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Abstract

In contrast to close-set scenarios that restore im-
ages from a predefined set of degradations, open-
set image restoration aims to handle the unknown
degradations that were unforeseen during the pre-
training phase, which is less-touched as far as we
know. This work study this challenging problem
and reveal its essence as unidentified distribution
shifts between the test and training data. Recently,
test-time adaptation has emerged as a fundamen-
tal method to address this inherent disparities. In-
spired by it, we propose a test-time degradation
adaptation framework for open-set image restora-
tion, which consists of three components, i.e., 1)
a pre-trained and degradation-agnostic diffusion
model for generating clean images, ii) a test-time
degradation adapter adapts the unknown degrada-
tions based on the input image during the testing
phase, and iii) the adapter-guided image restora-
tion guides the model through the adapter to pro-
duce the corresponding clean image. Through ex-
periments on multiple degradations, we show that
our method achieves comparable even better per-
formance than those task-specific methods. The
code is available at https://github.com/XLearning-
SCU/2024-ICML-TAO.

1. Introduction

In recent years, significant advances have been made in the
realm of image restoration, and have demonstrated remark-
able capabilities in addressing a multitude of image degra-
dations (Fei et al., 2023; Jiang et al., 2023; Gou et al., 2022;
Zhao et al., 2023; Li et al., 2021b). However, a common
limitation among most existing methods is their reliance
on assumptions rooted in a close-set scenario, i.e., the test
degradations closely resemble those encountered during the
pretraining phase. This assumption restricts the applicability
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Figure 1. The differences of image restoration (IR) tasks. To be
specific, (a) Classic IR works in a close-set scenario where the
training and test degradations are the same and known, and cus-
tomizes a specialized model for each one. (b) All-in-one IR also
works in a close-set scenario where the training and test degrada-
tions are the same but unknown, and addresses them through a
unified model. (c) Zero-shot IR focuses on recovery from single
degraded image, which is free from the training degradations, but
often requires priors about the test degradations in advance. In
contrast, (d) OIR works in an open-set scenario where the test
degradations are unknown and different from the pretraining ones.
This is analogous to the challenge in natural language processing,
which applies the pre-trained large language model to the various
downstream tasks not predefined during the pretraining phase.

of these methods to specific types of degradation, hindering
their adaptability to a broader range of real-world scenarios
where diverse and unforeseen degradations may arise.

To break the above assumption, this work delves into the
more challenging and less-touched problem of open-set im-
age restoration (OIR). In contrast to conventional close-set
approaches, where models only address the specific degrada-
tions encountered during the pretraining phase, OIR poses a
formidable challenge by requiring models to handle the un-
known degradations absent from the training data. This shift
in focus aims to push the boundaries of image restoration,
fostering the development of models that exhibit adaptability
and resilience in the face of diverse and unexpected degrada-
tions. By tackling the OIR problem, this work seeks to pave
the way for more robust and versatile solutions applicable
to complex degradations in the real-world scenarios.
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The essence of OIR lies in addressing the challenges posed
by real-world scenarios, where the test data may differ sig-
nificantly from the training data. This could involve varia-
tions in degradation types and levels, lighting conditions and
so on that were not explicitly covered in the training data.
To tackle this challenge, test-time adaptation (TTA) has re-
cently emerged as an effective methodology to address the
inherent disparities between the test and training data (Wang
et al., 2021). Specifically, it adapts the pre-trained model
during the testing phase based on the specific characteristics
of the test data, allowing the model to perform better on a
wider range of input scenarios. This is particularly useful
in OIR where the test data may vary from the training data,
and the pre-trained model should to adapt to unknown and
unseen degradations for optimal performance.

Building on this inspiration, we present a Test-time degra-
dation Adaptation framework for Open-set image restora-
tion, dubbed TAO, which harnesses the idea of TTA to
provide a robust solution for OIR. Specifically, TAO con-
sists of three components, i.e., a pre-trained image diffusion
model (PDM), a test-time degradation adapter (TDA), and
the adapter-guided image restoration (AIR). In this frame-
work, PDM is adopted as the foundation model for OIR
due to the following considerations. First, PDM captures
rich knowledges of generating various high-quality visual
scenarios, which could be regarded as a generic pretraining
for OIR targeting at producing clean images. Second, PDM
is degradation-agnostic and any degradations in the test data
could be considered as unforeseen. Note that the test phase
of PDM is referred to the process of image generation, i.e.,
the step-by-step denoising process.

