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ABSTRACT

Temporal graphs are ubiquitous in real-world scenarios, such as social network,
trade and transportation. Predicting dynamic links between nodes in a temporal
graph is of vital importance. Traditional memory-based methods typically leverage
the temporal neighborhood of interaction histories to generate node embeddings,
which are then aggregated to predict links between source and target nodes. How-
ever, these methods primarily focus on learning individual node representations
and often neglect the nature of pairwise representation learning aspect. While some
recent methods attempt to capture pairwise features, they are less emphasized in
large-scale datasets like TGB. Meanwhile, most of these existing methods tend to
suffer from high computational complexity due to the repeated calculation of node
embeddings. Motivated by the success of Neural Common Neighbor (NCN) for
static graph link prediction, we propose TNCN, a temporal version of NCN for
link prediction in temporal graphs. Based on a memory-based backbone instead
of traditional static graph neural network, TNCN dynamically updates a temporal
neighbor dictionary for each node, and utilizes multi-hop common neighbors be-
tween the source and target node to learn a more effective pairwise representation.
We validate our model on five large-scale real-world datasets from the Temporal
Graph Benchmark (TGB), and find that it achieves new state-of-the-art performance
on three of them. Additionally, TNCN demonstrates excellent scalability on large
datasets, outperforming popular GNN baselines by up to 6.4 times in speed.

1 INTRODUCTION

Temporal graphs are increasingly utilized in contemporary real-world applications. Complex systems
such as social networks (Yang et al., 2017; Min et al., 2021; Nguyen et al., 2017), trade and transaction
networks (Zhang et al., 2018; Yan et al., 2021), and recommendation systems (Wu et al., 2022; Yin
et al., 2019) are prime examples. These systems evolve dynamically over time, exhibiting different
characteristics. Recently, there has been a marked increase in the representation learning tasks
on temporal graphs. At the same time, a prominent graph learning tool, Graph Neural Network
(GNN) (Scarselli et al., 2008), has been developed to model node, link, and graph tasks. GNNs
generally learn node embeddings by iteratively aggregating embeddings from neighboring nodes.
They have demonstrated exceptional performance in numerous graph representation learning tasks.

There remains a significant gap between static graphs and the increasingly prevalent temporal graphs.
Temporal graphs incorporate discrete or continuous timestamps attached to edges, providing a more
precise depiction of the graph evolution process. Meanwhile, many methodologies for static graphs
are not applicable due to the additional constraints imposed by timestamps on causality. One can only
utilize nodes and edges that precede a given time, implicitly resulting in numerous graph instances
to analyze. Building on the success of time sequence modeling, Kumar et al. (2019); Trivedi et al.
(2019); Rossi et al. (2020) propose memory-based temporal graph networks aimed at learning both
short- and long-term dependencies. These methods, particularly Temporal Graph Networks (TGN),
have achieved notable success in temporal node classification. Additionally, Transformer-based
models, such as those proposed by Wang et al. (2021a); Xu et al. (2020), employ the multi-head
attention mechanism to capture both cross and internal relationships within a temporal graph.

While such memory- or attention-based methods are more emphasized and take more proportion
in real-world datasets like TGB, these models may exhibit inherent flaws when addressing link
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Figure 1: Figure (a) shows a failure case of link prediction based on node-wise representation learning.
Such methods cannot distinguish node u and v because they possess the same temporal computation
tree in figure (b), thus generating the same node representation. However, when we try to learn
their pair-wise representation, i.e. (u,w) and (v, w), we can observe that v has a temporal common
neighbor b with node w while u doesn’t, as shown in figure (c). Thus with the same computation
graph, we only need to utilize the extra node b’s embedding to distinguish (u,w) and (v, w).

prediction tasks in graphs. Such tasks require the model to predict the existence of a target link.
The aforementioned approaches primarily focus on node-wise representation learning, using the
node embeddings of source and destination nodes to predict its existence. While straightforward,
these methods often fail to precisely capture the node relationship and other complex structures.
For example, in Figure 1, the node-wise method might struggle to predict whether node w prefers
to interact with node u or v. Generally speaking, these models are constrained by their focus on
node-level representation, limiting their ability to capture broader contexts and higher-order patterns.

Considering these shortcomings, Zhang & Chen (2018) highlight the importance of pair-wise repre-
sentation and propose labeling trick to mark the source and destination nodes when learning their
pair-wise representation by GNN. Labeling trick (Zhang et al., 2021) is shown to greatly enhance
GNN performance on static graph link prediction. Building on this, Wang et al. (2021c); Luo &
Li (2022); Yu et al. (2023) develop models that leverage information from temporal surrounding
nodes, successfully extending the pair-wise learning approach to dynamic graphs. They extract
features using decreasing-timestamp random walks or joint neighborhood structures to generate
multi-level embeddings for the center nodes, facilitating node classification and link prediction with
pair-wise representations. However, these graph-based models often incur significant computational
and memory costs due to extracting temporal neighborhoods and applying message passing on them
for each node/link to predict, hindering their application in real-world, large-scale scenarios.

In general, graph-based representation learning methods can significantly enhance model capabilities,
yet their high computational cost limits widespread application. For example, the Temporal Graph
Benchmark (TGB) (Huang et al., 2023) contains many high-quality real-world temporal graphs.
However, most graph-based models choose to only evaluate on a subset of small graphs due to their
unaffordable cost of training and evaluation on large-scale datasets. On the contrary, memory-based
models (Rossi et al., 2020) update node representations sequentially following the event stream,
thus is significantly faster than graph-based methods yet might lose important graph information.
Motivated by these observations, we propose an expressive but efficient model, Temporal Neural
Common Neighbor (TNCN), to combine the merits of both. By integrating a memory-based
backbone with Neural Common Neighbor (Wang et al., 2023), TNCN learns expressive pairwise
representations while maintaining high efficiency akin to memory-based models. Consequently,
TNCN is suitable for large-scale temporal graph link prediction.

We conducted experiments on five large-scale real-world temporal graph datasets from TGB. TNCN
achieved new SOTA results on 3 datasets and overall ranked first compared to 10 competitive baselines,
demonstrating its effectiveness. To examine its scalability, we selected datasets with temporal edges
ranging from O(105) to O(107) and node numbers ranging from thousands to millions. We found
TNCN achieved 1.9x∼4.7x speedup in training and 2.1x∼6.4x speedup in inference compared to
graph-based models, while maintaining a similar scale of time consumption as memory-based models.

2 RELATED WORK

2.1 MEMORY-BASED TEMPORAL GRAPH REPRESENTATION LEARNING

Temporal graph learning has garnered significant attention in recent years. A classic approach in this
domain involves learning node memory using continuous events with non-decreasing timestamps.
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Kumar et al. (2019) propose a coupled recurrent neural network model named JODIE that learns
the embedding trajectories of users and items. Another contemporary work DyRep (Trivedi et al.,
2019) aims to efficiently produce low-dimensional node embeddings to capture the communication
and association in dynamic graphs. Rossi et al. (2020) introduces a memory-based temporal neural
network known as TGN, which incorporates a memory module to store temporal node representations
updated with messages generated from the given event stream. Apan (Wang et al., 2021b) advances the
methodology by integrating asynchronous propagation techniques, markedly increasing the efficiency
of handling large-scale graph queries. EDGE (Chen et al., 2021) emerges as a computational
framework focusing on increasing the parallelizability by dividing some intermediate nodes in long
streams each into two independent nodes while adding back their dependency by training loss. Chen
et al. (2023) extend the update method for the node memory module, introducing an additional hidden
state to record previous changes in neighbors. Complementing these efforts, additional contributions
such as Edgebank (Poursafaei et al., 2022) and DistTGL (Zhou et al., 2023) have been directed
towards formalizing and accelerating memory-based temporal graph learning methods.

