).

A.2 HYPERPARAMETERS SETTINGS

The details of the model architecture and optimal hyperparameter are as follows: For IHDP-A, we
use 7 hidden layers with 30 neurons for each layer to encode the input variables into feature space6,
and 1 layer MLP with ReLU activation to decode the features into disentangled factors; the Y0 and
Y1 prediction part are both 3 hidden layers with 100 neurons and LeakyReLU activation; the T
prediction part is a 1 linear layer, the weight θ is set to 1. For IHDP-B and synthetic dataset, 1
layer with 100 neurons and ELU activation is used to encode features, the other parts are same to
setting A while the weight θ = 0, the difference between the θ is that θ can be seen as a symbol of
balance between weight matrix and hidden units, the products of weight matrices may omit some
information for IHDP-A as we use 7 layers compared whit only 1 layer for IHDP-B. Table 4 shows
the details on our hyper-parameter search space of MimCE.

Table 4: Hyperparameter settings

Hyperparameter Range

Encoder layer dim {1, 2, 3, 4, 5, 6, 7}
Decoder layer dim {1, 2, 3}

Encoder hidden units {30, 50, 70, 100}
Y0, Y1, T layer dim {1, 2, 3}
Y0, Y1, T hidden units {50, 100}

α, β, γ, η, λ {0, 0.01, 0.1, 1, 10}
θ {0, 1}

The configuration of the objective function weight and training process are as follows: we use the
Adam optimizer with 1e-2 learning rate and 1e-2 weight decay weight, and the loss weight for Ltreat,
Ldisc, LCLUB and LWREG are all set to 1 (i.e., we do not search these parameter as we argue that a good
causal inference algorithm should preform well on simple weight settings).

In addition to this, we evaluate on the validation set every 10 epochs and we stop the running process
when the loss does not drop for 10 rounds on the validation set and use the best model to predict the
test set.

6For IHDP-A encoder layers, we don’t use activation function.
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