After each denoising step, TDA and AIR are sequentially
conducted for adapting to open-set scenarios and guiding
image restoration, respectively. Specifically, TDA employs
a learnable adapter during the test phase for adapting PDM
on the test degraded image. This adapter is devised for do-
main alignment that aligns the generative domain of PDM to
the degraded domain of the test image. In this way, the gen-
erated clean image could be translated to the corresponding
degraded one, which could be further supervised towards
the test degraded image, and in turn updating the generated
clean image. AIR is elaborated to conduct this supervised
updating for image restoration. In brief, AIR is inspired by
the observation that PDM exhibits an intriguing temporal
dynamic (Choi et al., 2022) during the step-by-step denois-
ing process. Therefore, AIR dynamically and accordingly
adjusts the supervision strategies at different denoising steps
for achieving a better performance.

Overall, our contributions could be summarized as follows.
e As far as we know, this could be one of the first work

that explicitly studies OIR and discovers its essence,
i.e., the unidentified distribution shifts between the test

and training data.

e This work reveals that TTA is an effective methodol-
ogy for OIR, by adapting the pre-trained model on the
test data during the test phase, to address the inherent
disparities between the test and training data.

e This work presents a test-time degradation adaptation
framework for OIR, where two components are devised
to adapt open-set scenarios and guide image restoration.
Experiments show the effectiveness of this framework.

2. Related Work

In this section, we briefly review recent advances in related
topics, which mainly involves test-time adaptation, all-in-
one image restoration, and zero-shot image restoration.

Test-time adaptation has shown to be effective at tackling
distribution shifts between test and training data, by adapt-
ing the pre-trained model on test samples. In the past several
years, it has gained increasing attentions and plentiful meth-
ods have been proposed. For example, (Wang et al., 2021;
Yang et al., 2024) updated the specific model parameters
through the test samples by resorting to the unsupervised
objectives. Similarly, (Wang et al., 2022a; Gan et al., 2023)
aimed to solve the continually changing distribution shifts
along the test time. Moreover, (Niu et al., 2023; Zhou et al.,
2023) considered more challenging and practical adaptation
settings such as single sample, label shifts, and mixed do-
main shifts. In addition, (Shin et al., 2022; Lee et al., 2023)
shifted their focuses on applications beyond image recogni-
tion, such as semantic segmentation and pose estimation.

This work focuses on application of solving OIR through
TTA methodologies. In brief, we incorporate PDM with an
adapter which is updated for adapting to the test degraded
image during the test phase. Besides, we also consider the
challenging adaptation setting of single test sample.

All-in-one Image Restoration is an emerging issue which
has been attracted more and more attentions. Specifically, it
aims to address the unknown degradations within a prede-
fined set through one model. For example, (Li et al., 2022)
firstly studied this problem and proposed to automatically
extract the degradation representation from the unknowingly
degraded images for assisting their restoration. (Potlapalli
et al., 2023) aimed to encode the degradation information
into prompts which are then used to dynamically guide the
restoration. (Jiang et al., 2023) focused on using the gen-
erated text prompts to guide the latent diffusion model for
restoring images with unknown degradations. Although re-
markable progress has been achieved, they usually need to
be trained on a predefined set of degradations, and recover
images from the degradations that are unknown but within
this set. In other words, they could only be applied to the



Test-Time Degradation Adaptation for Open-Set Image Restoration

close-set scenarios.

In contrast, this work is devoted to address OIR challenge,
wherein the test degradations are unknown during the test
phase, meanwhile unforeseen during the pretraining phase.
Note that OIR is established on the pre-trained model for
image restoration, and adapts the model to the downstream
tasks (i.e., unknown and unforeseen degradations) during
the test phase. This work empirically regards the diffusion
model (Ho et al., 2020) as a generic pretraining task for
various image restoration tasks.

Zero-shot Image Restoration focuses on recovering the
clean image from a single degraded one, without relying on
paired clean-degraded images for training. Classic methods
are usually devised for specific tasks. For example, (Shocher
et al., 2018) performed super resolution by downsampling
the low-resolution image to construct the lower-low training
pairs. (Li et al., 2021a) trained dehazing networks by de-
coupling and coupling the haze image through the physical
model of haze formation. In recent, some works focused on
methods with more general purpose. For instance, (Kawar
et al., 2022; Wang et al., 2022c) applied the decomposi-
tion approaches on the predefined linear degradations, and
used the diffusion model to address multiple tasks of image
restoration. Similarly, (Fei et al., 2023) introduced a condi-
tional guidance for eliminating linear and blind degradations
through the predefined and optimizable linear degradation
operators, respectively.