2.2 GRAPH-BASED TEMPORAL GRAPH REPRESENTATION LEARNING

Subsequent works have incorporated the temporal neighborhood structure into temporal graph
learning. CAWN (Wang et al., 2021c) employs random anonymous walks to model the neighborhood
structure. TCL (Wang et al., 2021a) samples a temporal dependency interaction graph that contains
a sequence of temporally cascaded chronological interactions. TGAT (Xu et al., 2020) considers
the temporal neighborhood and feeds the features into a temporal graph attention layer utilizing
a masked self-attention mechanism. NAT (Luo & Li, 2022) constructs a multi-hop neighboring
node dictionary to extract joint neighborhood features and uses a recurrent neural network (RNN)
to recursively update the central node’s embedding. This information is then processed by a neural
network-based encoder to predict the target link. DyGFormer (Yu et al., 2023), instead, leverages
one-hop neighbor embeddings and the co-occurrence of neighbors to generate features, which are
well-patched and subsequently fed into a Transformer (Vaswani et al., 2017) decoder to obtain the
final prediction. LPFormer (Shomer et al., 2024) attempts to adaptively learn the pairwise encodings
via graph attention module, utilizing relative position, ppr value and neighboring information to obtain
the score. FreeDyG (Tian et al.) also utilizes historical interaction frequency akin to DyGFormer,
afterwards transforming it with Fast Fourier Transform (FFT) and IFFT through the frequency domain.
An MLP-mixer layer finally processes the output to generate the prediction. Another contemporary
work CNE-N (Cheng et al., 2024) uses a hash table to map an interaction event to its position.
It calculates the co-neighbor encoding for each (neighbor node - end node) pair within the local
subgraph, recording the number of their common neighbors. These information are then concatenated
to predict the probability of the future link.

2.3 LINK PREDICTION METHODS

Link prediction is a fundamental task in graph analysis, aiming to determine the likelihood of a
connection between two nodes. Early investigations posited that nodes with greater similarity tend
to be connected, which led to a series of heuristic algorithms such as Common Neighbors, Katz
Index, and PageRank (Newman, 2001; Katz, 1953; Page et al., 1999). With the advent of GNNs,
numerous methods have attempted to utilize vanilla GNNs for enhancing link prediction, revealing
sub-optimal performance due to the inability to capture important pair-wise patterns such as common
neighbors (Zhang & Chen, 2018; Zhang et al., 2021; Liang et al., 2022). Subsequent research has
focused on infusing various forms of inductive biases to retrieve intricate pair-wise relationships.
For instance, SEAL (Zhang & Chen, 2018), Neo-GNN (Yun et al., 2021), and NCN (Wang et al.,
2023) have integrated neighbor-overlapping information into their design. BUDDY (Chamberlain
et al., 2022) and NBFNet (Zhu et al., 2021) have concentrated on extracting higher-order structural
information. Additionally, Mao et al. (2023); Li et al. (2024) have contributed to a more unified
framework encompassing different heuristics.

3 PRELIMINARIES

Definition 3.1. (Temporal Graph) Temporal graph can be typically categorized into two kinds,
discrete-time (DTDG) and continuous-time (CTDG) dynamic graph. While DTDG can be repre-
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Figure 2: Pipeline of TNCN. TNCN operates through a sequential update and prediction framework
that processes successive batches of messages. During the update phase, TNCN updates the neighbor
dictionary and the node memory representations. In the prediction phase, the model retrieves
neighbors to identify common neighbors, thereafter leveraging the representations of the target nodes
and their common neighbors for prediction.

sented as a special sequence of graph snapshots in the form of G = {(G1, t1), (G2, t2), · · · , (GN , tN )},
it can always be transformed into its corresponding form in CTDG. So here we mainly focus on
continuous time temporal graph. We usually represent a CTDG as a sequence of interaction events:
G = {(u1, v1, t1), (u2, v2, t2), · · · , (un, vn, tn)}, where u, v stand for source and destination nodes
and {ti} are chronologically non-decreasing. We use V to denote the entire node set, and E the entire
edge set. Note that each node or edge can be attributed, that is, there may be node feature xu for u or
edge feature etu,v attached to the event (u, v, t).

Definition 3.2. (Problem Formulation) Given the events before time t∗, i.e. {(u, v, t) | ∀ t < t∗}, a
link prediction task is to predict whether two specified node u∗ and v∗ are connected at time t∗.

Definition 3.3. (Temporal Neighborhood) Given the center node u, the k-hop temporal neighbor
set (k ≥ 0) before time t is defined as N t

k(u). A node v is in N t
k(u) if there exists a k-length

path between u and v, i.e. ∃(u,w1, w2, · · · , wk−1, v) where wi ̸= wj ,∀i ̸= j. We also define
the (i, j)-hop common neighbor set as follows: w is an (i, j)-hop temporal common neighbor
of u and v at time t if w ∈ N t

i (u) and w ∈ N t
j (v). For simplicity we will denote the set as

CNt
(i,j)(u, v) = N t

i (u) ∩ N t
j (v). Note that for i = 0 (or j = 0 similarly), we define the 0-

hop temporal neighbor set as N t
0(u) = {u}, and the (0, j)-hop common neighbor of u and v as

CNt
(0,j)(u, v) = N t

0(u) ∩N t
j (v) = {u} ∩N t

j (v).

Finally, the K-hop temporal neighborhood of node u at time t is defined as:
K
∪

k=0
N t

k(u).

With (i, j)-hop neighborhood information, we can perceive the local structure to a large extent and
distinguish the difference between multi-hop common neighbors more precisely.

4 METHODOLOGY

In this section, we introduce our Temporal Neural Common Neighbor (TNCN) model. TNCN
comprises several key modules: the Memory Module, the Temporal CN Extractor, and the NCN-based
Prediction Head. Special attention is given to the Temporal CN Extractor, designed to efficiently
extract temporal neighboring structures and obtain multi-hop common neighbor information. The
pipeline of TNCN is illustrated in Figure 2. And a pseudocode is also attached in Appendix E.

4.1 MEMORY MODULE

Different from the static graph neural network typically used in traditional NCN, our model TNCN
adopts the memory-based backbone to efficiently store and update the node memory, eliminating
the need for repeated computation of node embeddings within successive temporal batches.

4
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The memory module stores node memory representations up to time t. When a new event occurs, the
memory of the source and destination nodes is updated with the message produced by the event. The
computation can generally be represented by the following formulas:

msgtsrc(u, v) = msgfuncsrc(e
t
u,v), msgtdst(u, v) = msgfuncdst(e

t
u,v).

memt
u = updsrc(memt−

u ,msgtsrc(u, v)), memt
v = upddst(memt−

v ,msgtdst(u, v)),
(1)

where memt−
u stands for the embedding of node u before time t. Here, msgfunc is a learnable function,

such as a linear projection or a simple identity function. Note that for different edge directions,
i.e., from source to destination and vice versa, the msgfunc and updfunc can be learned separately.
The memory module aids the model in managing both long-term and short-term dependencies,
thereby reducing the likelihood of forgetting. During training and inference, node memory evolves
dynamically as events occur. Updates to this module reflect the dynamic nature of the temporal graph.