This work is different from the above methods on both the
problem and solution. On the problem, zero-shot focuses on
the restoration from single degraded sample, while open-set
focuses on dealing with the unknown degradations that were
unforeseen during the pretraining phase, where the degraded
sample does not have to be a single one. On the solution, the
above methods usually exploit additional degradation priors
to assist restoration from single degraded image, while our
method only introduces a degradation-agnostic adapter for
all unknown and unforeseen degradations.

3. The Proposed Method

In this section, we first briefly review the preliminary knowl-
edges, and then progressively illustrate the proposed TAO
and its two core components of TDA and AIR.

3.1. Preliminary

Open-set image restoration is devoted to handle the un-
known degradations that were also unforeseen during the
pretraining phase. Mathematically, for a given model M
pretrained on the distribution Dy,.q;,, OIR requires to re-
store a test degraded image y ~ Dyes so that L(M (y), x)
is minimal, wherein D;.; is unknown and different from
Dyyain, L is a function to measure the discrepancy, and x

is the clean version of y. Formally, OIR essentially poses a
problem of the unidentified distribution shifts between the
test and training data. For OIR, two fundamental principles
should be followed. (i) Unknown: OIR is agnostic to degra-
dations during the test phase, and any prior knowledge about
specific degradations is prohibitive. ii) Unforeseen: OIR is
independent of a specific pretraining task, and only requires
the test degradations were not presented for pretraining.

Test-time adaptation aims to improve the model’s perfor-
mance on new, unseen data by adjusting its parameters based
on the test samples. Mathematically, for a given model M
pretrained on the distribution Dy;.4;y,, TTA optimizes some
parameters 6 from M on the test samples y ~ Dy through
the objective function ming L(y; 6), wherein Dy is dif-
ferent from Dy,.4;y,. For TTA, two fundamental principles
should be followed. (i) TTA starts with a pre-trained model
which has learned general knowledges for the target task.
(i1) TTA works on the test data where the training pairs are
unavailable. In this work, we adopted the diffusion model as
the pre-trained model, the generated and degraded images
as the training pairs to implement TTA for OIR task.

The Diffusion Model. Given a data distribution zg ~ g(xq)
and a noise distribution z¢ ~ N(0, I), diffusion model (Ho
et al., 2020) defines a T-timestep diffusion process, which
corrupts g to x by sequentially adding the random noise
e ~ N(0,7), and a T-timestep denoising process, which
recovers x to xo by progressively eliminating the noise
€. Importantly, there is an elegant property in the diffusion
process, i.e.,

Ty = Vauro + V1 — que, (D

where t € {0,...,T}, &y = HE:O o;, a; =1 — B; and B; is
the variance of the ¢th timestep. Based on this formula, the
diffusion model learns a denoiser for the denoising process
via the following objective, i.e.,

Vo H 6729(\/0_%170 +v1 75[1‘16515) ||a 2

where Zy is the denoising network, and ¢ is randomly sam-
pled during the training phase. For a well-trained diffusion
model, denoising process progressively yields x;_; from z;
in terms of e; = Zy(x¢,t) until ¢ = 0. According to Bayes
Theorem, the x;_1 could be sampled through the following
process, i.e.,

q(ze—1|e) = N(@e_1; plae, 20), Br),
 Va—1BiZo + a1 — ay1)xy

e, o) = - a ©)
N Tt — 1— Qi€ = 1-— Q1
To= —7—=—" /Bt = 7 = Pty
v/ O 1—

where Z is the estimated output from z; in terms of Eq.(1).
To guide the x;_; towards the desired output x, the condi-
tional guidance y could be introduced through the following
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Figure 2. Overview of the proposed method, which exploits (i) a PDM as the generic pre-trained model for OIR. After each denoising
step, it first performs (ii) TDA for adapting to the unknown and unseen degradations posed by open-set scenarios, and then conducts (iii)
AIR for optimizing the guided image towards the restored clean image. Note: the snowflake icon indicates the image or model is fixed,
and the flame icon indicates the image or model will be updated through the gradients.

formula (Dhariwal & Nichol, 2021; Fei et al., 2023), i.e.,

q(zi—1 |20, y) o< N(wp—1; p(we, 20) + 5G, By),  (4)

where s is the scale of guidance, G = V3, log py(y|Zo), and
Pg(+) is a model bridging the gaps between & and y. For
image restoration, the test degraded image is introduced as
the y, and the x is the desired clean output.

3.2. Framework Overview

To achieve OIR through PDM, the key lies in implementing
P (+) to produce the appropriate guidances of gradients G,
guiding the generated image & towards the clean image xg
of the test degraded image y. In this work, we implement
P (+) through TDA and AIR, which are devised for open-set
scenarios and image restoration, respectively. To overcome
the challenges posed by open-set scenarios, TDA introduces
a degradation-agnostic adapter during the test phase (i.e., de-
noising process of PDM) for adapting PDM to the unknown
and unforeseen degradations. This adapter is implemented
by a simple neural network ¢, and optimized once after each
denoising step towards aligning the domain of the & to that
of the y. Through the adapter, & could be translated to the
corresponding degraded one ¢(Z), which could be further
supervised towards the y, and in turn produce G to update
the Zo towards the desired xy. AIR is elaborated to conduct
this supervised process for image restoration. Specifically,
AR is inspired by the observation that a PDM exhibits an
intriguing temporal dynamic during the denoising process,
i.e., T¢ are generated from the unrecognizable contents to
the perceptually rich contents, and finally the imperceptible
details. Therefore, AIR dynamically adjusts the supervision
strategies by gradually shifting the focuses from high- to
low-level contents during the denoising process.

The framework of TAO is illustrated in Fig.2, where a PDM

is fixed to progressively denoising the pure noise zr to the
clean image x(. For the test degraded image y, TAO first
samples two maps of random noise at ¢ = 7', and thus two
images will be generated after each denoising step. We refer
to the image updated towards the clean image of the y as the
guided image z7, and the other one as the auxiliary image
x¢. We introduce the z{ to prevent TDA from falling into
trivial solutions, and assist AIR to guide the z{ towards the
desired clean image z. At each step ¢, the images x{, =,
and y are first fed into TDA for optimizing the adapter ¢
through the objectives for domain alignment, and then sent
into AIR for updating z{ towards z{, which best matches y
undergoing ¢, through the conditional guidance in Eq.(4).

3.3. Test-time Degradation Adapter

The essence of OIR lies in addressing the unidentified distri-
bution shifts between the test and training data, while TTA
recently emerges as an effective methodology to address this
inherent disparities. With the motivations, TDA is presented
for adapting PDM to the downstream shifted distribution of
degradations during the test phase.

TDA employs a four-layer convolution neural network as the
adapter ¢, which is optimized for aligning the domain of the
generated images i‘o, 2§ to that of the test degraded image
y. Note that ZJ and #¢ are the estimated outputs from z{
and z¢ in terms of Eq.(l), respectively. Specifically, we in-
troduce adversarial training which has shown to be effective
in aligning the source and target domains, and the translated
samples usually capture rich visual characteristics inherent
to the target domain. Therefore, TDA aligns ¢([£§, £§]) to

y which involves significant visual degradations through
»Cadv = log(l - D(QS([‘%(g)v j’.g])) (5

where [] denotes the concatenation along the dimension of
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batch size, and D is a discriminator optimized through

Lais = —log D([y, y]) —log(1 — D(¢([7, 25])).  (6)

Meanwhile, TDA adopts a reconstruction loss to maintain
the content consistency during the domain alignment, i.e.,

£Tec :” [i‘gaig] - (b([i‘ga‘irol]) H% . (7)

In addition, the perceptual loss is introduced to remain the
semantic consistency during the domain alignment, i.e.,

Lpec =l V([38, 25)) — V(@([28, 26)) I3, (®)

where V() denotes the feature maps extracted from the pre-
trained VGG network. Overall, the objective for optimizing
the adapter ¢ is

‘Cqﬁ = AL * AC'r‘ez: + Ao * Epec + A3 * ‘Cad'm (9)

where A1, A9, and A3 are the loss weights. By iterative op-
timization during the denoising process, ¢ gradually trans-
lates &), £ into the domain of y. Note that Z§ is introduced
to prevent ¢ from the trivial solution of identity mapping.

3.4. Adapter-guided Image Restoration

With the adapter ¢, & could be translated into the degraded
domain of y through ¢(Z7), which could be further super-
vised towards the y, and in turn produce the G to update the
generated images & to the desired clean output . AIR is
devised to perform this supervised updating process.