4.2 TEMPORAL CN EXTRACTOR

Our Temporal CN Extractor can efficiently perform multi-hop common neighbor extraction and
aggregate their neural embeddings.

Extended Common Neighbor. The definition of multi-hop common neighbors (CN) is given in
Definition 3.3, extending the traditional (1,1)-hop CN (i.e., nodes on 2-paths between u and v) to
arbitrary (i, j)-hop CN. Additionally, we define the zero-hop neighbor of a central node, i.e., u is
considered as a neighbor of itself, which will be utilized to calculate CNs with other nodes. Given
source node u and target node v, the (0,1)-hop and (1,0)-hop CN not only records the historical
interactions between two nodes, but also reveals the frequency of their interactions.

Efficient CN Extractor. The CN Extractor is a crucial component of the TNCN model, contributing
significantly to its high performance and scalability. It can efficiently gather pertinent information
about a given center node and extract multi-hop common neighbors for a source-destination pair.

For each relevant node u, the extractor stores its historical interactions with other nodes as both
source and destination. After a batch of events is processed by the model, the storage is updated
with the latest interactions. This allows us to maintain a record of all historical interactions up to
a certain timestamp, effectively constructing a dynamic lookup dictionary for fast retrieval during
subsequent inference. To strike a balance between memory consumption and model capacity, we save
only the most recent K events and relevant nodes for each center node, where K is a hyperparameter
determined by the specific dataset.

To implement an efficient batch CN extractor, we organize the historical interactions in a Sparse
Tensor, representing the temporal adjacency matrix. Then we perform self-multiplication to generate
high-order adjacency connectivity. Sparse matrix hadamard product is finally employed to obtain
separate (i, j)-hop CNs. All these operations can be efficiently implemented by sparse tensor
operators and are supported by GPU to facilitate fast, batch processing. The detailed procedure can
be found in Appendix F.

The utilization of Multi-hop Common Neighbors significantly boosts TNCN’s performance, result-
ing in higher scores in temporal link prediction tasks. Furthermore, by employing sparse tensors, our
model achieves substantial reductions in both storage requirements and computational complexity,
thereby decreasing time consumption and enhancing efficiency. Here we also give a comparison
between our TNCN and traditional NCN in Table 1.

4.3 NCN-BASED PREDICTION HEAD

For later link prediction or other downstream tasks, we first obtain the node embeddings from their
memory:

embtu = NN(memt−
u , ∪

v∈Nt
1(u)

memt−
v , ∪

t′<t
et

′

u,v) (2)

where NN has multiple choices, like Identity or simple static GNN (Bruna et al., 2013; Defferrard
et al., 2016; Velickovic et al., 2017; Hamilton et al., 2017). In our implementation, we adopt Graph
Transformer Convolution (Shi et al., 2020), which can pay more attention to the relation between
different nodes and get local and global structure feature.

5
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Table 1: The comparison of TNCN and NCN
temporal scenario backbone arbitrary CN hops batch-wise CN extraction

NCN % traditional GNN % %

TNCN " memory-based " "

For source and destination nodes, we perform an element-wise product:

Xt
u,v = embtu ⊗ embtv. (3)

For multi-hop CN nodes, we aggregate their embeddings in each hop with sum pooling:

NCN(i,j)(u, v) = ⊕
w∈CNt

(i,j)
(u,v)

embtw. (4)

These embeddings are then concatenated as the final pair-wise representation:

repr(u, v) = [Xt
u,v || (

K

||
i,j

)NCN(i,j)(u, v)]. (5)

In the above,⊗,⊕, and || stand for element-wise product, element-wise summation, and concatenation
of vectors, respectively. The pair-wise representation repr(u, v) for nodes u and v is fed to a
projection head to output the final link prediction.

5 EFFICIENCY AND EFFECTIVENESS OF TNCN

In this section, we explore the two principal benefits of TNCN: efficiency and effectiveness. These
advantages are demonstrated through an analysis of two core components within the framework
for temporal graph link prediction: graph representation learning and link prediction methods. We
categorize graph representation learning modules into two types: memory-based and k-hop-subgraph-
based, according to the temporal scope of evolved events. Memory-based modules exhibit superior
time complexity while maintaining good expressiveness in some situations, striking a balance between
efficiency and performance. Furthermore, we highlight the deficiencies of existing link prediction
methods on temporal graph learning and introduce the extended common neighbor approach. This
method serves as a complementary addition for learning pair-wise representations while eliminating
the necessity for message passing on entire graphs. Both our graph representation learning and link
prediction techniques are designed with a unified optimization objective: to avoid message passing
on entire subgraphs in favor of non-repetitive operations, culminating in a cohesive solution that
is both efficient and effective.

5.1 GRAPH REPRESENTATION LEARNING

Graph representation learning aims to develop an embedding function, denoted as Emb, which
learns an embedding for each node encoding its structural and feature information within the graph.
Specifically, given a new event represented as (u, v, t), the function Emb leverages prior events to
generate meaningful embeddings. Approaches in this domain diverge in their handling of temporal
dynamics; some opt to maintain a dynamic embedding for each node that is incrementally updated
with each new event, while others choose to recalculate node embeddings by considering the entire
historical context of events, thereby providing a more comprehensive reflection of past interactions.
We classify these methodologies into two distinct types based on their operational mechanisms.

Definition 5.1. Memory-based approach. Given a new event (u, v, t), if Emb conforms to the
following form, the method is referred to as a memory-based approach.

Emb(u, t) = femb(Mem(u, t′)), Mem(u, t) = fmem(Mem(u, t′),Mem(v, t′), etu,v, t− t′),

Emb(v, t) = femb(Mem(v, t′)), Mem(v, t) = fmem(Mem(v, t′),Mem(u, t′), etv,u, t− t′),
(6)

where femb and fmem are two learnable functions.

6
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Definition 5.2. k-hop-subgraph-based approach. Given a new event (u, v, t), if Emb conforms to
the following form, the method is defined as a subgraph-based approach.

Emb(u, t) = femb(Gku,<t), Emb(v, t) = femb(Gkv,<t), (7)

where Gku,<t is a subgraph induced from G by node u’s k-hop temporal neighborhood
K
∪

k=0
N t

k(u),

containing only the edges (events) with time t′ < t, and femb is a learnable function.

Effectiveness. The analysis begins by assessing the effectiveness of the two paradigms. To do so, we
first introduce the concept of k-hop event (LOV´ASZ et al., 1993).
Definition 5.3. (k-hop event & monotone k-hop event) A k-hop event is a sequence of consecutive
edges {(ui, ui+1, tui,ui+1) | i ∈ {0, . . . , k − 1}, k ≥ 1} connecting the initial node u0 to the final
node uk. For example, {(u, x, t′), (x, v, t)} is a 2-hop event. In the case where k = 1, the k-hop
event reduces to a single interaction (u, v, t). A monotone k-hop event is a k-hop event in which the
sequence of timestamps {tui,ui+1 | i ∈ {0, . . . , k − 1}, k ≥ 1} is strictly monotonically increasing.

Then, we analyze the expressiveness of the two approaches in terms of encoding k-hop event.
Theorem 5.4. (Ability to encode k-hop events). Given a k-hop event {(ui, ui+1, tui,ui+1

) | i ∈
{0, . . . , k − 1}, k ≥ 1}, if the node embedding of u0 at time tu0,u1

can be reversely recovered from
the encoding Enc({(ui, ui+1, tui,ui+1

) | i ∈ {0, . . . , k − 1}, k ≥ 1}), then we say the encoding
function Enc is capable of encoding the k-hop event. The following results outline the encoding
capabilities of different learning paradigms:

• Memory-based approaches can encode any k-hop events with k = 1.