Existing studies (Choi et al., 2022) have show that the de-
noising process exhibits an intriguing temporal dynamic,
i.e., &3 is generated from the unrecognizable contents to the
perceptually rich contents, and finally the imperceptible de-
tails. In other words, the contents to be restored are varying
as the denoising steps. To take full advantages of PDM, AIR
empirically divides the denoising steps into three stages, and
guides the restoration through different strategies.

In the first stage where ¢ ~ T, the generated images have a
lower signal-to-noise ratio, wherein the contents are unrec-
ognizable and only contain some global information such
as colors, layouts distributed throughout image. Therefore,
AIR applies mse loss on the spatial pixels and color channels
to learn global contents, i.e.,

G =1 *Va, || y— o(do) |13, (10)

where v is the loss weight and %o € {Zf, £{}. Note that
AIR also use this guidance on the auxiliary image x( so that
it involves the similar global properties as y, since it is ben-
eficial to the optimization of adapter on most degradations.
In addition, a linear warmup is employed on ~y; to gradually
involve this guidance.

In the second stage where ¢t ~ T'/2, PDM prefers to generate
the perceptually rich contents, and thus AIR focuses more
on restoring the perceptual contents from y. To this end, the
perceptual loss is adopted, i.e.,

Gpee = Vag [ V(y) = V(1)) 113 - (11)

Meanwhile, an adversarial loss is also introduced to boost
the perceptual quality, i.e.,

Gadv =V 39 log(1 — D(2f — y))
Liis = —log(1 = D(3F — y)) (12)
—log D([27, 2] — o([25, 20]))-

With this loss, 2§ will be further updated toward the clean
image whose degraded version matches y, by aligning the
domain of content loss caused by degradations. Besides, the
mse loss is also employed to remain the global contents, i.e.,

gmse - vi'g || Yy — ¢(§38) ||g . (13)

Overall, the guidance loss for the second stage is

g =72 * gmse + v3 * gpec + Y4 % gadv7 (14)

where ~5_4 are the loss weights.

In the third stage where ¢ ~ 0, the perceptually rich contents
are already presented in ZJ. AIR is only required to recover
the imperceptible details. In other words, & is very close to
the natural image, and thus some extra image priors could
be introduced to regulate the final output. In consideration
of generality, we only introduce a total variation loss, i.e.,
G = 75 * TV Loss(Z{), where 5 is the loss weight. Note
that although the third stage mainly affects the imperceptible
details, the pixel values still fluctuate and thus the guidance
loss in the second stage is used for a better numerical fidelity.

4. Experiments

In this section, we first introduce the experimental settings,
and then show quantitative and qualitative results on multi-
ple degradations. Finally, we perform analysis experiments
including ablation studies and result visualizations.

4.1. Experimental Settings

To evaluate the effectiveness of TAO on addressing OIR, we
conduct experiments on multiple tasks of image restoration
with exactly the same settings, except for the loss weights
and guidance scale (A\1_3, y1—5, S), Which are finetuned
for different types of degradation to obtain the best results.
In experiments, we employ an unconditional image diffu-
sion model (Dhariwal & Nichol, 2021) pretrained on Ima-
geNet (Deng et al., 2009) as PDM, and sets the timestep as
T = 1000, which is further divided into three stages in a
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Table 1. Quantitative results of image dehazing on HSTS. Our method outperforms zero-shot methods, and obtains comparable even better
results than classic methods through supervised learning. All the compared methods are specifically designed for image dehazing.

Metrics ‘ Classic Learning Methods ‘ Zero-shot Methods ‘ OIR

| DEN MSN AOD CAP | DCP BCCR GRM NLD DDIP YOLY | Ours
PSNR 7T | 23.96 1840 19.15 21.69 | 1842 1575 17.41 1818 18.22 2124 | 22.29
SSIM T | 0.902 0.826 0.860 0.868 | 0.854 0.783 0.833 0.814 0.832 0.835 | 0.877

" Hazy Image DEN CAP DCP

NLD YOLY TAO - Ground Truth

Figure 3. Qualitative results on image dehazing, from which one could observe that existing methods excessively dehazing resulting in
darkening and/or artifacting of the images. In contrast, our method obtains clearer results which are closer to the natural ground truths.

heuristic way, i.e., the first stage 999-700, the second stage
700-50, and the third stage 50-0. Since PDM is pre-trained
on large-scale natural images for high-quality image gener-
ation, any degradation in the test image could be regraded
as the unforeseen. Both the adapter and discriminators are
four-layer convolutional networks, and optimized once at
each denoising step through Adam optimizer with default
learning rate of le-3. First nine layers of pretrained VGG-
16 (Simonyan & Zisserman, 2014) network are employed to
extract the semantic feature maps for calculating the percep-
tual loss. For evaluations, considering the specificity of our
methods, i.e., adaptation on single test sample, we mainly
compare it with those task-specific zero-shot methods, and
some classic learning-based methods. To access their per-
formance, PSNR and SSIM metrics are employed, and all
experiments are conducted through PyTorch framework on
Ubuntu20.04 with GeForce RTX 3090 GPUs.

4.2. Experimental Results

Here, we evaluate our method on the tasks of image dehaz-
ing, low-light image enhancement, and image denoising.

Image Dehazing aims to eliminate the haze and boost the
visibility of hazy image, which has spawned many methods
in the past decades. In experiments, we introduce the HSTS
dataset from RESIDE (Li et al., 2018a) for evaluations. To
be specific, RESIDE is a large scale haze image dataset, and
HSTS is one of the test subsets, which contains 10 synthetic
and 10 real-world hazy images. Before the evaluation, we
first center crop the images along the shorter edges, and then

resize them to match the image size of the PDM.

For a comprehensive comparison, we compare TAO with
10 representative methods which are specifically designed
for image dehazing, and could be roughly divided into two
groups, i.e., classic learning-based and zero-shot methods.
Specifically, classic learning-based methods are DehazeNet
(DEN) (Cai et al., 2016), MSCNN (MSN) (Ren et al.,
2016), AOD-Net (AOD) (Li et al., 2017), and CAP (Zhu
et al., 2015). Zero-shot methods are DCP (He et al., 2010),
BCCR (Meng et al., 2013), GRM (Chen et al., 2016),
NLD (Berman et al., 2016), DDIP (Gandelsman et al., 2019)
and YOLY (Li et al., 2021b).

The quantitative results are presented in Tab.1, from which
one could see that our method achieves comparable even bet-
ter results than those task-specific methods. To be specific,
our method obtains the best performance in zero-shot meth-
ods, and outperforms YOLY and DCP with 1.05/0.042 and
3.87/0.023 according to PSNR/SSIM metrics, respectively.
Meanwhile, even compared with the classic learning-based
methods, our method still outperforms most of them and
achieves comparable results with the others. For example,
our method obtains 3.89/0.051, 3.14/0.017, and 0.60/0.009
higher PSNR/SSIM values than MSN, AOD and CAP, re-
spectively. Although our method is lower than DEN, the
performance gaps are not huge, e.g., 1.67/0.025 lower than
DEN in terms of PSNR/SSIM metrics. In addition, we also
show and analyze the qualitative results in Fig.3, from which
one could observe that our method achieves better fidelity
and realness than the compared methods.
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Table 2. Quantitative results of low-light image enhancement on LOL dataset. Our method obtains the best SSIM values and the second
PSNR values in the zero-shot methods, and only the classic learning-based MBLLEN outperforms our method on both the two metrics.

Metrics ‘ Classic Learning Methods ‘ Zero-shot Methods ‘ OIR

| LNet RNet MBLLEN EGAN | ExCNet ZDCE ZDCE+ RRDN GDP | Ours
PSNR T | 13.39 1787  18.03 1485 | 17.15 1533 1571 1124 1575 | 17.10
SSIMT | 0.623 0.699  0.809 0815 | 0720 0763 0765  0.543  0.665 | 0.804

Low-light Image RNet MBLLEN ExCNet

Ground Truth

ZDCE b} TAO

Figure 4. Qualitative results on low-light image enhancement, from which one could see that our results are not as smooth as MBLLEN
nor as dark as ZDEC. Although there are slight color biases from ground truths, our method achieves a rational lighting of the dark images.

Low-light Image Enhancement aims at improving the per-
ception of the image captured in the environment with poor
illumination. To evaluate our method on this task, we intro-
duce the test subset from LOL (Wei et al., 2018b) dataset.
LOL includes 485 training and 15 test image pairs of low-
and normal-light, which contain noises produced during the
photo capture process. Since the images have a resolution of
400x 600, we first center crop them along the shorter edges,
and then resize them to be applicable to the PDM.