• Memory-based approaches can encode any monotone k-hop events with arbitrary k.

• k-hop-subgraph-based approaches can encode any k′-hop events with k′ ≤ k.

From Theorem 5.4, we can conclude that 1) memory-based approaches have superior expressive-
ness in encoding k-hop events compared to 1-hop-subgraph-based approaches, 2) memory-based
approaches have superior expressiveness in encoding monotone k-hop events than k′-hop-subgraph-
based approaches when k′ < k, and 3) k-hop-subgraph-based approaches are not less expressive than
memory-based approaches when k is large enough.

While the memory-based approach does not consistently rival the expressiveness of the k-hop-
subgraph paradigm, it possesses advantages in monotone events and long-history scenarios (where
k-hop subgraphs would be unaffordable to extract).
Corollary 5.5. If we use up to k hop neighborhood information of central node u, then TNCN can
capture at least (k + 1)-hop subgraph information around u.

This is because TNCN with memory-based backbone can obtain additional 1-hop information
regardless of the time monotony, i.e. arbitrary central node can interact with any neighbor when the
edge between them exists. This property can extend TNCN’s capability for free.

Efficiency. We then turn our attention to the efficiency of the two approaches. A pivotal factor is
the frequency with which individual events are incorporated into computations. In memory-based
approaches, each event is utilized a single time for learning, immediately following its associated
prediction. Conversely, in the k-hop-subgraph-based method, an event may be employed multiple
times, as it is revisited in different nodes’ temporal neighborhood and repeated been processed within
each subgraph’s encoding (such as message passing) process. This discrepancy leads to divergent
cumulative frequencies of event utilization throughout the learning process and results in the huge
efficiency advantage of memory-based methods. We formalize this observation in the following:
Theorem 5.6. (Learning method time complexity). Denote the time complexity of a learning method
as a function of the total number of events processed during training. For a given graph G with the
number of nodes designated as |N | and the number of edges as |E|, the following assertions hold:

• For memory-based approaches, the time complexity is Θ(|E|).

• For k-hop-subgraph-based approaches with k = 1, the lower-bound time complexity is
Ω
(

|E|2
|N |

)
, and the upper-bound time complexity is O

(
|E|2
|N | + |E||N |

)
.
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• For k-hop-subgraph-based approaches with k = 2, the upper-bound time complexity is

O
((

|E|2
|N | + |E||N |

) 3
2

)
.

The proof is attached in Appendix H with part of the proof based on a classic conclusion from de
Caen (1998) in the graph theory. Following Theorem 5.6, it becomes evident that the computational
overhead incurred by a memory-based method is significantly lower than that of a k-hop-subgraph-
based method, particularly as the value of k increases. These results highlight the advantages
of memory-based methods in mitigating the computational efficiency challenges associated with
large-scale temporal graphs.

5.2 LINK PREDICTION TECHNIQUE

With the node embeddings obtained from the graph representation learning step, link prediction
techniques involve aggregating the node embeddings in some way into link representations for link
prediction. Most previous methods simply concatenate the source and destination node embeddings
as the link representation Emb(u, t) ||Emb(v, t), losing a great amount of pairwise features (as
illustrated in Figure 1). In order to use labeling trick, an alternative approach involves extracting a
separate subgraph for each link to predict, which leads to good results but also significantly increases
the complexity. TNCN, on the contrary, utilizes neural common neighbors as a decoupled and flexible
solution. This approach can be seamlessly integrated into existing memory-based methods with
minimal computational overhead, while retaining important structural information for link prediction.

Effectiveness. In the following, we first demonstrate the effectiveness of TNCN by showing that it
can capture three important pairwise features commonly used as effective link prediction heuristics,
namely Common Neighbors (CN), Resource Allocation (RA), and Adamic-Adar (AA) (Newman,
2001; Adamic & Adar, 2003; Zhou et al., 2009), borrowing from NCN (Wang et al., 2023).
Theorem 5.7. TNCN is strictly more expressive than CN, RA, and AA.

Essentially, TNCN uses node memory to substitute the constant or degree-based values in the three
features, and the memory update scheme is sufficient to learn such values. In comparison, an approach
that merely concatenates node-wise representations proves inadequate in capturing these heuristics.

Efficiency. We then address the efficiency of TNCN. The computation of TNCN can be divided
into two primary components: the generation of neighbor nodes’ embeddings and the execution of
common neighbor lookups. Concerning the former, the memory-based approach intrinsically tracks
all node embeddings, thus obviating the need for re-computation. As for the latter, we implement
a fast common neighbor search algorithm by leveraging a sparse matrix structure that supports
batch operations. Collectively, these factors contribute to the minimal additional overhead of TNCN
compared to memory-based methods.

6 EXPERIMENTS

This section assesses TNCN’s effectiveness and efficiency by answering the following questions:

Q1: What is the performance of TNCN compared with state-of-the-art baselines?
Q2: What is the computational efficiency of TNCN in terms of time consumption?
Q3: Do the extended common neighbors bring benefits to original common neighbors?

6.1 EXPERIMENTAL SETTINGS

Datasets We evaluate our model on five large-scale real-world datasets for temporal link prediction
from the Temporal Graph Benchmark (Huang et al., 2023). These datasets span several distinct fields:
co-editing network on Wikipedia, Amazon product review network, cryptocurrency transactions,
directed reply network of Reddit, and crowdsourced international flight network. They vary in
scales and time spans. Additional details about the datasets are provided in Appendix A. We set the
evaluation metric as Mean Reciprocal Rank (MRR) consistent with the TGB official leaderboard.

Baselines We systematically evaluate our proposed model against a diverse set of baselines known
for their strong capacity to represent temporal graph dynamics. These include: a heuristic algorithm
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Table 2: Test Performance of different models under MRR metric. The top three are emphasized by
red, blue and bold fonts. ‘NA’ denotes scenarios where a specific method was either not applied to the
dataset or was unable to complete the validation and testing phases within a reasonable timeframe.

Model Wiki Review Coin Comment Flight

TGN 0.528±0.058 0.387±0.021 0.737±0.031 0.622±0.023 0.705±0.018
DyGformer 0.798±0.010 0.224±0.015 0.752±0.004 0.670±0.001 NA
NAT 0.749±0.010 0.341±0.020 NA NA NA
CAWN 0.711±0.006 0.193±0.001 NA NA NA
Graphmixer 0.118±0.002 0.521±0.015 NA NA NA
TGAT 0.141±0.007 0.355±0.012 NA NA NA
TCL 0.207±0.025 0.193±0.009 NA NA NA
DyRep 0.050±0.017 0.220±0.030 0.452±0.046 0.289±0.033 0.556±0.014
Edgebank(tw) 0.571 0.025 0.580 0.149 0.387
Edgebank(un) 0.495 0.023 0.359 0.129 0.167
TNCN-official 0.724±0.001 0.419±0.009 0.770±0.006 0.727±0.012 0.817±0.004
TNCN-ns 0.778±0.001 0.427±0.006 0.771±0.004 0.596±0.008 0.831±0.003

Edgebank (Yu et al., 2023), memory-based models DyRep (Trivedi et al., 2019) and TGN (Rossi
et al., 2020) that obviate the need for frequent temporal subgraph sampling, and GraphMixer (Cong
et al., 2023) which primarily employs an MLP-mixer. Additionally, we include various graph-based
models such as CAWN (Wang et al., 2021c), NAT (Luo & Li, 2022), DyGFormer (Yu et al., 2023),
TGAT (Xu et al., 2020), and TCL (Wang et al., 2021a), which learn from neighborhood structure
information.