For a comprehensive comparison, we compare our method
with nine low-light image enhancement methods, which are
divided into two categories, i.e., classical learning-based and
zero-shot methods. To be specific, the classical learning-
based methods are LightenNet (LNet) (Li et al., 2018b),
Retinex-Net (RNet) (Wei et al., 2018a), MBLLEN (Lv et al.,
2018), and EnlightenGAN (EGAN) (Jiang et al., 2021). The
zero-shot methods are ExXCNet (Zhang et al., 2019), Zero-
DCE (ZDEC) (Guo et al., 2020), Zero-DCE++ (ZDEC+) (Li
et al., 2021c), RRDNet (RRDN) (Zhu et al., 2020), and
GDP (Fei et al., 2023). The above methods except GDP are
specially designed for low-light image enhancement, while
our method is devised for more general purpose of OIR, and
the only difference for different tasks lies in the loss weights
and the guidance scale.

The quantitative results are shown in Tab.2. From the Table,
one could see that our method achieves comparable even
better results than those specific-designed methods. In the
zero-shot methods, our method achieves the best and the
second performance in terms of SSIM and PSNR metrics,
respectively. In PSNR, our method outperforms the other

methods except ExCNet with the margins of 1.35-5.86. Al-
though ExCNet achieves a slightly better PSNR value of
0.05, our method achieves the best SSIM values and exceeds
it with a margin of 0.084. Besides, even compared with the
classic learning-based methods, our method is competitive
and obtains better results than most of them. For instance,
our method obtains 3.71/0.181 higher PSNR/SSIM value
than LNet, 2.25 higher PSNR value than EGAN, and 0.105
higher SSIM value than RNet. Only MBLLEN outperforms
our method on both the PSNR and SSIM metrics with the
slight margins of 0.93 and 0.005, respectively. In addition,
we present and analyze the qualitative results in Fig.4, which
demonstrate our method enlightens the dark images reliably
and reasonably.

Table 3. Quantitative results of image denoising on Kodak dataset.
N.I denotes the noise images. From the table, one could see that
our method is comparable to even better than those zero-shot image
denoising methods.

Metrics ‘ NI BM3D N2S N2V  DIP Ours
PSNR 1 | 26.35 28.63 28.71 27.17 27.58 28.49
SSIM 1 | 0.757 0.795 0.864 0.846 0.808 0.830

Image Denoising aims to remove noises from an noise im-
age. To evaluate our method, we introduce Kodak24 dataset
which consists of 24 natural clean images, and is commonly
used for testing image denoising methods. Similarly, we
center crop and resize the image to match the size of the
PDM, and obtain the noise images by adding the Gaussian
noises with the noise level of o = 30 to the clean images.
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Noise Image BM3D

TAO Ground Truth

Figure 5. Qualitative results on image denoising, from which one could observe that existing methods excessively denoising resulting in
smoothing and/or artifacting of the images. In contrast, our method obtains clearer and sharper results which are closer to ground truths.

Table 4. Results on different strategies for domain alignment to unknown and unseen degradations. These strategies were implemented
based on BasicSR (Wang et al., 2022b). VGAN-S/B denote the Sigmoid Layer plus BCELoss and BCEWithLogitsLoss, respectively.

Metrics ‘ Haze Image VGAN.S VGAN_B LSGAN WGAN WGAN_Softplus Hinge
PSNR 1 14.74 22.29 22.06 20.76 13.61 21.47 20.44
SSIM 1 0.770 0.877 0.870 0.873 0.619 0.864 0.860

Auxiliary Degraded Auiliary Guided Test Degraded

Degraded Guided
Images Images Images Images Images

Figure 6. Visualizations from TDA wherein Auxiliary/Guided Im-
ages are translated to Degraded Auxiliary/Guided Images by TDA,
whose domains align well to that of Test Degraded Images.

We compare our method with four zero-shot image denois-
ing methods, i.e., BM3D (Dabov et al., 2007), N2S (Batson
& Royer, 2019), N2V (Krull et al., 2019), and DIP (Ulyanov
et al., 2018). The above methods except for DIP are specifi-
cally designed for image denoising. The quantitative results
are presented in Tab.3. From the table, one could see that our
method obtains comparable even better results than those
task-specific methods. To be specific, our method obtains
0.035 and 0.022 higher SSIM value than BM3D and DIP,
respectively. Meanwhile, our method also outperforms N2V
and DIP in PSNR value with a large margin of 1.32 and 0.91,
respectively. Although not achieving the best performance,
our method enjoys the appealing capacity of addressing OIR
through one model. In addition, we present the qualitative
results in Fig.5, from which one could see that our method

obtains clearer results with better fidelity to ground truths
than the compared methods.