Here we evaluate our TNCN under two similar but different settings, the official setting (“official”)
and the new setting (“ns”). “TNCN-official” strictly complies to the official setting of TGB evaluation
policy, using both streaming setting and lag-one scheme for both memory update and neighborhood
awareness. Streaming setting means the information of the validation and test sets can only be
employed for updating the memory without any back propagation. Lag-one scheme implies that
the model can access only the information from before the current batch for predictions; in other
words, the latest usable batch is the previous one. This applies to not only the memory, but also the
neighborhood awareness. “TNCN-ns” obeys the streaming setting but considers the interactions
within the same batch before the current prediction time. This allows the model to utilize more recent
neighborhood information, potentially giving it unfair advantages in datasets where recent interactions
are crucial. Methods “DyGFormer”, “NAT” and “Graphmixer” reported on TGB leaderboard use the
latter setting while others use the former. For a fair evaluation and comparison, here we display the
performance of our TNCN under both settings.

6.2 EXPERIMENTAL RESULTS

Reply to Q1: TNCN possesses remarkable performance. We conducted comprehensive evaluations
of prevailing methods on the TGB. The main results are summarized in Table 2. It is evident from
the table that TNCN attains new SOTA performance on three out of five datasets. Additionally,
TNCN demonstrates competitive results on the remaining two datasets. TNCN almost consistently
surpasses memory-based models such as TGN and DyRep, which can be attributed to its utilization
of supplementary structural information. Even in comparison to powerful graph-based models,
including NAT and DyGFormer, TNCN still matches or exceeds their performance, underscoring
the effectiveness of its integration of node memory and pair-wise features. The only dataset where
TNCN still exhibits a large performance gap from the best baseline is the Review dataset. This may
be ascribed to the dataset’s predominant reliance on edge feature embedding and its high “surprise”
index, wherein prior events have a diminished correlation with subsequent events, potentially reducing
the impact of CNs. (Surprise index computes the ratio of test edges that are not seen during training,
i.e., |Etest/Etrain|

|Etest| . More details can be referred to Appendix A.)

We have also conducted some additional experiments such as transductive and inductive settings,
TGN with heuristics, etc., uncovering strong performance of our model TNCN. More results can be
referred to Appendix B.

Reply to Q2: TNCN shows great scalability on large datasets. To evaluate computational efficiency,
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Figure 3: Time Consumption of Memory and Graph-based Method on Wiki and Review Datasets

Table 3: Test performance of TGN and TNCN with different ranges of common neighbors
Model Wiki Review Coin Comment

TGN 0.528 0.387 0.737 0.622
TNCN-1-hop-CN 0.621 0.419 0.737 0.641
TNCN-0∼1-hop-CN 0.720 0.298 0.739 0.727
TNCN-0∼2-hop-CN 0.724 0.317 0.770 0.662

we collected the time consumption when applying all baselines to the Wiki and Review datasets, as
depicted in Figure 3. Compared with memory-based methods, TNCN exhibits a comparable order of
magnitude in terms of time consumption. However, when benchmarked against graph-based models,
TNCN demonstrates a substantial acceleration, achieving approximately 1.9 to 4.7 times speedup
during the training phase and a 2.1 to 6.4 times increase in inference speed. Notably, the scalability
concerns become even more evident as the size of the dataset expands; several graph-based models
cannot complete the validation and testing processes within a reasonable time budget. The primary
factors contributing to TNCN’s efficiency are the synergistic, time-efficient design of its two core
components and the implementation of the Efficient CN Extractor that facilitates batch operations
through parallel processing. More detailed statistics can be referred to Appendix D.

Reply to Q3: Extended CN brings improvements. To elucidate the benefits of extended CN, we
conducted an ablation study under official setting on the hop range of common neighbors. The results
are shown in Table 3. Here we use notation ”k-hop CN” to simply denote the CNs up to (k, k)-hop.
The conventional NCN method considers only (1,1)-hop CN. However, this approach may not be
universally applicable across all temporal networks. For instance, bipartite graphs lack such (1,1)-hop
CN in their structure, necessitating the consideration of 2-hop CN. Additionally, memory-based
methods may omit a notable aspect: they generally find it difficult to quantify the frequency of
interactions between a given pair of nodes, which brings the need for 0-hop neighborhood.

To address these limitations, we have expanded the original (1,1)-hop CN to 0∼k-hop CN. Table
3 presents the model’s performance under different hops of CN. The results indicate that TNCN
utilizing 0∼1-hop CN markedly surpasses the (1,1)-hop CN on various datasets. This enhancement
underscores the significance of the introduced 0-hop neighbors to our architecture. Nevertheless, the
inclusion of 2-hop CN yields mixed results across datasets.

7 CONCLUSION AND LIMITATION

We propose TNCN for temporal graph link prediction, which employs a temporal common neighbor
extractor combined with a memory-based node representation learning module. TNCN has achieved
new state-of-the-art results on several real-world datasets while maintaining excellent scalability to
handle large-scale temporal graphs.

However, based on our observation of TNCN’s performance on the TGBL-Review dataset, there are
some limitations in our model. Specifically, datasets with high surprise values, such as the Review
dataset, tend to make it more challenging for TNCN to accurately predict the probability of future
connections. This indicates that while TNCN performs well overall, it may struggle with datasets that
exhibit high variability or unexpected patterns. Further research is needed to address these challenges
and improve the model’s robustness in such scenarios.
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A DATASETS

Table 4 shows some detailed datasets statistics of TGB and 5 shows several temporal graph datasets
commonly used by previous work. Through the two tables we can observe that TGB official datasets
possess temporal graphs with larger scale to 10 million, 10 times surpassing the largest previous
datasets such as LastFM, Flight, Contact. With the aim to examine our TNCN model’s efficiency, we
choose the increasingly accepted datasets TGB in the main table.

Table 4: TGB Dataset Statistics

Dataset Domain Nodes Edges Steps Surprise Edge Properties

tgbl-wiki interact 9,227 157,474 152,757 0.108 W: ×, Di: ✓, A: ✓
tgbl-review rating 352,637 4,873,540 6,865 0.987 W: ✓, Di: ✓, A: ×
tgbl-coin transact 638,486 22,809,486 1,295,720 0.120 W: ✓, Di: ✓, A: ×
tgbl-comment social 994,790 44,314,507 30,998,030 0.823 W: ✓, Di: ✓, A: ✓
tgbl-flight traffic 18143 67,169,570 1,385 0.024 W: ×, Di: ✓, A: ✓

Here “Surprise” (Poursafaei et al., 2022) refers to the ratio of test edges that are not seen during
training, which can be calculated as |Etest/Etrain|

|Etest| . Low surprise index implies that memory-based
methods such as Edgebank (Poursafaei et al., 2022) may potentially achieve good performance, while
high surprise may require more inductive capability. The surprise index varies across TGB datasets.

Table 5: Previous Dataset Statistics

Datasets Domains Nodes Links N&L Feat Bipartite Duration Unique Steps Time Granularity

Wikipedia Social 9,227 157,474 – & 172 ✓ 1 month 152,757 Unix timestamps
Reddit Social 10,984 672,447 – & 172 ✓ 1 month 669,065 Unix timestamps
MOOC Interaction 7,144 411,749 – & 4 ✓ 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1,293,103 – & – ✓ 1 month 1,283,614 Unix timestamps
Enron Social 184 125,235 – & – × 3 years 22,632 Unix timestamps
UCI Social 1,899 59,835 – & – × 196 days 58,911 Unix timestamps
Flights Transport 13,169 1,927,145 – & 1 × 4 months 122 days
UN Trade Economics 255 507,497 – & 1 × 32 years 32 years
Contact Proximity 692 2,426,279 – & 1 × 1 month 8,064 5 minutes

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 TRANSDUCTIVE AND INDUCTIVE EXPERIMENTS ON PREVIOUSLY SMALL AND MEDIUM
DATASETS

Table 6 shows the performance of different models on some small and medium datasets previously
used in dynamic graph link prediction.

B.2 COMPARISON WITH SOME CLASSIC HEURISTIC METHODS

Table 7 exhibits the result between TGN with some classic heuristics and TNCN under official setting
on tgbl-wiki dataset. Here heuristics consist of CN (Barabási & Albert, 1999), RA (Zhou et al., 2009),
AA (Adamic & Adar, 2003), PPR (Page et al., 1999; Jeh & Widom, 2003) and ELPH (Chamberlain
et al., 2022). In these heuristic methods, the heuristic statistics are concatenated with TGN embedding
to obtain final predictions. From the table we can see that these basic heuristics such as CN and
RA do not bring performance improvement. However, some sophisticated heuristics like graph
sketching in ELPH can enhance the backbone’s capability. Nevertheless, using these heuristics cannot
outperform a more generalized model like our TNCN, which comprehensively takes neighborhood
nodes’ representations into account.
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Table 6: Average Precision (AP) under Transductive and Inductive settings
on small and medium dataset. The best is in bold font.

Method Wikipedia Reddit Mooc Lastfm

Transductive

CAWN 98.62±0.05 98.66±0.09 80.15±0.25 86.99±0.06
JODIE 96.15±0.36 97.20±0.05 80.23±2.44 70.85±2.13
DyRep 95.81±0.15 98.00±0.19 81.97±0.49 71.92±2.21
TGAT 96.94±0.06 98.52±0.02 85.84±0.15 73.42±0.21
NAT 98.68±0.04 99.10±0.09 86.54±0.02 88.56±0.02
TCL 96.47±0.16 97.53±0.02 82.38±0.24 67.27±2.16
DyGFormer 99.03±0.02 99.22±0.01 87.52±0.49 93.00±0.12
FreeDyG 99.26±0.01 99.48±0.01 89.61±0.19 92.15±0.16
EdgeBank 90.37±0.00 94.86±0.00 57.97±0.00 79.29±0.00
GraphMixer 97.25±0.03 97.31±0.01 82.78±0.15 75.61±0.24
TGN 98.57±0.05 98.70±0.03 89.15±1.60 77.07±3.97
TNCN 98.60±0.02 98.89±0.03 92.77±0.07 92.81±0.08

Inductive

Method Wikipedia Reddit Mooc Lastfm
CAWN 98.24±0.03 98.19±0.03 81.42±0.24 89.42±0.07
JODIE 94.82±0.20 96.50±0.13 79.63±1.92 81.61±3.82
DyRep 92.43±0.37 96.09±0.11 81.07±0.44 83.02±1.48
TGAT 96.22±0.07 97.09±0.04 85.50±0.19 78.63±0.31
NAT 98.55±0.09 98.56±0.21 78.16±0.01 85.91±0.02
TCL 96.22±0.17 94.09±0.07 80.60±0.22 73.53±1.66
DyGFormer 98.59±0.03 98.84±0.02 86.96±0.43 94.23±0.09
FreeDyG 98.97±0.01 98.91±0.01 87.75±0.62 94.89±0.01
EdgeBank 80.63±0.00 85.48±0.00 49.43±0.00 75.49±0.00
GraphMixer 88.59±0.17 85.26±0.11 74.27±0.92 68.12±0.33
TGN 98.01±0.06 97.76±0.05 77.50±2.91 65.95±5.98
TNCN 98.31±0.05 98.43±0.39 91.56±0.23 95.74±0.50

Table 7: Comparison between TGN with heuristics and TNCN on tgbl-wiki Dataset
Model Val MRR Test MRR Training Time (s) Inference Time (s)

TGN 0.569 0.528 10.33 98.74
TGN-CN 0.561 0.505 12.33 106.21
TGN-RA 0.563 0.511 16.51 115.04
TGN-AA 0.565 0.517 11.42 115.01
TGN-PPR 0.521 0.427 207.01 327.22
TGN-ELPH 0.715 0.681 240.92 1614.86
TNCN 0.742 0.720 21.45 250.49
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C TNCN MODEL CONFIGURATION

Network Choice In our experiment, the changeable neural networks are chosen as follows:

In Memory Module, we choose Identity as msgfunc and GRU as upd. In inference stage we process
node memory with Graph Attention Embedding to get the temporal representation. As for Prediction
Head, we finally choose Linear as the repr function.

Hyper-parameter Several detailed hyper-parameters for TNCN are shown in table 8, which can
help researchers to reproduce the experiment performance as reported in this paper.

Table 8: Some Experiment Hyper-parameters
Dataset num neighbors num epoch patience mem dim emb dim time dim

Wiki 15 20 5 184 184 100
Review 15 10 3 184 184 100
Coin 10 5 3 100 100 100
Comment 10 3 2 100 100 100

Parameter Analysis We have also conducted experiments for parameter analysis. The results are
shown in the table 9- 12.

Table 9: Performance metrics for different numbers of neighbors on Wiki dataset.
num neighbors 10 12 15 18 20

Val MRR 0.7433 0.7408 0.7412 0.7362 0.7418
Test MRR 0.7244 0.7193 0.7240 0.7187 0.7183
training time (s) 26.35 27.17 29.49 30.32 31.56
test time (s) 378.88 396.75 407.43 413.83 420.22

Table 10: Performance metrics for different numbers of neighbors on Coin dataset.
num neighbors 5 8 10 12 15

Val MRR 0.7492 0.7378 0.7430 0.7450 0.7406
Test MRR 0.7687 0.7619 0.7701 0.7662 0.7601
training time (s) 5936.19 6129.33 6406.00 6911.00 7529.01
test time (s) 56605.45 57117.99 57292.00 57745.00 57925.00

D TIME CONSUMPTION STATISTICS

Table D exhibits the detailed time consumption on TGB datasets with different models. We can
observe that TNCN maintains similar time consumption to memory-based networks while achieving
striking speedup compared with graph-based models. All these experiments are conducted with
NVIDIA GeForce RTX 3090.