4.3. Analysis Experiments

In this section, we conduct analysis experiments w.r.t. our
proposed TDA and AIR mainly on image dehazing.

The effectiveness of TDA. Since PDM cannot achieve im-
age dehazing without TDA, we demonstrate its effectiveness
by i) observing whether it aligns the domain of generated
images to that of the degraded image after the optimization
during the denoising process, and ii) comparing with differ-
ent strategies of adversarial training for domain alignment.
The visual results are shown in Fig.6, from which one could
observe that TDA exhibits a significant capability of domain
alignment to the unknown and unforeseen degradations. For
example, the haze in the top row is uneven distributed in
the test degraded image, and the same effects exist in the
degraded auxiliary/guided image. The degree of darkness
in the degraded auxiliary/guided image is similar to that in
the test degraded image in the second row. In addition, we
conduct experiments on different strategies of adversarial
training implemented by BasicSR (Wang et al., 2022b), and
present the results in Tab. 4. From the table, one could see
that, except for WGAN, all strategies achieve the signifi-
cant performance gains over the haze images. Namely, our
adapter generalizes well to different strategies for domain
alignment to the unknown and unseen degradations.

The effectiveness of AIR. Here, we first demonstrate the
rationality of AIR in Fig.7 which shows a typical denoising
process of PDM. From the figure, one could see the signifi-
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Figure 7. The temporal dynamics of PDM during the denoising
process, which motivates our AIR to guide the image restoration
through different strategies at different denoising steps.

Table 5. Ablation studies on guidance strategies, where U.G. de-
notes using the same guidance loss of mean squared error through-
out the denoising process. -E.S., -S.S., and -T.S. denote to remove
the First Stage, Second Stage, and Third Stage, receptively. The
results demonstrate the indispensable roles of the three stages for
image dehazing.

Metrics | UG.  -FS.  -S.S. -TS. AIR
PSNR T | 2049 2143 21.06 2137 22.29
SSIMt | 0.869 0.873 0.865 0.871 0.877

cant temporal dynamics, i.e., the images are generated from
the unrecognizable contents to the perceptually rich con-
tents, and finally the imperceptible details. The dynamics
also imply the varying of the contents should be focused
and restored in the test degraded image, and thus applying
different guidance strategies could facilitate image restora-
tion. We present the ablation results in Tab. 5, which show
the effectiveness of the three stages on facilitating image
dehazing. In addition, we also conduct analysis experiments
on stage divisions as shown in Tab. 6, from which one could
see that both early and late dividing steps result in the infe-
rior performances. In other words, a proper stage division
consistent with the temporal dynamics could improve the
performance of image restoration.

Table 6. Analysis experiments on divisions of the three stages. The
left is the dividing step between the First and Second stages, and
the right is the dividing step between the Second and Third stages.
The results demonstrate a proper stage division could significantly
improve the restoration.

Metrics | 800 700
PSNR 1
SSIM 1

600 | 70 50 30
21.89 2229 2111 [21.76 2229 2201
0.861 0.877 0.868 | 0.876 0.877 0.872

5. Conclusion

This paper explicitly explores the challenges posed by open-
set scenarios, and formally defines the problem of open-set

image restoration. To solve this problem, this work reveals
its essence from the perspective of distribution shifts, and
discovers the methodology of test-time adaptation is adept
at addressing this inherent disparities. Motivated by this,
we presented a test-time degradation adaptation framework
for open-set image restoration, which is ingenious in the
following ways. First, it considers a pre-trained image dif-
fusion model as the general pretraining model for solving
various tasks of image restoration. Second, it introduces
an adapter optimized during the test phase for adapting the
pre-trained model to the unknown and unseen test degrada-
tions. Third, it dynamically adjusts the guidance strategies
following the denoising process to obtain better restoration
results. Through experiments on multiple degradations, we
demonstrate the effectiveness of our designs.

Impact Statement

This paper considers a novel problem in Image Restoration
that restores the clean images from the degraded ones under
an open-set scenario. Although there are potential societal
consequences of this work, none which we feel serious and
must be specifically highlighted here. For example, the most
serious cases may be the recovery of images that have been
intentionally damaged by someone else, or do not match the
facts affecting the decisions made on that.
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