Te be specific, we also conduct some experiments for the comparison between TNCN and NAT model.
The hardware we use is NVIDIA GeForce RTX 2080 as NAT’s code isn’t compatible with 3090. 14
shows the final results. Note that NAT model exposes a backward as its instability, accomplishing
about only 1/3 experiments when we test it.
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Table 11: Performance metrics for different embedding and memory dimensions on Wiki dataset.
emb dim&mem dim 100 150 184 256 512

Val MRR 0.7402 0.7373 0.7412 0.7426 0.7404
Test MRR 0.7178 0.7159 0.7240 0.7224 0.7235
training time (s) 22.34 25.47 29.49 32.81 34.95
test time (s) 378.28 399.77 407.43 420.45 459.86

Table 12: Performance metrics for different embedding and memory dimensions on Coin dataset.
emb dim&mem dim 30 50 100 150 184

Val MRR 0.7387 0.7405 0.7430 0.7436 0.7518
Test MRR 0.7591 0.7606 0.7701 0.7646 0.7699
training time (s) 6228 6340 6406 6617 6721
test time (s) 56694 57179 57292 58103 59411

Table 13: Time Consumption of Different Models on TGB Datasets

Model(tr/val/test)(s) Wiki Review Coin Comment Flight

TGN 23/117/124 2115/3731/3734 3259/6744/6352 8243/12580/12717 29681/52804/50147
DyGFormer 228/19801/19881 7760/57912/58011 - - -
DyRep 45/83/84 3257/3332/2990 4911/6382/6177 8921/11068/12701 31325/44917/47109
TGAT 160/9786/9861 4771/24854/25436 - - -
CAWN 301/24842/24851 11500/76094/76188 - - -
TCL 78/1623/1640 2344/3146/3148 - - -
TNCN 42/565/566 2076/9956/9957 5178/34294/31886 8732/38807/36642 34786/155231/144644

Table 14: Comparison of Time Consumption between TNCN and NAT
Dataset Model Train (s) Val (s) Test (s)

tgbl-wiki TNCN 21.45 250.49 251.52
NAT 74.92 298.6 298.41

tgbl-review TNCN 1649 4788 4695
NAT 422 7516 7461

tgbl-coin TNCN 4920 28716 28805
NAT 1896 30398 30176

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1 Pipeline of TNCN
1: for positive batch data (posu, posv, t) do
2: neg batch← negative sampling
3: for batch data in {pos data, neg data} do
4: mem, hist events← memory module(batch data); ▷ Get node memory and historical

interactions
5: emb← transform(mem, hist events); ▷ Get the node embedding
6: CN mat← CN extractor(hist events); ▷ Obtain the CNs for given node pair in a batch
7: NCN emb← AGG(emb, CN mat); ▷ Aggregate the embeddings of CNs
8: p← Pred(emb u, emb v, NCN emb); ▷ Calculate the probability of future links
9: end for

10: mem← memory update(pos data); ▷ Update the memory module
11: end for

E PSEUDOCODE OF TNCN PIPELINE

Algorithm 1 shows the pseudocode about the pipeline of our TNCN model.

F DETAILS OF COMMON NEIGHBOR EXTRACTION

Our temporal CN extractor begins with a sparse matrix A constructed from the interactions of related
nodes. We then include three stages to precisely generate arbitrary (i, j)-hop CNs:

1. Generate up to k-hop neighbors. The original matrix A only includes 1-hop neighbors. To
extend this, we: (a) Use self-loops for 0-hop neighbors, denoted as A0. (b) Perform sparse matrix
multiplication (e.g., Ak) to include arbitrary k-hop neighbors. Combining these two steps, we obtain
an updated neighborhood matrix set Â = {Ai}Ki=1.

2. Extract neighbors for each source and destination node with corresponding indices in the same
batch. Assume that we require the k-th hop neighbors of node u, then vector Ak[id(u)] is the result,
where id(u) stands for the reindexed id for node u. Ak[id(u)][id(v)] = w > 0 if v is a k-hop
neighbor of u, otherwise this element is 0. w represents the historical interaction frequency.

3. Obtain arbitrary (i, j)-hop CNs. We can perform hadamard product of Ai[id(u)] and Aj [id(v)] to
acquire different hops of CNs. As the figure 4 shows, the operator can extract corresponding CNs for
source-destination node pairs in a batch parallelly.

Figure 4: Common Neighbor Computation with Hadamard Product. Here node {1, 3, 4} are u’s i-hop
neighbors and {1, 4, 5} are v’s j-hop neighbors. Thus the (i, j)-hop common neighbors between u
and v are node {1, 4}.

By re-indexing the node IDs when generating Â to prevent conflicts, the CN extractor can conduct the
sparse matrix calculation, which are all performed in a Torch style that supports batch operations,
thus enhancing parallelism and efficiency.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) x = v (b) w = u (c) x = v & w = u

Figure 5: Here shows the special cases related to (1, 2)-hop CNs computation. Note that the graph is
undirected, while the directed arrows implies the path direction used to determine the corresponding
hop numbers.

SPECIAL CASES ANALYSIS

Here are some special cases while calculating (1, 2), (2, 1) and (2, 2) hop CNs. Under these situations,
utilizing Ak[id(u)] naively in step (2) will lead to walk-based neighbors, i.e. ∃v,∃i ̸= j, wi =
wj , s.t. (u,w1, w2, · · · , wk−1, v) exists. To obtain a clear version of arbitrary path-based (i, j)-hop
CNs, we should avoid the repetition of neighbors. We take (1, 2) as an example to analyse the detailed
method to eliminate repetition. Cases like (2, 1) and (2, 2) hop can be similarly solved.

Assume that node x is a (1, 2)-hop CN of pair (u, v), thus we know ∃w, s.t. (u, x) and (v, w, x)
exist. There are two variants that render x to be a walk-based CN instead of a path-based one that we
exactly require.

(a) x = v. When x = v, the local graph has the topology shown in figure 5 a. This situation
should satisfy two conditions: w is a neighbor of v and there are historical interactions between
u and v. Denote the frequency between (u, v) before time t as qt(u, v) = |{(u, v, t′)|t′ < t} ∪
{(v, u, t′)|t′ < t}|. So the naively computed CN t

(1,2)(u, v)[id(x)] value need to be subtracted by
[
∑
wi

qt(wi, v)] ∗ qt(u, v), i.e. the total interaction frequency of v before time t multiplied by the

frequency between (u, v).

(b) w = u. The structure is exhibited in figure 5 b. Here (u, v) has historical edges and x is a 1-hop
neighbor of u. The additive substraction value is [

∑
x
qt(x, u)2] ∗ qt(u, v).

(c) Both (1a) and (1b) are satisfied. The ground truth is as figure 5 c. We just need to add back the
overlap value that have been diminished once more.

Note that the procedure above can only deal with CNs of no more than (2, 2)-hop perfectly. For
higher-order (i, j)-hop CN extraction, please refer to Perepechko & Voropaev (2009) for more details
and complicated analysis.

G CASE STUDY

In this section figure 6, we show two case studies from real dataset of TGB, to give a better
understanding of the effectivity of our TNCN.

Figure (a) shows a case from tgbl-wiki, which is a bipartite graph. The yellow nodes 0 and 15 are a
(u, v) pair. If we use a node-wise method to predict the future link of (0, 15), we can find that node
15 has just 7 neighbors while node 0 has 12. So their properties may be different, thus having less
chance to have an interaction. However TNCN can observe that the blue nodes are their (1, 2)-hop
CNs and purple nodes are the (2, 1)-hop, and it will give a high probability over the existence of the
future link.

Figure (b) shows another case from tgbl-coin. Here we need to predict the link of (1, 8). Here TNCN
can find that these two nodes have multiple variants of common neighbors. Node 3 is their (1, 2)-hop
CN, node 4 and 6 are the (2, 1)-hop, and node 2 is both their (1, 1) and (2, 1) hop. The (2, 2)-hop
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Figure 6: Two case studies from TGB

CNs are node 5 and 7, while node 9 being a special (2, 2)-hop CN that owns a shared 1-hop node 2.
With the abundant CN information, TNCN will be more likely to predict it as a positive future edge.

H PROOFS

In this section, we give proofs on theorems 5.4, 5.6 and 5.7.

We commence with a restatement of Theorem 5.4 for clarity:

Theorem H.1. (Ability of encoding k-hop event). Given a k-hop event {(ui, ui+1, tui,ui+1
) | i ∈

{0, . . . , k − 1}, k ≥ 1}. If the node embedding of u0 at time tu0,u1
, can be formally derived by the

encoding function Enc({(ui, ui+1, tui,ui+1
) | i ∈ {0, . . . , k − 1}, k ≥ 1}), then the learning method

is considered capable of encoding the k-hop event. The following outline the encoding capabilities of
different learning schemes:

• Memory-based approach can encode any k-hop events with k = 1.

• Memory-based approach can encode any monotone k-hop events with arbitrary k.

• k-hop-subgraph-based approach can encode any k′-hop events with k′ ≤ k

Proof. In the following analysis, we establish the encoding efficacy of the memory-based ap-
proach. Consider a k-hop event with the simplifying assumption that k = 1, which reduces
the event to the tuple (u0, u1, tu0,u1

). By adhering to the predefined schematics of the memory-
based methodology, the memory state Mem(u0, tu0,u1

) is updated via the function fmem such that
Mem(u0, tu0,u1

) = fmem(Mem(u0, t
′), e

tu0,u1
u0,u1 , tu0,u1

− t′). Let us denote the encoding function as
Enc = fmem(Mem(u0, t

′), . . .). It is our intention to demonstrate that this memory-based framework
is capable of encoding any k-hop event for k = 1.

We consider the encoding of an arbitrary monotonically increasing k-hop temporal event sequence
within a memory-based approach. The induction principle is applied to demonstrate the capability of
this approach. For the base case, k = 1, the encoding has been shown to be feasible. Now, assume
the proposition holds for a k′-hop event; that is, any k′-hop temporal sequence of monotonically
increasing events can be encoded using a memory-based approach. This assumption implies that
there exists an embedding function such that

Emb(u0, tu0,u1
) = Enc((ui, ui+1, tui,ui+1

) | i ∈ 0, . . . , k′ − 1), (8)

for all event sequences with k′ hops, where k′ ≥ 1. Given an arbitrary k′ + 1-hop event, which can
be partitioned into an initial event (u0, u1, tu0,u1) and a subsequent k′-hop sequence. The existence

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

of an encoding function for the k′-hop sequence assures that

Emb(u0, tu0,u1
) = femb(Mem(u0, tu1,u2

))

= femb(fmem(Mem(u0, tu1,u2
),Mem(u1, tu1,u2

), e
tu0,u1
u0,u1 , tu0,u1

− tu1,u2
),

Mem(u1, tu1,u2
) = f−1

emb(Emb(u1, tu1,u2
))

= f−1
emb(Enc({(ui, ui+1, tui,ui+1

) | i ∈ {1, . . . , k′}, k′ ≥ 1})

(9)

Subsequently, it is demonstrated that Emb(u0, tu0,u1
) provides an encoding for both the initial event

and the k′-hop sequence, thereby affirming its efficacy in encoding the entire k′ + 1-hop event. This
concludes the inductive step and substantiates the inductive argument.

We consider a k-hop-subgraph-based approach for our analysis. It is evident that a k-hop subgraph
encompasses any k′-hop events, where k′ ≤ k. Furthermore, the aggregation methodology assimilates
all nodes contained within the subgraph. Collectively, these observations substantiate the theorem in
question.

We commence with a restatement of Theorem 5.6 for clarity:

Theorem H.2. (Learning method time complexity). Denote the time complexity of a learning method
as a function of the total number of events processed during training. For a given graph G with the
number of nodes designated as |N | and the number of edges as |E|, the following assertions hold:

• For the memory-based approach, the time complexity is Θ(|E|).

• For k-hop-subgraph-based with k = 1, the lower-bound time complexity is Ω
(

|E|2
|N |

)
, and

the upper-bound time complexity is O
(

|E|2
|N | + |E||N |

)
• For k-hop-subgraph-based with k = 2, the upper-bound time complexity is
O
(
( |E|

2

|N | + |E||N |)
3
2

)
Proof. In the proposed theorem, the time complexity is denoted as the aggregate quantity of events
processed throughout the training phase. The objective herein is to ascertain the precise count of such
utilized events.

In the context of the memory-based methodology, it is evident that each event is utilized a singular
time. Consequently, the cumulative number of events is expressed as |E|, which infers that the time
complexity adheres to the order of Θ(|E|).
In the context of k-hop-subgraph-based algorithms wherein k = 1, an event (u, v, t) is exploited once
for every incident event within the neighborhood of vertices u or v. Without loss of generality, we
focus on all events within the 1-hop-subgraph of vertex u. The aggregate count of events processed
is given by

∑d(u)
i=1 i = Θ

(
d(u)2

)
, where d(u) denotes the degree of vertex u. Consequently, the

computational complexity is fundamentally proportional to
∑

u∈N d(u)2. Drawing on the results

of de Caen (1998), the lower bound on the time complexity is established as Ω
(

|E|2
|N |

)
, whereas the

upper bound is determined as O
(

|E|2
|N | + |E||N |

)
In the context of k-hop-subgraph-based algorithms wherein k = 2,, we adopt similar strategy where
each event(u, v, t) will only be utilized once another event within the subgraph of u or v is firstly
considered. The total number of events can be formulated as

∑
u∈N d(u)

∑
v∈Nu

∑
w∈Nv

d(w).
Replacing d(u) as Xi,

∑
v∈Nu

∑
w∈Nv

as Yi, we reformulated is as
∑

i∈|N| XiYi, satisfying∑
i∈|N| X

2
i =

∑
u∈N d(u)2 and

∑
i∈|N| Y

2
i =

∑
u∈N d(u)4. Following Cauchy inequality and con-

clusions of
∑

u∈N d(u)2, we got the the upper-bound time complexity is O
(
( |E|

2

|N | + |E||N |)
3
2

)
We commence with a restatement of Theorem 5.7 for clarity:
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Theorem H.3. TNCN is strictly more expressive than CN, RA, and AA.

We first give definitions of these structural features under temporal settings. Given two nodes u and
v, the structural features before time t are defined as follows:

CN(u, v, t) =
∑

w∈Nt
1(u)∩Nt

1(v)

1,

RA(u, v, t) =
∑

w∈Nt
1(u)∩Nt

1(v)

1

d(w)
,

AA(u, v, t) =
∑

w∈Nt
1(u)∩Nt

1(v)

1

log d(w)

(10)

Given a node u, the degree of node u is the number of events e with an endpoint at node u.
Without loss of generality (WLOG), we consider node u as the source node, and the events are
{(u, vi, ti) | i ∈ {0, . . . , k− 1}, k ≥ 1}. Each time a new event is given, the embedding of node u is
updated by

memti
u = updsrc(memti−1

u ,msgfuncsrc(e
ti
u,vi)). (11)

With the MPNN universal approximation theorem, msgfunc can be a constant function, and updsrc
can be an addition function. Thus,

memtk−1
u = d(u). (12)

Then the embedding can learn arbitrary functions of node degrees, i.e.,

embtu = f(d(u)). (13)

Thus, the neural common neighbor TNCN1(u, v) = ⊕w∈Nt
1(u)∩Nt

1(v)
embtw can express Equation

10.

Extending to situations where the common neighbor node has some features we want to learn, the
traditional CN, RA, and AA cannot accommodate this. However, our TNCN can express these
features, demonstrating that TNCN is strictly more expressive than CN, RA, and AA.
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